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Boundary layer parameterization

Introduction

Boundary layer in the climate system

The boundary layer :
@ controls energy and water exchanges with surfaces
@ drives the oceanic circulation

@ is associated with a large fraction of clouds
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Introduction

Boundary layer in the "Earth System"

Driven by the Global Change studies, climate models are more and
more complex :

CO;, cycle, CHy, ozone chemistry, aerosols, effect of land use

= coupling between atmosphere, ocean, chemistry, vegetation ...
Leading to so-called "Earth System Models".

Boundary layer is central for most of those components.
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Introduction

Boundary layer in the "Earth System"

Example of well indentified uncertainty source in Eart-System
models.

The diurnal (seansonal) cycle of plant respiration is modulated by the
diurnal (seasonal) cycle of the boundary layer depth
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Introduction

Boundary layer in large scale models

Current climate models : horizontal mesh of 20 to 400 km.
Boundary layer processes are subgrid-scale = must be "parameterized"

S sa—
20-400 km

Parameterizations
@ describe the effect of subgrid-scale processes on large scale state variables
@ through a set of approximate equations based on some internal variables
@ must relate those internal variables to large scale variables (closure)

@ closely linked to the numerical world.
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© Approaches to the parameterization of the boundary layer
@ Scale decomposition
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s to the parameterization of the boundary layer

Scale decomposition

Scale decomposition of the conservation equation

Conservation equation | v: wind field
c : conserved quantity

d
Lagrangian form : i =0
. Oc
Advective form : En + vgradc = 0
Opc

© 1 div (pve) =0

Flux f :
ux form o

Scale decomposition
X : "average" or "large scale" variable | = V¢ =V + v/
X' = X — X : turbulent fluctuation

0q — 1 -
87‘; +V.gradg+ ;div (pv'd') =0



ecomposition

Under boundary layer approximations (0/0x << 9/0z) :

0 10—
é—i-v.gradc =S — ;a—zw’c/

Physical parametrizations

ilne grid mesh or atmospheric column.
7=

v and c¢ are now the large scale variables.
c: 0, u, v, water (vapor and others), chemical compounds ...
Parametrization of boundary layer first goal : represent w'c’
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© Approaches to the parameterization of the boundary layer

@ Diffusive approaches and their limitations
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Diffusive approaches and their limitations

Diffusive or local formulations for the PBL

— Oc Oc 0 Oc
PV~ - 2 el
ve= KZOZ —> ot 0z (K )

@ Analogy with molecular viscosity
(Brownian motion « turbulence)

@ Down-gradient fluxes.

o Turbulence acts as a "mixing"
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Diffusive approaches and their limitations

Turbulent diffusivity

o Prandlt (1925) mixing length : K, = [[w/| or K, = I? ag:“

@ Accounting for static stability (Ex. Louis 1979)
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Ex : Mellor and Yamada w'¢’ = —K¢%f with K = 1\/2eS,(Ri)

Note : % = 0 (stationarity) = K; of form Eq. 1
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meterization of the boundary layer

Diffusive ap hes and their limitations

Limitations of turbulent diffusion

Assumption leading to the diffusive approach :

@ Turbulence as a random process

o Small scale turbulence, i.e. of size | << h with h = [1Z] -
In the planetary boundary layer

@ Long range vertical transport (from the bottom to PBL top)

@ Organized structures

Radar echoes
dry convective
boundary layer
Florida, Hiop
Campaign
‘Weckwerth et al., 1997

Cloud streets on North of France
(March 2009, MSG)



Limitations of turbulent diffusion

Idealized view of the dry convective boundary layer.

In the mixed layer

Potential temperature
initial

o~ final Heat flux o Diffusive formulation
Z
S 00 )
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R 0z
Zli 1;[\’::510“
K _ @ Uniform heating by the surface
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© Approaches to the parameterization of the boundary layer

@ Alternatives to diffusive approaches
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Alternatives to diffusive approaches

Extension of diffusive formulations

o Introduction of a countergradient term

— 00
wo' =K, [F - 8] =0 with[ ~ 1K /km 2)
<
Imposed countergradient Deardorf, 1966
Revisited by Troen & Mart, 1986, Holtzlag & Boville, 1993,

based on a similarity approach.
@ Non local mixing length (Bougeault)

o Higher order closures
- Mellor & Yamada 1974, hierarchy at successive orders.
Complex and still local.
- Abdella & Mc Farlane, 1997, Introduce a mass flux approach to
compute the 3rd order moments in a Mellor and Yamada scheme.
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Alternatives to diffusive approaches

"Bulk" models

Constant value (or prescribed profiles) ¢y, with discontinuities Ac at
boundaries.

Potential temperature ~ Water

zZl @ \q
Z - S~
d _
Zi :;\;L = [Wclo —w'd, ] (3)
with w'c’,, = —CAc @)
Betts, Albrecht, Wang, Suarez et al 1983
el\ﬁi éSurf. e q

Randall et al. 1992 and Lapen and Randall, 2002: Combination of bulk
models with higher order closures
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to the param on of the boundary layer

Transilient matrices

Numerical formalism (after Stull 1984)
C : Air mass exchange rate matrices between model layers

For turbulent diffusions

or

9 _ O (K i) _ Kiqup2 (crp1 — 1) —Ki—yp2 (a1 = ei—1)
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Turbulent diffussion Assymetric Convective Model of Pleim and Chang 1992
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Alternatives to diffu aches

Mass flux schemes combined with turbulent diffusion

Separation into 2 sub-colums :

Potential temperature
initial

. final Heat flux
2 XZO[XM—F(I—O[XJ)
h P>
2 o l-a ascending plume of mass flux
v }:‘)frrsm" Thermal Comge_nsaling
Z f lume subsidence
= [ = apw,
— ! Neutral g
1 (\hglhll_v stable) af _ d
i P 7 - .-
- e 6a W
- Ifcu
' Turbulent 57 = ecy—dc,
— 1 Unstable iffusion Z
O ~ surface l_axgr
0
Oc
KZ(‘)*Z +f (cu — ca) &)

Chatfield and Brost, 1987, Hourdin et. al., 2002, Siebesma, Soarez et al, 2004



Comparison with LES

Dry convective boundary layer.
Forcing : w6’y = 0.24K m/s
geostrophic wind of 10 m/s

Thermal Plume model (Hourdin et al. 2002).
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Heat flux decomposition for
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Alternatives to diffusive approaches

Mass flux schemes combined with turbulent diffusion

Tracer B
H&B M&Y MY+TH

Zonal wind (m/s)
Holtlag Mellor M&'Y
& Boville & Yamada | + Thermals
w'60"9=0.24 K m/s, strongly inversion

15

Tracer B
H&B M&Y MY+TH
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© Boundary layer parameterizations in climate models
@ Cumulus clouds and mass flux parametrisations
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tions in climate models

Cumulus clouds and mass flux parametrisations

Statistical cloud schemes

All or nothing scheme

i . 9>9,(D
q<q_ (T)

uy 07

200 km
Statistical scheme

uy 07

200 km q Ysat

q

Probability Distribution Function of the subrid-scale water.

Cloud = fraction of the mesh where water vapor exceeds saturation.
—> New requirement for boundary layer scheme :

give information on the subrid-scale water distribution
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Boundary layer parameterizations in climate models

Cumulus clouds and mass flux parametrisations

Extension of mass flux schemes to cumulus clouds

Iy
RO

@ Computation of condensation in the ascending plume

@ Additional heating by condensation within the updraft
Feedback on the mass flux f and transport

@ Computation of the water PDF

—

—T -
f e T~ T e & =y

%

w:




Continental diurnal cycle with cumulus g ,
ARM EUROCS case (US Oklahoma) i i

Rio et al. 2008 i

LES SCM (1D GCM)
Specific humidity (g/kg)
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and mass flux param ations

3D test of the cloudy thermal plume model

Test of the a new physical package in the LMDZ global climate model
Impact on the coverage by low clouds

LanTUDE

wew e v oo

W o
LONGITUDE LONGITUDE

Low level clouds (%), STD phys. Low level clouds (%), NEW phys.

LONGITURE
Surf. Down SH radiatien (¥/m2}. STD Surt. Down SW radiatlon (¥/me), NEW-STD
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and mass flux parametrisations

Calipso
observations
LMDZ grid

LMDZ « new
\physics »
+ Calispo
> simulator
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From boundary layer to deep convection
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© Boundary layer parameterizations in climate models

@ From boundary layer to deep convection
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From boundary layer to deep convection

Parameterization of deep convection

Classical parameterizations :
@ Mass flux schemes
e Importance of cloud phase changes and rainfall

@ Controled by instability above cloud base
Example of the Emanuel (1991) scheme :

z

Trigerring :

B (LCL+40hPa) > ICINI
Closure :

Mp = f(CAPE))

CAPE : Convective Available
Potential Energy
v CIN : Convective INhibition.

Condensation
Level
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yer to deep convection

A systematic biais of parameterized convection

Climate models with parameterized convection tend to predict
continental convection in phase with insolation, while it peaks in late
afternoon in reality and in Cloud Resolving Models (mesh ~ 1 km).

An idealized case of continental cycle with deep convection
ARM, Oklahoma, after Guichard et al. 2004

(mm.day™)

(nmay™)

CRMs : surface rainfall

explicit models

(CRM:

’

sunrise

T

(SCMs)

’U 1

Deep convection preceeded by a phase of shallow cumulus convection

Boundary layer : preconditioning and trigerring of deep convection
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parame tions in climate models

From boundary layer to deep convection

Control of deep convection by sub-cloud processes

)km —
; ;];nﬁanuel
111 ALP closure

/ // / (/Grandpeix et al.)

~

11y
/////
km — vy
f\H/\ 4 4
om RN AV - .
6h 9 12 15 18 Local time (h)

New approach (Grandpeix et al. 2009) :
Control of deep convection by sub-cloud processes.
By analogy with a nozzle above a wall of height 4.

Kinetic ener;
K=v/2

oy
Power P (W/m2) ~ v Triggering :

Closure :
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From boundary layer to deep convection

ALP closure

Avaliable Lifting Energy for the convection
Scaling with w?.
Trigerring : ALE > ICINI

Avaliable Lifting Power for the convection

Scaling with w?.

Closure : Mg =f (ALP)

New requirements for the boundary layer scheme :
give reasonable estimates of w’? and w'>.
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From boundary layer to deep convection

ARM case with ALP closure, thermals and wakes

10km -
;;];-{ anuel

/11 ALP closure

/ // / (/Grandpeix etal.)
11y
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6h 9 12 15 18 Local time (h)
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Convective heating rate (K/day)

LMDZ old physws
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From boundar er to deep convection

Diurnal cycle of deep convection in the 3D LMDZ GCM

LMDZ New physical package

o

3D test

Diurnal cycle
Of rainfall over
Senegal

(Sept. 2006, AMMA
Raingauge

itation (mm/jour)
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© Boundary layer parameterizations in climate models

@ Tracer transport



(may) days of year (june)
Test with various parametelgations of the planetary boundaxy la
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Tracer tran sport

Boundary layer and transport of atmospheric tracers

Contribution of the biosphere to the CO, latitudinal contrasts

Idealized seasonal cycle for surface emission (null annual mean)
GCM and transport models from the Transcom exercize

After Dargaville et al.

Biosphere case
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Boundary layer and transport of atmospheric tracers

NOX computation at Dome C, Antartica
MAR Regional model

DATA SET: NOX MaR.O
fan gt (diffusin) fram MAR DUTPLT (prograrn NOY_

2 s S 2
nFeC 74 NFC 75

NOX concentration (ppt)



Dust transport from
Sahara over the

L]
Atlantic Ocean as LT
simulated with oz
Chimere-Dust transport 0 # ) o
e DA I i A J ——————— oo

model (Menut et al.) - 108.00-0-T0-A0-E0-40-30-20-10 O 10 20 30 40 £O 80 70 B0

New Mature.
convection convection

Dust lifting
in west Africa

New requirement : predict surface wind fluctuations (gusts)
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Conclusion

Concluding remarks

@ Parameterization of boundary layer processes is a key issue for climate
modeling and climate change studies.

@ Climate models are more and more complex but the realism of the "new
components" (chemistry, vegetation, ...) highly depends on the representation
of atmospheric processes in general and boundary layer in particular.

@ In current climate models (and still for a while), boundary layer processes must
be parameterized.

@ Boundary layer schemes must be valid from equator to pole, and from dry
stable atmosphere to deep convection conditions.

@ The "new components” put new constraints on boundary layer schemes.
@ There is a large place for improvement of boundary layer parameterizations.

@ The combined use of a turbulent diffusion for small scales and mass flux
schemes for organized structures seems a promizing way.

@ A hierarchy of approaches are available to improve and evaluate boundary
layer parameterizations : 1D versus LES , 3D, nudged, weather forecast and
climate, etc.
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