Feedback and Sensitivity in Climate

Frédéric Hourdin

June 19, 2009

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"
- 2 Approaches to the parametrization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches
- 3 Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations
 - Boundary layer and deep convection

Boundary layer processes in climate Boundary layer as a boundary condition

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

- Scale decomposition
- Diffusive approaches and their limitations
- Alternatives to diffusive approaches
- Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations

Boundary layer processes in climate Boundary layer as a boundary condition

ps2pdf OK.

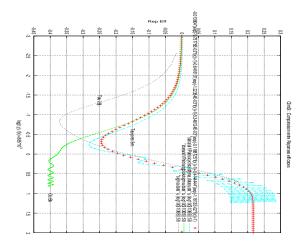


Figure: ClimSI WV feedback model responses.

Boundary layer processes in climate Boundary layer and clouds

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

- Scale decomposition
- Diffusive approaches and their limitations
- Alternatives to diffusive approaches
- Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations

▲□▶▲□▶▲□▶▲□▶ □ のQで

Boundary layer processes in climate Boundary layer in the "Earth Systemp"

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"
- 2 Approaches to the parametrization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches
- Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations

Approaches to the parametrization of the boundary layer Scale decomposition

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

Scale decomposition

- Diffusive approaches and their limitations
- Alternatives to diffusive approaches
- Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations

▲□▶▲□▶▲□▶▲□▶ □ のQで

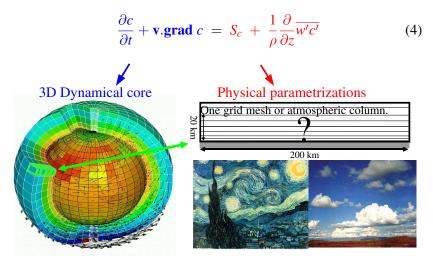
Approaches to the parametrization of the boundary layer Scale decomposition

Scale decomposition of the conservation equation

Conservation equation

- v: wind field
- c: conserved quantity (dc/dt = 0),

Advective form :
$$\frac{\partial c}{\partial t} + \mathbf{vgrad}c = 0$$
(1)Flux form : $\frac{\partial \rho c}{\partial t} + \operatorname{div}(\rho \mathbf{v}c) = 0$ (2)


Scale decomposition

 \overline{X} : "average" or "large scale" variable $X' = X - \overline{X}$: turbulent fluctuation $\overline{\mathbf{vc}} = \overline{\mathbf{vc}} + \overline{\mathbf{v'c'}}$

$$\frac{\partial \overline{q}}{\partial t} + \overline{V}.\mathbf{grad} \ \overline{q} + \frac{1}{\rho} \mathrm{div} \left(\overline{\rho \mathbf{v}' c'} \right) = 0 \tag{3}$$

Approaches to the parametrization of the boundary layer Scale decomposition

Under boundary layer approximations $(\partial/\partial x \ll \partial/\partial z)$:

 $c: \theta, u, v$, water (vapor and others), chemical compounds ...

Approaches to the parametrization of the boundary layer Diffusive approaches and their limitations

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

• Scale decomposition

• Diffusive approaches and their limitations

• Alternatives to diffusive approaches

Boundary layer, clouds and convection

- Could schemes in climate models
- Cumulus clouds and mass flux parametrisations

Approaches to the parametrization of the boundary layer Diffusive approaches and their limitations

Diffusive or local formulations for the PBL

$$\overline{w'c'} = -K_z \frac{\partial c}{\partial z} \qquad \longrightarrow \qquad \frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(K_z \frac{\partial c}{\partial z} \right) \tag{5}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Analogy with molecular viscosity.
- Down-gradient fluxes.
- Turbulence acts as a "mixing"

Approaches to the parametrization of the boundary layer Diffusive approaches and their limitations

Turbulent diffusivity K_z

- Prandlt (1925) mixing length : $K_z = \overline{l|w'|}$ or $K_z = l^2 \frac{\partial ||\mathbf{v}||}{\partial z}$
- Accounting for static stability (Ex. Louis 1979)

$$K_z = f(Ri)l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right|, \qquad \text{with } Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\left(\frac{\partial \mathbf{v}}{\partial z}\right)^2}$$
(6)

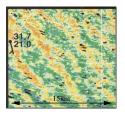
• Turbulent kinetic energy $\overline{w'}^2 \simeq e = \frac{1}{2} \left[\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right]$

$$\frac{\partial e}{\partial t} = -\overline{w'u'}\frac{\partial u}{\partial z} - \overline{w'v'}\frac{\partial v}{\partial z} - -\frac{g}{\theta}\overline{w'\theta'} - \frac{1}{\rho}\frac{\partial\overline{w'p'}}{\partial z} - \frac{\partial\overline{w'e}}{\partial z} - \epsilon$$
(7)

Ex : Mellor and Yamada $\overline{w'\phi'} = -K_{\phi}\frac{\partial\phi}{\partial z}$ with $K_{\phi} = l\sqrt{2e}S_{\phi}(Ri)$ Note : Imposing $\frac{\partial e}{\partial t}$ gives a coefficient of the form Eq. 6

Approaches to the parametrization of the boundary layer Diffusive approaches and their limitations

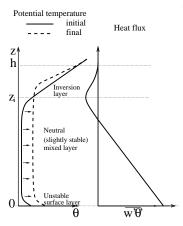
Limitations of turbulent diffusion


Diffusive approach :

- Random process
- Small scale turbulence of size $l \ll h$ with $h = \left[\frac{1}{c}\frac{\partial c}{\partial z}\right]^{-1}$

Real turbulence

- Long range vertical transport (from the bottom to PBL top)
- Organized structures


Cloud streets on North of France (March 2009, MSG)

Radar echoes in a dry convective boundary layer

Approaches to the parametrization of the boundary layer Diffusive approaches and their limitations

Limitations of turbulent diffusion

Idealized view of the dry convective boundary layer.

In the mixed layer

• Diffusive formulation

$$\overline{w'\theta'} = -K_z \frac{\partial\theta}{\partial z} = 0 \quad \text{or slightly} < 0$$
(8)

• Uniform heating by the surface

$$\frac{\partial \theta}{\partial t} \simeq \frac{\overline{w'\theta'}_0}{z_i} (\text{Cste} > 0) \quad (9)$$

$$\overline{w'\theta'} \simeq \frac{z - z_i}{z_i} \,\overline{w'\theta'}_0 > 0 \qquad (10)$$

・ロト・西ト・ヨト ・ヨー うへの

Approaches to the parametrization of the boundary layer Alternatives to diffusive approaches

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

- Scale decomposition
- Diffusive approaches and their limitations
- Alternatives to diffusive approaches
- Boundary layer, clouds and convection
 - Could schemes in climate models
 - Cumulus clouds and mass flux parametrisations

Approaches to the parametrization of the boundary layer Alternatives to diffusive approaches

Extension of diffusive formulations

• Introduction of a countergradient term

$$\overline{w'\theta'} = -K_z \left[\Gamma - \frac{\partial \theta}{\partial z} \right] = 0 \quad \text{with } \Gamma \simeq -1K/km \tag{11}$$

Imposed countergradient Deardorf, 1966 Revisited by Troen & Mart, 1986, Holtzlag & Boville, 1993, based on a similarity approach.

• Higher order closures

Abdella & Mc Farlane, 1997, Randall et al., 1992, Lapen & Ransall, 2002

(12)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Boundary layer, clouds and convection Could schemes in climate models

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"
- 2 Approaches to the parametrization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches

Boundary layer, clouds and convection

- Could schemes in climate models
- Cumulus clouds and mass flux parametrisations

Boundary layer, clouds and convection Cumulus clouds and mass flux parametrisations

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"
- 2 Approaches to the parametrization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches

3 Boundary layer, clouds and convection

- Could schemes in climate models
- Cumulus clouds and mass flux parametrisations
- Boundary layer and deep convection

Boundary layer, clouds and convection Boundary layer and deep convection

Outline

Boundary layer processes in climate

- Boundary layer as a boundary condition
- Boundary layer and clouds
- Boundary layer in the "Earth Systemp"

2 Approaches to the parametrization of the boundary layer

- Scale decomposition
- Diffusive approaches and their limitations
- Alternatives to diffusive approaches

3 Boundary layer, clouds and convection

- Could schemes in climate models
- Cumulus clouds and mass flux parametrisations