Boundary layer parameterization and climate

Frédéric Hourdin

June 23, 2009

Outline

- Introduction
- Approaches to the parameterization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches
- Boundary layer parameterizations in climate models
 - Cumulus clouds and mass flux parametrisations
 - From boundary layer to deep convection
 - Tracer transport
- 4 Conclusion

□ > < ≥ > < ≥ > < ≥ < ⊙ </p>



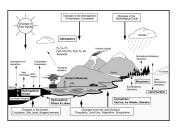
undary layer parameterization

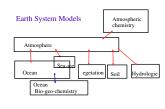
Boundary layer in the climate system

The boundary layer:

- controls energy and water exchanges with surfaces
- drives the oceanic circulation
- is associated with a large fraction of clouds

ndary layer parameterization

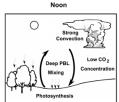

Boundary layer in the "Earth System"

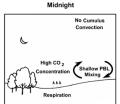

Driven by the Global Change studies, climate models are more and more complex :

 CO_2 cycle, CH_4 , ozone chemistry, aerosols, effect of land use

⇒ coupling between atmosphere, ocean, chemistry, vegetation ... Leading to so-called "Earth System Models".

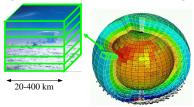
Boundary layer is central for most of those components.


4日ト 4個ト 4 差ト 4 差ト 差 りへ


oundary layer parameterization

Boundary layer in the "Earth System"

Example of well indentified uncertainty source in Eart-System models.


The diurnal (seansonal) cycle of plant respiration is modulated by the diurnal (seasonal) cycle of the boundary layer depth

Boundary layer in large scale models

Current climate models : horizontal mesh of 20 to 400 km. Boundary layer processes are subgrid-scale ⇒ must be "parameterized"

Parameterizations

- describe the effect of subgrid-scale processes on large scale state variables
- through a set of approximate equations based on some internal variables
- must relate those internal variables to large scale variables (closure)
- closely linked to the numerical world.

- Approaches to the parameterization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches
- 3 Boundary layer parameterizations in climate models
 - Cumulus clouds and mass flux parametrisations
 - From boundary layer to deep convection
 - Tracer transport
- Conclusion

Approaches to the parameterization of the boundary layer

Scale decomposition of the conservation equation

Conservation equation

v: wind field

c: conserved quantity

Lagrangian form:

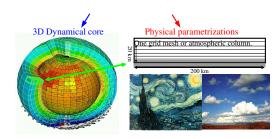
 $\frac{dc}{dt} = 0$

Advective form:

 $\frac{\partial c}{\partial t} + \mathbf{vgrad}c = 0$

Flux form:

 $\frac{\partial \rho c}{\partial t} + \operatorname{div}\left(\rho \mathbf{v}c\right) = 0$


Scale decomposition

 \overline{X} : "average" or "large scale" variable $\implies \overline{\mathbf{v}c} = \overline{\mathbf{v}} \, \overline{c} + \overline{\mathbf{v}'c'}$ $X' = X - \overline{X}$: turbulent fluctuation

$$rac{\partial \overline{q}}{\partial t} + \overline{V}.\mathbf{grad} \ \overline{q} + rac{1}{
ho} \mathrm{div} \left(\overline{
ho \mathbf{v}' c'}
ight) = 0$$

Under boundary layer approximations $(\partial/\partial x << \partial/\partial z)$:

$$\frac{\partial c}{\partial t} + \mathbf{v.grad} \ c = S_c - \frac{1}{\rho} \frac{\partial}{\partial z} \overline{w'c'}$$

v and c are now the large scale variables.

 $c: \theta, u, v$, water (vapor and others), chemical compounds ...

ches to the parameterization of the boundary layer

Diffusive approaches and their limitations

Outline

- Introduction
- Approaches to the parameterization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches
- - Cumulus clouds and mass flux parametrisations
 - From boundary layer to deep convection
 - Tracer transport
- Conclusion

Approaches to the parameterization of the boundary layer

Diffusive or local formulations for the PBL

$$\overline{w'c'} = -K_z \frac{\partial c}{\partial z} \qquad \longrightarrow \qquad \frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(K_z \frac{\partial c}{\partial z} \right)$$

- Analogy with molecular viscosity (Brownian motion ↔ turbulence)
- Down-gradient fluxes.
- Turbulence acts as a "mixing"

Approaches to the parameterization of the boundary layer

Turbulent diffusivity K_2

- Prandlt (1925) mixing length : $K_z = l |w'|$ or $K_z = l^2 \frac{\partial ||\mathbf{v}||}{\partial z}$
- Accounting for static stability (Ex. Louis 1979)

$$K_z = f(Ri)l^2 \left| \frac{\partial \mathbf{v}}{\partial z} \right|, \quad \text{with } Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\left(\frac{\partial \mathbf{v}}{\partial z} \right)^2}$$
 (1)

• Turbulent kinetic energy $\overline{w'}^2 \simeq e = \frac{1}{2} \left[\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right]$

$$\frac{\partial e}{\partial t} = -\overline{w'u'}\frac{\partial u}{\partial z} - \overline{w'v'}\frac{\partial v}{\partial z} + \frac{g}{\theta}\overline{w'\theta'} - \frac{1}{\rho}\frac{\partial\overline{w'p'}}{\partial z} - \frac{\partial\overline{w'e}}{\partial z} - \epsilon$$

Ex : Mellor and Yamada $\overline{w'\phi'} = -K_{\phi} \frac{\partial \phi}{\partial z}$ with $K_{\phi} = l\sqrt{2e}S_{\phi}(Ri)$

Note: $\frac{\partial e}{\partial t} = 0$ (stationarity) $\Longrightarrow K_z$ of form Eq. 1

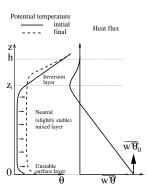
Assumption leading to the diffusive approach :

- Turbulence as a random process
- Small scale turbulence, i.e. of size l << h with $h = \left[\frac{1}{c} \frac{\partial c}{\partial z}\right]^{-1}$

In the planetary boundary layer

- Long range vertical transport (from the bottom to PBL top)
- Organized structures

Radar echoes dry convective boundary layer Florida, Hiop Campaign


Weckwerth et al., 1997

Approaches to the parameterization of the boundary layer

Limitations of turbulent diffusion

Idealized view of the dry convective boundary layer.

In the mixed layer

Diffusive formulation

$$\overline{w'\theta'} = -K_z \frac{\partial \theta}{\partial z} = 0$$
 or slightly < 0

• Uniform heating by the surface

$$\frac{\partial \theta}{\partial t} \simeq \frac{\overline{w'\theta'}_0}{z_i} (\text{Cste} > 0)$$

$$\overline{w'\theta'} \simeq \frac{z-z_i}{z_i} \overline{w'\theta'}_0 > 0$$

(March 2009, MSG)

Alternatives to diffusive approaches

Outline

Introduction

Approaches to the parameterization of the boundary layer

- Scale decomposition
- Diffusive approaches and their limitations
- Alternatives to diffusive approaches

Boundary layer parameterizations in climate models

- Cumulus clouds and mass flux parametrisations
 - From boundary layer to deep convection
 - Tracer transport

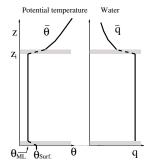
Conclusion

eterization of the boundary layer

Extension of diffusive formulations

• Introduction of a countergradient term

$$\overline{w'\theta'} = K_z \left[\Gamma - \frac{\partial \theta}{\partial z} \right] = 0 \quad \text{with } \Gamma \simeq 1K/km$$
 (2)


Imposed countergradient Deardorf, 1966 Revisited by Troen & Mart, 1986, Holtzlag & Boville, 1993, based on a similarity approach.

- Non local mixing length (Bougeault)
- Higher order closures
 - Mellor & Yamada 1974, hierarchy at successive orders. Complex and still local.
 - Abdella & Mc Farlane, 1997, Introduce a mass flux approach to compute the 3rd order moments in a Mellor and Yamada scheme.

Approaches to the parameterization of the boundary layer

"Bulk" models

Constant value (or prescribed profiles) $c_{\rm ML}$ with discontinuities Δc at boundaries.

$$z_i \frac{\partial c_{\text{ML}}}{\partial t} = \left[\overline{w'c'}_0 - \overline{w'c'}_{z_i} \right]$$
 (3)

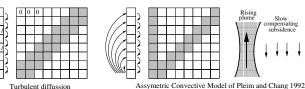
with
$$\overline{w'c'}_{z_i} = -C\Delta c$$
 (4)

Betts, Albrecht, Wang, Suarez et al 1983

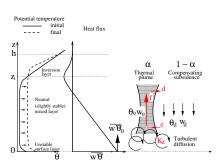
Randall et al. 1992 and Lapen and Randall, 2002: Combination of bulk models with higher order closures

Approaches to the parameterization of the boundary layer

Transilient matrices


Numerical formalism (after Stull 1984)

C: Air mass exchange rate matrices between model layers


For turbulent diffusion

$$\frac{\partial c_{l}}{\partial t} = \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c}{\partial z} \right) \simeq \frac{K_{l+1/2} \left(c_{l+1} - c_{l} \right) - K_{l-1/2} \left(c_{l} - c_{l-1} \right)}{\delta z^{2}}$$

$$\implies C_{l,l+1} = \mathit{K}_{l+1/2} \frac{\delta t}{\delta z^2}, C_{l,l} = -(\mathit{K}_{l-1/2} + \mathit{K}_{l-1/2}) \frac{\delta t}{\delta z^2}, C_{l,m} = 0 \text{ for } |l-m| > 1$$

Mass flux schemes combined with turbulent diffusion

Separation into 2 sub-colums:

$$X = \alpha X_u + (1 - \alpha X_d)$$

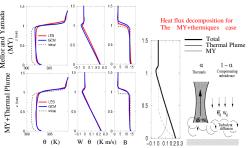
ascending plume of mass flux

$$\frac{f}{\partial f} = \alpha \rho w_u
\frac{\partial f}{\partial z} = e - d
\frac{\partial f}{\partial z} = e c_d - d c_u$$

$$\rho \overline{w'c'} = -\rho \frac{\mathbf{K}_{z}}{\partial z} \frac{\partial c}{\partial z} + f \left(c_{u} - c_{d} \right) \tag{5}$$

Chatfield and Brost, 1987, Hourdin et. al., 2002, Siebesma, Soarez et al, 2004

Mass flux schemes combined with turbulent diffusion


Approaches to the parameterization of the boundary layer

Comparison with LES Dry convective boundary layer. Forcing: $\overline{w'\theta'}_0 = 0.24$ K m/s geostrophic wind of 10 m/s

Thermal Plume model (Hourdin et al. 2002).

Mass flux schemes combined with turbulent diffusion

$$TP = f\left(c_u - c_d\right)$$

oundary layer parameterizations in climate models Cumulus clouds and mass flux parametrisations

Outline

Introduction

Approaches to the parameterization of the boundary layer

Scale decomposition

• Diffusive approaches and their limitations

Alternatives to diffusive approaches

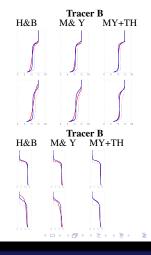
3 Boundary layer parameterizations in climate models

• Cumulus clouds and mass flux parametrisations

• From boundary layer to deep convection

Tracer transport

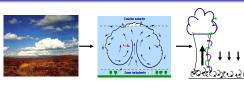
Conclusion

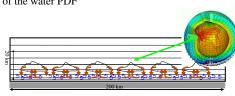

& Boville & Yamada + Thermals $\overline{w'\theta'}_0$ =0.24 K m/s, strongly inversion $\overline{w'\theta'}_0$ =0.05 K m/s, weak inversion

Zonal wind (m/s)

M&Y

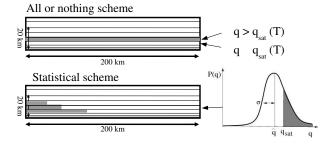
Mellor


Approaches to the parameterization of the boundary layer


Statistical cloud schemes

Boundary layer parameterizations in climate models

Extension of mass flux schemes to cumulus clouds



- Computation of condensation in the ascending plume
- Additional heating by condensation within the updraft Feedback on the mass flux f and transport
- Computation of the water PDF

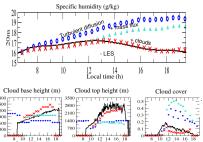
Boundary layer parameterizations in climate models

Holtlag

Probability Distribution Function of the subrid-scale water.

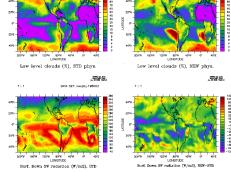
Cloud = fraction of the mesh where water vapor exceeds saturation.

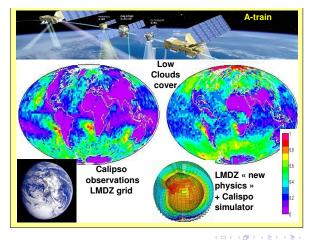
⇒ New requirement for boundary layer scheme : give information on the subrid-scale distribution



Boundary layer parameterizations in climate models

1D test of the cloudy thermal plume model


Continental diurnal cycle with cumulus ARM EUROCS case (US Oklahoma) Rio et al. 2008


3D test of the cloudy thermal plume model

Test of the a new physical package in the LMDZ global climate model Impact on the coverage by low clouds

Boundary layer parameterizations in climate models Cumulus clouds and mass flux parametrisation

Cloud cover and satelite observations

From boundary layer to deep convection

Outline

Introduction

Approaches to the parameterization of the boundary layer

Scale decomposition

• Diffusive approaches and their limitations

• Alternatives to diffusive approaches

3 Boundary layer parameterizations in climate models

Cumulus clouds and mass flux parametrisations

• From boundary layer to deep convection

Tracer transport

Conclusion

Boundary layer parameterizations in climate models

Parameterization of deep convection

Classical parameterizations:

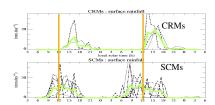
- Mass flux schemes
- Importance of cloud phase changes and rainfall
- Controled by instability above cloud base

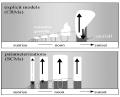
Example of the Emanuel (1991) scheme:

Trigerring: B(LCL+40hPa) > |CIN|**Closure:**

 $M_B = f(CAPE)$

CAPE : Convective Available Potential Energy

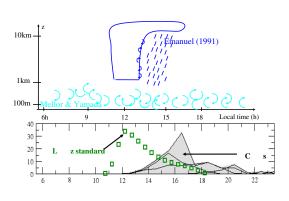

CIN: Convective INhibition.


Boundary layer parameterizations in climate models

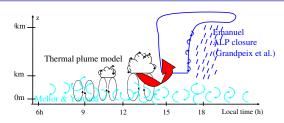
A systematic biais of parameterized convection

Climate models with parameterized convection tend to predict continental convection in phase with insolation, while it peaks in late afternoon in reality and in Cloud Resolving Models (mesh $\simeq 1$ km).

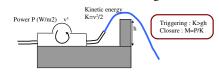
An idealized case of continental cycle with deep convection ARM, Oklahoma, after Guichard et al. 2004



Deep convection preceded by a phase of shallow cumulus convection Boundary layer: preconditioning and trigerring of deep convection


Boundary layer parameterizations in climate models

ARM case with the standard LMD SCM



Boundary layer parameterizations in climate models
From boundary layer to deep convection

Control of deep convection by sub-cloud processes

New approach (Grandpeix et al. 2009): Control of deep convection by sub-cloud processes. By analogy with a nozzle above a wall of height h.

lary layer parameterizations in climate m From boundary layer to deep convection

ndary layer parameterizations in climate models

Statistical cloud schemes

ALP closure

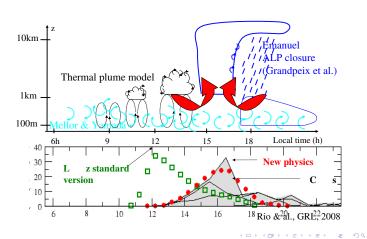
Avaliable Lifting Energy for the convection

Scaling with w^2 .

Trigerring: ALE > |CIN|

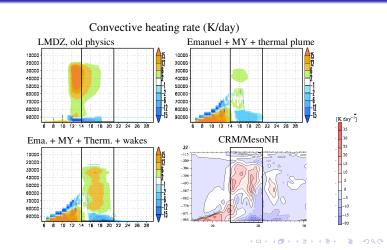
Avaliable Lifting Power for the convection

Scaling with w^3 .


Closure : $M_B = f(ALP)$

New requirements for the boundary layer scheme :

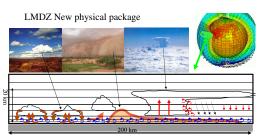
give reasonable estimates of $\overline{w'^2}$ and $\overline{w'^3}$.

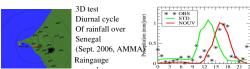

Boundary layer parameterizations in climate models

ARM case with ALP closure, thermals and wakes

Boundary layer parameterizations in climate models

ARM case with ALP closure, thermals and wakes


Boundary layer parameterization


Outline

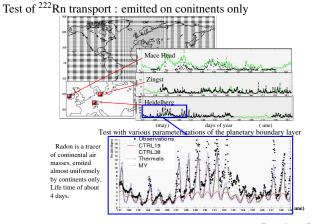
Boundary layer parameterizations in climate models

Tracer transport

Diurnal cycle of deep convection in the 3D LMDZ GCM

Introduction

- 2 Approaches to the parameterization of the boundary layer
 - Scale decomposition
 - Diffusive approaches and their limitations
 - Alternatives to diffusive approaches

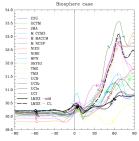

3 Boundary layer parameterizations in climate models

- Cumulus clouds and mass flux parametrisations
- From boundary layer to deep convection
- Tracer transport
- 4 Conclusion

oundary layer parameterization

Boundary layer parameterizations in climate models

Boundary layer and transport of atmospheric tracers

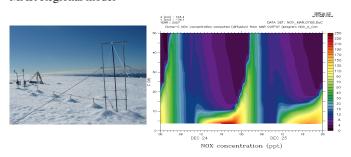

Boundary layer parameterization

Tracer transport

Boundary layer and transport of atmospheric tracers

Contribution of the biosphere to the CO_2 latitudinal contrasts

Idealized seasonal cycle for surface emission (null annual mean) GCM and transport models from the Transcom exercize After Dargaville et al.


ロト 4回 ト 4 至 ト 4 至 ト 三 ・ 夕 Q

oundary layer parameterization

Boundary layer parameterizations in climate models Tracer transport

Boundary layer and transport of atmospheric tracers

NOX computation at Dome C, Antartica MAR Regional model

Conclusion

Concluding remarks

- Parameterization of boundary layer processes is a key issue for climate modeling and climate change studies.
- Climate models are more and more complex but the realism of the "new components" (chemistry, vegetation, ...) highly depends on the representation of atmospheric processes in general and boundary layer in particular.
- In current climate models (and still for a while), boundary layer processes must be parameterized.
- Boundary layer schemes must be valid from equator to pole, and from dry stable atmosphere to deep convection conditions.
- The "new components" put new constraints on boundary layer schemes.
- There is a large place for improvement of boundary layer parameterization.
- The combined use of a turbulent diffusion for small scales and mass flux schemes for organized structures seems a promizing way.
- A hierarchy of approaches are available to improve and evaluate boundary layer parameterizations: 1D versus LES, 3D, nudged, weather forecast and climate, etc.

