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Chapter 1

Introduction

The finite volume method is a discretization method which is well suited for the numerical simulation of
various types (elliptic, parabolic or hyperbolic, for instance) of conservation laws; it has been extensively
used in several engineering fields, such as fluid mechanics, heat and mass transfer or petroleum engineer-
ing. Some of the important features of the finite volume method are similar to those of the finite element
method, see ODEN [1991]: it may be used on arbitrary geometries, using structured or unstructured
meshes, and it leads to robust schemes. An additional feature is the local conservativity of the numerical
fluxes, that is the numerical flux is conserved from one discretization cell to its neighbour. This last
feature makes the finite volume method quite attractive when modelling problems for which the flux is of
importance, such as in fluid mechanics, semi-conductor device simulation, heat and mass transfer... The
finite volume method is locally conservative because it is based on a “ balance” approach: a local balance
is written on each discretization cell which is often called “control volume”; by the divergence formula,
an integral formulation of the fluxes over the boundary of the control volume is then obtained. The fluxes
on the boundary are discretized with respect to the discrete unknowns.

Let us introduce the method more precisely on simple examples, and then give a description of the
discretization of general conservation laws.

1.1 Examples

Two basic examples can be used to introduce the finite volume method. They will be developed in details
in the following chapters.

Example 1.1 (Transport equation) Consider first the linear transport equation

ug(z,t) + div(vu)(z,t) = 0,z € R%te€ Ry, (1.1)
u(z,0) = ug(z),z € R? )

where u; denotes the time derivative of u, v € C'(IR?,IR?), and ug € L°(IR?). Let 7 be a mesh of
IR? consisting of polygonal bounded convex subsets of IR? and let K € T be a “control volume”, that
is an element of the mesh 7. Integrating the first equation of (1.1) over K yields the following “balance
equation” over K:

/ ug(z,t)d +/ v(z,t) - ng(z)u(z,t)dy(z) =0,Vt € R4, (1.2)
K 0K

where ng denotes the normal vector to 0K, outward to K. Let k € IR’ be a constant time discretization
step and let t,, = nk, for n € IN. Writing equation (1.2) at time ¢,, n € IN and discretizing the time



partial derivative by the Euler explicit scheme suggests to find an approximation u(™ (z) of the solution
of (1.1) at time ¢, which satisfies the following semi-discretized equation:

1 () () — ™ (z))dz v(z ‘ng(z)u'™ (z ) = n
3] @@ =@+ [ vt mx@u@dre) = 0. eNYKET,  (13)

where dy denotes the one-dimensional Lebesgue measure on 0K and u(®)(z) = u(z,0) = uo(z). We need
to define the discrete unknowns for the (finite volume) space discretization. We shall be concerned here
principally with the so-called “cell-centered” finite volume method in which each discrete unkwown is
associated with a control volume. Let (ug?)) KeTnenN denote the discrete unknowns. For K € T, let £k
be the set of edges which are included in 0K, and for ¢ C 0K, let ng , denote the unit normal to o

outward to K. The second integral in (1.3) may then be split as:

[ vt @ @are) = 5 [ vt mou @) (1.4

o€k
for o C 0K, let
vl([(n)a = /v(m,tn)nK,,,(a:)dfy(m).

Each term of the sum in the right-hand-side of (1.4) is then discretized as

lw@ﬂ — 1.5
Ko g?)auin) if v(n) <0, (1.5)

{ ug‘) ug() if v(”) >0,
where L denotes the neighbouring control volume to K with common edge ¢. This “upstream” or
“upwind” choice is classical for transport equations; it may be seen, from the mechanical point of view,
as the choice of the “upstream information” with respect to the location of ¢. This choice is crucial in
the mathematical analysis; it ensures the stability properties of the finite volume scheme (see chapters 5
and 6). We have therefore derived the following finite volume scheme for the discretization of (1.1):

K
_m(k )(u_(,?“) — u_(,?)) + Z FI({"()T =0,VK € T,¥n € IN,
oEfK (16)

ugg) :/ uo(x)dz,
K

where m(K) denotes the measure of the control volume K and FI((’?()T is defined in (1.5). This scheme
is locally conservative in the sense that if ¢ is a common edge to the control volumes K and L, then
Fg,, = —FL ,. This property is important in several application fields; it will later be shown to be a key
ingredient in the mathematical proof of convergence. Similar schemes for the discretization of linear or
nonlinear hyperbolic equations will be studied in chapters 5 and 6.

Example 1.2 (Stationary diffusion equation) Consider the basic diffusion equation

{ —Au = f on Q =]0,1[x]0, 1],

u = 0 on 99). (L.7)

Let T be a rectangular mesh. Let us integrate the first equation of (1.7) over a control volume K of the
mesh; with the same notations as in the previous example, this yields:

> [ -Vul) nxsdrio) = [ (18)

ocefK



For each control volume K € T, let zx be the center of K. Let o be the common edge between the
control volumes K and L. The flux — [ Vu(x) -ng ,dy(x), may be approximated by the following finite
difference approximation:

Ficr = =2 (0, — ug), 19)

ds

where (ux)ke7 are the discrete unknowns and d, is the distance between zx and zp. This finite
difference approximation of the first order derivative Vu - n on the edges of the mesh (where n denotes
the unit normal vector) is consistent: the truncation error on the flux is of order h, where h is the
maximum length of the edges of the mesh. It is necessary for this to be true that the points zx be the
intersections of the orthogonal bisectors of the edges of K. Indeed, this is the case here since the control
volumes are rectangular. This property is satisfied by other meshes which will be studied hereafter. It is
crucial for the discretization of diffusion operators.
In the case where the edge o is part of the boundary, then d, denotes the distance between the center
zg of the control volume K to which o belongs and the boundary. The flux — [ Vu(z) - ng ,dy(z), is
then approximated by

Fk,, = m(o) uK, (1.10)
do
Hence the finite volume scheme for the discretization of (1.7) is:
> Fko =m(K)fx,VK €T, (1.11)
o€l

where Fg , is defined by (1.9) and (1.10), and fx denotes (an approximation of) the mean value of f
on K. We shall see later (see chapters 2, 3 and 4) that the finite volume scheme is easy to generalize
to a triangular mesh, whereas the finite difference method is not. As in the previous example, the finite
volume scheme is locally conservative, since for any edge o separating K from L, one has Fg , = —Fp ;.

1.2 The finite volume principles for general conservation laws

The finite volume method is used for the discretization of conservation laws. We gave in the above section
two examples of such conservation laws. Let us now present the discretization of general conservation
laws by finite volume schemes. As suggested by its name, a conservation law expresses the conservation
of a quantity ¢(z,t). For instance, the conserved quantities may be the energy, the mass, or the number
of moles of some chemical species. Let us first assume that the local form of the conservation equation
may be written as

gi(z,t) + divF(z,t) = f(z,1), (1.12)

at each point z and each time ¢ where the conservation of ¢ is to be written. In equation (1.12), (-)¢
denotes the time partial derivative of the entity within the parentheses, div represents the space divergence
operator: divF = 0F; /0zx1 +...+0F;/0x4, where F = (Fy, ..., F;)! denotes a vector function depending
on the space variable z and on the time ¢, z; is the ¢-th space coordinate, for ¢ = 1,...,d, and d is the
space dimension, i.e. d = 1,2 or 3; the quantity F is a flux which expresses a transport mechanism of
q; the “source term” f expresses a possible volumetric exchange, due for instance to chemical reactions
between the conserved quantities.

Thanks to the physicist’s work, the problem can be closed by introducing constitutive laws which relate
g, F, f with some scalar or vector unknown u(z, t), function of the space variable x and of the time ¢. For
example, the components of u can be pressures, concentrations, molar fractions of the various chemical
species by unit volume. .. The quantity ¢ is often given by means of a known function g of u(z,t), of the
space variable z and of the time ¢, that is q(z,t) = ¢(z,t,u(z,t)). The quantity F may also be given



by means of a function of the space variable z, the time variable ¢ and of the unknown u(z,t) and (or)
by means of the gradient of u at point (z,t).... The transport equation of Example 1.1 is a particular
case of (1.12) with ¢(z,t) = u(=,t), F(z,t) = vu(z,t) and f(z,t) = f(z); so is the stationary diffusion
equation of Example 1.2 with ¢(z,t) = u(z), F(z,t) = —Vu(z), and f(z,t) = f(x). The source term f
may also be given by means of a function of z, ¢t and u(x,t).

Example 1.3 (The one-dimensional Euler equations) Let us consider as an example of a system
of conservation laws the 1D Euler equations for equilibrium real gases; these equations may be written
under the form (1.12), with

(o )andF=(p+p )
A "\

where p,u, E and p are functions of the space variable z and the time ¢, and refer respectively to the
density, the velocity, the total energy and the pressure of the particular gas under consideration. The
system of equations is closed by introducing the constitutive laws which relate p and E to the specific
volume 7, with 7 = % and the entropy s, through the constitutive laws:

Oe u?
b= E(Tas) and E = p(E(Ta S) + 7)7

where ¢ is the internal energy per unit mass, which is a given function of 7 and s.

Equation (1.12) may be seen as the expression of the conservation of ¢ in an infinitesimal domain; it is
formally equivalent to the equation

/Kq(w,tg)da:—/Kq(m,tl)dm+/tltz /BKF(m,t)-nK(m)dy(m)dt

=/:/Kf(w,t)dwdt,

for any subdomain K and for all times ¢; and t3, where ng () is the unit normal vector to the boundary
0K, at point x, outward to K. Equation (1.13) expresses the conservation law in subdomain K between
times ¢; and t2. Here and in the sequel, unless otherwise mentionned, dz is the integration symbol for
the d-dimensional Lebesgue measure in R? and dv is the integration symbol for the (d — 1)-dimensional
Hausdorff measure on the considered boundary.

(1.13)

1.2.1 Time discretization

The time discretization of Equation (1.12) is performed by introducing an increasing sequence (t,)neN
with tg = 0. For the sake of simplicity, only constant time steps will be considered here, keeping in mind
that the generalization to variable time steps is straightforward. Let k € IR’ denote the time step, and
let t, = nk, for n € IN. It can be noted that Equation (1.12) could be written with the use of a space-
time divergence. Hence, Equation (1.12) could be either discretized using a space-time finite volume
discretization or a space finite volume discretization with a time finite difference scheme (the explicit
Euler scheme, for instance). In the first case, the conservation law is integrated over a time interval and
a space “control volume” as in the formulation (1.12). In the latter case, it is only integrated space wise,
and the time derivative is approximated by a finite difference scheme; with the explicit Euler scheme, the
term (q); is therefore approximated by the differential quotient (¢{"+1) — ¢(™)/k, and ¢(™ is computed
with an approximate value of u at time t,, denoted by u(™. Implicit and higher order schemes may also
be used.



1.2.2 Space discretization

In order to perform a space finite volume discretization of equation (1.12), a mesh 7 of the domain Q of
IR%, over which the conservation law is to be studied, is introduced. The mesh is such that @ = Ugc7 K,
where an element of 7, denoted by K, is an open subset of 2 and is called a control volume. Assumptions
on the meshes will be needed for the definition of the schemes; they also depend on the type of equation

to be discretized.

For the finite volume schemes considered here, the discrete unknowns at time t,, are denoted by ug?),

K € T. The value u%) is expected to be some approximation of u on the cell K at time ¢,,. The basic
principle of the classical finite volume method is to integrate equation (1.12) over each cell K of the mesh
T. One obtains a conservation law under a nonlocal form (related to equation (1.13)) written for the
volume K. Using the Euler time discretization, this yields

(n+1) () — o) (z
Ik ) ) gy | F@.t) nx@ire) = [ st (1.14)

where ng (z) is the unit normal vector to 0K at point z, outward to K.

The remaining step in order to define the finite volume scheme is therefore the approximation of the “flux”,
F(z,t,) - nx(z), across the boundary 0K of each control volume, in terms of {u(L"),L € T} (this flux
approximation has to be done in terms of {uﬁ“, L € T} if one chooses the implicit Euler scheme instead of
the explicit Euler scheme for the time discretization). More precisely, omitting the terms on the boundary
of Q, let K|L = KN L, with K, L € T, the exchange term (from K to L), Ji L F@,tn) - nx (z)dy(z),
between the control volumes K and L during the time interval [t,, t,+1) is approximated by some quantity,
FI((")L, which is a function of {ugg), M € T} (or afunction of {u?}', M € T} for the implicit Euler scheme,

or more generally a function of {ugg), M € T} and {u?', M € T} if the time discretization is a one-step

method). Note that FI((")L = 0 if the Hausdorff dimension of K N L is less than d — 1 (e.g. KN L is a
point in the case d = 2 or a line segment in the case d = 3).

Let us point out that two important features of the classical finite volume method are
1. the conservativity, that is FI((")L = —Fﬂl}{, for all K and L € T and for all n € IN.

2. the “consistency” of the approximation of F(z,t,) - nk(x), which has to be defined for each relation
type between F and the unknowns.

These properties, together with adequate stability properties which are obtained by estimates on the
approximate solution, will give some convergence properties of the finite volume scheme.

1.3 Comparison with other discretization techniques

The finite volume method is quite different from (but sometimes related to) the finite difference method
or the finite element method. On these classical methods see e.g. DAHLQUIST and BJORCK [1974],
THOMEE [1991], CIARLET, P.G. [1978], CIARLET [1991], ROBERTS and THOMAS [1991].

Roughly speaking, the principle of the finite difference method is, given a number of discretization points
which may be defined by a mesh, to assign one discrete unknown per discretization point, and to write
one equation per discretization point. At each discretization point, the derivatives of the unknown are
replaced by finite differences through the use of Taylor expansions. The finite difference method becomes
difficult to use when the coeflicients involved in the equation are discontinuous (e.g. in the case of
heterogeneous media). With the finite volume method, discontinuities of the coefficients will not be any
problem if the mesh is chosen such that the discontinuities of the coefficients occur on the boundaries of
the control volumes (see sections 2.3 and 3.3, for elliptic problems). Note that the finite volume scheme
is often called “finite difference scheme” or “cell centered difference scheme”. Indeed, in the finite volume



method, the finite difference approach can be used for the approximation of the fluxes on the boundary
of the control volumes. Thus, the finite volume scheme differs from the finite difference scheme in that
the finite difference approximation is used for the flux rather than for the operator itself.

The finite element method (see e.g. CIARLET, P.G. [1978]) is based on a variational formulation, which is
written for both the continuous and the discrete problems, at least in the case of conformal finite element
methods which are considered here. The variational formulation is obtained by multiplying the original
equation by a “test function”. The continuous unknown is then approximated by a linear combination
of “shape” functions; these shape functions are the test functions for the discrete variational formulation
(this is the so called “Galerkin expansion”); the resulting equation is integrated over the domain. The
finite volume method is sometimes called a “discontinuous finite element method” since the original
equation is multiplied by the characteristic function of each grid cell which is defined by 1x(z) = 1, if
z € K, 1g(z) =0, if ¢ ¢ K, and the discrete unknown may be considered as a linear combination of
shape functions. However, the techniques used to prove the convergence of finite element methods do not
generally apply for this choice of test functions. In the following chapters, the finite volume method will
be compared in more detail with the classical and the mixed finite element methods.

From the industrial point of view, the finite volume method is known as a robust and cheap method
for the discretization of conservation laws (by robust, we mean a scheme which behaves well even for
particularly difficult equations, such as nonlinear systems of hyperbolic equations and which can easily be
extended to more realistic and physical contexts than the classical academic problems). The finite volume
method is cheap thanks to short and reliable computational coding for complex problems. It may be more
adequate than the finite difference method (which in particular requires a simple geometry). However,
in some cases, it is difficult to design schemes which give enough precision. Indeed, the finite element
method can be much more precise than the finite volume method when using higher order polynomials,
but it requires an adequate functional framework which is not always available in industrial problems.
Other more precise methods are, for instance, particle methods or spectral methods but these methods
can be more expensive and less robust than the finite volume method.

1.4 General guideline

The mathematical theory of finite volume schemes has recently been undertaken. Even though we choose
here to refer to the class of scheme which is the object of our study as the ”finite volume” method, we
must point out that there are several methods with different names (box method, control volume finite
element methods, balance method to cite only a few) which may be viewed as finite volume methods.
The name ”finite difference” has also often been used referring to the finite volume method. We shall
mainly quote here the works regarding the mathematical analysis of the finite volume method, keeping
in mind that there exist numerous works on applications of the finite volume methods in the applied
sciences, some references to which may be found in the books which are cited below.

Finite volume methods for convection-diffusion equations seem to have been first introduced in the early
sixties by TICHONOV and SAMARSKII [1962], SAMARSKII [1965] and SAMARSKII [1971].

The convergence theory of such schemes in several space dimensions has only recently been undertaken. In
the case of vertex-centered finite volume schemes, studies were carried out by SAMARSKII, LAZAROV and
MAKAROV [1987] in the case of Cartesian meshes, HEINRICH [1986], BANK and ROSE [1986], CA1 [1991],
Ca1, MANDEL and Mc CorMICK [1991] and VANSELOW [1996] in the case of unstructured meshes;
see also MORTON and SULI [1991], SULI [1989], MACKENZIE, and MORTON [1992], MORTON, STYNES
and SULI [1997] and SHASHKOV [1987] in the case of quadrilateral meshes. Cell-centered finite volume
schemes are addressed in MANTEUFFEL and WHITE [1986], FORSYTH and SAMMON [1988], WEISER and
WHEELER [1988] and LAZAROV, MISHEV and VASSILEVSKI [1996] in the case of Cartesian meshes and
in VASSILESKI, PETROVA and LAzAROV [1992], HERBIN [1995], HERBIN [1996], LAZAROV and MISHEV
[1996], MISHEV [1998] in the case of triangular or Voronoi meshes; let us also mention COUDIERE, VILA
and VILLEDIEU [1996] and COUDIERE, VILA and VILLEDIEU [1999] where more general meshes are
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treated, with, however, a somewhat technical geometrical condition. In the pure diffusion case, the cell
centered finite volume method has also been analyzed with finite element tools: AGOUZAL, BARANGER,
MAITRE and OUDIN [1995], ANGERMANN [1996], BARANGER, MAITRE and OUDIN [1996], ARBOGAST,
WHEELER and YOTOV [1997], ANGERMANN [1996]. Semilinear convection-diffusion are studied in
FEISTAUER, FELCMAN and LUKACOVA-MEDVIDOVA [1997] with a combined finite element-finite volume
method, EYMARD, GALLOUET and HERBIN [1999] with a pure finite volume scheme.

Concerning nonlinear hyperbolic conservation laws, the one-dimensional case is now classical; let us
mention the following books on numerical methods for hyperbolic problems: GODLEWSKI and RAVIART
[1991], LEVEQUE [1990], GODLEWSKI and RAVIART [1996], KRONER [1997], and references therein. In
the multidimensional case, let us mention the convergence results which where obtained in CHAMPIER,
GALLOUET and HERBIN [1993], KRONER and ROKYTA [1994], COCKBURN, COQUEL and LEFLOCH
[1995] and the error estimates of COCKBURN, COQUEL and LEFLOCH [1994] and VILA [1994] in the
case of an explicit scheme and EYMARD, GALLOUET, GHILANI and HERBIN [1998] in the case of explicit
and implicit schemes.

The purpose of the following chapters is to lay out a mathematical framework for the convergence and
error analysis of the finite volume method for the discretization of elliptic, parabolic or hyperbolic partial
differential equations under conservative form, following the philosophy of the works of CHAMPIER,
GALLOUET and HERBIN [1993], HERBIN [1995], EYMARD, GALLOUET, GHILANI and HERBIN [1998]
and EYMARD, GALLOUET and HERBIN [1999]. In order to do so, we shall describe the implementation of
the finite volume method on some simple (linear or non-linear) academic problems, and develop the tools
which are needed for the mathematical analysis. This approach will help to determine the properties of
finite volume schemes which lead to “good” schemes for complex applications.

Chapter 2 introduces the finite volume discretization of an elliptic operator in one space dimension.
The resulting numerical scheme is compared to finite difference, finite element and mixed finite element
methods in this particular case. An error estimate is given; this estimate is in fact contained in results
shown later in the multidimensional case; however, with the one-dimensional case, one can already un-
derstand the basic principles of the convergence proof, and understand the difference with the proof of
MANTEUFFEL and WHITE [1986] or FORSYTH and SAMMON [1988], which does not seem to generalize
to the unstructured meshes. In particular, it is made clear that, although the finite volume scheme is not
consistent in the finite difference sense since the truncation error does not tend to 0, the conservativity of
the scheme, together with a consistent approximation of the fluxes and some “stability” allow the proof of
convergence. The scheme and the error estimate are then generalized to the case of a more general elliptic
operator allowing discontinuities in the diffusion coefficients. Finally, a semilinear problem is studied, for
which a convergence result is proved. The principle of the proof of this result may be used for nonlinear
problems in several space dimensions. It will be used in Chapter 3 in order to prove convergence results
for linear problems when no regularity on the exact solution is known.

In Chapter 3, the discretization of elliptic problems in several space dimensions by the finite volume
method is presented. Structured meshes are shown to be an easy generalization of the one-dimensional
case; unstructured meshes are then considered, for Dirichlet and Neumann conditions on the boundary
of the domain. In both cases, admissible meshes are defined, and, following EYMARD, GALLOUET and
HERBIN [1999], convergence results (with no regularity on the data) and error estimates assuming a
C? or H? regular solution to the continuous problems are proved. As in the one-dimensional case, the
conservativity of the scheme, together with a consistent approximation of the fluxes and some “stability”
are used for the proof of convergence. In addition to the properties already used in the one-dimensional
case, the multidimensional estimates require the use of a “discrete Poincaré” inequality which is proved
in both Dirichlet and Neumann cases, along with some compactness properties which are also used and
are given in the last section. It is then shown how to deal with matrix diffusion coefficients and more
general boundary conditions. Singular sources and mesh refinement are also studied.

Chapter 4 deals with the discretization of parabolic problems. Using the same concepts as in Chapter 3,
an error estimate is given in the linear case. A nonlinear degenerate parabolic problem is then studied,
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for which a convergence result is proved, thanks to a uniqueness result which is proved at the end of the
chapter.

Chapter 5 introduces the finite volume discretization of a hyperbolic operator in one space dimension.
Some basics on entropy weak solutions to nonlinear hyperbolic equations are recalled. Then the concept
of stability of a scheme is explained on a simple linear advection problem, for which both finite difference
and finite volume schemes are considered. Some well known schemes are presented with a finite volume
formulation in the nonlinear case. A proof of convergence using a “weak BV inequality” which was found
to be crucial in the multidimensional case (Chapter 6) is given in the one-dimensional case for the sake
of clarity. For the sake of completeness, the proof of convergence based on “strong BV estimates” and
the Lax-Wendroff theorem is also recalled, although it does not seem to extend to the multidimensional
case with general meshes.

In Chapter 6, finite volume schemes for the discretization of multidimensional nonlinear hyperbolic con-
servation equations are studied. Under suitable assumptions, which are satisfied by several well known
schemes, it is shown that the considered schemes are L™ stable (this is classical) but also satisfy some
“weak BV inequality”. This “weak BV” inequality is the key estimate to the proof of convergence of
the schemes. Following EYMARD, GALLOUET, GHILANI and HERBIN [1998], both time implicit and
explicit discretizations are considered. The existence of the solution to the implicit scheme is proved.
The approximate solutions are shown to satisfy some discrete entropy inequalities. Using the weak BV
estimate, the approximate solution is also shown to satisfy some continuous entropy inequalities. Intro-
ducing the concept of “entropy process solution” to the nonlinear hyperbolic equations (which is similar
to the notion of measure valued solutions of DIPERNA [1985]), the approximate solutions are proved to
converge towards an entropy process solution as the mesh size tends to 0. The entropy process solution is
shown to be unique, and is therefore equal to the entropy weak solution, which concludes the convergence
of the approximate solution towards the entropy weak solution. Finally error estimates are proved for
both the explicit and implicit schemes.

The last chapter is concerned with systems of equations. In the case of hyperbolic systems which are
considered in the first part, little is known concerning the continuous problem, so that the schemes which
are introduced are only shown to be efficient by numerical experimentation. These “rough” schemes
seem to be efficient for complex cases such as the Euler equations for real gases. The incompressible
Navier-Stokes equations are then considered; after recalling the classical staggered grid finite volume
formulation (see e.g. PATANKAR [1980]), a finite volume scheme defined on a triangular mesh for the
Stokes equation is studied. In the case of equilateral triangles, the tools of Chapter 3 allow to show that
the approximate velocities converge to the exact velocities. Systems arising from modelling multiphase
flow in porous media are then considered. The convergence of the approximate finite volume solution for
a simplified case is then proved with the tools introduced in Chapter 6.

More precise references to recent works on the convergence of finite volume methods will be made in the
following chapters. However, we shall not quote here the numerous works on applications of the finite
volume methods in the applied sciences.



Chapter 2

A one-dimensional elliptic problem

The purpose of this chapter is to give some developments of the example 1.2 of the introduction in the
one-dimensional case. The formalism needed to define admissible finite volume meshes is first given
and applied to the Dirichlet problem. After some comparisons with other relevant schemes, convergence
theorems and error estimates are provided. Then, the case of general linear elliptic equations is handled
and finally, a first approach of a nonlinear problem is studied and introduces some compactness theorems
in a quite simple framework; these compactenss theorems will be useful in further chapters.

2.1 A finite volume method for the Dirichlet problem

2.1.1 Formulation of a finite volume scheme

The principle of the finite volume method will be shown here on the academic Dirichlet problem, namely a
second order differential operator without time dependent terms and with homogeneous Dirichlet bound-
ary conditions. Let f be a given function from (0, 1) to IR, consider the following differential equation:

_U:vw(m) = f(m)a TE (07 1)7
u(0) = 0, (2.1)
u(1) = 0.

If f € C([0,1],IR), there exists a unique solution v € C%([0,1],IR) to Problem (2.1). In the sequel, this
exact solution will be denoted by u. Note that the equation —ug; = f can be written in the conservative
form div(F) = f with F = —u,.

In order to compute a numerical approximation to the solution of this equation, let us define a mesh,
denoted by T, of the interval (0,1) consisting of N cells (or control volumes), denoted by K;,i =1,..., N,
and N points of (0,1), denoted by z;, i = 1,..., N, satisfying the following assumptions:

Definition 2.1 (Admissible one-dimensional mesh) An admissible mesh of (0, 1), denoted by T, is
given by a family (K;)i=1,....v, N € IN*, such that K; = (xz;%,a:H%), and a family (z;)i=o,...,.N+1 Such
that

:vozzv%=0<a:1<a:% <---<mi_%<xi<xi+% <"'<CL'N<$N+%=IEN+1=1.
One sets
N
hizm(Ki)sz% —a:z;%,izl,...,N, and therefore Zhizl,
i=1
h,{=m,~—xi7%,h;r=mi+%—mi,i=1,...,N,
hi+%=xi+1—mi,z’:0,...,N,

size(T) = h = max{h;,i=1,...,N}.

12
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The discrete unknowns are denoted by u;, i = 1,..., N, and are expected to be some approximation of
u in the cell K; (the discrete unknown w; can be viewed as an approximation of the mean value of u
over K;, or of the value of u(z;), or of other values of u in the control volume Kj...). The first equation
of (2.1) is integrated over each cell K;, as in (1.14) and yields

—Ug(Tiy 1) +ua(Ti_1) = f(z)dz, i=1,...,N.
K;
A reasonable choice for the approximation of —u,(z; +%) (at least, for i = 1,..., N — 1) seems to be the
differential quotient
Uip1 — Uj
F, =27
i+3 hi+%

This approximation is consistent in the sense that, if u € C?([0,1],R), then

* uU\x; —u\r;

where |0(h)| < Ch, C € R only depending on w.

Remark 2.1 Assume that z; is the center of K;. Let @; denote the mean value over K; of the exact
solution u to Problem (2.1). One may then remark that |@; — u(x;)| < Ch?, with some C only depending
on u; it follows easily that (@41 — @;)/h;y s = ua(z;11) + 0(h) also holds, for i =1,...,N —1 (recall
that h = max{h;,i = 1,...,N}). Hence the approximation of the flux is also consistent if the discrete
unknowns u;, ¢ = 1,---, N, are viewed as approximations of the mean value of u in the control volumes.

The Dirichlet boundary conditions are taken into account by using the values imposed at the boundaries to
compute the fluxes on these boundaries. Taking these boundary conditions into consideration and setting
fi = hl /. K, f(z)dz for i = 1,...,N (in an actual computation, an approximation of f; by numerical
integration can be used), the finite volume scheme for problem (2.1) writes

Fiy, —F_ 1 =hifi,i=1,...,N (2.3)
Uij+1 — Ui .
FFoio=—"7""——i=1,...,N—1 2.4
it3 hz-}-% ) ¢ ’ s ) ( )
2
un
Fyyi = —hN+l . (2.6)
Note that (2.4), (2.5), (2.6) may also be written
Ui+l — Ug
F; IL=—"—"7"" =07 JNa (27)
i+ 3 hz-l,-%
setting
Ug = UN41 = 0. (28)

The numerical scheme (2.3)-(2.6) may be written under the following matrix form:

AU =b, (2.9)
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where U = (u1,...,un)t, b= (b1,...,bn)?, with (2.8) and with A and b defined by

1 Uikl —U; | Ui — Uj—1Y .
AU); = —|(— ,i=1,...,N, 2.1
(AU) hi( hort + Ty ) i (2.10)
1
b = — f(z)dz,i=1,...,N, (2.11)
hi K;

Remark 2.2 There are other finite volume schemes for problem (2.1).

1. For instance, it is possible, in Definition 2.1, to take z; > 0, xx < 1 and, for the definition of the
scheme (that is (2.3)-(2.6)), to write (2.3) only for i = 2,..., N —1 and to replace (2.5) and (2.6) by
u; = uny = 0 (note that (2.4) does not change). For this so-called “modified finite volume” scheme,
it is also possible to obtain an error estimate as for the scheme (2.3)-(2.6) (see Remark 2.5). Note
that, with this scheme, the union of all control volumes for which the “conservation law” is written
is slightly different from [0, 1] (namely [z3/2,2n_1/2] # [0,1]) .

2. Another possibility is to take (primary) unknowns associated to the boundaries of the control
volumes. We shall not consider this case here (cf. KELLER [1971], COURBET and CROISILLE
[1998)).

2.1.2 Comparison with a finite difference scheme

With the same notations as in Section 2.1.1, consider that u; is now an approximation of u(x;). It is
interesting to notice that the expression

1 (_ Uil — Ui | Ui — Uz’—l)

hi hiyi hi_y

is not a consistent approximation of —ug;(z;) in the finite difference sense, that is the error made by
replacing the derivative by a difference quotient (the truncation error DAHLQUIST and BJORCK [1974])

does not tend to 0 as h tends to 0. Tndeed, let T = (u(z1), .- -, u(zx))’; with the notations of (2.9)-(2.11),
the truncation error may be defined as

r = AU — b,
with 7 = (r1,...,rn)!. Note that for f regular enough, which is assumed in the sequel, b; = f(z;) + 0(h).
An estimate of r is obtained by using Taylor’s expansion:
1., 1,
u(xi-l—l) = ’U/(IL',) + hz+%ua:(-’1:z) + §hi+%uwz(xi) + Eh,_i_%uwmw(fz):
for some &; € (z;,Tit+1), which yields

S .
_Efuwéﬂ(ml)_}'uww(xz)‘*'o(h), i=1,...,N,
i

which does not, in general tend to 0 as h tends to 0 (except in particular cases) as may be seen on the
simple following example:

ri =

Example 2.1 Let f = 1 and consider a mesh of (0,1), in the sense of Definition 2.1, satisfying h; = h
for even i, h; = h/2 for odd i and x; = (z;41/2 +T;_1/2)/2, fori =1,..., N. An easy computation shows
that the truncation error r is such that

r; = —3, for even i

r; = +3, for odd i.

Hence sup{|r;|,i =1,...,N} A 0ash — 0.
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Therefore, the scheme obtained from (2.3)-(2.6) is not consistent in the finite difference sense, even
though it is consistent in the finite volume sense, that is, the numerical approximation of the fluxes is
conservative and the truncation error on the fluxes tends to 0 as h tends to 0.

If, for instance, x; is the center of K;, for ¢ = 1,...,N, it is well known that for problem (2.1), the
consistent finite difference scheme would be, omitting boundary conditions,

4 Uil — Ui | Ui — ui,l] .
B = $',Z:2,...,N—1, 2.12
2h; + hi—1 + hz’—i—l [ h’H—% hi,l f( Z) ( )
Remark 2.3 Assume that ; is, for i = 1,..., N, the center of K; and that the discrete unknown u; of

the finite volume scheme is considered as an approximation of the mean value 4; of u over K; (note that
@i = u(z;) + (h?/24)uze(x;) + 0(h®), if u € C3([0,1],IR)) instead of u(z;), then again, the finite volume
scheme, considered once more as a finite difference scheme, is not consistent in the finite difference sense.
Indeed, let R = AU — b, with U = (@i1,...,4n)!, and R = (Ry,..., Ry)?, then, in general, R; does not
go to 0 as h goes to 0. In fact, it will be shown later that the finite volume scheme, when seen as a finite
difference scheme, is consistent in the finite difference sense if u; is considered as an approximation of
u(z;) — (h?/8)ugy(;). This is the idea upon which the first proof of convergence by Forsyth and Sammon
in 1988 is based, see FORSYTH and SAMMON [1988] and Section 2.2.2.

In the case of Problem (2.1), both the finite volume and finite difference schemes are convergent. The
finite difference scheme (2.12) is convergent since it is stable, in the sense that || X|lcc < C||AX ||,
for all X € R”, where C is a constant and || X|lec = sup(|Xi|,...,|Xn]), X = (X1,...,Xn)?, and
consistent in the usual finite difference sense. Since A(U — U) = R, the stability property implies that
IU — Ulleo < C||R||co Which goes to 0, as h goes to 0, by definition of the consistency in the finite
difference sense. The convergence of the finite volume scheme (2.3)-(2.6) needs some more work and is
described in Section 2.2.1.

2.1.3 Comparison with a mixed finite element method

The finite volume method has often be thought of as a kind of mixed finite element method. Nevertheless,
we show here that, on the simple Dirichlet problem (2.1), the two methods yield two different schemes.
For Problem (2.1), the discrete unknowns of the finite volume method are the values u;, 1 = 1,...,N.
However, the finite volume method also introduces one discrete unknown at each of the control volume
extremities, namely the numerical flux between the corresponding control volumes. Hence, the finite
volume method for elliptic problems may appear closely related to the mixed finite element method.
Recall that the mixed finite element method consists in introducing in Problem (2.1) the auxiliary variable
q = —ug, which yields the following system:

q+uz =0,
gz = f;
assuming f € L2((0,1)), a variational formulation of this system is:
g € H'((0,1)), u € L*((0, 1), (2.13)
1 1

| a@w@is = [ u@p. @)z, v e 1 (0.1) (214)

1 1
/ gz (z)v(z)dr = / f(x)v(z)dz, Vv € L?((0,1)). (2.15)

0 0

Considering an admissible mesh of (0,1) (see Definition 2.1), the usual discretization of this variational
formulation consists in taking the classical piecewise linear finite element functions for the approximation
H of H'((0,1)) and the piecewise constant finite element for the approximation L of L2((0,1)). Then,
the discrete unknowns are {u;,i = 1,..., N} and {gj11/2,¢ = 0,..., N} (u; is an approximation of u in
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K; and g;y1/2 is an approximation of —ug(%;41/2)). The discrete equations are obtained by performing
a Galerkin expansion of u and ¢ with respect to the natural basis functions ¢, [ = 1,..., N (spanning
L), and @ 12, j = 0,...,N (spanning H) and by taking p = @;y1/2, ¢ = 0,..., N in (2.14) and
v=1,k=1,...,Nin (2.15). Let ho = hyy1 = 0, uo = uny1 = 0 and q_1/2 = qn43/2 = 0; then the
discrete system obtained by the mixed finite element method has 2N + 1 unknowns. It writes

h; + h; h; hit1
qi+%(T+l)+Qi—%(€)+Qi+%( (;_)

:u,-—qu,i:O,...,N,

Gyt — Qi1 =/K f(z)dz,i=1,...,N.

Note that the unknowns ¢; ;> cannot be eliminated from the system. The resolution of this system of
equations does not give the same values {u;,i = 1,..., N} than those obtained by using the finite volume
scheme (2.3)-(2.6). In fact it is easily seen that, in this case, the finite volume scheme can be obtained
from the mixed finite element scheme by using the following numerical integration for the left handside

of (2.14):
‘/K' g(m)dw — g(xi+1)2+ g(xl)hl

This is also true for some two-dimensional elliptic problems and therefore the finite volume error estimates
for these problems may be obtained via the mixed finite element theory, see AGOUZAL, BARANGER,
MAITRE and OUDIN [1995], BARANGER, MAITRE and OUDIN [1996].

2.2 Convergence theorems and error estimates for the Dirichlet
problem

2.2.1 A finite volume error estimate in a simple case

We shall now prove the following error estimate, which will be generalized to more general elliptic problems
and in higher space dimensions.

Theorem 2.1

Let f € C([0,1],R) and let u € C%([0,1],IR) be the (unique) solution of Problem (2.1). Let T =
(Ki)i=1,....n be an admissible mesh in the sense of Definition 2.1. Then, there exists a unique vector
U= (uy,...,uy)t € RY solution to (2.3) -(2.6) and there exists C > 0, only depending on u, such that

N

)2
(eit1 —ei)® < C?h2, (2.16)
iz his
and
le;] < Ch, Vie{l,...,N}, (2.17)

with eg = exyy1 =0 and e; = u(x;) —uy, forallie {1,...,N}.

This theorem is in fact a consequence of Theorem 2.3, which gives an error estimate for the finite volume
discretization of a more general operator. However, we now give the proof of the error estimate in this
first simple case.

PROOF of Theorem 2.1

First remark that there exists a unique vector U = (uq,...,ux)’ € R" solution to (2.3)-(2.6). Indeed,
multiplying (2.3) by u; and summing for i = 1,..., N gives
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Zuzh fi-

hN+2 i=1

2 N-1
uy (Ui+1 — Uz)
TR D

3 i=1 i+3

Therefore, if f; =0 for any ¢ € {1,..., N}, then the unique solution to (2.3) is obtained by taking u; = 0,
for any i € {1,...,N}. This gives existence and uniqueness of U = (u1,...,ux)’ € R” solution to (2.3)
(with (2.4)-(2.6)).

One now proves (2.16). Let
FH—% = _uiﬂ(mi—i-%)a i = 05 .- '7N7
Integrating the equation —u,, = f over K; yields

Fioy—F,

=hifi,i=1,...,N.

D=

By (2.3), the numerical fluxes F; 1 satisfy

Fioy—Fiy =hifs,i=1,...,N.
Therefore, with G, 1 = 7i+% —Fiys,
Giyy—Giy =0,i=1,...,N.

Using the consistency of the fluxes (2.2), there exists C' > 0, only depending on u, such that

Fy= Fiii+ Ry and |R 41| < Ch, (2.18)
Hence with e; = u(z;) —u;, fori =1,..., N, and eg = en41 = 0, one has
€ir+1 — €
Gipy = zh,url "= Ry, i=0,..., N,
so that (e;)i=o,... . N4+1 satisfies
e’“i—Rerl + 9% LR L =0,Vie{l,...,N}. (2.19)
hl+2 hzfé 2

Multiplying (2.19) by e; and summing over ¢ = 1,..., N yields

N
—Z €z+1 +Z ez 1 ZR17161+ZRi+%ei.
1 i=1

Noting that eg = 0, ey41 = 0 and reordering by parts, this yields (with (2.18))

N

> (6“27 < Ch Z leirs — (2.20)

i=0 i+3

The Cauchy-Schwarz inequality applied to the right hand side gives
N N e 1
K3 2
Z lei+1 — el < (Z Hi) (Z hiyi ) . (2.21)
1=0 =0

Since Z hiy1 = (2.21) and from (2.20), one deduces (2.16).
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Since, for all i € {1,...,N}, ¢; = Z(ej —ej_1), one can deduce, from (2.21) and (2.16) that (2.17)

i=1

holds. n

Remark 2.4 The error estimate given in this section does not use the discrete maximum principle (that
is the fact that f; > 0, for all ¢ = 1,..., N, implies u; > 0, for all ¢ = 1,..., N), which is used in the
proof of error estimates by the finite difference techniques, but the coerciveness of the elliptic operator,
as in the proof of error estimates by the finite element techniques.

Remark 2.5

1. The above proof of convergence gives an error estimate of order h. It is sometimes possible to obtain
an error estimate of order h?. Indeed, this is the case, at least if u € C*([0,1],R), if z; is the center
of K; for alli = 1,...,N. One obtains, in this case, |e;| < Ch?, for all i € {1,..., N}, where C only
depends on v (see FORSYTH and SAMMON [1988] or BARANGER, MAITRE and OUDIN [1996]).

2. It is also possible to obtain an error estimate for the modified finite volume scheme described in
the first item of Remark 2.2 page 14. It is even possible to obtain an error estimate of order A2 in
the case 1 = 0, zx = 1 and assuming that z;;,/, = (1/2)(z; + zi41), foralli =1,...,N — 1. In
fact, in this case, one obtains |R;y1/5| < C1h?, for alli =1,..., N — 1. Then, the proof of Theorem
2.1 gives (2.16) with h* instead of h? which yields |e;|] < Coh?, for all i € {1,...,N} (where C;
and Cy are only depending on u). Note that this modified finite volume scheme is also consistent
in the finite difference sense. Then, the finite difference techniques yield also an error estimate on
le;|, but only of order h.

3. It could be tempting to try and find error estimates with respect to the mean value of the exact
solution on the control volumes rather than with respect to its value at some point of the control
volumes. This is not such a good idea: indeed, if z; is not the center of K; (this will be the general
case in several space dimensions), then one does not have (in general) |&;| < C3h? (for some Cj3
only depending on u) with é; = 4; — u; where @; denotes the mean value of u over K.

Remark 2.6

1. If the assumption f € C(]0,1],IR) is replaced by the assumption f € L?((0,1)) in Theorem 2.1,
then u € H2((0,1)) instead of C%([0,1],R), but the estimates of Theorem 2.1 still hold. Then,
the consistency of the fluxes must be obtained with a Taylor expansion with an integral remainder.
This is feasible for C? functions, and since the remainder only depends on the H? norm, a density
argument allows to conclude; see also Theorem 3.4 page 55 and EYMARD, GALLOUET and HERBIN
[1999].

2. If the assumption f € C([0,1],IR) is replaced by the assumption f € L!((0,1)) in Theorem 2.1,
then u € C?([0, 1],IR) no longer holds (neither does u € H?((0,1))), but the convergence still holds;
indeed there exists C'(u,h), only depending on u and h, such that C(u,h) — 0, as h — 0, and
le;| < C(u,h), for all i =1,..., N. The proof is similar to the one above, except that the estimate
(2.18) is replaced by |R;;1/2| < Ci(u,h), for all i = 0,..., N, with some Cy(u,h), only depending
on u and h, such that C(u,h) — 0, as h — 0.

Remark 2.7 Estimate (2.16) can be interpreted as a “discrete Hy” estimate on the error. A theoretical
result which underlies the L™ estimate (2.17) is the fact that if Q is an open bounded subset of IR, then
H}(Q) is imbedded in L*(). This is no longer true in higher dimension. In two space dimensions,
for instance, a discrete version of the imbedding of Hj in LP allows to obtain (see e.g. FIARD [1994])
|lell, < Ch, for all finite p, which in turn yields |le[]|c < Chlnh for convenient meshes (see Corollary 3.1
page 61).
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The important features needed for the above proof seem to be the consistency of the approximation of
the fluxes and the conservativity of the scheme; this conservativity is natural the fact that the scheme is
obtained by integrating the equation over each cell, and the approximation of the flux on any interface
is obtained by taking into account the flux balance (continuity of the flux in the case of no source term
on the interface).

The above proof generalizes to other elliptic problems, such as a convection-diffusion equation of the form
—Ugy + aug, + bu = f, and to equations of the form —(Auy), = f where A € L® may be discontinuous,
and is such that there exist & and § in R’ such that o < XA < f. These generalizations are studied
in the next section. Other generalizations include similar problems in 2 (or 3) space dimensions, with
meshes consisting of rectangles (parallepipeds), triangles (tetrahedra), or general meshes of Voronoi type,
and the corresponding evolutive (parabolic) problems. These generalizations will be addressed in further
chapters.

Let us now give a proof of Estimate (2.17), under slightly different conditions, which uses finite difference
techniques.

2.2.2 An error estimate using finite difference techniques

Convergence can be obtained via a method similar to that of the finite difference proof of convergence
(following, for instance, FORSYTH and SAMMON [1988], MANTEUFFEL and WHITE [1986], FAILLE
[1992a]). Most of these methods, are, however, limited to the finite volume method for Problem (2.1).
Using the notations of Section 2.1.2 (recall that U = (u(x1),...,u(zn))!, and r = AU — b = 0(1)), the

idea is to find U “close” to U, such that
AU = b+7, with 7 = 0(h).
This value of U was found in FORSYTH and SAMMON [1988] and is such that U =U-V, where

h? ;
V= (vi,...,on)¢ andvi='u%(ml),i=1;---aN-

Then, one may decompose the truncation error as
r =AU —U) = AV + 7 with ||V||ec = 0(h?) and 7 = 0(h).

The existence of such a V is given in Lemma 2.1. In order to prove the convergence of the scheme, a
stability property is established in Lemma 2.2.

Lemma 2.1 Let T = (K;)i=1,..,.n be an admissible mesh of (0,1), in the sense of Definition 2.1 page 12,
such that x; is the center of K; for alli =1,...,N. Let aT > 0 be such that h; > ath foralli=1,...,N
(recall that h = max{hy,...,hn}). Let U = (u(z1),...,u(zn))t € RY, where u is the solution to (2.1),
and assume u € C3([0,1],IR). Let A be the matriz defining the numerical scheme, given in (2.10) page
14. Then there exists a unique U = (uq,...,un) solution of (2.3)-(2.6) and there exists T and V € RY
such that

r=AU —-U) = AV + 7, with ||V]| < Ch* and |[F||oo < Ch,

where C' only depends on u and aT.

PROOF of Lemma 2.1

The existence and uniqueness of U is classical (it is also proved in Theorem 2.1).
For i =0,...N, define

u\x; — u\T;
hiyy

Remark that
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T‘i=_(Ri+l_Ri7%)7 fori=0,..., N, (2.22)

where r; is the i—th component of r = A(U — U).
The computation of R; 1 yields

= —%(hﬂ_l - h,)uzz($2+%) +0(h2), 1=1,.. .,N -1,

R,
Ry = —thiuge(0) + 0(h2), Ry g = Lhnuge(1) +0(h2).

|| [N

1
2

Define V = (v1,...,vn)t with v; = M,i:l,...,N. Then,

U Y Ry +0(RY),i=1,..., N —1,
hity :
2U1 _ 2
21)]\]
Since h; > arh, fori=1,...,N, replacing R, 1 in (2.22) gives that r; = (AV); +0(h), fori =1,...,N,
and ||V]|s = 0(h?). Hence the lemma is proved. "

Lemma 2.2 (Stability) Let T = (K;)i=1,....n be an admissible mesh of [0,1] in the sense of Definition
2.1. Let A be the matriz defining the finite volume scheme given in (2.10). Then A is invertible and

_ 1
4l < 5 (2.23)
PRrOOF of Lemma 2.2
First we prove a discrete maximum principle; indeed if b; > 0, for alli = 1,..., N, and if U is solution of

AU = b then we prove that u; > 0for alli=1,...,N.
Let a = min{u;,4 =0,..., N + 1} (recall that ug = un41 = 0) and 49 = min{i € {0,..., N +1}; u; = a}.
Tf 49 # 0 and ig # N + 1, then

i(uio — Ujg—1 _ Ujo+1 _uio) = b > 0

h’iO h‘io*% h'io+%

this is impossible since w;,41 — ui, > 0 and w;, — u;,—1 < 0, by definition of 5. Therefore, ig = 0 or
N +1. Then,a=0and u; >0foralli=1,...,N.

Note that, by linearity, this implies that A is invertible.

Next, we shall prove that there exists M > 0 such that ||A7!|| < M (indeed, M = 1/4 is convenient).
Let ¢ be defined on [0,1] by ¢(z) = 1z(1 —z). Then —¢pe(z) = 1 for all z € [0,1]. Let ® = (¢1,...,¢n)
with ¢; = ¢(z;); if A represented the usual finite difference approximation of the second order derivative,
then we would have A® = 1, since the difference quotient approximation of the second order derivative
of a second order polynomial is exact (¢4 = 0). Here, with the finite volume scheme (2.3)-(2.6), we

have A® —1 = AW (where 1 denotes the vector of RRY the components of which are all equal to 1), with
W = (wi,...,wy) € RY such that W; = —%’? (see proof of Lemma 2.1). Let b € R™ and AU = b, since
A(® — W) =1, we have

AU — Ibl]oo(® — W) <0,
this last inequality being meant componentwise. Therefore, by the above maximum principle, assuming,
without loss of generality, that h < 1, one has

b
s < [l — ), 5o that u; < 1o,
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(note that ¢(x) < §). But we also have
AU + []blloo(® — W)) > 0,
and again by the maximum principle, we obtain

_ bl
it

Hence ||Ulloc < %[|b]|oo- This shows that || A7 || < % "

Ui 2

This stability result, together with the existence of V' given by Lemma 2.1, yields the convergence of the
finite volume scheme, formulated in the next theorem.

Theorem 2.2 Let T = (K;)i=1,....n be an admissible mesh of [0,1] in the sense of Definition 2.1 page
12. Let ar € R be such that h; > arth, for alli =1,...,N (recall that h = max{hy,...,hn}). Let
U = (u(21),...,u(zn))t € RY, and assume u € C3([0,1],R) (recall that u is the solution to (2.1)). Let
U = (u1,...,un) be the solution given by the numerical scheme (2.3)-(2.6). Then there exists C > 0,
only depending on at and u, such that ||[U — Ul < Ch.

Remark 2.8 In the proof of Lemma 2.2, it was shown that A(U — V) = b+ 0(h); therefore, if, once
again, the finite volume scheme is considered as a finite difference scheme, it is consistent, in the finite
difference sense, when u; is considered to be an approximation of u(z;) — (1/8)hZuze ().

Remark 2.9 With the notations of Lemma 2.1, let r be the function defined by
r(x)=r, fzek; i=1,...,N,

the function r does not necessarily go to 0 (as h goes to 0) in the L norm (and even in the L! norm),
but, thanks to the conservativity of the scheme, it goes to 0 in L*°((0,1)) for the weak-* topology, that
is
1
/ r(2)p(@)dz = 0, as h—0, Ve L}((0,1)).
0

This property will be called “weak consistency” in the sequel and may also be used to prove the conver-
gence of the finite volume scheme (see FAILLE [1992a]).

The proof of convergence described above may be easily generalized to the two-dimensional Laplace
equation —Awu = f in two and three space dimensions if a rectangular or a parallepipedic mesh is used,
provided that the solution u is of class C3. However, it does not seem to be easily generalized to other
types of meshes.

2.3 General 1D elliptic equations

2.3.1 Formulation of the finite volume scheme

This section is devoted to the formulation and to the proof of convergence of a finite volume scheme for
a one-dimensional linear convection-diffusion equation, with a discontinuous diffusion coefficient. The
scheme can be generalized in the two-dimensional and three-dimensional cases (for a space discretization
which uses, for instance, simplices or parallelepipedes or a “Voronoi mesh”, see Section 3.1.2 page 37)
and to other boundary conditions.

Let A € L*°((0,1)) such that there exist A and A € R} with A < XA < X a.e. and let a,b,c,d € R, with
b>0,and f € L?((0,1)). The aim, here, is to find an approximation to the solution, u, of the following
problem:

—(Miz)z (2) + aug(z) + bu(z) = f(z), = €[0,1], (2.24)
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u(0) = ¢, u(l) = d. (2.25)

The discontinuity of the coefficient A may arise for instance for the permeability of a porous medium,
the ratio between the permeability of sand and the permeability of clay being of an order of 10; heat
conduction in a heterogeneous medium can also yield such discontinuities, since the conductivities of the
different components of the medium may be quite different. Note that the assumption b > 0 ensures the
existence of the solution to the problem.

Remark 2.10 Problem (2.24)-(2.25) has a unique solution u in the Sobolev space H'((0,1)). This
solution is continuous (on [0,1]) but is not, in general, of class C? (even if A(z) = 1, for all z € [0,1]).
Note that one has —Au,(z) = foz g(t)dt+ C, where C is some constant and g = f — au, —bu € L'((0,1)),
so that Au, is a continuous function and u, € L*((0,1)).

Let 7 = (Kj;)i=1,...,~v be an admissible mesh, in the sense of Definition 2.1 page 12, such that the
discontinuities of A coincide with the interfaces of the mesh.
The notations being the same as in section 2.1, integrating Equation (2.24) over K; yields

_(/\uz)(mH%)+(Auz)($i7%)+au(mi+%)—au(mi7%)+/l(' bu(m)dm:/K'f(m)dm, i=1,...,N.

Let (u;)i=1,...,n be the discrete unknowns. In the case a > 0, which will be considered in the sequel,
the convective term au(z;41/2) is approximated by au; (“upstream”) because of stability considerations.
Indeed, this choice always yields a stability result whereas the approximation of au(z;11/2) by (a/2)(u; +
ui+1) (with the approximation of the other terms as it is done below) yields a stable scheme if ah < 2,
for a uniform mesh of size h and a constant diffusion coefficient X\. The case a < 0 is easily handled in the
same way by approximating au(z;y1/2) by auit1. The term [ , bu(z)dz is approximated by bh;u;. Let
us now turn to the approximation H; /5 of —Aug(#;41/2). Let A\j = hi S, Mx)dz; since M|k, € C* (Ky),
there exists ¢y € IRy, only depending on A, such that [A; — A(z)| < eah, Vo € K;. In order that the
scheme be conservative, the discretization of the flux at z;y,/> should have the same value on K; and
Kiy1. To this purpose, we introduce the auxiliary unknown u;; 1/, (approximation of u at z;;1/2). Since
on K; and Ky, A is continuous, the approximation of —Au, may be performed on each side of z;,;/»
by using the finite difference principle:

Wipd — i ,
Hz-‘,—% :—)\ZT OHKZ',Z:].,...,N,
2
Uit1 — Ujy L .
Hi+l = — i+1%2 on K;y1,1=0,...,N -1,
2 hi+1

with u;,5 = ¢, and un41/2 = d, for the boundary conditions. (Recall that hf = Tiy1/2 — =i and
hy = z; — 2;_1/2). Requiring the two above approximations of Augz(z;y1/2) to be equal (conservativity
of the flux) yields the value of w11/ (fori =1,...,N —1):

i Ai
Ui+1hz.TJr1 + uzh—i
Ui 1 = it1 ? (2.26)
i+3 /\’i+1 n ﬁ )
hi Y

which, in turn, allows to give the expression of the approximation H; 1 of Au, (z; Jr%):

Hi+% = _Ti—l—%(u’i-i-l - U,’), i= 1; .. ‘JN - ]-7
A1
Hy = _E(ul —<) (2.27)
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with

— A"’\"“_ ,i=1,...,N—1. (2.28)
hi Ai+1 + hi+1)"i

Example 2.2 If h; = h, for all i € {1,...,N}, and z; is assumed to be the center of K;, then h} =
h; =%, so that
_ 2XiAip uigr — g

Ai + Ai1 h ’

and therefore the mean harmonic value of X is involved.

Hz‘+%

The numerical scheme for the approximation of Problem (2.24)-(2.25) is therefore,

FH_% — Fi—% + bh;u; = h; f;, Vi € {1, .. .,N}, (2.29)

with f; = h%f;j; f(z)dz, for i = 1,..., N, and where (F1i+%)i€{0,...,N} is defined by the following

i

expressions

Fi-i-% = _Ti+%(ui+1 _Ui) +au;, Vi € {15' N = 1}7 (230)
M Ay
Fy :_E(UI_CH—GC, Frni1 =—ﬁ(d—“N)+aUN- (2.31)

Remark 2.11 In the case a > 0, the choice of the approximation of au(z;t1/2) by aui1 would yield an
unstable scheme, except for h small enough (when a < 0, the unstable scheme is au;).

Taking (2.28), (2.30) and (2.31) into account, the numerical scheme (2.29) yields a system of N equations
with N unknowns uy,...,upn.

2.3.2 Error estimate

Theorem 2.3

Let a,b>0, ¢c,d € R, A € L*®((0,1)) such that A < A < X a.e. with some A\, X € R% and f € L*((0,1)).
Let u be the (unique) solution of (2.24)-(2.25). Let T = (K;)i—1,....n be an admissible mesh, in the sense of
Definition 2.1, such that A € C*(K;) and f € C(K;), for alli =1,---,N. Let v = max{||[tae || (k),i =
L,---,N} and § = max{[|A||p(k;),4 = 1,---,N}. Then,

1. there exists a unique vector U = (uy,...,un)t € RY solution to (2.28)-(2.31),

2. there exists C, only depending on A\, X,y and &, such that
N
ZTH-%(eH‘l —ei)2 S Ch2, (232)
i=0
where 7, 1 is defined in (2.28), and

lei| < Ch, Vi € {1,...,N}, (2.33)

with eg = ent1 =0 and e; = u(x;) —u;, for alli € {1,...,N}.
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PRrROOF of Theorem 2.3

Step 1. Existence and uniqueness of the solution to (2.28)-(2.31).

Multiplying (2.29) by u; and summing for ¢ = 1,..., N yields that if c=d = 0 and f; = 0 for any ¢ €
{1,..., N}, then the unique solution to (2.28)-(2.31) is obtained by taking u; = 0, for any i € {1,...,N}.
This yields existence and uniqueness of the solution to (2.28)-(2.31).

Step 2. Consistency of the fluxes.

Recall that h = max{hi,...,hn}. Let us first show the consistency of the fluxes.

Let Hiy1/2 = —(/\uz)(mi+1/2) and Hy ) » = —Tiq1/2(u(@ipr)—u(z:)), fori = 0,..., N, with 7y /5 = Ay /hy
and Tn41/2 = AN/ h}. Let us first show that there exists C; € IR’, only depending on A, X,7 and 4,
such that

Hiyy = Hivy + Ty (2.34)
ITiy1| < Cih,i=0,...,N.
In order to show this, let us introduce
o ul@y) —u() L ul@i) —ulziy)
Hz+2 —)\iT and H+1 = —Ait1 e ; (2.35)

since A € C*(Kj;), one has u € C?(K;); hence, there exists C € IR}, only depending on + and §, such
that

HY, =Hy + R, ,, where |[R_ ,|<Chi=1,..,N, (2.36)
and
H;t =H;y +R+1, where |Rj+%| <Ch,i=0,...,N —1. (2.37)
This yields (2.34) fori =0and i = N
The following equality:
T o= — et + =
Hi 1 HZ+1—RZ.+%_HH_%—R+1, =1,...,N -1, (2.38)

yields that

Aig1
hl~_+ (Tiy1) + +u(xz)
U($i+%) = 1= A )\i+1z + Si+%’ i=1...,N-1, (2.39)
hi R
where + _
o Ri+% !
i+ T\ Ait1
wf T,
so that N
1 hithia Ly -
|Si+%| < Xh;;- +hiy |Rz’+§ - Ri+%|'

Let us replace the expression (2.39) of u(x;11/2) in H; i11/2 defined by (2.35) (note that the computation

is similar to that performed in (2.26)-(2.27)); this yields

H*

Ai .
1= —Tipr (u(@ir1) —uw(@i) — 73S, i=1,...,N -1 (2.40)

+ i
h;
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Using (2.38), this implies that HY ; = FH% + T 1 where
2
A
+ _ -
it+3 R

Tyl < IR 1+ 1BE, — RS 55

Using (2.36) and (2.37), this last inequality yields that there exists C;, only depending on X\, ), 7, §, such
that

|H;+%—Fi+%|:|Ti+%|Sclh,iZI,...,N—l.

Therefore (2.34) is proved.
Define now the total exact fluxes;

FH_% = —(Mug)(ziy 1) +au(z;g 1), Vi€ {0,..., N},

and define
Fiiy = —Tipg (w(@ip) —u(@)) + au(z), Vi€ {1,...,N -1},
* /\1 * )‘N
Fi = ———=(u(z1) —¢) +ac, Fy, 1 = ——F(d—u(zn)) + aun.
2 hl 2 hN

Then, from (2.34) and the regularity of u, there exists Cs, only depending on ), \,y and &, such that

Hence the numerical approximation of the flux is consistent.

Step 3. Error estimate.
Integrating Equation (2.24) over each control volume yields that

FH_% — F%% + bh;(u(z;) + ;) = hifi, Vie {1,...,N}, (2.42)

where S; € R is such that there exists C3 only depending on u such that |S;| < Csh, fori=1,...,N.
Using (2.41) yields that

Yoy — iy + bhiu(@i) + Si) = hifi + Ry — R,_y, Vi€ {1,...,N}. (2.43)

Let e; = u(z;) —u;, for i =1,..., N, and ep = ey41 = 0. Substracting (2.29) from (2.43) yields

—Ti—i-%(ei'i'l — ei) + Ti_%(ei — 6571) + a(ei — 61',1) + bh;e; = —bh;S; + RH—% — Rz’—%’ Vi € {1, .. ,N}

Let us multiply this equation by e;, sum for 4 = 1,..., N, reorder the summations. Remark that
N | N1 ,
izzlei(ez' —ei1)= 3 ; (ei —ei—1)
and therefore
N N+1 N N N
Z Titl (€i+1 - ei)2 + g Z (ei - ei_1)2 + Z bh,i(;‘,2 = — Z bh;S;e; — Z Ri-i—% (€i+1 - ei).
i=0 i=1 i=1 i=1 i=0

Since |S;| < Csh and thanks to (2.41), one has
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ZTH_ €,+1 —e, < Zb03h h|€z|+202h|€,+1 —€Z|
i=0 i=1 i=1
1 1

Remark that |e;| < Zjvzl le; —ej_1|- Denote by 4 = (Zé\io Tiy (€it1 — ei)2) *and B = (Efio ﬁ) ’
The Cauchy-Schwarz inequality yields ’

N
A? <3 " bC3hihAB + CyhAB.

i=1
Now, since
1 by al
-~ < 5 hipy +hi), D (kg + ) =1, with b = hy,, =0, and Zh =1,
2 = =0 =1

one obtains that A < Cyh, with C4 only depending on A, X, and &, which yields Estimate (2.32).
Applying once again the Cauchy-Schwarz inequality yields Estimate (2.33). n

2.3.3 The case of a point source term

In many physical problems, some discontinuous or point source terms appear. In the case where a
source term exists at the interface z;;1/2, the fluxes relative to K; and K;, will differ because of this
source term. The computation of the fluxes is carried out in a similar way, writing that the sum of the
approximations of the fluxes must be equal to the source term at the interface. Consider again the one-
dimensional conservation problem (2.24), (2.25) (with, for the sake of simplification, a =b=c=d = 0,
we use below the notations of the previous section), but assume now that at z € (0, 1), a point source of
intensity « exists. In this case, the problem may be written in the following way:

—(Aug(z)), = f(2), =€ (0,2)U(z,1), (2.44)
u(0) =0, (2.45)

u(1) = 0, (2.46)

(ug)t(2) — ug) ™ (@) = —a, (2.47)

where

Auz)t(z) = lim  (Aug)(z) and (Au,) " (z) = lim  (Aug)(z).

Tz, >T z—oz,x<e

Equation (2.47) states that the flux is discontinuous at point z. Another formulation of the problem is
the following:

_()‘uw)w =gin DI((OJ 1))a (2-48)
u(0) =0, (2.49)
u(1) =0, (2.50)

where g = f + ad,, where J, denotes the Dirac measure, which is defined by < &5, >p/p= ¢(z), for
any ¢ € D((0,1)) = C((0,1),R), and D'((0,1)) denotes the set of distributions on (0,1), i.e. the set of
continuous linear forms on D((O, 1)).

Assuming the mesh to be such that z = a:z+1 2 for some i € 1,..., N — 1, the equation corresponding to
the unknown uz is Fi /2~ Fz 12 = Jw. [ X, z)dz, while the equatlon corresponding to the unknown w41

Fiy3/5 — F; +1 /2= = Kiis z)dz. In order to compute the values of the numerical fluxes FX i11/2> One
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must take the source term into account while writing the conservativity of the flux; hence at z;;1/2, the
two numerical fluxes at = z, namely F'¥ | and F;. ., must satisty, following Equation (2.47),
2

i+ +3°
+ - _
FH% —FH% =a. (2.51)
Next, the fluxes F:H /2 and F /2 Must be expressed in terms of the discrete variables ux, k =1,...,N;

in order to do so, introduce the auxiliary variable u;,/2 (which will be eliminated later), and write

Uit1 — Uiyl

t =\
fi = e T
_ ’U/i_;’_l — U;
K3
Replacing these expressions in (2.51) yields
hi i Ait1 i
Uig 1 = —— [—uit1 + —u; + a.
e (hi+1’\i+hj)‘i+1) hi+1 ' h? '

and therefore

o hi i1 o Aidit1
3 b A+ A By hi + BN
i+17M i Nitl i+17M i NVitl

(Uig1 — u;)
_h’i_-',-l’\i /\i)\z’+1
a —
hipihi +hidivr R i+ B A

Note that the source term « is distributed on either side of the interface proportionally to the coefficient
A, and that, when a = 0, the above expressions lead to

Fi+%

(ui+1 - u,)

_ Aidip1
Bk + i At

+ _ —
Fi+% - Fi+%

(wip1 — uz).

Note that the error estimate given in Theorem 2.3 still holds in this case (under adequate assumptions).

2.4 A semilinear elliptic problem

2.4.1 Problem and Scheme

This section is concerned with the proof of convergence for some nonlinear problems. We are interested,
as an example, by the following problem:

_uz':c('r) = f($7u($))7 T € (07 1)7 (252)

u(0) = u(1) =0, (2.53)
with a function f: (0,1) x IR — IR such that

f(z, s) is measurable with respect to x € (0,1) for all s € R

and continuous with respect to s € R for a.e. z € (0,1), (2.54)

feL®((0,1) x R). (2.55)

It is possible to prove that there exists at least one weak solution to (2.52), (2.53), that is a function u
such that
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e HY(0,1)), /0 iy (2)0y (z)dz = /0 (o, u(@))o(@)de, Yo € HL((0,1)). (2.56)

Note that (2.56) is equivalent to “u € H((0,1)) and —ug, = f(-,u) in the distribution sense in (0,1)”.

The proof of the existence of such a solution is possible by using, for instance, the Schauder’s fixed point
theorem (see e.g. DEIMLING [1980]) or by using the convergence theorem 2.4 which is proved in the
sequel.

Let 7 be an admissible mesh of [0, 1] in the sense of Definition 2.1. In order to discretize (2.52), (2.53),
let us consider the following (finite volume) scheme

FH_%—Fi_%:hZf(u,) i=1,...,N, (2.57)
Fz‘+%:_m;1-7J;m’i:0""’N’ (2.58)
K3
Up = UN+1 = 0, (259)
with f;(u;) = & f X, (z,u;)dz, i =1,. . The discrete unknowns are therefore uy,...,uyN-

In order to glve a convergence result for this scheme (Theorem 2.4), one first proves the existence of a
solution to (2.57)-(2.59), a stability result, that is, an estimate on the solution of (2.57)-(2.59) (Lemma
2.3) and a compactness lemma (Lemma 2.4).

Lemma 2.3 (Existence and stability result) Let f : (0,1) x R — R satisfying (2.54), (2.55) and
T be an admissible mesh of (0,1) in the sense of Definition 2.1. Then, there exists (ui,...,uy)t € RY
solution of (2.57)-(2.59) and which satisfies:

2
<c, (2.60)

for some C > 0 only depending on f.

PROOF of Lemma 2.3

Define M = || f[|p((0,1)xmr)- The proof of estimate (2.60) is given in a first step, and the existence of a
solution to (2.57)-(2.59) in a second step.

Step 1 (Estimate)

Let V = (v1,...,on)" € RY, there exists a unique U = (uq,...,un)t € R solution of (2.57)-(2.59)
with f;(v;) instead of f;(u;) in the right hand-side (see Theorem 2.1 page 16). One sets U = F(V), so
that F is a continuous application from R”Y to RY, and (u1,...,un) is a solution to (2.57)-(2.59) if and
only if U = (u1,...,un)! is a fixed point to F.

Multiplying (2.57) by u; and summing over 7 yields

N (i1 — ui)? N
oL <MY hiful, (2.61)
. hi+l .
=0 2 i=1
and from the Cauchy-Schwarz inequality, one has
N o — )2 1
|Uz|5( (UJ+1 UJ) )27221;- ;NJ
7=0 hivi

then (2.61) yields, with C' = M?2,
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"’+ Lmw)® o (2.62)
i=0 H'_

Mz

This gives, in particular, Estimate (2.60) if (uy,...,un)! € R" is a solution of (2.57)-(2.59) (that is
u; = v; for all 7).

Step 2 (Existence)
The application F : RY — IR defined above is continuous and, taking in R” the norm

N o0 N2
”V” = (Z M) 25 for V= (Ula v 7UN)ta with v = UN+1 = 0,
: hiyi
=0 2
one has F(By) C By, where By is the closed ball of radius M and center 0 in R”. Then, F has a
fixed point in Bps thanks to the Brouwer fixed point theorem (see e.g. DEIMLING [1980]). This fixed

point is a solution to (2.57)-(2.59). n

2.4.2 Compactness results

Lemma 2.4 (Compactness)

For an admissible mesh T of (0,1) (see definition 2.1), let (u1,...,un)t € RN satisfy (2.60) for some
C € R (independent of T) and let ur : (0,1) = IR be defined by ur(x) =u; ifx € K;,i=1,...,N.
Then, the set {ur, T admissible mesh of (0,1)} is relatively compact in L?((0,1)). Furthermore, if
ur, = uw in L2((0,1)) and size(T,) — 0, as n — oo, then, u € H((0,1)).

PROOF of Lemma 2.4

A possible proof is to use “classical” compactness results, replacing u7 by a continuous function, say
uT, piecewise affine, such that wr(z;) = u; for i = 1,..., N, and w7 (0) = ur(1) = 0. The set {ur, T
admissible mesh of (0,1)} is then bounded in Hg((0,1)), see Remark 3.8 page 48.

Another proof is given here, the interest of which is its simple generalization to multidimensional cases
(such as the case of one unknown per triangle in 2 space dimensions, see Section 3.1.2 page 37 and Section
3.6 page 91) when the construction of such a function, ur, “close” to ur and bounded in H}((0,1))
(independently of 7)), is not so easy.

In order to have ur defined on IR, one sets ur(z) = 0 for = ¢ [0,1]. The proof may be decomposed into
four steps.

Step 1. First remark that the set {u7, 7 an admissible mesh of (0,1)} is bounded in L?(IR). Indeed, this
an easy consequence of (2.60), since one has, for all z € [0, 1] (since ug = 0 and by the Cauchy-Schwarz
inequality),

N N
|ur(z) Z [wiv: —ui] < ( Z (uits = % <C
i=0 i=0 hity
Step 2. Let 0 < n < 1. One proves, in this step, that
llur (- +n) = urlliem) < Cnln+ 2h). (2.63)

(Recall that h = size(T).)
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Indeed, for i € {0,..., N} define x;41/2 : R = IR, by Xiy1/2(z) = 1,if 2i11 /5 € [z, 2+7n] and X41/2(2) =
0, if ;41/2 ¢ [z, + n]. Then, one has, for all z € IR,

(ur(@ +n) —ur(@)? < (3 Juip —uilxiy 1 (@)
i=0

< (3 L )(Zm ). (260

i=0 l+ 3

Since Efio Xi+1/2(2)hip1y2 <+ 2h, for all z € R, and [ Xiy1/2(z)dz = n, for all i € {0,...,N},
integrating (2.64) over R, yields (2.63).

Step 3. For 0 < n < 1, Estimate (2.63) implies that

lur(- +n) — urll2@m) < 3Cn.

This gives (with Step 1), by the Kolmogorov compactness theorem (recalled in Section 3.6, see Theorem
3.9 page 91), the relative compactness of the set {u7, 7 an admissible mesh of (0,1)} in L?((0,1)) and
also in L2(IR) (since u = 0 on IR \ [0, 1]).

Step 4. In order to conclude the proof of Lemma, 2.4, one may use Theorem 3.10 page 91, which we prove
here in the one-dimensional case for the sake of clarity. Let (7,)nenN be a sequence of admissible meshes
of (0,1) such that size(7,,) = 0 and ur, — u, in L2((0,1)), as n — oo. Note that ur, — u, in L?(IR),
with u =0 on IR\ [0,1]. For a given n € (0,1), let n — oo in (2.63), with u7;, instead of ur (and size(7,,)
instead of h). One obtains

”U(+77) —u
n

Since (u(-+n) — u)/n tends to Du (the distribution derivative of u) in the distribution sense, as 5 — 0,
Estimate (2.65) yields that Du € L?(IR). Furthermore, since v = 0 on IR \ [0, 1], the restriction of u to
(0,1) belongs to Hy((0,1)). The proof of Lemma 2.4 is complete. L]

I172(r) < C- (2.65)

2.4.3 Convergence

The following convergence result follows from lemmata 2.3 and 2.4.

Theorem 2.4 Let f : (0,1) x R — R satisfying (2.54), (2.55). For an admissible mesh, T, of (0,1)
(see Definition 2.1), let (uy, ..., un)t € RY be a solution to (2.57)-(2.59) (the existence of which is given
by Lemma 2.3), and let ur : (0,1) > R by ur(z) =u;, ifx € K;,i=1,...,N.

Then, for any sequence (Tp)new of admissible meshes such that size(T,) — 0, as n — oo, there exists a
subsequence, still denoted by (T,)new, such that ur, — u, in L?((0,1)), as n — oo, where u € H((0,1))
is a weak solution to (2.52), (2.53) (that is, a solution to (2.56)).

PRrROOF of Theorem 2.4

Let (Tn)new be a sequence of admissible meshes of (0, 1) such that size(7,) — 0, as n — 0o. By lemmata
2.3 and 2.4, there exists a subsequence, still denoted by (7,)nen, such that ur, — u, in L2((0,1)), as
n — oo, where u € H((0,1)). In order to conclude, it only remains to prove that —ug, = f(-,u) in the
distribution sense in (0, 1).

To prove this, let ¢ € C((0,1)). Let 7 be an admissible mesh of (0,1), and ¢; = ¢(=;),i=1,...,N,
and o = on41 = 0. If (ug,...,upn) is a solution to (2.57)-(2.59), multiplying (2.57) by ¢; and summing
overi=1,..., N yields
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/0 wr @y (z)de = / fr(e)pr (@)de, (2.66)

where

1 i —pi- it1 — Pi .
br(a) = - (B2 - PP f7(2) = f(o,u;) and pr(2) = s, if 7 € Ki.
i+1

i-3
Note that, thanks to the regularity of the function ¢,

PYi+1 — Pi

A =¢a(@ip1) + Ry 1, [Riy 1| < Cih,
i+

with some C only depending on ¢, and therefore

[N

1 N w N
| ur@r@as =3 [ (eue ) = polonsy))do+ S uBe g~ Ry
i=1 VB T i=1

1 N
~ [ —ur@pr(ds + Y- Ry (wi - ),
0

i=0

with ug = un41 = 0, where the piecewise constant function

Po (@i 1) = Pa(®; )
Or = Z h

1k,
i=1,N

tends to ¢, as h tends to 0.
Let us consider (2.66) with 7, instead of T; thanks to the Cauchy-Schwarz inequality, a passage to the
limit as n — oo gives, thanks to (2.60),

- / w(@)pse(z)de = / f (@ u(2)p(@)dz,
0 0

and therefore —uy; = f(-,u) in the distribution sense in (0,1). This concludes the proof of Theorem 2.4.
Note that the crucial idea of this proof is to use the property of consistency of the fluxes on the regular
test function ¢. n

Remark 2.12 Tt is possible to give some extensions of the results of this section. For instance, Theorem
2.4 is true with an assumption of “sublinearity” on f instead of (2.55). Furthermore, in order to have
both existence and uniqueness of the solution to (2.56) and a rate of convergence (of order h) in Theorem
2.4, it is sufficient to assume, instead of (2.54) and (2.55), that f € C1([0,1] x R,IR) and that there
exists v < 1, such that (f(z,s) — f(x,t))(s — t) < v(s —t)?, for all (z,s) € [0,1] x RR.



Chapter 3

Elliptic problems in two or three
dimensions

The topic of this chapter is the discretization of elliptic problems in several space dimensions by the
finite volume method. The one-dimensional case which was studied in Chapter 2 is easily generalized
to nonuniform rectangular or parallelipedic meshes. However, for general shapes of control volumes,
the definition of the scheme (and the proof of convergence) requires some assumptions which define an
“admissible mesh”. Dirichlet and Neumann boundary conditions are both considered. In both cases, a
discrete Poincaré inequality is used, and the stability of the scheme is proved by establishing estimates
on the approximate solutions. The convergence of the scheme without any assumption on the regularity
of the exact solution is proved; this result may be generalized, under adequate assumptions, to nonlinear
equations. Then, again in both the Dirichlet and Neumann cases, an error estimate between the finite
volume approximate solution and the C? or H? regular exact solution to the continuous problems are
proved. The results are generalized to the case of matrix diffusion coefficients and more general boundary
conditions. Section 3.4 is devoted to finite volume schemes written with unknowns located at the vertices.
Some links between the finite element method, the “classical” finite volume method and the “control
volume finite element” method introduced by FORSYTH [1989] are given. Section 3.5 is devoted to the
treatment of singular sources and to mesh refinement; under suitable assumption, it can be shown that
error estimates still hold for “atypical” refined meshes. Finally, Section 3.6 is devoted to the proof of
compactness results which are used in the proofs of convergence of the schemes.

3.1 Dirichlet boundary conditions

Let us consider here the following elliptic equation

—Au(z) + div(vu)(z) + bu(z) = f(z), z€Q, (3.1)

with Dirichlet boundary condition:
u(z) = g(x), = € 09, (3.2)

where

Assumption 3.1
1. Q is an open bounded polygonal subset of R%, d =2 or 3,
2.6>0,
3. fe L),

32
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4. V€ C’l(ﬁ,]Rd);divv >0,

5. g € C(OQ,R) is such that there exists § € H(Q) such that ¥(§) = g a.e. on ON.

Here, and in the sequel, “polygonal” is used for both d = 2 and d = 3 (meaning polyhedral in the latter
case) and ¥ denotes the trace operator from H!(Q) into L2(d12). Note also that “a.e. on 8Q” is a.e. for
the d — 1-dimensional Lebesgue measure on 9f2.

Under Assumption 3.1, by the Lax-Milgram theorem, there exists a unique variational solution u € H(Q)
of Problem (3.1)-(3.2). (For the study of elliptic problems and their discretization by finite element
methods, see e.g. CIARLET, P.G. [1978] and references therein). This solution satisfies 4 = w+ §, where
g € HY(Q) is such that ¥(g) = g, a.e. on 9, and w is the unique function of H}(Q) satisfying

/ (Vw(x) -V(z) + div(vw) (z)(x) + bw(:c)zb(m)) dr =
Q

(3.3)
[ (=Vita) - Visto) - div(vi) @)i(o) = bao)is(o) + ()0 (e) ) do. Vi € H(9).

3.1.1 Structured meshes

If Q is a rectangle (d = 2) or a parallelepiped (d = 3), it may then be meshed with rectangular or
parallelepipedic control volumes. In this case, the one-dimensional scheme may easily be generalized.
Rectangular meshes for the Laplace operator

Let us for instance consider the case d = 2, let = (0,1)x(0,1), and f € C%(©2,IR) (the three dimensional
case is similar). Consider Problem (3.1)-(3.2) and assume here that b =0, v = 0 and g = 0 (the general
case is considered later, on general unstructured meshes). The problem reduces to the pure diffusion
equation:

-A ( ’ ):f( ) )a( ’ )GQ,
u(a:,u y;":y 0, (=, ;f)ye 20, (3.4)

In this section, it is convenient to denote by (z,y) the current point of R? (elsewhere, the notation z is
used for a point or a vector of RY).

Let T = (K j)i=1,.,Ny;j=1,-,N, be an admissible mesh of (0,1) x (0, 1), that is, satisfying the following
assumptions (which generalize Definition 2.1)

Assumption 3.2 Let Ny € N*, Ny € IN* hy,...,hn, >0, ky,...,kn, > 0 such that

Ny N»
dohi=1Y k=1,
=1 =1

and let ho = 0,hn,+1 = 0,ko = 0,kn,41 = 0. Fori=1,...,Ny, let T = 0, Tipl =T;_1+ hi, (so that
Ty 41 = 1), and for j =1,..., No, yr=0,y;01 =y; 1 +kj, (so that YNott = 1) and

K= [%'7%7»"314%] x [yjféayj+%]'
Let (mi)i:O,N1+1, and (yj)jzo,N2+1, such that
T <wi <Tiyy, fori=1,...,Ni,20=0, xn,41 =1,

yj—% <y; < yj-i—%: fO'f’j = 17"'7N27 Yo =0, YNa+1 = 1,

and let z; ; = (x;,y;), fori=1,...,Ny,, j=1,...,Na; set
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- +_ . — .
hi —xi—xi_%,hi =Tyl — T forl—l,...,Nl,hH%—wiﬂ—wi, fori=0,...,Ny,

kji :yj_yj—%ﬂ kj+:yj+% —Yj fOT'j:l,...,Nz,kj_i_% =Yj+1 — Yj> fOT‘j:O,...,NQ.
Leth:max{(hi,i = 1,---,N1),(kj,j = 1,---,N2)}.

As in the 1D case, the finite volume scheme is found by integrating the first equation of (3.4) over each
control volume Kj; ;j, which yields

Yi+d Yird
- Uy (‘/Ez—‘,-% ) y)dy + Ug (mz— i, y)dy
y]-_% Y;_1
Tirl Tl
+/ uy(z, yj_%)da: — / uy(z, yj+%)d$ = / f(z,y)dz dy.
Ei_% Ei_% Kij
The fluxes are then approximated by differential quotients with respect to the discrete unknowns (u; ;,4 =
1,---,N1,j =1,---,N2) in a similar manner to the 1D case; hence the numerical scheme writes
FH_%J' - Fi_%,j + Fi,j_;_% - Fi,j_% = hz’,jfi,j; v (7’:.7) € {17 . -:Nl} x {]-a . '7N2}7 (3'5)

where h; ; = h; X kj, f;; is the mean value of f over K; ;, and

k.

Fiyr;= % Jl (wit1,j —uij), fori=0,-++,Ny,j=1,---,No,
hi _ . :
'Fz'j—i-l = - . (Ui,j—i-l _'U/i,j), for ¢ = 17"'7N17.7 = 07"'7N27
) 3 k]+%
U0, = UN;+1,j7 = Ui,0 = Ui, Ny+1 = 0, for i = 1,. ..,Nl,j = 1,. ..,Nz. (37)

The numerical scheme (3.5)-(3.7) is therefore clearly conservative and the numerical approximations of
the fluxes can easily be shown to be consistent.

Proposition 3.1 (Error estimate) Let Q = (0,1) x (0,1) and f € L?(Q). Let u be the unique varia-
tional solution to (3.4). Under Assumptions 3.2, let { > 0 be such that h; > Ch fori=1,..., Ny and
kj > Ch for j = 1,...,Ny. Then, there exists a unique solution (;;)i=1,. Ny j=1,,N» t0 (3.5)-(8.7).
Moreover, there exists C' > 0 only depending on u, Q and { such that

e )2 g1 — €ij)?

g g i)y (Ei Z )Ty o2 (38)

ij hivy ij Fivs
and

i) hik; < CR?, 59
] J
i.j

where e;,; = u(@i;) — wij, fori=1,---,Ni,j =1,---,Na.

In the above proposition, since f € L2(2) and (2 is convex, it is well known that the variational solution
u to (3.4) belongs to H2(2). We do not give here the proof of this proposition since it is in fact included
in Theorem 3.4 page 55 (see also LAZAROV, MISHEV and VASSILEVSKI [1996] where the case u € H?,
s > 2 is also studied).

In the case u € C?(9), the estimates (3.8) and (3.9) can be shown with the same technique as in the 1D
case (see e.g. FIARD [1994]). If u € C? then the above estimates are a consequence of Theorem 3.3 page
52; in this case, the value C in (3.8) and (3.9) independent of {, and therefore the assumption h; > Ch
fori=1,...,N; and k; > Ch for j =1,..., Ny is no longer needed.

Relation (3.8) can be seen as an estimate of a “discrete Hy norm” of the error, while relation (3.9) gives
an estimate of the L2 norm of the error.
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Remark 3.1 Some slight modifications of the scheme (3.5)-(3.7) are possible, as in the first item of
Remark 2.2 page 14. It is also possible to obtain, sometimes, an “h%” estimate on the L? (or L°°) norm
of the error (that is “h*” instead of “h2” in (3.9)), exactly as in the 1D case, see Remark 2.5 page 18. In
the case equivalent to the second case of Remark 2.5, the point z; ; is not necessarily the center of K ;.

When the mesh is no longer rectangular, the scheme (3.5)-(3.6) is not easy to generalize if keeping to a 5
points scheme. In particular, the consistency of the fluxes or the conservativity can be lost, see FAILLE
[1992a], which yields a bad numerical behaviour of the scheme. One way to keep both properties is to
introduce a 9-points scheme.

Quadrangular meshes: a nine-point scheme

Let © be an open bounded polygonal subset of IR?, and f be a regular function from € to IR. We still
consider Problem 3.4, turning back to the usual notation z for the current point of IR?,

—Au(z) = f(z), z € Q,

u(z) =0, z € 9Q. (3.10)

Let 7 be a mesh defined over ; then, integrating the first equation of (3.10) over any cell K of the mesh

yields
—/ gradu-nKz/ 7
0K K

where ng is the normal to the boundary 9K, outward to K. Let ugx denote the discrete unknown
associated to the control volume K € 7. In order to obtain a numerical scheme, if o is a common edge
to K € T and L € T (denoted by K|L) or if o is an edge of K € T belonging to 99, the expression
gradu - ng must be approximated on ¢ by using the discrete unknowns. The study of the finite volume
scheme in dimension 1 and the above straightforward generalization to the rectangular case showed that
the fundamental properties of the method seem to be

1. conservativity: in the absence of any source term on K |L, the approximation of gradu-ng on K|L
which is used in the equation associated with cell K is equal to the approximation of —gradu - ny,
which is used in the equation associated with cell L. This property is naturally obtained when
using a finite volume scheme.

2. consistency of the fluxes: taking for ux the value of u in a fixed point of K (for instance, the center
of gravity of K), where u is a regular function, the difference between gradu - ng and the chosen
approximation of gradu - ng is of an order less or equal to that of the mesh size. This need of
consistency will be discussed in more detail: see remarks 3.2 page 37 and 3.7 page 48

Several computer codes use the following “natural” extension of (3.6) for the approximation of gradu-ng
on KNL:
UL — UK
gradu-ng = ———
dk|r,
where dg |y, is the distance between the center of the cells K and L. This choice, however simple, is far
from optimal, at least in the case of a general (non rectangular) mesh, because the fluxes thus obtained
are not consistent; this yields important errors, especially in the case where the mesh cells are all oriented
in the same direction, see FAILLE [1992a], FAILLE [1992b]. This problem may be avoided by modifying
the approximation of gradu - ng so as to make it consistent. However, one must be careful, in doing so,
to maintain the conservativity of the scheme. To this purpose, a 9-points scheme was developped, which
is denoted by FV9.
Let us describe now how the flux gradu - ng is approximated by the FV9 scheme. Assume here, for
the sake of clarity, that the mesh 7 is structured; indeed, it consists in a set of quadrangular cells
{Kij,i=1,...,N;j=1,...,M}. As shown in Figure 3.1, let C; ; denote the center of gravity of the cell
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Kij, 0ij-1/2, Oix1/2,55 Tij+1/2, Ti—1/2,; the four edges to K;; and m;;_1/2, Mit1/2,5, Mij1/2, Mie1/2,j
their respective orthogonal bisectors. Let (; ;_1/2, (resp. Git1/2,55 Gij+1/25 Ci_l/Q,j) be the lines joining
points C,"j and Ci,j—l (resp. Cz',j and Ci-i-l,jﬂ Ci’j and Ci7j+1, Cz'_l’j and Ci’j).

Ni,j+1/2
~,

Cijt1

/]

Ui j+1/2

Cit1,j+1

Figure 3.1: FV9 scheme

Consider for instance the edge o; j11/2 which lies between the cells K; ; and K; j11 (see Figure 3.1). In
order to find an approximation of gradu - ng, for K = K ;, at the center of this edge, we shall first
derive an approximation of u at the two points U; j11/2 and D; j 1,2 which are located on the orthogonal
bisector n; j1/2 of the edge o; ;11/2, on each side of the edge. Let ¢; ;11/o be the approximation of
—gradu - nk at the center of the edge 0; j11/2. A natural choice for ¢; j1/» consists in taking

U D »)
Uiir1/2 — Yij41/2

, (3.11)
d(U; j+1/2, Di jy1/2)

Dij1/2 = =

where ugj+1/2 and ufjﬂﬂ are approximations of u at U; jy1/2 and D; ji1/2, and d(U; j1/2, Dijt1/2)
is the distance between points U; j11/2 and D; ji1/2-

The points Uj jy1/2 and D; j, /5 are chosen so that they are located on the lines ¢ which join the centers
of the neighbouring cells. The points U; j 11,2 and D; i1/ are therefore located at the intersection of
the orthogonal bisector 7; ;1,2 with the adequate ( lines, which are chosen according to the geometry
of the mesh. More precisely,

Uiaj+1/2 = Mi,5+1/2 N gi—1/2,j+1 if Ni,j+1/2 is to the left of Ci’j+1
=Mij+1/2 N Giy1/2,541  otherwise

D12 =Mijr12NGi1/25 if 74172 is to the left of Cj ;
= Mijr1/2 N G2, otherwise

In order to satisfy the property of consistency of the fluxes, a second order approximation of u at points
Ui jt1/2 and D; ;11,2 is required. In the case of the geometry which is described in Figure 3.1, the

following linear approximations of uf’;,, , and u}’;, , can be used in (3.11);
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d(Ci j41,Uj jr1/2)
d(Ci,j41, Cit1,541)
ijs Dijr1/2

d(Ci-1,4,Ci;)
The approximation of gradu -ng at the center of a “vertical” edge 0;41/,; is performed in a similar way,
by introducing the points R;. /s ; intersection of the orthogonal bisector 7;,1/2 ; and, according to the
geometry, of the line (; j_1/5 or (j j11/2, and Liyq /s ; intersection of n; /2 ; and iy j-1/2 OF Cig1,j41/2-
Note that the outmost grid cells require a particular treatment (see FAILLE [1992a]).
The scheme which is described above is stable under a geometrical condition on the family of meshes
which is considered. Since the fluxes are consistent and the scheme is conservative, it also satisfies a
property of “weak consistency”, that is, as in the one dimensional case (see remark 2.9 page 21 of Section
2.3), the exact solution of (3.10) satisfies the numerical scheme with an error which tends to 0 in L*(Q)
for the weak-x topology. Under adequate restrictive assumptions, the convergence of the scheme can be
deduced, see FAILLE [1992a].
Numerical tests were performed for the Laplace operator and for operators of the type —div( A grad.),
where A is a variable and discontinuous matrix (see FAILLE [1992a]); the discontinuities of A are treated
in a similar way as in the 1D case (see Section 2.3). Comparisons with solutions which were obtained
by the bilinear finite element method, and with known analytical solutions, were performed. The results
given by the VF9 scheme and by the finite element scheme were very similar.
The two drawbacks of this method are the fact that it is a 9-points scheme, and therefore computationally
expensive, and that it yields a nonsymmetric matrix even if the original continuous operator is symmetric.
Also, its generalization to three dimensions is somewhat complex.

U _ -
Upirp = Uit + (1 —@)uijp1 where a =

U
—~

“z?j+1/2 = Pui-1,; + (1- B)Ui,j where 3 =

Remark 3.2 The proof of convergence of this scheme is hindered by the lack of consistency for the
discrete adjoint operator (see Section 3.1.4). An error estimate is also difficult to obtain because the
numerical flux at an interface K |L cannot be written under the form TK| L(ug —ur) with Tk > 0. Note,
however, that under some geometrical assumptions on the mesh, see FAILLE [1992a] and COUDIERE,
ViLa and VILLEDIEU [1999], error estimates may be obtained.

3.1.2 General meshes and schemes

Let us now turn to the discretization of convection-diffusion problems on general structured or non
structured grids, consisting of any polygonal (recall that we shall call “polygonal” any polygonal domain
of IR? or polyhedral domain or IR®) control volumes (satisfying adequate geometrical conditions which
are stated in the sequel) and not necessarily ordered in a Cartesian grid. The advantage of finite volume
schemes using non structured meshes is clear for convection-diffusion equations. On one hand, the stability
and convergence properties of the finite volume scheme (with an upstream choice for the convective flux)
ensure a robust scheme for any admissible mesh as defined in Definitions 3.1 page 37 and 3.5 page 62
below, without any need for refinement in the areas of a large convection flux. On the other hand, the
use of a non structured mesh allows the computation of a solution for any shape of the physical domain.

We saw in the previous section that a consistent discretization of the normal flux —Vu-n over the interface
of two control volumes K and L may be performed with a differential quotient involving values of the
unknown located on the orthogonal line to the interface between K and L, on either side of this interface.
This remark suggests the following definition of admissible finite volume meshes for the discretization of
diffusion problems. We shall only consider here, for the sake of simplicity, the case of polygonal domains.
The case of domains with a regular boundary does not introduce any supplementary difficulty other than
complex notations.

Definition 3.1 (Admissible meshes) Let Q be an open bounded polygonal subset of R% d=2, or 3.
An admissible finite volume mesh of 2, denoted by T, is given by a family of “control volumes”, which
are open polygonal convex subsets of (2 , a family of subsets of {2 contained in hyperplanes of R%, denoted
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by £ (these are the edges (two-dimensional) or sides (three-dimensional) of the control volumes), with
strictly positive (d — 1)-dimensional measure, and a family of points of 2 denoted by P satisfying the
following properties (in fact, we shall denote, somewhat incorrectly, by 7 the family of control volumes):

(i) The closure of the union of all the control volumes is Q;

(ii) For any K € T, there exists a subset £k of £ such that 0K = K \ K = U,cg, . Furthermore,
€ =UkeTék-

(iii) For any (K,L) € T2 with K # L, either the (d — 1)-dimensional Lebesgue measure of K N L is 0
or KN L =7 for some ¢ € £, which will then be denoted by K|L.

(iv) The family P = (zx)xe7 is such that zx € K (for all K € T) and, if o = K|L, it is assumed that
Tk # xr, and that the straight line Dk 1 going through zx and zr, is orthogonal to K|L.

(v) For any o € & such that o C 99, let K be the control volume such that ¢ € . If zx ¢ o, let
Dk, be the straight line going through zx and orthogonal to o, then the condition Dk, No # 0
is assumed; let y, = Dk, No.

In the sequel, the following notations are used.

The mesh size is defined by: size(T) = sup{diam(K), K € T}.

For any K € T and o € £, m(K) is the d-dimensional Lebesgue measure of K (it is the area of K in the
two-dimensional case and the volume in the three-dimensional case) and m(o) the (d — 1)-dimensional
measure of o.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is Einy = {0 € £; 0 ¢ N}
(resp. Eext = {0 € &; 0 C 0Q}).

The set of neighbours of K is denoted by N (K), that is N(K) = {L € T; 30 € £x, 7= K NL}.

If 0 = K|L, we denote by d, or dk|z, the Euclidean distance between zx and z;, (which is positive) and
by dk,, the distance from zx to o.

If o0 € Ex N Eext, let d, denote the Euclidean distance between zx and y, (then, d, = dk,;).

For any o € &; the “transmissibility” through o is defined by 7, = m(o)/d, if d, # 0.

In some results and proofs given below, there are summations over o € &, with & = {0 € &; d, # 0}.
For simplicity, (in these results and proofs) £ = & is assumed.

Remark 3.3 (i) The definition of y, for o € eyt requires that y, € o. However, In many cases, this
condition may be relaxed. The condition zx € K may also be relaxed as described, for instance, in
Example 3.1 below.

(ii) The condition zx # zr, if 0 = K|L, is in fact quite easy to satisfy: two neighbouring control volumes
K, L which do not satisfy it just have to be collapsed into a new control volume M with ) = 2 = zr,
and the edge K|L removed from the set of edges. The new mesh thus obtained is admissible.

Example 3.1 (Triangular meshes) Let Q be an open bounded polygonal subset of R?. Let 7 be a
family of open triangular disjoint subsets of 2 such that two triangles having a common edge have also two
common vertices. Assume that all angles of the triangles are less than 7/2. This last condition is sufficient
for the orthogonal bisectors to intersect inside each triangle, thus naturally defining the points zx € K.
One obtains an admissible mesh. In the case of an elliptic operator, the finite volume scheme defined on
such a grid using differential quotients for the approximation of the normal flux yields a 4-point scheme
HERBIN [1995]. This scheme does not lead to a finite difference scheme consistent with the continuous
diffusion operator (using a Taylor expansion). The consistency is only verified for the approximation of
the fluxes, but this, together with the conservativity of the scheme yields the convergence of the scheme,
as it is proved below.

Note that the condition that all angles of the triangles are less than 7/2 (which yields zx € K) may
be relaxed (at least for the triangles the closure of which are in 2) to the so called “strict Delaunay
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condition” which is that the closure of the circumscribed circle to each triangle of the mesh does not
contain any other triangle of the mesh. For such a mesh, the point zx (which is the intersection of the
orthogonal bisectors of the edges of K) is not always in K, but the scheme (3.17)-(3.19) is convenient since
(3.18) yields a consistent approximation of the diffusion fluxes and since the transmissibilities (denoted
by Tk |1) are positive.

Example 3.2 (Voronoi meshes) Let Q be an open bounded polygonal subset of IR%. An admissible
finite volume mesh can be built by using the so called “Voronoi” technique. Let P be a family of points
of Q. For example, this family may be chosen as P = {(k1h, ..., kqh), k1,...kqg € Z} N Q, for a given
h > 0. The control volumes of the Voronoi mesh are defined with respect to each point x of P by

K,={yeQlz—y|<|z—y|, V2 €P, 2 # z}.

Recall that |z — y| denotes the euclidean distance between z and y.
Voronoi meshes are admissible in the sense of Definition 3.1 if the assumption “on the boundary”, namely
part (v) of Definition 3.1, is satisfied. Indeed, this is true, in particular, if the number of points z € P
which are located on 9Q is “large enough”. Otherwise, the assumption (v) of Definition 3.1 may be
replaced by the weaker assumption “d(y,,0) < size(T) for any o € Eext” which is much easier to satisfy.
Note also that a slight modification of the treatment of the boundary conditions in the finite volume
scheme (3.20)-(3.23) page 41 allows us to obtain convergence and error estimates results (as in theorems
3.1 page 45 and 3.3 page 52) for all Voronoi meshes. This modification is the obvious generalization of
the scheme described in the first item of Remark 2.2 page 14 for the 1D case. It consists in replacing, for
K € T such that Ex N Eext # 0, the equation (3.20), associated to this control volume, by the equation
urg = g(zK), where 2k is some point on 902 N OK. In fact, Voronoi meshes often satisfy the following
property:

ExNEext # 0 = K € 0N
and the mesh is therefore admissible in the sense of Definition 3.1 (then, the scheme (3.20)-(3.23) page
41 yields ux = g(zk) if K € T is such that Ex N Eexs # 0).
An advantage of the Voronol method is that it easily leads to meshes on non polygonal domains 2.

Let us now introduce the space of piecewise constant functions associated to an admissible mesh and
some “discrete Hj” norm for this space. This discrete norm will be used to obtain stability properties
which are given by some estimates on the approximate solution of a finite volume scheme.

Definition 3.2 Let  be an open bounded polygonal subset of R%, d = 2 or 3, and 7 an admissible
mesh. Define X(7) as the set of functions from (2 to IR which are constant over each control volume of
the mesh.

Definition 3.3 (Discrete Hj norm) Let Q be an open bounded polygonal subset of R% d=2or 3,
and 7 an admissible finite volume mesh in the sense of Definition 3.1 page 37.
For u € X(T), define the discrete H} norm by

1
lull,7 = (Yo (Dow)?) ", (3.12)
ge€

where 7, = m(o)/d, and
D,u = |ug —ug| if o € &g, 0 = K|L,
Dsu = |UK| if 0 € Eext NEK,
where ug denotes the value taken by u on the control volume K and the sets &, Eing, Eext and Ex are
defined in Definition 3.1 page 37.

The discrete Hy norm is used in the following sections to prove the congergence of finite volume schemes
and, under some regularity conditions, to give error estimates. It is related to the H} norm, see the
convergence of the norms in Theorem 3.1. One of the tools used below is the following “discrete Poincaré
inequality” which may also be found in TEMAM [1977]:
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Lemma 3.1 (Discrete Poincaré inequality) Let Q be an open bounded polygonal subset of R, d = 2
or 3, T an admissible finite volume mesh in the sense of Definition 3.1 and u € X(T) (see Definition
3.2), then

llullz2(@) < diam(Q)||ull, 7, (3.13)
where || - ||1,7 is the discrete H} norm defined in Definition 3.3 page 39.

PROOF of Lemma 3.1
For o € £, define x, from R? x IR? to {0,1} by x,(z,y) = 1if o N[z,y] # 0 and x, (z,y) = 0 otherwise.

Let u € X(T). Let d be a given unit vector. For all z € 2, let D, be the semi-line defined by its origin, z,
and the vector d. Let y(z) such that y(z) € D,NON and [z,y(z)] C Q, where [z,y(z)] = {tz+ (1 —t)y(z),
t € [0,1]} (i-e. y(x) is the first point where D, meets 0f2).

Let K € 7. For a.e. x € K, one has

|uK| S ZD(IU Xa-(.Z'7 y(.Z')),
o€

where the notations D,u and ug are defined in Definition 3.3 page 39. We write the above inequality
for a.e x € Q and not for all z € 2 in order to account for the cases where an edge or a vertex of the
mesh is included in the semi-line [z, y(z)]; in both cases one may not write the above inequality, but there
are only a finite number of edges and vertices, and since d is fixed, the above inequality may be written
almost everywhere.

Let ¢, = |d - ng| (recall that £ - ) denotes the usual scalar product of & and 5 in IR¢). By the Cauchy-
Schwarz inequality, the above inequality yields:

uk|? < Z X, z,y(x Zd coXo(z,y(x)), for a.e. z € K. (3.14)
ocel ocel
Let us show that, for a.e. z € ,
Zdach,,(x,y(x)) < diam(Q). (3.15)
oce€

Let z € K, K € T, such that o N [z,y(z)] contains at most one point, for all o € £, and [z, y(z)] does
not contain any vertex of 7 (proving (3.15) for such points z leads to (3.15) a.e. on , since d is fixed).
There exists o € Eext such that y(x) € o. Then, using the fact that the control volumes are convex, one
has:

ZXU($7y($))dUCU =|(zk —Yo) - d|.
o€eE

Since zx and y, € Q (see Definition 3.1), this gives (3.15).
Let us integrate (3.14) over Q; (3.15) gives

Z/ lur|?dr < diam(Q )Z(ng) /X,,(a:,y(a:))da:.

KeT oc€E

Since [, X0 (2, y(z))dz < diam(Q)m(o)c,, this last inequality yields

Z/ lug|?dr < (diam(f Z|D(7 |2

KeT o€
Hence the result. ]
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Let T be an admissible mesh. Let us now define a finite volume scheme to discretize (3.1), (3.2) page 32.
Let

1
fK = M/Kf(x)da:,\‘/K eT. (3.16)

Let (ug)ke7 denote the discrete unknowns. In order to describe the scheme in the most general way, one
introduces some auxiliary unknowns (as in the 1D case, see Section 2.3), namely the fluxes Fk ., for all
K € T and ¢ € &k, and some (expected) approximation of  in o, denoted by u,, foralloc € £. For K € T
and o € &k, let nk, denote the normal unit vector to ¢ outward to K and vk,, = fa v(z) - ng  dy(z).
Note that dvy is the integration symbol for the (d — 1)-dimensional Lebesgue measure on the considered
hyperplane. In order to discretize the convection term div(v(z)u(z)) in a stable way (see Section 2.3
page 21), let us define the upstream choice u, 4 of v on an edge o with respect to v in the following way.
If o = K|L, then u, y = ug if vk, > 0, and u, 4 = uy otherwise; if o C K N 0N, then u, y = ug if
VK, > 0 and uy 4+ = g(y,) otherwise.

Let us first assume that the points g are located in the interior of each control volume, and are therefore
not located on the edges, hence dk,, > 0 for any o € £k, where dk , is the distance from zx to 0. A
finite volume scheme can be defined by the following set of equations:

Z Fgk, + Z VK, oUg,+ t+ bm(K)uK = m(K)fK7 VK eT, (317)
oEEK 0€EEK

FK,O’ :—TK|L(UL_UK);VU€gintJ lfO':K|L, (318)

Fro = —T:(9(ys) — uk), Vo € Eext such that o € Ex. (3.19)

In the general case, the center of the cell may be located on an edge. This is the case for instance when
constructing Voronoi meshes with some of the original points located on the boundary 0f2. In this case,
the following formulation of the finite volume scheme is valid, and is equivalent to the above scheme if
no cell center is located on an edge:

Z Fko + Z VK, ol 4 + bm(K)ug =m(K)fx, VK €T, (3.20)
c€EEK o€EEK

FK,o’ = _FL,U; Vo € gint; if o = K|L, (321)

Fk odk,s = —m(0)(u, —uk), Vo € Ex, VK € T, (3.22)

Us = 9(Yo); VO € Eext. (3.23)

Note that (3.20)-(3.23) always lead, after an easy elimination of the auxiliary unknowns, to a linear
system of N equations with N unknowns, namely the (ug)xeT, with N = card(T).

Remark 3.4
1. Note that one may have, for some o € £k, zx € o, and therefore, thanks to (3.22), u, = uk.

2. The choice uy, = g(y,) in (3.23) needs some discussion. Indeed, this choice is possible since g is
assumed to belong to C(0Q,R) and then is everywhere defined on 9. In the case where the
solution to (3.1), (3.2) page 32 belongs to H2(2) (which yields g € C(09Q,1R)), it is clearly the
“good choice” since it yields the consistency of fluxes (even though an error estimate also holds
with other choices for u,, the choice given below is, for instance, possible). If g € H'/? (and not
continuous), the value g(y,) is not necessarily defined. Then, another choice for u, is possible, for
instance,
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1
m(o)

Uy =

[ s@ara).
With this latter choice for u,, a convergence result also holds, see Theorem 3.2.

For the sake of simplicity, it is assumed in Definition 3.1 that xx # xr, for all K, L € T. This condition
may be relaxed; it simply allows an easy expression of the numerical flux Fg , = —7g|(ur — uk) if
o= K|L.

3.1.3 Existence and estimates

Let us first prove the existence of the approximate solution and an estimate on this solution. This estimate
ensures the stability of the scheme and will be obtained by using the discrete Poincaré inequality (3.13)
and will yield convergence thanks to a compactness theorem given in Section 3.6 page 91.

Lemma 3.2 (Existence and estimate) Under Assumptions 3.1, let T be an admissible mesh in the
sense of Definition 3.1 page 37; there exists a unique solution (ux)keT to equations (3.20)-(3.23).
Furthermore, assuming g = 0 and defining ur € X(T) (see Definition 3.2) by ur(x) = ux for a.e.
z € K, and for any K € T, the following estimate holds:

lurlls,r < diam(Q)|| f[|£2(e), (3.24)
1,7 is the discrete H} norm defined in Definition 3.3.

where || - |

PROOF of Lemma 3.2

Equations (3.20)-(3.23) lead, after an easy elimination of the auxiliary unknowns, to a linear system of
N equations with N unknowns, namely the (ug)ke, with N = card(T).

Step 1 (existence and uniqueness)
Assume that (uk)ke7 satisfies this linear system with g(y,) = 0 for any o € Eext, and fx = 0 for all
K € T. Let us multiply (3.20) by ux and sum over K; from (3.21) and (3.22) one deduces

bz m(K)u% + Z Z Fr o uk + Z Z VK, oUg +UK =0, (3.25)

KeT KeToelk KeToelk
which gives, reordering the summation over the set of edges

b Z m(K)u¥ + ZTG (Dyu)? + ng (ug,+ - ud,,)ud,+ =0, (3.26)
KeT océ ce€

where

|Dyu| = |lug —url, if o = K|L and |Dyu| = Juk|, if 0 € Eg N Eext;

ve = | [, v(z) - ndy(z)|, n being a unit normal vector to o;

Ug,— is the downstream value to o with respect to v, i.e. if 0 = K|L, then uy — = uk if vk, <0, and

Ug,— = ur, otherwise; if 0 € Ex N Eexs, then v, = uk if vi,r, <0 and u,,— = u, if VK > 0.

Note that u, = 0 if 0 € Eexs-

Now, remark that
1
Sttt (st = ) = 530y (U =00, )2 + (62,4 — 02, ) (3.27)
ocel oel
and, thanks to the assumption divv > 0,

Suatut -z )= Y ([

v(a) - nxdy(2) uk = / (divv(@)ud (@)dz > 0. (3.28)
=y KeT YOK Q
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Hence,

bllurllza) + llurllf = b m(K)uk + Y 75(Dou)* <0, (3.29)
KeT ges
One deduces, from (3.29), that ug =0 for all K € T.

This proves the existence and the uniqueness of the solution (ux)ke7, of the linear system given by
(3.20)-(3.23), for any {g(ys), 0 € Eext} and {fk, K € T}.

Step 2 (estimate)
Assume g = 0. Multiply (3.20) by uk, sum over K; then, thanks to (3.21), (3.22), (3.27) and (3.28) one
has

bllurl| 22 + llurlli r < Z m(K) frxuk.
KeT

By the Cauchy-Schwarz inequality, this inequality yields

1 1
lurllf, - < (Y m(K)uz)2 (Y m(K)fz)? < | flloxollurlle)-
KeT KeT
Thanks to the discrete Poincaré inequality (3.13), this yields |lurll1,7 < [|f||z2(@)diam(2), which con-
cludes the proof of the lemma. n

Let us now state a discrete maximum principle which is satisfied by the scheme (3.20)-(3.23); this is an
interesting stability property, even though it will not be used in the proofs of the convergence and error
estimate.

Proposition 3.2 Under Assumption 3.1 page 82, let T be an admissible mesh in the sense of Definition
3.1 page 37, let (fx)kxeT be defined by (3.16). If fx > 0 for all K € T, and g(y,) > 0, for all 0 € Eexs,
then the solution (uk)xeT of (3.20)-(3.23) satisfies ux >0 for all K € T.

PROOF of Proposition 3.2

Assume that fx > 0 for all K € T and g(y,) > 0 for all 0 € Eeyxy. Let a = min{ug, K € T}. Let Ko be
a control volume such that ug, = a. Assume first that Ky is an “interior” control volume, in the sense
that Ex C &Eing, and that ug, < 0. Then, from (3.20),

Z Froo + Z UKo,oUo,+ 2> 0; (3-30)

O'EEKO G'ESKO

since for any neighbour L of K, one has uy, > uk,, then, noting that divv > 0, one must have u;, = uk,
for any neighbour L of K. Hence, setting B = {K € T, ugx = a}, there exists K € B such that Ex ¢ Eins,
that is K is a control volume “neighbouring the boundary”.

Assume then that Kj is a control volume neighbouring the boundary and that ug, = a < 0. Then, for
an edge 0 € Eext N €k, relations (3.22) and (3.23) yield g(y,) < 0, which is in contradiction with the
assumption. Hence Proposition 3.2 is proved. [

Remark 3.5 The maximum principle immediately yields the existence and uniqueness of the solution
of the numerical scheme (3.20)-(3.23), which was proved directly in Lemma 3.2.
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3.1.4 Convergence

Let us now show the convergence of approximate solutions obtained by the above finite volume scheme
when the size of the mesh tends to 0. One uses Lemma 3.2 together with the compactness theorem 3.10
given at the end of this chapter to prove the convergence result. In order to use Theorem 3.10, one needs
the following lemma.

Lemma 3.3 Let Q be an open bounded set of R, d =2 or 3. Let T be an admissible mesh in the sense
of Definition 3.1 page 37 and u € X(T) (see Definition 3.2). One defines @ by & = u a.e. on 2, and
=0 a.e. on R? \ Q. Then there exists C > 0, only depending on Q, such that

(- + ) = @l 2y < Nl 7lnl(n] + C'size(T)), ¥n € R, (3.31)

PROOF of Lemma 3.3

For ¢ € &, define x, from R? x R? to {0,1} by xo(z,y) = 1if [z,y) N o # 0 and x,(2,y) = O if
[z,y]No =0.

Let € R?%, 5 # 0. One has

li(z +n) — a(z)] < ng(a:,a: +n)|Dyu|, for a.e. z €N
oel

(see Definition 3.3 page 39 for the definition of D,u).
This gives, using the Cauchy-Schwarz inequality,

|thu|2

e+ ) = @@ < S o+ )

ng(x,w +n)dyc,, for ae. ze R, (3.32)
oce€ €&

where ¢, = |n, - ‘Z—||, and n, denotes a unit normal vector to o.
Let us now prove that there exists C' > 0, only depending on (2, such that

Zxa(m, z +n)dyco < |n| + Csize(T), (3.33)
o€&

for a.e. z € R%.

Let z € IR? such that o N [z, + n] contains at most one point, for all o € £, and [z,z + 7] does not
contain any vertex of 7~ (proving (3.33) for such points z gives (3.33) for a.e. z € IR, since 7 is fixed).
Since 2 is not assumed to be convex, it may happen that the line segment [z, + 7] is not included in Q.
In order to deal with this, let y, 2 € [z, x + 1] such that y # z and [y, 2] C Q; there exist K, L € T such
that y € K and z € L. Hence,

ZXU(y7z)da'ca' = |(y1 - 21) ) |Z_||7

o€
where y; =z K O Yo with 0 € Eexy NEK and 21 = xp, or Y5 with & € ey NEL, depending on the position
of y and z in K or L respectively.
Since y1 = y + ya, with |y2| < size(T), and z1 = z + 22, with |22| < size(T), one has
(g — 1) - |Z_|' <y =2l + o + |22 < |y — 2| + 2size(T)

and
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Zxa(y, 2)dyco < |y — 2| + 2size(T). (3.34)
oe&
Note that this yields (3.33) with C = 2 if [z,z + 5] C Q.
Since  has a finite number of sides, the line segment [z, 2 + 7] intersects O} a finite number of times;
hence there exist ¢1,...,t, such that 0 <t <t2 < ... <t, <1,n < N, where N only depends on (2
(indeed, it is possible to take N = 2 if {2 is convex and N equal to the number of sides of 2 for a general
) and such that

ngxm+ndcg— Z ngxz,x,ﬂdco,

o€ i=l,n—1 gg&
oddi

with z; =z +t;n, for i = 1,...,n, z; € 0N if t; ¢ {0,1} and [z, z;41] C Q if i is odd.
Then, thanks to (3.34) with y = z; and z = x;41, for i =1,...,n — 1, one has (3.33) with C =2(N — 1)
(in particular, if Q is convex, C' = 2 is convenient for (3.33) and therefore for (3.31) as we shall see below).

In order to conclude the proof of Lemma 3.3, remark that, for all o € &,

/ Xo(z,z + n)dz < m(o)cq|n|.
]Rd

Therefore, integrating (3.32) over IR yields, with (3.33),

-+ 1) = gy < (35 D) (] + Csize(T))
g€EE 7

We are now able to state the convergence theorem. We shall first prove the convergence result in the case
of homogeneous Dirichlet boundary conditions, i.e. g = 0; the nonhomogenous case is then considered in
the two-dimensional case (see Theorem 3.2 page 51), following EYMARD, GALLOUET and HERBIN [1999].

Theorem 3.1 (Convergence, homogeneous Dirichlet boundary conditions) Under Assumption
3.1 page 82 with g = 0, let T be an admissible mesh (in the sense of Definition 3.1 page 87). Let (ux)keT
be the solution of the system given by equations (3.20)-(3.23) (existence and uniqueness of (uk)keT are
given in Lemma 3.2). Define ur € X(T) by ur(z) = uk for a.e. x € K, and for any K € T. Then ur
converges in L2(Q) to the unique variational solution u € H}(Q) of Problem (3.1), (3.2) as size(T) — 0.
Furthermore |lur||1,7 converges to ||lul|g1(q) as size(T) — 0.

Remark 3.6

1. In Theorem 3.1, the hypothesis f € L2(Q) is not necessary. It is used essentially to obtain a bound
on |lur|li,7- In order to pass to the limit, the hypothesis “f € L'(2)” is sufficient. Then, in
Theorem 3.1, the hypothesis f € L?(Q) can be replaced by f € LP(Q) for some p > 1, if d = 2,
and for p > g, if d = 3, provided that the meshes satisfy, for some fixed { > 0, dk,» > (d,, for all
o € Ek and for all control volumes K. Indeed, one obtains, in this case, a bound on |lur||1,7 by
using a “discrete Sobolev inequality” (proved in Lemma 3.5 page 59).

It is also possible to obtain convergence results, towards a “very weak solution” of Problem (3.1),
(3.2), with only f € L'(f), by working with some discrete equivalent of the I/VO1 “_norm, with
qg< %. This is not detailed here.

2. In Theorem 3.1, it is also possible to prove convergence results when f(z) is replaced by some
nonlinear function f(z,u(z)) as in Theorem 2.4 page 30. The proof is an easy adaptation of that
of Theorem 2.4 page 30.



46

PRrROOF of Theorem 3.1

Let Y be the set of approximate solutions, that is the set of us where 7 is an admissible mesh in the
sense of Definition 3.1 page 37. First, we want to prove that u7 tends to the unique solution (in Hg(f))
o0 (3.3) as size(T) — 0.

Thanks to Lemma 3.2 and to the discrete Poincaré inequality (3.13), there exists C; € IR, only depending
on  and f, such that [lur|1,7 < C1 and ||lur]|g2@@) < C1 for all ur € Y. Then, thanks to Lemma 3.3
and to the compactness result given in Theorem 3.10 page 91, the set Y is relatively compact in L2(Q)
and any possible limit (in L?(2)) of a sequence (u7, )new C Y (such that size(7,) — 0) belongs to Hg (£2).
Therefore, thanks to the uniqueness of the solution (in H}(Q2)) of (3.3), it is sufficient to prove that if
(uT)nemw C Y converges towards some u € H}(2), in L*(Q), and size(7,,) — 0 (as n — oo), then u is
the solution to (3.3). We prove this result below, omiting the index n, that is assuming u7 — u in L%(f)
as size(7T) — 0.

Let ¢ € C$°(€) and let size(7) be small enough so that ¢(z) = 0 if x € K and K € T is such that
OK NN # 0. Multiplying (3.20) by ¥(zk), and summing the result over K € T yields

Ty +To+ T3 =Ty, (335)
with

KeT

== > mrulur —uk)d(zk),

KeT LEN(K)

= Z Z UK,UUU,+¢($K)J

KeToEEK

Ti= Y w(K)(ex) fr.

KeT

First remark that, since us tends to u in L?(1),
T — b/ x)dzx as size(T) — 0.

Similarly,

T, — /f z)dzx as size(T) — 0.

Let us now turn to the study of T5;

T, =— Z Tr L (ur — uK) (Y (TK) — P(zL))-

K|LEEnt

Consider the following auxiliary expression:
7y - / () Av(z)ds

U A(z
KeT K‘/
> (ux —u) /K [T n s (@)

K|LEEns
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Since u7 converges to u in L2(f), it is clear that T4 tends to / u(z)Ay(x) dx as size(T) tends to 0.
Q
Define

R,p = 1 Vi(z) - ng, pdy(z) — M)

m(K|L) K|L dk|L

where ng 1, denotes the unit normal vector to K|L, outward to K, then

o+ T4 =] Z m(K|L)(ug — ur)RKk,L
K|L€E&int
wn — )2 1/2
<[ X moen et S mini ]

K|LEEins K|LEEins

Regularity properties of the function 1 give the existence of Cy € IR, only depending on %, such that
|RK,1| < Casize(T). Therefore, since

S m(K|L)dyq, < dm(@),

K|LEEint

from Estimate (3.24), we conclude that Ty + Ty — 0 as size(7) — 0.
Let us now show that T3 tends to — [, v(z)u(z)Ve(z)de as size(T) — 0. Let us decompose T3 = T3 +T3'
where

Ti= > > koo — ux)¥(zk)

KeTo€Elk

and

Té' = Z Z VK, UKY(TK) = /QdiVV(iU)UT(wWT(JU)d%

KeToEEK

where v7 is defined by ¢7(z) = ¢(2x) if + € K, K € T. Since ur — u and ¢ — 9 in L?(Q) as
size(7) — 0 (indeed, )7 — ¢ uniformly on 2 as size(7) — 0) and since divv € L>(Q2), one has

Ty — / divv(z)u(z)(z)dz as size(T) — 0.
Q
Let us now rewrite T3 as T4 = T4 + r3 with

T =3 3 (s —ur) / V(@) - nx o Y(@)dr (o)

KeToelk 7

and

=, > (U = “K)/V(w) 0k, (P(zx) —P(2))dy(2)-

KeToelk 7
Thanks to the regularity of v and 1, there exists C's only depending on v and % such that
|rs| < Cssize(T) Z luk —ur[m(K|L),
K|LEEnt
which yields, with the Cauchy-Schwarz inequality,
Ira| < Casize(T)( Y. Txizlux —url)2( Y m(K|L)dg)?,
K|L€EEns K|L€E&ns

from which one deduces, with Estimate (3.24), that r3 — 0 as size(7) — 0.
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Next, remark that

Ty = — ZuK Z/ ‘gz ZUK/ div(v(z)y(z))dx.

KeT o€ék KeT

This implies (since ur — u in LQ(Q)) that T3" — — [ div(v(z)¢(z))u(x)dz, so that T3 has the same
limit and T3 = — [, v(z) - Vi (z)u(z)dz
)

Hence, letting size(7) — 0 in (3.35) yields that the function u € H}(Q) satisfies

/Q (bu@)(@) - u@)Ab(@) - v(@)u(@) V(@) - f@)())dz = 0, Vi € CZ(9),

which, in turn, yields (3.3) thanks to the fact that u € Hg (), and to the density of C°() in HJ ().
This concludes the proof of ur — u in L?(12) as size(7) — 0, where u is the unique solution (in H] (£2))
o (3.3).

S Let us now prove that ||ur||1,7 tends to ||U||H3 (o) in the pure diffusion case, i.e. assuming b = 0 and
v = 0. Since

lurll + = /fT z)uy(r)dr — / f(z)u(z)dz as size(T) — 0,

where f7 is defined from Q to R by f7(z) = fx a.e. on K for all K € T, it is easily seen that

lurlr ~ | f@)ua)ds = ulfyy oy as size(T) =0,

This concludes the proof of Theorem 3.1. n

Remark 3.7 (Consistency for the adjoint operator) The proof of Theorem 3.1 uses the property
of consistency of the (diffusion) fluxes on the test functions. This property consists in writing the
consistency of the fluxes for the adjoint operator to the discretized Dirichlet operator. This consistency is
achieved thanks to that of fluxes for the discretized Dirichlet operator and to the fact that this operator
is self adjoint. In fact, any discretization of the Dirichlet operator giving “L2-stability” and consistency
of fluxes on its adjoint, yields a convergence result (see also Remark 3.2 page 37). On the contrary, the
error estimates proved in sections 3.1.5 and 3.1.6 directly use the consistency for the discretized Dirichlet
operator itself.

Remark 3.8 (Finite volume schemes and H' approximate solutions)

In the above proof, we showed that a sequence of approximate solutions (which are piecewise constant
functions) converges in L2(2) to a limit which is in H (). An alternative to the use of Theorem 3.10 is
the construction of a bounded sequence in H* (]Rd) from the sequence of approximate solutions. This can
be performed by convoluting the approximate solution with a mollifier “of size size(7)”. Using Rellich’s
compactness theorem and the weak sequential compactness of the bounded sets of H', one obtains that
the limit of the sequence of approximate solutions is in Hg.

Let us now deal with the case of non homogeneous Dirichlet boundary conditions, in which case g €
H'/2(89) is no longer assumed to be 0. The proof uses the following preliminary result:

Lemma 3.4 Let Q be an open bounded polygonal subset of R?, § € H'(Q) and g = 7(§) (recall that 7 is
the “trace” operator from H(Q) to H/2(d9)). Let T be an admissible mesh (in the sense of Definition
3.1 page 37) such that, for some ¢ > 0, the inequality dx , > (diam(K) holds for all control volumes
K €T and for all 0 € Ek, and let M € IN be such that card(Ex) < M for all K € T. Let us define jx
for all K € T by
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and g, for all o € eyt by

1
9o = m/qg(ﬂc)d’?’(m)-
Let us define )
N(@§,T) = ( S k(i — )+ Y. melix(o) —@;)2) 2, (3.36)
0=K|LEEint 0EEext

where K(0) = K if 0 € Eoxt N Ek - Then there exists C € R, only depending on ¢ and M, such that
NG, T) < Cllgllar@)- (3.37)

PROOF of Lemma 3.4

Lemma 3.4 is given in the two dimensional case, an analogous result is possible in the three dimensional
case. Let €, g, T, ¢, M satisfying the hypotheses of Lemma 3.4. By a classical argument of density, one
may assume that § € C1(Q, R).

A first step consists in proving that there exists C; € R, only depending on ¢, such that

(gK - §g)2 < Cl(hL(m/ |V§($)|2dm,VK S T, Vo € 5K, (338)
m(o) K

where gg (resp. J,) is the mean value of § on K (resp. o), for K € T (resp. o € £). Indeed, without
loss of generality, one assumes that o = {0} x Jy, with Jp is a closed interval of R and K C R4 x IR.

Let @ = max{z;,z = (z1,22)" € K} and a = (a,8)" € K. In the following, a is fixed. For all z; € (0, ),
let J(z1) = {z2 € R, such that (z1,22)! € K}, so that Jy = J(0).
For a.e. z = (z1,72)! € K and a.e., for the 1-Lebesgue measure, y = (0,%)! € o (with § € Jy), one sets

2(z,y) = ta+(1—t)y with t = Z1. Note that, since K is convex, z(z,y) € K and z(z,y) = (21, 22(21,7))?,
with zo(21,7) = 28+ (1 - 2)7.
One has, using the Cauchy-Schwarz inequality,

(5K — §0)° < mm +B), (3.39)

where

A= /K / (5(2) — §(z(z,9))) *dr(w)ds,

and

B= /K / (5((2, ) — §()) *dr(y) de.

Let us now obtain a bound of A. Let D;j, i = 1 or 2, denote the partial derivative of § w.r.t. the
components of z = (z1,x,)" € R%. Then,

A:/ / / (/ Daii(ay, 5)ds) dgdzade;
0 JJ(w1) JJ(0) Jz2(w1,y)

The Cauchy-Schwarz inequality yields

A < diam(K) / / / / (D2§(z1,5))’ dsdydzada;
0o Ji(z1) JI(0) Ju(z1)
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and therefore

A < diam(K)3 / (D2j(z)) da. (3.40)
K
One now turns to the study of B, which can be rewritten as

B= / / » / . / (D135, 2205, 7) + 2L Dy, 22(s,7)))ds) s

The Cauchy-Schwarz inequality and the fact that a > (diam(K) give that
. 1
B < 2diam(K)(B; + C_2.BQ), (3.41)
with

« 1
Bi= / / / / (D (s, 22(s,7))) *dsdgdeadery, i = 1, 2.
0 JJ(z1)Ja(0) Jo

First, using Fubini’s theorem, one has

B; =/ / (ng(sazQ(say)))z/ / dx2d$1d$dy
J(0) Jo s JJ(z1)

B; < diam(K) / : /J . (D (s, 22(5,9))) *(a — 5)dds.

Therefore

Then, with the change of variables 2o = 25(s,7), one gets

B; < diam(K)/ / (D;g(s,22)) _jdzzds.
0 J(s) o
Hence
B; < diam(K)? / (Dig(2))*de. (3.42)
K

Using the fact that m(K) > w(? (diam(K))2, (3.39), (3.40), (3.41) and (3.42), one concludes (3.38).

In order to conclude the proof of (3.37), one remarks that

( 9, )<2ZZTU.9K 9o)’

KcToeEk
Because, for all K € T and o € €k, d, > (diam(K), one gets thanks to (3.38), that

(W ,)‘<2ZZCI/|V )2da.

KeTo€EEK

The above inequality shows that

(v@m) <22 [ va@)Pas,

which implies (3.37). n
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Theorem 3.2 (Convergence, non homogeneous Dirichlet boundary condition)

Assume items 1, 2, 8 and 4 of Assumption 3.1 page 32 and g € H'/?(0Q). Let ( € Ry and M € IN
be given values. Let T be an admissible mesh (in the sense of Definition 3.1 page 37) such that dx,, >
¢diam(K) for all control volumes K € T and for all 0 € Ek, and card(Ex) < M for all K € T. Let
(ur)keT be the solution of the system given by equations (3.20)-(3.22) and

1
m(o)

Uy = /g(x)d’y(x), Vo € Eext- (3.43)
(note that the proofs of eristence and uniqueness of (uk)gxe7 which were given in Lemma 3.2 page
42 remain valid). Define ur € X(T) by ur(z) = uk for a.e. x € K and for any K € T. Then, ur
converges, in L?(QQ), to the unique variational solution u € H'(Q) of Problem (3.1), (3.2) as size(T) — 0.

PrOOF of Theorem 3.2

The proof is only detailed for the case b = 0 and v = 0 (the extension of the proof to the general case
is straightforward using the proof of Theorem 3.1 page 45). Let § € H'(2) be such that the trace of
g on 09 is equal to g. One defines i € X(7) by 47 = ur — g7 where g7 € X(T) is defined by

9(2) = airy Jx 9(y)dy for all z € K and all K € 7. Then (i) ke satisfies

Y Fxo=m(E)fx— Y Gko VKE€T, (3.44)
o€lK o€lK
Fy,» = =i (i, — i), YO € Ent, if 0 = K|L, (3.45)
FK,(, = 7, (ix ), Vo € Eext such that o € k. (3.46)
GK,O’ = _TK|L(§L - gL), Vo € &g, if 0 = K|L, (3.47)
Gk,o = —T6(Jo — gL), VO € Eexy such that o € &k, (3.48)

where §, = ﬁ J, g(x)dy(z) Multiplying (3.44) by @ik, summing over K € T, gathering by edges in the
right hand side and using the Cauchy-Schwarz inequality yields

larllf,r < Y m(K)fxix + NG Tlarlh,T,
KeT

from the definition (3.36) page 49 of N (g,7T) and Definition 3.3 page 39 of || - [|1,7. Therefore, thanks
to Lemma 3.4 page 48 and the discrete Poincaré inequality (3.13), there exists C; € IR, only depending
on Q, [|9lla1 (@), ¢; M and f, such that [|ir||:,7 < C1 and [|d7||z2(@) < C1. Let us now prove that dr
converges in L?(Q), as size(T) — 0, towards the unique solution in Hg () to (3.3). We proceed as in
Theorem 3.1 page 45. Using Lemma 3.3, the compactness result given in Theorem 3.10 page 91 and the
uniqueness of the solution (in H}(Q)) of (3.3), it is sufficient to prove that if 47 converges towards some
@ € H§(Q), in L*(Q) as size(T) — 0, then 4 is the solution to (3.3). In order to prove this result, let us
introduce the function §r defined by

1
i) = o | 0y Ve e K VK €T,
m(K) Jk
which converges to § in L2(2), as size(7) — 0. Then the function u converges in L%(f), as size(7T) — 0
tou = a+g € H'(Q) and the proof that @ is the unique solution of (3.3) is identical to the corresponding
part in the proof of Theorem 3.1 page 45. This completes the proof of Theorem 3.2. [
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Remark 3.9 A more simple proof of convergence for the finite volume scheme with non homogeneous
Dirichlet boundary condition can be made if g is the trace of a Lipschitz-continuous function §. In that
case, ¢ and M do not have to be introduced and Lemma 3.4 is not used. The scheme is defined with
us = g(y,) instead of the average value of g on o, and the proof uses §(zx) instead of the average value
of gon K.

3.1.5 C(C? error estimate

Under adequate regularity assumptions on the solution of Problem (3.1)-(3.2), one may prove that the
error between the exact solution and the approximate solution given by the finite volume scheme (3.20)-
(3.23) is of order size(T) = supg 7 diam(K), in a certain sense which we give in the following theorem:

Theorem 3.3 Under Assumption 3.1 page 32, let T be an admissible mesh as defined in Definition 3.1
page 37 and ur € X(T) (see Definition 3.2 page 39) be defined a.e.in Q by ur(x) = ug for a.e. x € K,
for all K € T, where (ux)keT is the solution to (3.20)-(3.23). Assume that the unique variational
solution u of Problem (3.1)-(3.2) satisfies u € C*(Q). Let, for each K € T, ex = u(zrg) — ux, and
eT € X(T) defined by er(x) = ek for a.e. x € K, for dll K € T.
Then, there exists C > 0 only depending on u, v and Q such that

ezl < Csize(T), (3.49)
where || - ||1,7 is the discrete H} norm defined in Definition 3.3,
lleTllz2) < Csize(T) (3.50)
and
Y mo)d, (U - /Vu(:z:) — (a:))2+
o E€Eint ’ da m(a) o K@Y
o=K|L
3.51)
g(ya) — UK 1 2 . 9 (
; m(o)d, ( T [, Vu(e) -ngody(x)) < Csize(T)”
ae?:};n
Remark 3.10

1. Inequality (3.49) (resp. (3.50)) yields an estimate of order 1 for the discrete Hi norm (resp. L2
norm) of the error on the solution. Note also that, since u € C1(f), one deduces, from (3.50), the
existence of C only depending on u and € such that ||u — u||p2(q) < Csize(T). Inequality (3.51)
may be seen as an estimate of order 1 for the L2 norm of the flux.

2. In BARANGER, MAITRE and OUDIN [1996], finite element tools are used to obtain error estimates
of order size(7)? in the case d = 2, v = b = g = 0 and if the elements of 7 are triangles of a finite
element mesh satisfying the Delaunay condition (see section 3.4 page 84). Note that this result is
quite different of those of the remarks 2.5 page 18 and 3.1 page 35, which are obtained by using a
higher order approximation of the flux.

3. The proof of Theorem 3.3 given below is close to that of error estimates for finite element schemes
in the sense that it uses the coerciveness of the operator (the discrete Poincaré inequality) instead
of the discrete maximum principle of Proposition 3.2 page 43 (which is used for error estimates
with finite difference schemes).
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PRrROOF of Theorem 3.3

Let ur € X(T) be defined a.e. in Q by ur(z) = ug for a.e. z € K, for all K € T, where (ux)ker is
the solution to (3.20)-(3.23). Let us write the flux balance for any K € T;

agg:K (FK,U +VK,<7) + b/Ku(x)d:v = /K f(z)dz, (3.52)

where Fg,, = — [ Vu(z) - ng dy(z), and Vi, = [ u(z)v(z) -ng .dy(z) are respectively the diffusion
and convection fluxes through o outward to K.
Let Fi , and Vg , be defined by

Fg , = —mrip(u(rL) —u(rK)), Vo = K|L € £k N &Eine, VK € T,
Fﬁ,ad(ﬂfK,U) = _m(a)(u(ya) - U(SUK)), Vo € EK n gext; VK € T:

Vio = Vk,ou(Zs4), Yo € Ex, VK €T,

where z, 4 = 2k (resp. x1) if 0 € &y, 0 = K|L and vk, > 0 (resp. vk, <0) and 2,4+ = xx (resp.
Yo) if 0 = Ex N Eext and vk, > 0 (resp. vk, < 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

1 —
= F — F% .
RK,O’ m(a_) ( K,o K,o‘)? (3 53)
- v Vi ) (3.54)
TK,co = m(o_) K,o K,0/)» .

Thanks to the regularity of u and v, there exists C; € IR, only depending on u and v, such that
|Ri |+ |rk,o| < Cisize(T) for any K € T and 0 € Ex. For K € T, let

prc = u(ek) - (/m(K) [ u(o)dz,
K
so that |pk| < Casize(T) with some Cy € R4 only depending on w.
Substract (3.20) to (3.52); thanks to (3.53) and (3.54), one has
> (Gro + Wi ) +bm(K)ex = bm(K)px = Y m(o) (Rico + 7o), (3.55)

o€l oc€€k
where
Gk, = F§ , — Fk,o is such that

GK,a = _TK|L(€L — eK), VK € T, Vo € Exg N &g, 0 = K|L,

GK,g'd(xK,o—) = m(a)eK, VK € T,Vo € Eg N Eext,

with ex = u(zk) —uk, and Wk, = Vi , — Vik,o = VK,0 (W(To,4) — Us,+)
Multiply (3.55) by ek, sum for K € T, and note that

S ¥ Groew = XD

KeToelk o€l

= [lelli,7-

Hence
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lerll? ++ Z Z UK o€ +ex TllerlF2 o) < me( )PKEK— Z Z 0)(Rk,o+TK,0)eK, (3.56)

KeTo€elk KeT KeTo€elk

where
er € X(T), er(z) =ex forae. z € K and forall K € T,
|Dye| = lex —eLl|, if 0 € &g, 0 = K|L, |Dye| = |ek|, if 0 € Ex N Eext,

ot = U(To 1) = Ug,t-
By Young’s inequality, the first term of the left hand side satisfies:

1 1 .
| " m(E)pxex] < 5 llerlliaa) + 503 (size(T))*m(Q). (3.57)
KeT

Thanks to the assumption divv > 0, one obtains, through a computation similar to (3.27)-(3.28) page 42

that
Z Z VK,o€o,+eK > 0.
KeTo€EElK
Hence, (3.56) and (3.57) yield that there exists C3 only depending on u,b and Q such that
(size(T) Z Z 0)(Rk,o +TK,0)€K, (3.58)
KeToelk
Thanks to the property of conservativity, one has Rk , = —R , and rg , = —rp , for o € &, such that

o = K|L. Let R, = |Rk | and 15 = |rk 4| if 0 € k. Reordering the summation over the edges and
from the Cauchy-Schwarz inequality, one then obtains

13 Y m) (B +rr0)ex| < m(0)(Doe) (R, + 1) <

KeToeék . g€E .
(229 (pye?) (o) (B, +70)7)
ceg 7 33

Now, since |Ry + 7,| < Cisize(T) and since Zm(a)d(, = dm(Q), (3.58) and (3.59) yield the existence

oe€
of Cy € R, only depending on u, v and 2 such that

(3.59)

1 . .
ller |3, + Sbllerllzz(o) < Ca(size(T)* + Casize(T)llells,7-

Using again Young’s inequality, there exists Cy only depending on u, v, b and 2 such that
g ag g g

lerlli 7 + bllerllLaq) < Cs(size(T))*. (3.60)

This inequality yields Estimate (3.49) and, in the case b > 0, Estimate (3.50). In the case where b = 0,
one uses the discrete Poincaré inequality (3.13) and the inequality (3.60) to obtain

llerllZs(q) < diam(Q)*Cs (size(T))?,
which yields (3.50).

Remark now that (3.49) can be written

3 mlo)d, (M wlon) — )y

int da' dd
SR ~ _ 2 (3.61)
Z m(a)da(g(yazia UK _ u(ya) dau(mK)> < (CSiZG(T))2-

o€Eext
ceEKNOQ
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From Definition (3.53) and the consistency of the fluxes, one has

Z m(o)dg(u(xL)_u(xK) - 2)/0Vu($)-nK,(,d'y($))2+

el dy m(o
o=K|L
u(ys) — u(zk) 1 > _
EZ m(a)d,,( . oy /. @ nK,,,d'y(:c)) = (3.62)
ceKNOQ

> m(0)d,R2 < dm(Q)C3 (size(T))>.

g€EE
Then (3.61) and (3.62) give (3.51). L]

3.1.6 H? error estimate

In Theorem 3.3, the hypothesis u € C?(Q) was used. In the following theorem (Theorem 3.4), one obtains
Estimates (3.49) and (3.50), in the case b = v = 0 and assuming some additional assumption on the mesh
(see Definition 3.4 below), under the weaker assumption u € H2(02). This additional assumption on the
mesh is not completely necessary (see Remark 3.12 and GALLOUET, HERBIN and VIGNAL [1999]). It is
also possible to obtain Estimates (3.49) and (3.50) in the cases b # 0 or v # 0 assuming u € H?(Q) (see
Remark 3.12 and GALLOUET, HERBIN and VIGNAL [1999]). Some similar results are also in LAZAROV,
MISHEV and VASSILEVSKI [1996] and COUDIERE, VILA and VILLEDIEU [1999].

Definition 3.4 (Restricted admissible meshes) Let 2 be an open bounded polygonal subset of R4,
d =2 or 3. A restricted admissible finite volume mesh of (2, denoted by 7, is an admissible mesh in the
sense of Definition 3.1 such that, for some ¢ > 0, one has di,, > (diam(K) for all control volumes K
and for all o € €k.

Theorem 3.4 (H? regularity) Under Assumption 3.1 page 32 with b = v = 0, let T be a restricted
admissible mesh in the sense of Definition 3.4 and ur € X(T) (see Definition 3.2 page 39) be the
approzimate solution defined in Q by ur(x) = uk for a.e. © € K, for all K € T, where (ux)ket 18
the (unique) solution to (3.20)-(3.23) (existence and unigqueness of (ux)keT are given by Lemma 3.2).
Assume that the unique solution, u, of (3.8) (with b= v = 0) belongs to H*(Q). For each control volume
K, let ek = u(xk) —uk, and er € X(T) defined by er(x) = ex for a.e. x € K, for all K € T.

Then, there exists C, only depending on u, ¢ and Q, such that (3.49), (3.50) and (3.51) hold.

Remark 3.11

1. In Theorem 3.4, the function e is still well defined, and so is the quantity “Vu - n,” on o, for all
o € €. Indeed, since u € H?(Q2) (and d < 3), one has u € C(Q) (and then u(zk) is well defined for
all control volumes K) and Vu-n, belongs to L?(o) (for the (d — 1)-dimensional Lebesgue measure
ono)forall o € €.

2. Note that, under Assumption 3.1 with b = v = g = 0 the (unique) solution of (3.3) is necessarily
in H?(Q) provided that ) is convex.

PROOF of Theorem 3.4

Let K be a control volume and o € k. Define Vg, = {txx + (1 —t)x, € 0, t € [0,1]}. For o € &Ens,
let Vo = Vk,o UVL,, if K and L are the control volumes such that ¢ = K|L. For 0 € Eex N Ek, let
Ve =Vk,o-

The main part of the proof consists in proving the existence of some C, only depending on the space
dimension d and ¢ (given in Definition 3.4), such that, for all control volumes K and for all ¢ € &k,
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|Rical? < c% JRLC TR (3.63)

o

whereH is the Hessian matrix of u and

[Hu)(#)]* = ) [DiDju(2)P,

3,j=1

and D; denotes the (weak) derivative with respect to the component z; of z = (21, - -, z4)* € R
Recall that Rk, is the consistency error on the diffusion flux (see (3.53)), that is:
u(zy) — u(zk)

1 , B
Rk, = . = m(0) /UVu(x) ‘ng .dy(z), if 0 € &y and o0 = K|L,

u(ys) — u(zk)
dzr

Note that Rk, is well defined, thanks to u € H2(f2), see Remark 3.11.
In Step 1, one proves (3.63), and, in Step 2, we conclude the proof of Estimates (3.49) and (3.50).

1 .
Ry, = - m(o) /UVu(m) Nk, edy(x), if 0 € Eext NEK.

Step 1. Proof of (3.63).

Let o € £. Since u € H2(Q), the restriction of u to V, belongs to H2(V,). The space C%(V,) is dense in
H?(V,) (see, for instance, NECAS [1967], this can be proved quite easily be a regularization technique).
Then, by a density argument, one needs only to prove (3.63) for u € C?(V,). Therefore, in the remainder
of Step 1, it is assumed u € C%(V,).

First, one proves (3.63) if o € &int. Let K and L be the 2 control volumes such that ¢ = K|L.

It is possible to assume, for simplicity of notations and without loss of generality, that ¢ = 0 x &, with
some & C R, and zx = (—a,0)t, 21 = (8,0)!, with some a > (diam(K), 8 > (diam(L) (¢ is defined
in Definition 3.4 page 55).

Since u € C2(V,) a Taylor expansion gives for a.e. (for the (d — 1)-dimensional Lebesgue measure on o)
z=(0,%)! € o,

u(zr) —u(z) = Vu(z) - (zp — z) + /1 Hu)(tz+ (1 —t)zr)(zr — ) - (xp — x)tdt,
0

and

u(zk) —u(z) = Vu(z) - (zx — ) + /01 Hu)(te + (1 —t)zk)(rx — ) - (zx — x)tdt,

where H(u)(z) denotes the Hessian matrix of u at point z.
Subtracting one equation to the other and integrating over o yields (note that zr — zx = nk.d,)
|RKk | < Bk, + BrL s, with, for some C; only depending on d,

C ! A
By = —1 / / \H(u)(tz + (1 — )z |0k — al2tdtdy(x). (3.64)
m(a)da oJO
The quantity By, , is obtained with Bk , by changing K in L.
One uses a change of variables in (3.64). Indeed, one sets z = tz + (1 — t)zk. Since |zx — z| < diam(K)
and dz = t¥ladtdy(x), one obtains, since z; = (t — 1)a, z = (21,2)¢,

Bro < % / GG LI,

This gives, with the famous Cauchy-Schwarz inequality,
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d-3(diam 2
e MLCCIRS

M=
N

Bk, < (3.65)

1
(. e

For d = 2, (3.65) gives

C1(diam(K))?
am(o)d,

Bk, <

O =

EEDH[ P
and therefore

Ci (diam(K))? BYRCERE
S Eli O

A similar estimate holds on By, by changing K in L and « in . Since o, > (diam(K) and d, =
a+ B > ¢diam(K), these estimates on Bg , and By, yield (3.63) for some C only depending on d and
.

For d = 3, denoting by ij(l,g = {z € Vi, such that z; = 21}, it can be remarked that

Bk

o

2 21 + a2
/ dzadzs =m(VE ) = ( ! ) m(o)
Vido
and therefore (3.65) gives:

. 2 0 1 1
B, < Cl(ill?:)lt(ii{)) (/ mofg) dzl)i (AK’G |H(u)(z)|2dz)§,

—Qx

and then

C (diam(K))? o
((0)de )} (dy )t /vK,, |H (u)(2)|*dz)*.

With a similar estimate on By, ,, this yields (3.63) for some C only depending on d and (.

BK,o’ =

Now, one proves (3.63) if 0 € Eexy. Let K be the control volume such that o € Ex. One can assume,
without loss of generality, that zx = 0 and ¢ = {2a} x & with & € R* ! and some a > 1¢diam(K).
The above proof gives (see Definition 3.1 page 37 for the definition of y, ), with some C5 only depending
on d,

() | )

—_— H d 3.66
e IO Y

with 6 = {(a 5),r €6},and Vs = {tyo + (1 —t)z, z € 6,t € [0,1]} U {tex + (1 —t)z, z €6, € [0,1]}.

Note that m(6) = 2% and that Vs C V.

One has now to compare I, = ﬁ [, Vu(z) - ng sdy(z) with I; = ﬁ [; Vu(z) - ng ody(z).

A Taylor expansion gives

o) 2—au<:cz<> _ m?&) / Vu(z) - nx dy(@)2 < Cy

1 1
LI = / / Hu)(@x + 4@ — 2x))(@ — ) - 1 o dtdy (@),
m(c) J, J1
The change of variables in this last integral z = zx + t(z — xx ), which gives dz = 2at?~!dtdy(x), yields,
with E, = {tz + (1 — t)zk, ¥ € 0, t € [}, 1]} and some C5 only depending on d (note that t > 1),
Cs

m(o)a

I, — I;] < /E |H(u)(2)||x — zx|dz.

4

Then, from the Cauchy-Schwarz inequality and since |z — zx| < diam(K),
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L, — L2 < % [ 1HwEr:, (3.67)

with some C}4 only depending on d and (.
Inequalities (3.66) and (3.67) yield (3.63) for some C only depending on d and (.

One may therefore choose C' € IR such that (3.63) holds for o € &int Or 0 € Eext. This concludes Step 1.

Step 2. Proof of Estimates (3.49), (3.50) and (3.51).
In order to obtain Estimate (3.49) (and therefore (3.50) from the discrete Poincaré inequality (3.13)),
one proceeds as in Theorem 3.3. Inequality (3.56) writes here, since Rk, = —Rrs, if 0 = K|L,

lerllf 7 < D Ro|Doelm(o),
o€EE
with Ry = |Rk s, if 0 € Ek. Recall also that |Dye| = |ex —er| if 0 € &y, 0 = K|L and |Dye| = |ex],
if 0 € Eext N Ek. Cauchy and Schwarz strike again:

1 n1 1
lerll? r < (Q_Rem(0)ds)* (DD, |2 )?.

o€l oce€

The main consequence of (3.63) is that

Zm Ydy R2 < C(size(T Z/ 2)|?dz = C(size(T) / |H (u)(2)|*dz. (3.68)

o€l oce€
Then, one obtains

1
lerllvr < /Csize(T / H(u)(2)[2dz) .

This concludes the proof of (3.49) since u € H*() implies [, |H(u)(z)]*dz < oo.
Estimate (3.51) follows from (3.68) in a similar manner as in the proof of Theorem 3.3. This concludes
the proof of Theorem 3.4. n

Remark 3.12 (Generalizations)

1. By developping the method used to bound the consistency error on the flux on the elements of Eqy,
it is possible to replace, in Theorem 3.4, the hypothesis dx , > (diam(K) in Definition 3.4 page
55 by the weaker hypothesis d, > (diam(c) provided that V, is convex. Note also that, in this
case, the hypothesis xx € K is not necessary, it suffices that z;, — *x = donk o, for all o € &y,
o = K|L (for o € Eext, One always needs y, — 2x = dynk 5 ).

2. Tt is also possible to prove Theorem 3.4 if b # 0 or v # 0 (or, of course, b # 0 and v # 0). Indeed,
if the solution, u, to (3.3) is not only in H?(Q) but is also Lipschitz continuous on € (this is the
case if, for instance, there exists p > d such that v € W2P?(Q)), the treatment of the consistency
error terms due to the terms involving b and v are exactly as in Theorem 3.3. If u is not Lipschitz
continuous on 2, one has to deal with the consistency error terms due to b and v similarly as in the
proof of Theorem 3.4 (see also EYMARD, GALLOUET and HERBIN [1999] or GALLOUET, HERBIN
and VIGNAL [1999]).

Tt is also possible, essentially under Assumption 3.1 page 32, to obtain an L? estimate of the error, for
2<g< +ocifd=2,and for 1 < ¢ <6 if d = 3, see COUDIERE, GALLOUET and HERBIN [1998]. The
error estimate for the L7 norm is a consequence of the following lemma:
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Lemma 3.5 (Discrete Sobolev Inequality) Let Q2 be an open bounded polygonal subset of R and T
be a general finite volume mesh of Q in the sense of definition 3.5 page 62, and let { > 0 be such that

VK € T,Vo € &k, dk,; > (dy, and dk,, > (diam(K). (3.69)

Let be u € X(T) (see definition 3.2 page 39), then, there exists C > 0 only depending on Q and (, such
that for all g € [2,4+00), if d =2, and q € [2,6], if d = 3,

lullLaey < Callullr,T, (3.70)

Y norm defined in definition 3.3 page 39.

where || -

PROOF of Lemma 3.5

Let us first prove the two-dimensional case. Assume d = 2 and let ¢ € [2,+00). Let d; = (1,0)* and
d> = (0,1)}; for z € Q, let DL and D2 be the straight lines going through z and defined by the vectors
d1 and d2.

Let v € X (7). For all control volume K, one denotes by vk the value of v on K. For any control volume
K and a.e. x € K, one has

vi < ZD v ZD vxP (x) (3.71)
oc€EE o€E

(1) (2)

are defined by

(z) — 1 ifO’ﬂDi;ém -
x5 (x) {0 if o N Di = @ fori=1,2.

Recall that D,v = |vg — vr|, if 0 € &ing, 0 = K|L and D,v = |vk|, if 0 € Eext N Ek . Integrating (3.71)
over K and summing over K € T yields

/Q dw</(ZDvX1) DI ))da.

Note that X((fl) (resp. X((f) ) only depends on the second component 5 (resp. the first component z;) of
z and that both functions are non zero on a region the width of which is less than m(c); hence

/ r)de < (Y m()D,0) . (3.72)

o€

where x5’ and xg

Applying the inequality (3.72) to v = |u|®*sign(u), where u € X(T) and a > 1 yields
/ lu(z)**dz < (Zm ) .
o€l

Now, since [vg —vr| < a(jlur|® L+ |ur|* V) |uk —ur|, if ¢ € Eint, 0 = K|L and |vk| < a(|luk|* 1) |uk],
ifo c gext ﬂgK,

/|u |2adm <O‘Z Z o)|uk|* Dyu.

KeTo€elk

Using Hoélder’s inequality with p,p’ € IR such that % + —, =1 yields that

([ m@reas)* <a(X S ke m)de) (Y 3 Lo W (o)) ?

KeToelk KET(TESK K,o

1
P7
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Since Z 0)dk,, = 2m(K), this gives

0E€EK
1 D 1
/|u |2“dx <a2P /|u )PV dz)? Z z| u| (0)dk,s)"
KETUEEK
— — 2
which yields, choosing p such that p(a — 1) = 2qa, i.e. p= 7% and p' = 74,

% D, L
lullzwy = ([ @) P2de) ™ < a2 ZZ' W (o)) ¥, (373)

KeToelk dK g

where ¢ = 2a. Let r = 1% and r' = 2_2p,, Hélder’s inequality yields

p 1

Y 3 e o, < (3 3 P atohen) F (X 3 miold)?.

KeTocEx YKo KeToeex VKo KeToelk

replacing in (3.73) gives

1 1 L
lullLe@) < @27 ()2 (2m(Q2))»" ||ull, 7

NN

and then (3.70) with, for instance, C = (2)((2m(2))% + 1).
Let us now prove the three-dimensional case. Let d = 3. Using the same notations as in the two-
dimensional case, let d; = (1,0,0)!, d2 = (0,1,0)! and d3 = (0,0,1)! ; for z € Q, let DL, D2 and D3

be the straight lines going through x and defined by the vectors d;, d2 and ds. Let us again define the

functions Xffl), x((f) and Xffs) by

(%) _ 1 lfO"ﬂ’D;;é@ .
X (m)—{o if o N DL = fori=1,2,3.

Let v € X(7) and let A € IRy such that Q C [—A, A)®; we also denote by v the function defined on
[-A, A]® which equals v on Q and 0 on [—A, A]® \ Q. By the Cauchy-Schwarz inequality, one has:

A A .
/ / |v(z1, T2, 23)|2 dz1deo
—AJ-A (3.74)

A A % 3
< (/ / |v(z1, 22,3 |d1171d$2 / / $1,$2,$3)|2d$1d332) .
—aJ-a

Now remark that
A A
/ / |v(z1, Ta, 23)|dx1dEy < ZD v/ / z)dz dzs < Zm U,
—AJ-A o€E o€E
Moreover, computations which were already performed in the two-dimensional case give that
A A 9
/ / |v(z1, T2, 23)|*dz1das < / / ZD VX g 1) ZD UX x)dx1dzs _(Zm(aws)ng) ,
—AJ-A oeé oce€

where 0,, denotes the intersection of o with the plane which contains the point (0, 0, z3) and is orthogonal
to d3. Therefore, integrating (3.74) in the third direction yields:

/|v 2da:< Zm YD v)%. (3.75)

o€
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Now let v = |u|*sign(u), since [vx — vr| < 4(Juk|® + |uL|®)|ux — url, Inequality (3.75) yields:

/|u |6dw< 42 Z |ug|® D yum( )]%

KeTo€elk

By Cauchy-Schwarz’ inequality and since Z 0)dk,, = 3m(K), this yields
A1

lulls <4v3>~ Y (D ,

KeTo€Elk Ko

and since dg » > (d,, this yields (3.70) with, for instance, C' =

J’

Remark 3.13 (Discrete Poincaré Inequality) In the above proof, Inequality (3.72) leads to another
proof of some discrete Poincaré inequality (as in Lemma 3.1 page 40) in the two-dimensional case. Indeed,
let © be an open bounded polygonal subset of IR?. Let 7 be an admissible finite volume mesh of Q in
the sense of Definition 3.1 page 37 (but more general meshes are possible). Let v € X (7). Then, (3.72),

the Cauchy-Schwarz inequality and the fact that Zm(a)d(, =2m(Q) yield
oe&
[vl1Z20) < 2m(Q)[Jv]F 7

A similar result holds in the three-dimensional case.

Corollary 3.1 Under the same assumptions and with the same notations as in Theorem 3.3 page 52, or
as in Theorem 3.4 page 55, and assuming that the mesh satisfies, for some ¢ > 0, dx,, > (d,, for all
o € &k and for all control volume K, there exists C > 0 only depending on u, ( and Q) such that

[1, 6] ifd=3,

ler|laga) < Casize(T); for any q € { [0 +o00) ifd=2 (3.76)

furthermore, there exists C' € R only depending on u, (, (7 = min{%,K € T}, and Q, such that

llerllze (o) < Csize(T)(| In(size(T))| + 1), ifd=2. (3.77)
leTllL=(e) < Csize(T)*?,  if d=3. (3.78)

PROOF of Corollary 3.1

Estimate (3.49) of Theorem 3.3 (or Theorem 3.4) and Inequality (3.70) of Lemma 3.5 immediately yield
Estimate (3.76) in the case d = 2. Let us now prove (3.78). Remark that

1

W)Enefrum. (3.79)

lerllzo () = max{lex, K € T} <(
For d = 2, a study of the real function defined, for ¢ > 2, by ¢ = Ing + (1 — %) Inh (with h = size(T))
shows that its minimum is attained for ¢ = —2Inh, if Inh < —1. And therefore (3.76) and (3.79) yield
(3.78).
The 3 dimensional case is an immediate consequence of (3.76) with ¢ = 6. n
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3.2 Neumann boundary conditions

This section is devoted to the convergence proof of the finite volume scheme when Neumann boundary
conditions are imposed. The discretization of a general convection-diffusion equation with Dirichlet,
Neumann and Fourier boundary conditions is considered in section 3.3 below, and the convection term is
largely studied in the previous section. Hence we shall limit here the presentation to the pure diffusion
operator. Consider the following elliptic problem:

—Au(z) = f(z), x € Q, (3.80)
with Neumann boundary conditions:
Vu(z) -n(z) = g(x), =z € 09, (3.81)

where 02 denotes the boundary of 2 and n its unit normal vector outward to 2.
The following assumptions are made on the data:

Assumption 3.3

1. Q is an open bounded polygonal connected subset of R% d=2 or3,
2. g€ L*(00), f € L*(Q) and [, g(x)dvy(x) + [, f(x)dx = 0.

Under Assumption 3.3, Problem (3.80), (3.81) has a unique (variational) solution, u, belonging to H ()
and such that [, u(z)dz = 0. It is the unique solution of the following problem:

u € HY(Q), / u(z)dr =0, (3.82)
/Q Vu(z)Vi(z) = / @) (@)dz + /8 _9@T) @), Vo € H'(@) (3.83)

Recall that 7 is the “trace” operator from H(Q) to L2(89) (or to Hz (99)).

3.2.1 Meshes and schemes
Admissible meshes

The definition of the scheme in the case of Neumann boundary conditions is easier, since the finite volume
scheme naturally introduces the fluxes on the boundaries in its formulation. Hence the class of admissible
meshes considered here is somewhat wider than the one considered in Definition 3.1 page 37, thanks to
the Neumann boundary conditions and the absence of convection term.

Definition 3.5 (Admissible meshes) Let 2 be an open bounded polygonal connected subset of R4,
d = 2, or 3. An admissible finite volume mesh of {2 for the discretization of Problem (3.80), (3.81), denoted
by T, is given by a family of “control volumes”, which are open disjoint polygonal convex subsets of 2,
a family of subsets of Q0 contained in hyperplanes of R?, denoted by & (these are the “sides” of the
control volumes), with strictly positive (d — 1)-dimensional Lebesgue measure, and a family of points of
Q denoted by P satisfying properties (z), (i), (#4¢) and (iv) of Definition 3.1 page 37.

The same notations as in Definition 3.1 page 37 are used in the sequel.

One defines the set X (7) of piecewise constant functions on the control volumes of an admissible mesh
as in Definition 3.2 page 39.
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Definition 3.6 (Discrete H' seminorm) Let Q be an open bounded polygonal subset of Re, d =2
or 3, and 7 an admissible finite volume mesh in the sense of Definition 3.5.
For u € X(T), the discrete H' seminorm of u is defined by

1

fulr = (D 7(Dow)?),

o€&int

where 7, = % and &y are defined in Definition 3.1 page 37, ug is the value of u in the control volume

K and D,u :0|uK —ur|if 0 € &g, 0 = K| L.

The finite volume scheme

Let 7 be an admissible mesh in the sense of Definition 3.5 . For K € T, let us define:

1
fx = i /K F(@)da, (3.84)

1 .
gk =0if m(OK NoN) =0.

9K

Recall that, in formula (3.84), m(K) denotes the d-dimensional Lebesgue measure of K, and, in (3.85),
m(0K N IN) denotes the (d — 1)-dimensional Lebesgue measure of 0K N 9N. Note that gx = 0 if the
dimension of 0K N 0N is less than d — 1. Let (uk)xer denote the discrete unknowns; the numerical
scheme is defined by (3.20)-(3.22) page 41, with b = 0 and v = 0. This yields:

- Y (uL - uK) = m(K)fx + m(@K N0V gx, VK € T, (3.86)
LEN(K)

(see the notations in Definitions 3.1 page 37 and 3.5 page 62). The condition (3.82) is discretized by:

> m(K)ugk =0. (3.87)
KeT

Then, the approximate solution, w7, belongs to X(7) (see Definition 3.2 page 39) and is defined by

ur(z) = uk, for ae.z e K, VK€ T.

The following lemma gives existence and uniqueness of the solution of (3.86) and (3.87).

Lemma 3.6 Under Assumption 3.3. let T be an admissible mesh (see Definition 3.5) and {fx, K € T},
{9k, K € T} defined by (3.84), (3.85). Then, there exists a unique solution (uk)ger to (3.86)-(3.87).

PROOF of lemma 3.6

Let N = card(T). The equations (3.86) are a system of N equations with N unknowns, namely (ug)kxe7-
Ordering the unknowns (and the equations), this system can be written under a matrix form with a N x N
matrix A. Using the connexity of €2, the null space of this matrix is the set of “constant” vectors (that
is ug = ur, for all KL € T). Indeed, if fx = gk =0 for all K € T and {ug, K € T} is solution of
(3.86), multiplying (3.86) (for K € T) by ux and summing over K € T yields

> 1o (Dou)* =0,

0EE&int

where D,u = |ug —uyl| if 0 € &y, 0 = K|L. This gives, thanks to the positivity of 7, and the connexity
of Q, ug =ur,forall K,LeT.
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For general (fx)ke7 and (9x)keT, a necessary condition, in order that (3.86) has a solution, is that

Y (m(K)fx +m(0K N9N)gk) = 0. (3.88)
KeT

Since the dimension of the null space of A is one, this condition is also a sufficient condition. Therefore,
System (3.86) has a solution if and only if (3.88) holds, and this solution is unique up to an additive
constant. Adding condition (3.87) yields uniqueness. Note that (3.88) holds thanks to the second item
of Assumption 3.3; this concludes the proof of Lemma 3.6. [

3.2.2 Discrete Poincaré inequality

The proof of an error estimate, under a regularity assumption on the exact solution, and of a convergence
result, in the general case (under Assumption 3.3), requires a “discrete Poincaré” inequality as in the
case of the Dirichlet problem.

Lemma 3.7 (Discrete mean Poincaré inequality) Let Q be an open bounded polygonal connected
subset of R, d = 2 or 3. Then, there exists C € R, only depending on Q, such that for all admissible
meshes (in the sense of Definition 3.5 page 62), T, and for all uw € X(T) (see Definition 3.2 page 39),
the following inequality holds:

lullf2(q) < Clult 7+ 2(m(ﬂ))’l(/Q u(w)dz)?, (3.89)

where | - |1 7 is the discrete H' seminorm defined in Definition 3.6.

PROOF of Lemma 3.7

The proof given here is a “direct proof”; another proof, by contradiction, is possible (see Remark 3.15).
Let 7 be an admissible mesh and u € X (7). Let mgq(u) be the mean value of u over Q, that is

mao(u) = ﬁ/ﬂu(w)dm

Since
lullZ2q) < 2llu = ma(u)l|Z2q) + 2(ma(w))*m(Q),

proving Lemma 3.7 amounts to proving the existence of D > 0, only depending on 2, such that
llu — ma (u)lZ2(q) < Dlult 7 (3.90)

The proof of (3.90) may be decomposed into three steps (indeed, if 2 is convex, the first step is sufficient).

Step 1 (Estimate on a convex part of Q)
Let w be an open convex subset of 2, w # @ and m,, (u) be the mean value of u on w. In this step, one
proves that there exists Cy, depending only on (2, such that

1
llu(z) — mw(“)”iz(w) < mcomﬁ,r- (3.91)
(Taking w = Q, this proves (3.90) and Lemma 3.7 in the case where Q is convex.)

Noting that

/w (u(z) — mo (u))?da < @ / ( / (u(z) — u(y))*dy)d,

(3.91) is proved provided that there exists Cy € IRy, only depending on 2, such that
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/ / )?dady < Colul; - (3.92)

For o € &, let the function x, from R? x R? to {0,1} be defined by
Xo(z,y) =1, if 2,y € Q, [z,y]N o #0,
Xo(2,y)=0,if ¢ Q ory ¢ Q or [z,y)Nno=0.

(Recall that [z,y] = {tz + (1 —t)y, t € [0,1]}.) For a.e. z,y € w, one has, with Dyu = |ug — ur| if
o € &int, 0 = K|L,

(u(z) —u@)® < (Y IDsulxo(z,y))’,

0EE&int

(note that the convexity of w is used here) which yields, thanks to the Cauchy-Schwarz inequality,

D,ul?
W) —u@? < 3 12U ) S decoyaxo (@), (3.93)
dyc
0C€Em 0 YT 0EEint
with
Y-z
Coy—z =

recall that n, is a unit normal vector to o, and that xx — 2y = *d,n, if 0 € &py, 0 = K|L. For a.e.
T,y € w, one has

y—z
Y dotoy-aXo(@y) = |(ax — 1) T

ly — = ;
0 EEint

for some convenient control volumes K and L, depending on z, y and o (the convexity of w is used again
here). Therefore,

Z doCoy—oXo(2,y) < diam(Q).

0€E&int

Thus, integrating (3.93) with respect to z and y in w,

|Dul?
V2dzdy < diam(Q) Z ﬁxa(w,y)dxdy,
wJw g~0,Yy—T

0€Ent
which gives, by a change of variables,
|Dyul?
)2dzdy < diam(Q) ( Z To Xo (2,2 + 2)dz)dz. (3.94)
R 0€E W 0 TF Y

Noting that, if |z| > diam(Q), x,(z,z + 2) =0, for a.e. z € Q, and
/ Xo (@, 2 + 2z)dz < m(0)|z - n,| = m(0)|z|c,, for ae. z € RY,
Q
therefore, with (3.94):

/ / (u(z) — u(y))?dzdy < (diam(02))*m(Ba) > %7

0€Einy

where Bq denotes the ball of R? of center 0 and radius diam(Q).
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This inequality proves (3.92) and then (3.91) with Co = (diam(Q))?m(Bg) (which only depends on ).
Taking w = €, it concludes the proof of Lemma 3.7 in the case where 2 is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)

In this step, one proves the same inequality than (3.91) but with the mean value of u on a (arbitrary)
part I of the boundary of w instead of m, (u) and with a convenient C; depending on I, 2 and w instead
of C(].

More precisely, let w be a polygonal open convex subset of 2 and let I C dw, with m(I) > 0 (m(I) is
the (d — 1)-Lebesgue measure of I). Assume that I is included in a hyperplane of R?. Let F(u) be the
“trace” of u on the boundary of w, that is J(u)(z) = ux if r € OwN K, for K € T. (If z € KN L, the
choice of F(u)(x) between ux and uy does not matter). Let my(u) be the mean value of 7(u) on I. This
step is devoted to the proof that there exists C1, only depending on €2, w and I, such that

lu(e) = mr (@[3 < Cilul} - (3.95)

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} x J, with J C IR and w C R4 x IR (one uses
here the convexity of w).

Let o = max{z1, z = (z1,22)! € W} and a = (a,B)! € w. In the following, a is fixed. For a.e.
x = (z1,22)! € w and for a.e. (for the 1-Lebesgue measure) y = (0,7)! € I (with ¥ € .J), one sets
2(z,y) = ta + (1 — t)y with t = x1/a. Note that, thanks to the convexity of w, z(z,y) = (21,22)! € @,
with z; = 1. The following inequality holds:

E(u(z) =) () < lu(z) —ulz(z,y))] + [u(z(z,y) —7(u)¥))]-

In the following, the notation Cj, ¢ € IN*, will be used for quantities only depending on 2, w and I.
Let us integrate the above inequality over y € I, take the power 2, from the Cauchy-Schwarz inequality,
an integration over z € w leads to

/ 2 I)// (z,9)))?dv(y)dz
m(—’ // — u(y))*dy(y)da.

Then,

with, since w is convex,

A:/w/l( Z |DUU|X¢7($’Z(may)))2d7(y)dma

0EE&int

B= // 3" IDoulxo (2(2,y),9)) *dy(y)da.

€&

and

Recall that, for £,n € Q, x,(§,n) = 1if [£,n]No # 0 and x,(&,m) =0 if [£,n] N = 0. Let us now look
for some bounds of A and B of the form Clul] .

The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that

Z Ca,z—z(z,y)daXa(maz(may)) < dlam(ﬂ)

0EEint

(recall that ¢, , = ||7’7| -n,| (for n € R?\ 0) gives
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// 3 |Doul*xo (2, 2(z, y))dxdv(y)_

vetm  Coeaea)de

Since 21 = z1, one has ¢, ;_;(z,) = Co.e, with e = (0,1)". Let us perform the integration of the right
hand side of the previous inequality, with respect to the first component of x, denoted by x1, first. The
result of the integration with respect to x; is bounded by |u|%7— Then, integrating with respect to x»

and y € I gives A < Csulf -
In order to obtain a bound B, one remarks, as for A, that

B<C4// y [Dorfole d) Y gy ().

oEEint c""y z(z,y)

In the right hand side of this inequality, the integration with respect to y € I is transformed into an
integration with respect to £ = (£1,&2)" € o, this yields (note that ¢,y .(s,45) = Co,a—y)

B < 04 Z |D0u|2 / ¢a(ﬂfa€) |a - y(€)|dazd’y(.§),

e dy o Cl,a—y(€) |a' - £|

where y(&) = s + (1 — s)a, with s& + (1 — s)a = 0, and where 1), is defined by

¢0’($7§) = ]-7 if y(&) € I and §1 S Z1
lba(m,g) = 07 if y(f) ¢I or 61 > 1.

Noting that cr ,_y ) > Cs > 0, one deduces that

pecy Y 12t “' / / oo (j)'dw)dws) < Crlull 1,

with, for instance, C7 = Cg(diam(w))2. The bounds on A and B yield (3.95).

Step 8 (proof of (3.90))

Let us now prove that there exists D € IR, only depending on Q such that (3.90) hold. Since Q is a
polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by
{,...,Q}, such that @ = U?_,Q;. Let I; ; = ;N Q;, and B be the set of couples (i,j) € {1,...,n}>
such that ¢ # j and the (d — 1)-dimensional Lebesgue measure of I; ;, denoted by m(I; ;), is positive.
Let m; denote the mean value of w on ;, i € {1,...,n}, and m; ; denote the mean value of w on I, ;,
(i,7) € B. (For o € &ing, in order that u be defined on o, a.e. for the (d — 1)-dimensional Lebesgue
measure, let K € T be a control volume such that o € £k, one sets u = ug on o.) Note that Mg = Mj;
for all (i,7) € B.

Step 1 gives the existence of C;, i € {1,...,n}, only depending on € (since the ©; only depend on ),
such that

llu = millZ20,) < Cilul? 7, Vi€ {1,...,n}, (3.96)
Step 2 gives the existence of C; ;, ,j € B, only depending on 2, such that

llw — mi 1720, < Cijluli g V(,5) € B.

Then, one has (m; — m;;)°m(Q;) < 2(C; + Cyj)|ulf 7, for all (i,5) € B. Since Q is connected, the
above inequality yields the existence of M, only depending on (2, such that |m; — m;| < M|u|;,7 for
all (i,5) € {1,...,n}?, and therefore |mq(u) — m;| < M|u|;,7 for all i € {1,...,n}. Then, (3.96) yields
the existence of D, only depending on , such that (3.90) holds. This completes the proof of Lemma
3.7. [
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An easy consequence of the proof of Lemma 3.7 is the following lemma. Although this lemma, is not used
in the sequel, it is interesting in its own sake.

Lemma 3.8 (Mean boundary Poincaré inequality) Let Q be an open bounded polygonal connected
subset of R?, d = 2 or 3. Let I C O such that the (d—1)- Lebesgue measure of I is positive. Then, there
exists C € Ry, only depending on Q and I, such that for all admissible mesh (in the sense of Definition
3.5 page 62) T and for all u € X(T) (see Definition 3.2 page 39), the following inequality holds:

[lu — mI(U)||2L2(Q) < Clulf

where | - |17 is the discrete H' seminorm defined in Definition 3.6 and mp(u) is the mean value of ¥(u)
on I with 7(u) defined a.e. on OQ by F(u)(x) =uk ifx €0,0 €€t NEK, K € T.

Finally, let us point out that a continuous version of lemmata 3.7 and 3.8 holds and that the proof is
similar and rather easier. Let us state this continuous version which can be proved by contradiction or
with a technique similar to Lemma 3.4 page 48. The advantage of the latter is that it gives a more
explicit bound.

Lemma 3.9 Let Q be an open bounded polygonal connected subset of R?, d =2 or 3. Let I C 89 such
that the (d — 1)- Lebesgue measure of I is positive.

Then, there exists C' € R4, only depending on Q, and Ce Ry, only depending on Q and I, such that,
for all u € H(Q), the following inequalities hold:

lullz2() < Clulfn gy + Q(m(ﬂ))_l(/Q u(w)dr)?

and

l[w —mi()||720) < Clulf gy,

where || (q) is the H' seminorm defined by [v[3 o) = IVull? 2y = Jo [Vv(@)[?dz for allv € H'(),
and my(u) is the mean value of ¥(u) on I. Recall that 7 is the trace operator from H'(Q) to H'/?(99Q).

3.2.3 Error estimate

Under Assumption 3.3, let 7 be an admissible mesh (see Definition 3.5) and {fx, K € T}, {9k, K € T}
defined by (3.84), (3.85). By Lemma, 3.6, there exists a unique solution (ux)xe7 to (3.86)-(3.87). Under
an additional regularity assumption on the exact solution, the following error estimate holds:

Theorem 3.5 Under Assumption 3.3 page 62, let T be an admissible mesh (see Definition 3.5 page 62)
and h = size(T). Let (ux)kxeT be the unique solution to (3.86) and (3.87) (thanks to (3.84) and (3.85),
existence and uniqueness of (ux)ker s given in Lemma 3.6). Let ur € X(T) (see Definition 3.2 page
39) be defined by ur(x) = uk for a.e. x € K, for oll K € T. Assume that the unique solution, u, to
Problem (3.82), (3.83) satisfies u € C*(Q).

Then there exists C € R which only depends on u and Q0 such that

lur — ull2() < Ch, (3.97)

> (o), (T m(la) / Va(z) - nx.dv(@))? < Ch. (3.98)
0=K|LEE;nt 7 7
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Recall that, in the above theorem, K|L denotes the element ¢ of &y such that & = 0K NJL, with K,
LeT.

PROOF of Theorem 3.5
Let C+ € IR be such that

> t(zx)m(K) =0,

KeT
where ©w = u + C7r.
Let, for each K € T, ex = u(rk) — uk, and ey € X(T) defined by er(z) = ek for a.e. € K, for all
K € T. Let us first prove the existence of C' only depending on u and 2 such that

ler|i,7 < Ch and |ler||L2(q) < Ch. (3.99)
Integrating (3.80) page 62 over K € T, and taking (3.81) page 62 into account yields:
/Vu ‘ng,dy(z / f(z)dz +/ g(z)dy(z). (3.100)
KNI

c€EEK

For o € &y such that o = K| L, let us define the consistency error on the flux from K through o by:

RK,G = ﬁ /(;Vu(.’l?) ’ nKvad’Y(m) - %UU(Q:K)

Note that the definition of Rk , remains with @ instead of u in (3.101).
Thanks to the regularity of the solution wu, there exists C; € IR, only depending on wu, such that
|Rk,r| < Cih. Using (3.100), (3.101) and (3.86) yields

(3.101)

Z TK|L(eL — eK)2 S dm(Q)(Clh)2,

K|LEEin

which gives the first part of (3.99).
Thanks to the discrete Poincaré inequality (3.89) applied to the function e, and since

Y m(K)ex =0

KeT

(which is the reason why e; was defined with @ instead of u) one obtains the second part of (3.99), that
is the existence of Cs only depending on u and 2 such that

Z m(K)(ex)? < Cyh?.

KeT

From (3.99), one deduces (3.97) from the fact that u € C*(Q2). Indeed, let Cy be the maximum value of
[Vu| in Q. One has |u(z) — u(y)| < Cah, for all z, y € K, for all K € T. Then, from [, u(z)dz = 0, one
deduces C'+ < Cyh. Furthermore, one has

) /K (u(x) — u(@))?dz < 3 m(K)(Coh)? = m(Q)(Crh)2.

KeT KeT
Then, noting that

”'U/T u||L2(Q) Z / UK —’LL dzr

KeT

Z )2 4+ 3(C7)*m +3Z/ u(zr) — u(z))*ds

KeT KeT
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yields (3.97).

The proof of Estimate (3.98) is exactly the same as in the Dirichlet case. This property will be useful
in the study of the convergence of finite volume methods in the case of a system consisting of an elliptic
equation and a hyperbolic equation (see Section 7.3.6). [

As for the Dirichlet problem, the hypothesis u € C?(f)) is not necessary to obtain error estimates.
Assuming an additional assumption on the mesh (see Definition 3.7), Estimates (3.99) and (3.98) hold
under the weaker assumption u € H2()) (see Theorem 3.6 below). It is therefore also possible to obtain
(3.97) under the additional assumption that v is Lipschitz continuous.

Definition 3.7 (Neumann restricted admissible meshes) Let 2 be an open bounded polygonal
connected subset of R% d = 2 or 3. A restricted admissible mesh for the Neumann problem, de-
noted by 7, is an admissible mesh in the sense of Definition 3.5 such that, for some ¢ > 0, one has
dk,, > ¢diam(K) for all control volume K and for all 0 € Ex N Eing.

Theorem 3.6 (H? regularity, Neumann problem) Under Assumption 3.3 page 62, let T be an ad-
missible mesh in the sense of Definition 8.7 and h = size(T). Let ur € X (T) (see Definition 3.2 page 39)
be the approzimated solution defined in Q by ur(x) = uk for a.e. © € K, for all K € T, where (ux)keT
is the (unique) solution to (3.86) and (3.87) (thanks to (3.84) and (3.85), existence and uniqueness of
(ur)keT 18 given in Lemma 3.6). Assume that the unique solution, u, of (3.82), (3.83) belongs to H%(Q).
Let C+ € R be such that

z u(xg)m(K) =0 whereu =u + Cr.

KeT

Let, for each control volume K € T, ex = u(zkx) —uk, and er € X(T) defined by er(x) = ex for a.e.
r €K, foral KeT.
Then there exists C, only depending on u, ¢ and 2, such that (3.99) and (3.98) hold.

)

Note that, in Theorem 3.6, the function ey is well defined, and the quantity “Vu -n,” is well defined on

o, for all 0 € £ (see Remark 3.11).

PROOF of Theorem 3.6
The proof is very similar to that of Theorem 3.4 page 55, from which the same notations are used.

There exists some C, depending only on the space dimension (d) and ¢ (given in Definition 3.7), such
that, for all o € &int,

h2
2< 00—+ H 2 102
e e (OO (3102)
and therefore
S m(o)d, B2 < CR? / \H (u) () ?d. (3.103)
0€E&int Q

The proof of (3.102) (from which (3.103) is an easy consequence) was already done in the proof of Theorem
3.4 (note that, here, there is no need to consider the case of o € Eext). In order to obtain Estimate (3.99),
one proceeds as in Theorem 3.4. Recall

lerlfr < D RolDoelm(o),

0€EEint

where |Dye| = |ex — er| if 0 € & is such that o = K|L; hence, from the Cauchy-Schwarz inequality,
one obtains that
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erfr < (X Rem@)d,) (X 1DseP ).

0EEint 0EEint

Then, one obtains, with (3.103),

lerlur < VOh( /Q |H (u)(2) [2dz) .

This concludes the proof of the first part of (3.99). The second part of (3.99) is a consequence of the
discrete Poincaré inequality (3.89). Using (3.103) also easily leads (3.98).

Note also that, if u is Lipschitz continuous, Inequality (3.97) follows from the second part of (3.99) and
the definition of @ as in Theorem 3.5.

This concludes the proof of Theorem 3.6. [

Some generalizations of Theorem 3.6 are possible, as for the Dirichlet case, see Remark 3.12 page 58.

3.2.4 Convergence

A convergence result, under Assumption 3.3, may be proved without any regularity assumption on the
exact solution.

The proof of convergence uses the following preliminary inequality on the “trace” of an element of X (7)
on the boundary:

Lemma 3.10 (Trace inequality) Let Q be an open bounded polygonal connected subset of R% d =2
or 3 (indeed, the connexity of Q is not used in this lemma). Let T be an admissible mesh, in the sense
of Definition 3.5 page 62, and uw € X(T) (see Definition 3.2 page 39). Let uk be the value of u in the
control volume K. Let ¥(u) be defined by ¥(u) = uk a.e. (for the (d— 1)-dimensional Lebesgue measure)
on o, if 0 € Eext and 0 € Ex. Then, there exists C, only depending on 2, such that

7()llz2o0) < Clluly, + llullr2(e))- (3.104)

Remark 3.14 The result stated in this lemma still holds if Q is not assumed connected. Indeed, one
needs only modify (in an obvious way) the definition of admissible meshes (Definition 3.5 page 62) so as
to take into account non connected subsets.

PROOF of Lemma 3.10

By compactness of the boundary of 912, there exists a finite number of open hyper-rectangles (d = 2 or
3), {R;,i=1,...,N}, and normalized vectors of R, {ni,i=1,...,N}, such that

ni-n(z)>a>0forallz € RNV, € {1,...,N},
{r+tn,z e R;NIN,te Ry} NR; CQ,

where « is some positive number and n(z) is the normal vector to 9Q at z, inward to Q. Let {a;,i =
1,...,N} be a family of functions such that Zfil ai(z) = 1, for all z € 90, a; € C2(R% R, ) and
a; = 0 outside of R;, for all s = 1,...,N. Let I'; = R; N 0NQ; let us prove that there exists C; only
depending on « and «; such that

e (W)llz2ryy < Ci(luly,r + llullr2())- (3.105)

The existence of C, only depending on , such that (3.104) holds, follows easily (taking C = Zfil Ci,
and using Zfil a;(z) = 1, note that o and «; depend only on ). It remains to prove (3.105).
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Let us introduce some notations. For ¢ € £ and K € T, define x, and xx from R* x R? to {0,1}
by Xo(z,y) = L, if [z,y] "o # 0, Xo(z,y) = 0, if [z,y] No =0, and xk(z,y) = 1, if [z,y] N K # 0,
Xk (z,y) = 0,if [z,y]) N K = 0.

Let i € {1,...,N} and let € T';. There exists a unique ¢ > 0 such that z +tn; € OR;, let y(z) = = +1tn;.
For o € &, let 2,(z) = [z,y(z)] No if [z,y(z)] N o # O and is reduced to one point. For K € T, let
&k (2),nk (z) be such that [z,y(z)] N K = [Ex(z),nk (z)] if [z,y(z)] N K # 0.

One has, for a.e. (for the (d — 1)-dimensional Lebesgue measure) = € T';,

leFw) @) < Y iz @) (uk —ur)lxo (@ y(@) + Y, (i€ (@) — ci(ni (@))ux|xx (@, y(x)),
0=K|LEEint KeT
that is,
|y (u)(z)[* < A(z) + B(x) (3.106)
with

A@) =20 Y leilze (@) (uk = ur)|xe (2, y(2)))?,

o0=K|LEEns

=2 [(@i(éx(2)) — ai(nk (2)))uk |xx (@, y(x)))*.

KeT

A bound on A(z) is obtained for a.e. z € T';, by remarking that, from the Cauchy-Schwarz inequality:

x ) Z do-CUXU(may(m))J

(TEgm: 0€Eint
where D; only depends on a; and ¢, = |; - n,|. (Recall that D,u = |ug —ur|.) Since
> docoxo(z,y(z)) < diam(Q),
0€EE&int

this yields:
|Doul?

oo

A(z) < diam(Q)Dy Y

0EEint

Xo (z,y(2))-

Then, since

[ @@t < emo)

i

there exists D2, only depending on 2, such that

A= [ A@dr(@) < Dalul 1.
r;

A bound B(z) for a.e. z € T; is obtained with the Cauchy-Schwarz inequality:

B(2) < Dy 3. whxx(@,y(@)éx (@) —nx@)] Y léx (@) — nx(@)lxx @, (@),

KeT KeT
where D3 only depends on «;. Since

> éx(@) = nx(@)xk (2, y()) < diam(Q) and / Xk (€,y(2))[€x (2) — nx (2)|dy(2) < —m(K),

KeT
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there exists Dy, only depending on €2, such that

5= [ B)@) < Dillulz oy
Integrating (3.106) over I';, the bounds on A and B lead (3.105) for some convenient C; and it concludes
the proof of Lemma, 3.10. [

Remark 3.15 Using this “trace inequality” (3.104) and the Kolmogorov theorem (see Theorem 3.9
page 91, it is possible to prove Lemma 3.7 page 64 (Discrete Poincaré inequality) by way of contradic-
tion. Indeed, assume that there exists a sequence (uyn)new such that, for all n € IN, [Jug||r2@) = 1,
Joun(@)dz = 0, u, € X(T,) (where 7, is an admissible mesh in the sense of Definition 3.5) and
|unl1,7, < L. Using the trace inequality, one proves that (un)new is relatively compact in L*(1), as in
Theorem 3.7 page 73. Then, one can assume that u, — u, in L?(Q2), as n — oo. The function u satisfies
lullz) = 1, since [lunllr2) = 1, and [, u(z)de = 0, since [, un(z)dz = 0. Using |un|1,7, < 1,
a proof similar to that of Theorem 3.11 page 92, yields that D;u = 0, for all i € {1,...,n} (even if
size(Tn) # 0, as n — o0), where D;u is the derivative in the distribution sense with respect to z; of w.
Since 2 is connected, one deduces that u is constant on 2, but this is impossible since |lu||z2(q) =1 and
Jo u(x)dx = 0.

Let us now prove that the scheme (3.86) and (3.87), where (fx)ke7 and (9x)ke7 are given by (3.84)
and (3.85) is stable: the approximate solution given by the scheme is bounded independently of the mesh,
as we proceed to show.

Lemma 3.11 (Estimate for the Neumann problem) Under Assumption 3.8 page 62, let T be an
admissible mesh (in the sense of Definition 3.5 page 62). Let (ui)xecT be the unique solution to (3.86)
and (3.87), where (fx)keT and (9gx)keT are given by (3.84) and (3.85); the existence and uniqueness
of (uk)keT 18 given in Lemma 8.6. Let ur € X(T) (see Definition 3.2) be defined by ur(x) = uk for
a.e. ¢ € K, for all K € T. Then, there exists C € R, only depending on 2, g and f, such that

lurli, T < C, (3.107)
where | - |1,7 is defined in Definition 3.6 page 63.

ProOF of Lemma, 3.11
Multiplying (3.86) by ux and summing over K € T yields

> rrplun —uk)® =Y m(K)fxux + Y uk,gx,m(0), (3.108)

K|LE&ns KeT 0EEext

where, for 0 € Eext, K, € T is such that o € &k, .
We get (3.107) from (3.108) using (3.104), (3.89) and the Cauchy-Schwarz inequality. ]

Using the estimate (3.107) on the approximate solution, a convergence result is given in the following
theorem.

Theorem 3.7 (Convergence in the case of the Neumann problem)

Under Assumption 3.3 page 62, let u be the unique solution to (3.82),(3.83). For an admissible mesh (in
the sense of Definition 3.5 page 62) T, let (ux)kxeT be the unique solution to (3.86) and (3.87) (where
(fK)keT and (9x)keT are given by (3.84) and (3.85), the existence and uniqueness of (uk)xeT s given
in Lemma 3.6) and define ur € X(T) (see Definition 3.2) by ur(x) = uk for a.e. x € K, for all K € T.
Then,
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ur = u in L*(Q) as size(T) = 0,

|u7"i7’ - / |Vu(z)|?dz as size(T) = 0
Q

and
F(ur) = F(u) in L*(Q) for the weak topology as size(T) — 0,

where the function ¥(u) stands for the trace of u on OS) in the sense given in Lemma 3.10 when u € X(T)
and in the sense of the classical trace operator from H' () to L2(09) (or Hz (0N))) when u € H'(Q).

PROOF of Theorem 3.7

Step 1 (Compactness)

Denote by Y the set of approximate solutions u7 for all admisible meshes 7. Thanks to Lemma 3.11
and to the discrete Poincaré inequality (3.89), the set Y is bounded in L?(Q). Let us prove that YV is
relatively compact in L?(Q2), and that, if (7,).eN is a sequence of admissible meshes such that size(7;,)
tends to 0 and w7, tends to u, in L?(Q), as n tends to infinity, then u belongs to H'(f2). Indeed, these
results follow from theorems 3.9 and 3.11 page 92, provided that there exists a real positive number C
only depending on Q, f and g such that

|ar(-+n) — ﬂT||2LQ(1Rd) < C|n|, for any admissible mesh 7" and for any n € R%, || <1,  (3.109)
and that, for any compact subset @ of €2,

[lur(-+7n) — u7~||L2(S < CInl(n] + 251ze(T)) for any admissible mesh T

3.110
such that |n| < d(w, Q°). ( )

and for any n € IR

Recall that @7 is defined by 47 (z) = ur(z) if z € Q and 47 (z) = 0 otherwise. In order to prove (3.109)
and (3.110), define x, from R? x R to {0,1} by xo(z,y) = 1if [z,y] N0 # 0 and X, (x,y) = O if
[z,y]No = 0. Let n € R\ {0}. Then:

i(z +n) — (@) < Y xol@mz+n)|Doul+ D Xol@,z+n)|us|, for ae zeq, (3.111)
0EEint 0EEext
where, for 0 € Eext, Uy = ug, and K is the control volume such that ¢ € £x. Recall also that
D,u = |ug —ug|, if 0 = K|L. Let us first prove Inequality (3.110). Let @ be a compact subset of Q. If
z € @ and |n| < d(@,Q°), the second term of the right hand side of (3.111) is 0, and the same proof as
in Lemma 3.3 page 44 gives, from an integration over @ instead of  and from (3.33) with C' = 2 since
[z,24+n] C Qforz € w,

lur (- + 1) = urllia@) < luli Finl(nl + 2size(T)). (3.112)

In order to prove (3.109), remark that the number of non zero terms in the second term of the right hand
side of (3.111) is, for a.e. z € Q, bounded by some real positive number, which only depends on €2, which
can be taken, for instance, as the number of sides of 2, denoted by N. Hence, with C; = (N + 1) (which
only depends on Q. Indeed, if Q is convex, N = 2 is also convenient), one has

li(z +n) —a(x)]* < Ci( Z Xo(x,x 4+ n)|Dyul)? + Cy Z Xo(z,z +n)u?, for ae.z€ Q. (3.113)
0EEint 0EEext

Let us integrate this inequality over IR?. As seen in the proof of Lemma 3.3 page 44,
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2 .
(3 Xolaa+ )| Dgul) e < fuf lal(l + 20 — Dsize(T));
0€Ent

hence, by Lemma 3.11 page 73, there exists a real positive number C5, only depending on €2, f and g,
such that (if |n| < 1)

v/]Rd( Z X0($7m+n)|D0u|)2d-'IJ < CQ|’I7|.

0EEint

Let us now turn to the second term of the right hand side of (3.113) integrated over R%;

[ (X v@atmd)a < 3 mE@)ld

0EEext 0EEext
= ||7(UT)”%2(39) |77|§

therefore, thanks to Lemma 3.10, Lemma 3.11 and to the discrete Poincaré inequality (3.89), there exists
a real positive number C3, only depending on 2, f and g, such that

A

/Rd( S Xolo, +n)u2)da < Cyln.

0EEext

Hence (3.109) is proved for some real positive number C only depending on Q, f and g.

Step 2 (Passage to the limit)

In this step, the convergence of u7 to the solution of (3.82), (3.83) (in L2(Q) as size(7) — 0) is first
proved.

Since the solution to (3.82), (3.83) is unique, and thanks to the compactness of the set Y described in
Step 1, it is sufficient to prove that, if u, — u in L%(Q) and size(7,) — 0 as n — 0, then u is a solution
to (3.82)-(3.83).

Let (7n)nen be a sequence of admissible meshes and (u7;, )new be the corresponding solutions to (3.86)-
(3.87) page 63 with 7 = T,,. Assume u7, — u in L%(Q) and size(7,,) — 0 as n — 0. By Step 1, one has
u € H'(Q) and since the mean value of u7, is zero, one also has [, u(x)dz = 0. Therefore, u is a solution

of (3.82). It remains to show that u satisfies (3.83). Since (J(ut,))nen is bounded in L2(812), one may
assume (up to a subsequence) that it converges to some v weakly in L%(99). Let us first prove that
- [ w@sp@is + [ Vo) n@p@ie = [ fep@d

B (3.114)
+ / 9(@)p(@)d(z), Yo € C2(Q),
o

and then that u satisfies (3.83).

Let 7 be an admissible mesh, u7 the corresponding approximate solution to the Neumann problem, given
by (3.86) and (3.87), where (fx)xeT and (gx)keT are given by (3.84) and (3.85) and let ¢ € C%(Q).
Let ox = p(zk), define pr by pr(z) = ¢k, for a.e. © € K and for any control volume K, and
F(p7r)(x) = pK for a.e. x € o (for the (d — 1)-dimensional Lebegue measure), for any o € Eext and
control volume K such that o € £k.

Multiplying (3.86) by ¢k, summing over K € 7 and reordering the terms yields

Suxe 3 mwuler—vn) = [ f@er@ds+ [ Fer@oia). (3.115)

KeT LeN(K)

Using the consistency of the fluxes and the fact that ¢ € C?(€), there exists C only depending on ¢ such
that
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> rmnlen—ox) = [ Ap@ido— [ Vo) n@h@ + 3 Rrulo)

LEN(K) oQNoK LeN (K)

with Rx,, = —Rpk, for all L € N(K) and K € T, and |Rk,,| < Cym(K|L)size(T), where Cy only
depends on ¢. Hence (3.115) may be rewritten as

- [ur@ap@as+ [ n(e)(ur) (@)dy(a) + g T) =
0 (3.116)
f f@)pr(@)de + / o) (@)9(@)dy(2),
where
e, T = G Y IDyulm(o)size(T)
0 EEint
< (Y D, |2m )2 (Y m(o)d,) ?sive(T)
0EEint 0EE&int
< Cysize(T),

where Cj is a real positive number only depending on f, g, Q and ¢ (thanks to Lemma 3.11).
Writing (3.116) with 7 = 7, and passing to the limit as n tends to infinity yields (3.114).

Let us now prove that u satifies (3.83). Since u € H'(Q), an integration by parts in (3.114) yields

/ V() - Vo(z)dz + / Vo(@) - n(z)(v(z) - 7(u) ())dv(2)
/f dw+/Qg<) (2)d(z),Vp € C* (@),

where 7(u) denotes the trace of u on 9 (which belongs to L2(92)). In order to prove that u is solution

0 (3.83) (this will conclude the proof of Theorem 3.7), it is sufficient, thanks to the density of C2(f2) in
H'(9), to prove that v = ¥(u) a.e. on 8 (for the (d — 1) dimensional Lebesgue measure on 99). Let us
now prove that v = 7(u) a.e. on 9Q by first remarking that (3.117) yields

(3.117)

/VU - Vo(z dm—/f z)dz, Vo € C°(Q),

and therefore, by density of C°(Q) in H}(Q),

/Vu -Vo(z d;v—/f z)dz, Vo € H} ().

With (3.117), this yields

- Vo(z) -n(z)(v(z) —F(u)(z))dy(z) =0, Vo € C*(Q) such that ¢ = 0 on Q. (3.118)
lo)

There remains to show that the wide choice of ¢ in (3.118) allows to conclude v = F(u) a.e. on 9Q (for
the (d — 1)-dimensional Lebesgue measure of 9Q). Indeed, let I be a part of the boundary 09, such that
I is included in a hyperplane of IR¢. Assume that I = {0} x .J, where J is an open ball of IR¢"! centered
on the origin. Let z = (a, %) € R? with a € R}, %€ R4 and B = {(t, a_|t|y+ 1tz Z);t € (—a,a),y € J};
assume that, for a convenient a, one has

BmQ:{(t,“T” |t| 2t € (0,a),y € J}.
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Let ¢ € C°(J), and for z = (z1,y) € R x J, define ¢1(z) = —21¢(y). Then,

0
@1 € C*(R%) and g _ ¥ on I.
on
(Recall that n is the normal unit vector to 912, outward to Q.) Let ¢2 € C°(B) such that 3 =1 on
a neighborhood of {0} x {¢ # 0}, where {¢ # 0} = {z € J; ¢(z) # 0}, and set ¢ = p1p2; @ is an
admissible test function in (3.118), and therefore

/J () (7) (0,9) — v(0,4))dy = 0,

which yields, since 4 is arbitrary in C°(J), v = F(u) a.e. on I. Since J is arbitrary, this implies that
v =7(u) a.e. on ON.

This conclude the proof of ur — u in L?(Q) as size(7T) — 0, where u is the solution to (3.82),(3.83).

Note also that the above proof gives (by way of contradiction) that F(ur) — 7(u) weakly in L?(0), as
size(T) — 0.
Then, a passage to the limit in (3.108) together with (3.83) yields

lur|? s — |||Vu|||2LZ(Q), as size(7T) — 0.

This concludes the proof of Theorem 3.7. [

Note that, with some discrete Sobolev inequality (similar to (3.70)), the hypothesis “f € L%(Q) g €
L?(6€)” may be relaxed in some way similar to that of Item 2 of Remark 3.6.

3.3 General elliptic operators

3.3.1 Discontinuous matrix diffusion coefficients
Meshes and schemes

Let Q be an open bounded polygonal subset of IRd, d = 2 or 3. We are interested here in the discretiza-
tion of an elliptic operator with discontinuous matrix diffusion coefficients, which may appear in real
case problems such as electrical or thermal transfer problems or, more generally, diffusion problems in
heterogeneous media. In this case, the mesh is adapted to fit the discontinuities of the data. Hence
the definition of an admissible mesh given in Definition 3.1 must be adapted. As an illustration, let us
consider here the following problem, which was studied in Section 2.3 page 21 in the one-dimensional
case:

—div(AVu)(z) + div(vu)(z) + bu(z) = f(z), z € Q, (3.119)

u(z) = g(x), € 09, (3.120)

with the following assumptions on the data (one denotes by IR?*? the set of d x d matrices with real
coefficients):

Assumption 3.4

1. A is a bounded measurable function from Q to R*% such that for any T € (1, A(z) is symmetric,
and that there exists A and X € R such that X, - § < A(x)€ - & < X - € for any x € Q and any

¢ e RY.
2. ve C'Y(Q,RY), divv >0 on Q, be R,..

3. f is a bounded piecewise continuous function from € to R.
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4. g is such that there exists g € H'(Q) such that ¥(§) = g (a.e. on OQ) and is a bounded piecewise
continuous function from 0 to IR.

(Recall that % denotes the trace operator from H!(Q) into L?(9f2).) As in Section 3.1, under Assumption
3.4, there exists a unique variational solution u € H'(Q2) of Problem (3.119), (3.120). This solution
satisfies u = w + g, where § € H'(Q) is such that ¥(§) = g, a.e. on 99, and w is the unique function of
HL(Q) satisfying

| (8@¥0@) - V(o) + divtvo)@yp(a) + boa)i(a))do =
| (-A@Vita) - Vo) - div(va) @) (o) = bi(e) (o) + F2)(o)) de, V0 € (D).
Let us now define an admissible mesh for the discretization of Problem (3.119)-(3.120).

Definition 3.8 (Admissible mesh for a general diffusion operator) Let © be an open bounded
polygonal subset, of IRd, d = 2 or 3. An admissible finite volume mesh for the discretization of Problem
(3.119)-(3.120) is an admissible mesh 7 of Q in the sense of Definition 3.1 page 37 where items (iv) and
(v) are replaced by the two following conditions:

(iv)’ The set T is such that
the restriction of g to each edge o € Eexy is continuous.

For any K € T, let Ak denote the mean value of A on K, that is

1
Ag = m/KA(m)dw

There exists a family of points
P = (zk)keT such that Tx = Nyecg, Pr,o € K,

where Dk , is a straigth line perpendicular to ¢ with respect to the scalar product induced by AI}I
such that Dk, No = Dr, No # 0 if 0 = K|L. Furthermore, if 0 = K|L, let y, = Dk, No(=
Dr,, No) and assume that 2k # zr.

(v)’ For any o € Eext, let K be the control volume such that o € £k and let Dk, be the straight line
going through zx and orthogonal to o with respect to the scalar product induced by Affl; then,
there exists Yy, € 0 N Dk ,; let g, = 9(yo)-

In the sequel, the following notations are used. size(7) = sup{diam(K), K € T}. For any K € T and
o € £, m(K) is the d-dimensional Lebesgue measure of K (i.e. area if d = 2, volume if d = 3) and m(o)
the (d — 1)-dimensional Lebesgue measure of o. The set of interior (resp. boundary) edges is denoted by
Eint (resp. Eext), that is Einy = {0 € &; 0 € 0N} (resp. Eext = {0 € £; 0 C 0N}). The set of neighbours
of K is denoted by N(K), that is N(K) = {L € T; 30 € €k, 0 = K|L}. If 0 = K|L, we denote by
dk,, the Euclidean distance between zrx and y, = Dk, N0, and dg | = dk,oc + dL,o; if 0 = Eext N &k,
d, denotes the Euclidean distance between xx and y, = Dk, No. For any o € &, the transmissibility
through o is defined by 7, = m(0)/d, (if dy # 0).

We shall now define the discrete unknowns of the numerical scheme, with the same notations as in Section
3.1.2. As in the case of the Dirichlet problem, the primary unknowns (ux)ke7 will be used, which aim
to be approximations of the values u(zk), and some auxiliary unknowns, namely the fluxes Fk ,, for
all K € T and o € £k, and some (expected) approximation of u in o, say u,, for all ¢ € £. Again,
these auxiliary unknowns are helpful to write the scheme, but they can be eliminated locally so that
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the discrete equations will only be written with respect to the primary unknowns (uk)ker. For any
0 € Eext, set Uy = g(y,). The finite volume scheme for the numerical approximation of the solution to
Problem (3.119)-(3.120) is obtained by integrating Equation (3.119) over each control volume K, and
approximating the fluxes over each edge o of K. This yields

Z Fro,+ Z VK, olUg+ + M(K)bug = fx, VK € T, (3.121)
€K o€EEK

where

vk,e = [, v(z) - ng dy(z) (where ng,, denotes the normal unit vector to o outward to K); if o =
Ky |Ks gy = ug, ,, where K, | is the upstream control volume, i.e. vk, > 0, with K = K, ,;
if 0 € Eext, then u, 4 = uk if vk, > 0 (i.e. K is upstream to o with respect to v), and u, 4 = u,
otherwise.

Fk , is an approximation of fa —AxVu(z) - ng ,dy(z); the approximation Fk , is written with respect
to the discrete unknowns (uk)kxe7 and (us)oce. For K € T and o € &k, let Ak, = |Axnk,,| (recall
that | - | denote the Euclidean norm).

o If i ¢ 0, a natural expression for Fi , is then

Uy — UK
Fg, = —m(a))\K,(,”di
K,o
Writing the conservativity of the scheme, i.e. FL, = —Fk, if 0 = K|L C , yields the value of
Uy, if 21, ¢ o, with respect to (ux)keT;

1

AK,o AL, (
dx,o dr o

)\K,a' )‘L,O'
uL).

Uy =

K +
dK,a' dL,o’

Note that this expression is similar to that of (2.26) page 22 in the 1D case.
o If zx € 0, One sets u, = uk-
Hence the value of Fk ,;

e internal edges:

Fro = —T,(ur —uk), if 0 € Eny, 0 = K|L, (3.122)
where Ae A
K,0\L,o .
. =m J J if yo # 2 and y, # x
K (0 /\K,adL,a + AL,(J'dI(,o' Y 7£ K Y 75 g
and A
Ty = m(a)dK—’o if y, # rx and Yy, = xp;
K,o
e boundary edges:
Fro = —T5(9s — uK), if 0 € Eexy and zx & o, (3.123)
where
A

if zx € o, then the equation associated to ug is uxg = g, (instead of that given by (3.121)) and
the numerical flux Fk is an unknown which may be deduced from (3.121).

Remark 3.16 Note that if A = Id, then the scheme (3.121)-(3.123) is the same scheme than the one
described in Section 3.1.2.
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Error estimate

Theorem 3.8

Let Q be an open bounded polygonal subset of R?, d =2 or 3. Under Assumption 3.4, let u be the unique
variational solution to Problem (3.119)-(3.120). Let T be an admissible mesh for the discretization of
Problem (8.119)-(8.120), in the sense of Definition 8.8. Let (1 and (» € Ry such that

C1(size(T))? < m(K) < (a(size(T))?,
C1size(T) < m(o) < (osize(T),
Gisize(T) < d, < (asize(T).

Assuming moreover that

the restriction of f to K belongs to C(K), for any K € T;

the restriction of A to K belongs to C'(K,IR**%), for any K € T;

the restriction of u (unique variational solution of Problem (3.119)-(3.120)) to K belongs to C*(K), for
any K € T.

(Recall that C™(K,R™) = {v ., v € C™(R*,R")} and C™(-) = C™(-,R).)

Then, there exists a unique family (uk) ket satisfying (3.121)-(3.123); furthermore, denoting by ex =
u(zk) — uk, there exists C € Ry only depending on (1, (2, v = supg 7 (|| D?ul| L= (k)) and 6 = supgcr
([I1DA]| Lo (k)) such that

(Due)2 . 2
;Tm(a) < C(size(T)) (3.124)
and
> ekm(K) < C(size(T))*. (3.125)
KeT

Recall that Dye = |er — ek| for 0 € Eint, 0 = K|L and Dye = |ek| for 0 € Eext N Ek .

PRrROOF of Theorem 3.8

First, one may use Taylor expansions and the same technique as in the 1D case (see step 2 of the proof of
Theorem 2.3, Section 2.3) to show that the expressions (3.122) and (3.123) are consistent approximations
of the exact diffusion flux [ —A(z)Vu(z) - nk sdy(z), i.e. there exists Cy only depending on u and A
such that, for all o € &, with F | = 7, (u(zr) — u(zk)), if 0 = K|L, and F , = 7, (u(y,) — u(zk)), if
0 € Eext N €k,

Fg o — J, =M@)Vu(z) - ng ody(z) = Ri,0,
with |Rk | < Cisize(T)m(o).

There also exists Cy only depending on uw and v such that, for all 0 € &,

vK,au($K7,+) - fa V:-NK U =TK,s,
with |rk .| < Casize(T)m(o).

Let us then integrate Equation (3.119) over each control volume, subtract to (3.121) and use the consis-
tency of the fluxes to obtain the following equation on the error:

h Z Gro+ Z VK, 0€0,+ + M(K)beg =

oefK ocEfK
> (Rko +7rK0) + Sk, VK €T,
o€EEK

where Gk, = T,(er — ek), if 0 = K|L, and Gk,; = T,(—ek), if 0 € Eext N €k, €54 = ek, , is the
error associated to the upstream control volume to ¢ and Sk = b(m(K)u(zk) — [, u(z)dz) is such that
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|Sk| < m(K)Csh, where C5 € IR only depends on uw and b. Then, similarly to the proof of Theorem
3.3 page 52, let us multiply by the eg, sum over K € T, and use the conservativity of the scheme,
which yields that if ¢ = K|L then Rk, = —Rp,. A reordering of the summation over o € & yields
the “discrete H} estimate” (3.124). Then, following HERBIN [1995], one shows the following discrete
Poincaré inequality :

2 (D 06)2
D ekm(K) < Cyy m(o), (3.126)
dy
KeT o€EE
where Cy only depends on €, {; and (, which in turn yields the L? estimate (3.125). n

Remark 3.17 In the case where A is constant, or more generally, in the case where A(x) = A(z)A, where
A is a constant symmetric positive definite matrix, the proof of Lemma 3.1 is easily extended. However,
for a general matrix A, the generalization of this proof is not so clear; this is the reason of the dependency
of the estimates (3.124) and (3.125) on ¢; and (2, which arises when proving (3.126) as in HERBIN [1995].

3.3.2 Other boundary conditions

The finite volume scheme may be used to discretize elliptic problems with Dirichlet or Neumann boundary
conditions, as we saw in the previous sections. It is also easily implemented in the case of Fourier (or
Robin) and periodic boundary conditions. The case of interface conditions between two geometrical
regions is also generally easy to implement; the purpose here is to present the treatment of some of these
boundary and interface conditions. One may also refer to ANGOT [1989] and references therein, FIARD,
HERBIN [1994] for the treatment of more complex boundary conditions and coupling terms in a system
of elliptic equations.

Let Q be (for the sake of simplicity) the open rectangular subset of IR? defined by Q = (0,1) x (0,2),
let O = (07 1) x (07 1)3 2 = (07 1) x (172)3 I = [Oa 1] X {0}3 I, = {1} x [072]7 Is = [07 1] X {2}7
Iy ={0} x[0,2] and I = [0,1] x {1}. Let A and A2 > 0, f € C(), a > 0,u € R, g € C(T4), 6 and
® € C(I). Consider here the following problem (with some “natural” notations):

—div(A;Vu)(z) = f(z), z € Q;,i=1,2, (3.127)
—A;Vu(z) - n(z) = a(u(z) —u), z € Ty UT3, (3.128)
Vu(z) -n(z) =0,z € Ty, (3.129)

u(z) = g(x), z € Ty, (3.130)

(A2Vu(z) -nr(2))2 = (M Vu(z) -nr(z)) +0(2), z € 1, (3.131)
upp(z) —up(z) = @(2), z €1, (3.132)

where n denotes the unit normal vector to Q outward to Q and n; = (0,1)* (it is a unit normal vector
to I).

Let 7 be an admissible mesh for the discretization of (3.127)-(3.132) in the sense of Definition 3.8. For the
sake of simplicity, let us assume here that dx, > 0 for all K € T,0 € £k. Integrating Equation (3.127)
over each control volume K, and approximating the fluxes over each edge o of K yields the following
finite volume scheme:

> Fko=fx, VK €T, (3.133)
o€€k

where Fg , is an approximation of [ —\;Vu(z) - nk sdvy(z), with i such that K C Q;.
Let N7 = card(T), Ne = card(€), N2 = card({o € &0 ¢ QU I}), Ni = card({o € £;0 C T;}), and
N/ = card({o € &0 C I}) (note that Ng = N2 + Y5, Ni + Nf). Introduce the N (primary) discrete
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unknowns (uk)ke7; note that the number of (auxiliary) unknowns of the type Fk , is 2(N2 + N}) +
E;l:l N{; let us introduce the discrete unknowns (u,)scg, which aim to be approximations of u on o.
In order to take into account the jump condition (3.132), two unknowns of this type are necessary on
the edges ¢ C I, namely u,; and u, 2. Hence the number of (auxiliary) unknowns of the type u, is
N2+ Y%, Ni+42N[. Therefore, the total number of discrete unknowns is

4
Niot = Ny +3N2 +4N[ +2)  Ni.
i=1
Hence, it is convenient, in order to obtain a well-posed system, to write N;,; discrete equations. We
already have N7 equations from (3.133). The expression of Fk, with respect to the unknowns ug and
Uy i8S
Uy — UK .
Fro = —m(a)/\iT, VKeT;KCQ;(i=1,2),Vo € &k; (3.134)
K,o
which yields 2(N2 + NJ) + 3>+, NZ. (In (3.134), u, stands for u,; if o C I.)
Let us now take into account the various boundary and interface conditions:

e Fourier boundary conditions. Discretizing condition (3.128) yields

Frxo =am(o)(uy, —w),YK € T,Vo € Ex; 0 CT1 UTs, (3.135)
that is N} + N2 equations.

e Neumann boundary conditions. Discretizing condition (3.129) yields

FK,G—ZO,VKGT,VOE(C/’K;UCF27 (3136)
that is N? equations.

e Dirichlet boundary conditions. Discretizing condition (3.130) yields

Us = 9(Ys), Vo € &0 C Ty, (3.137)

that is N2 equations.

e Conservativity of the flux. Except at interface I, the flux is continuous, and therefore

4
Fxo=-Fr,No€&og¢ (| JTiUI) and o0 = K|L, (3.138)

=1
that is N2 equations.

e Jump condition on the flux. At interface I, condition (3.131) is discretized into

Fro+Fr,= /G(x)ds,\fa €&o0CIlando=K|L, K CQy, (3.139)

that is N/ equations.

e Jump condition on the unknown. At interface I, condition (3.132) is discretized into

Ug2 =Us1 + ®(Ys),YVo € E50 C I and 0 = K|L. (3.140)

that is another N/ equations.
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Hence the total number of equations from (3.133) to (3.140) is Niut, so that the numerical scheme can
be expected to be well posed.

The finite volume scheme for the discretization of equations (3.127)-(3.132) is therefore completely defined
by (3.133)-(3.140). Particular cases of this scheme are the schemes (3.20)-(3.23) page 41 (written for
Dirichlet boundary conditions) and (3.86)-(3.87) page 63 (written for Neumann boundary conditions and
no convection term) which were thoroughly studied in the two previous sections.

3.4 Dual meshes and unknowns located at vertices

One of the principles of the classical finite volume method is to associate the discrete unknowns to the grid
cells. However, it is sometimes useful to associate the discrete unknowns with the vertices of the mesh;
for instance, the finite volume method may be used for the discretization of a hyperbolic equation coupled
with an elliptic equation (see Chapter 7). Suppose that an existing finite element code is implemented
for the elliptic equation and yields the discrete values of the unknown at the vertices of the mesh. One
might then want to implement a finite volume method for the hyperbolic equation with the values of the
unknowns at the vertices of the mesh. Note also that for some physical problems, e.g. the modelling of
two phase flow in porous media, the conservativity principle is easier to respect if the discrete unknowns
have the same location. For these various reasons, we introduce here some finite volume methods where
the discrete unknowns are located at the vertices of an existing mesh.

For the sake of simplicity, the treatment of the boundary conditions will be omitted here. Recall that
the construction of a finite volume method is carried out (in particular) along the following principles:

1. Divide the spatial domain in control volumes,

2. Associate to each control volume and, for time dependent problems, to each discrete time, one
discrete unknown,

3. Obtain the discrete equations (at each discrete time) by integration of the equation over the control
volume and the definition of one exchange term between two (adjacent) control volumes.

Recall, in particular, that the definition of one (and one only) exchange term between two control volumes
is important; this is called the property of conservativity of a finite volume method. The aim here is
to present finite volume methods for which the discrete unknowns are located at the vertices of the
mesh. Hence, to each vertex must correspond a control volume. Note that these control volumes may be
somehow “fictive” (see the next section); the important issue is to respect the principles given above in
the construction of the finite volume scheme. In the three following sections, we shall deal with the two
dimensional case; the generalization to the three-dimensional case is the purpose of section 3.4.4.

3.4.1 The piecewise linear finite element method viewed as a finite volume
method

We consider here the Dirichlet problem. Let Q be a bounded open polygonal subset of IR?, f and g be
some “regular” functions (from Q or 9 to IR). Consider the following problem:

—Au(z) = f(z), =€,
{ U(w)ujg(m), ’ ;e on. (3.141)

Let us show that the “piecewise linear” finite element method for the discretization of (3.141) may be
viewed as a kind of finite volume method. Let M be a finite element mesh of (2, consisting of triangles
(see e.g. CIARLET, P.G. [1978] for the conditions on the triangles), and let V C Q be the set of vertices
of M. For K € V (note that here K denotes a point of ), let ¢k be the shape function associated to
K in the piecewise linear finite element method for the mesh M. We remark that
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Z vr(T) =1, Vr € Q,
Key

and therefore

¥ /Q ok (2)dz = m(Q) (3.142)

Key

and

Z Vok(z) =0, for a.ex € . (3.143)
KeVy

Using the latter equality, the discrete finite element equation associated to the unknown ug, if K € Q,
can therefore be written as

> [ (= us)Ver@) - Vox(o)ds = | f@)en(ada.

Ley’Q

Then the finite element method may be written as

Z —Tg|L(ur —uK) = / f(@)ek(z)dz, if K€ VN,
Ley Q

with

TK|L = — /Q Vor(z) - Vo (z)dz.

Under this form, the finite element method may be viewed as a finite volume method, except that there
are no “real” control volumes associated to the vertices of M. Indeed, thanks to (3.142), the control
volume associated to K may be viewed as the support of px “weighted” by g . This interpretation of
the finite element method as a finite volume method was also used in FORSYTH [1989], FORSYTH [1991]
and EYMARD and GALLOUET [1993] in order to design a numerical scheme for a transport equation for
which the velocity field is the gradient of the pressure, which is itself the solution to an elliptic equation
(see also HERBIN and LABERGERIE [1997] for numerical tests). This method is often referred to as the
”control volume finite element” method.

In this finite volume interpretation of the finite element scheme, the notion of “consistency of the fluxes”
does not appear. This notion of consistency, however, seems to be an interesting tool in the study of the
“classical” finite volume schemes.

Note that the (discrete) maximum principle is satisfied with this scheme if only if the transmissibilities
Tk | are nonnegative (for all K,L € V with K € ) ; this is the case under the classical Delaunay
condition; this condition states that the (interior of the) circumscribed circle (or sphere in the three
dimensional case) of any triangle (tetrahedron in the three dimensional case) of the mesh does not
contain any element of V. This is equivalent, in the case of two dimensional triangular meshes, to the
fact that the sum of two opposite angles facing a common edge is less or equal 7.

3.4.2 Classical finite volumes on a dual mesh

Let M be a mesh of © (M may consist of triangles, but it is not necessary) and V be the set of vertices
of M. In order to associate to each vertex (of M) a control volume (such that the whole spatial domain
is the “disjoint union” of the control volumes), a possibility is to construct a “dual mesh” which will be
denoted by 7. In order for this mesh to be admissible in the sense of Definition 3.1 page 37, a simple way
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is to use the Voronoi mesh defined with V (see Example 3.2 page 39). In order to write the “classical”
finite volume scheme with this mesh (see (3.20)-(3.23) page 41), a slight modification is necessary at the
boundary for some particular M (see Example 3.2); this method is denoted CFV/DM (classical finite
volume on dual mesh); it is conservative, the numerical fluxes are consistent, and the transmissibilities are
nonnegative. Hence, the convergence results and error estimates which were studied in previous sections
hold (see, in particular, theorems 3.1 page 45 and 3.3 page 52).

A case of particular interest is found when the primal mesh (that is M) consists in triangles with acute
angles. One uses, as dual mesh, the Voronoi mesh defined with V. Then, the dual mesh is admissible in
the sense of Definition 3.1 page 37 and is constructed with the orthogonal bisectors of the edges of the
elements of M, parts of these orthogonal bisectors (and parts of 92) give the boundaries to the control
volumes of the dual mesh. In this case, the CFV/DM scheme is “close” to the piecewise linear finite
element scheme on the primal mesh. Let us elaborate on this point.

For K € V, let K also denote the control volume (of the dual mesh) associated to K (in the sequel, the
sense of “K”, which denotes vertex or control volume, will not lead any confusion) and let i be the
shape function associated to the vertex K (in the piecewise linear finite element associated to M). The
term Tg |z, (ratio between the length of the edge K|L and the distance between vertices), which is used
in the finite volume scheme, verifies

TK|L = — /Q Vok(z) - Vor(z)dz.

The CFV/DM scheme (finite volume scheme on the dual mesh) writes

- Z TK|L(uL—uK):/ flx)dz, f K e VNQ,
LEN(K) K

ux = g(K), if K € VN oQ,

where K stands for an element of V or for the control volume (of the dual mesh) associated to this point.
The finite element scheme (on the primal mesh) writes

- Z Tr|L (UL —uk) = / f@)ox(z)dz, if K € VNQ,
LeN(K) Q

ux = g(K), if K € VN oQ.

Therefore, the only difference between the finite element and finite volume schemes is in the definition
of the right hand sides. Note that these right hand sides may be quite different. Consider for example a
node K which is the vertex of four identical triangles featuring an angle of 7 at the vertex K, and denote
by a the area of each of these triangles. Then, for f = 1, the right hand side computed for the discrete
equation associated to the node K is equal to a in the case of the finite element (piecewise linear finite
element) scheme, and equal to 2a for the dual mesh finite volume (CFV/DM) scheme. Both schemes may
be shown to converge, by using finite volume techniques for the CFV/DM scheme (see previous sections),
and finite element techniques for the piecewise linear finite element (see e.g.CIARLET, P.G. [1978]).

Let us now weaken the hypothesis that all angles of the triangles of the primal mesh M are acute to the
so called Delaunay condition and the additional assumption that an angle of an element of M is less or
equal /2 if its opposite edge lies on 0 (see e.g. VANSELOW [1996]). Under this new assumption the
schemes (piecewise linear finite element finite element and CEV /DM with the Voronoi mesh defined with
V) still lead to the same transmissibilities and still differ in the definition of the right hand sides.

Recall that the Delaunay condition states that no neighboring element (of M) is included in the circum-
scribed circle of an arbitrary element of M. This is equivalent to saying that the sum of two opposite
angles to an edge is less or equal . The dual mesh is still admissible in the sense of Definition 3.1 page
37 and is still constructed with the orthogonal bisectors of the edges of the elements of M, parts of these
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orthogonal bisectors (and parts of 9Q) give the boundaries to the control volumes of the dual mesh. This
is not the case when M does not satisfy the Delaunay condition.

Consider now a primal mesh, M, consisting of triangles, but which does not satisfy the Delaunay condition
and let the dual mesh be the Voronoi mesh defined with V. Then, the two schemes, piecewise linear finite
element and CFV/ DM are quite different. If the Delaunay condition does not hold say between the
angles KAL and KBL (the triplets (K, A, L) and (K, B, L) defining two elements of M), the sum of
these two angles is greater than « and the transmissibility 74, = — [, Vok (2) - VoL (z)dz between the
two control volumes associated respectively to K and L becomes negative with the piecewise linear finite
element scheme; there is no transmissibility between A and B (since A and B do not belong to a common
element of M). Hence the maximum principle is no longer respected for the finite element scheme, while
it remains valid for the CEF'V /DM finite volume scheme. This is due to the fact that the CEV /DM scheme
allows an exchange term between A and B, with a positive transmissibility (and leads to no exchange
term between K and L), while the finite element scheme does not. Also note also that the common edge
to the control volumes (of the dual mesh) associated to A and B is not a part of an orthogonal bisector
of an edge of an element of M (it is a part of the orthogonal bisector of the segment [A, B]).

To conclude this section, note that an admissible mesh for the classical finite volume is generally not a
dual mesh of a primal triangular mesh consisting of triangles (for instance, the general triangular meshes
which are considered in HERBIN [1995] are not dual meshes to triangular meshes).

3.4.3 “Finite Volume Finite Element” methods

The “finite volume finite element” method for elliptic problems also uses a dual mesh 7 constructed from
a finite element primal mesh, such that each cell of T is associated with a vertex of the primal mesh M.
Let V again denote the set of vertices of M. As in the classical finite volume method, the conservation
law is integrated over each cell of the (dual) mesh. Indeed, this integration is performed only if the cell
is associated to a vertex (of the primal mesh) belonging to Q.

Let us consider Problem (3.141). Integrating the conservation law over Kp, where P € VN Q and Kp is
the control volume (of the dual mesh) associated to P yields

- Vu(z) -np(z)dy(z) = | f(z)de

OKp Kp

(Recall that np is the unit normal vector to Kp outward to Kp.) Now, following the idea of finite
element methods, the function u is approximated by a Galerkin expansion 7, ), up@n, where the
functions s are the shape functions of the piecewise linear finite element method. Hence, the discrete
unknowns are {up, P € V} and the scheme writes

— MXE:V( . Veou(z) - np(w)dv(:c))uM = e f(z)de, VP €VNQ, (3.144)

up = g(P), VP € VN ON.

Equations (3.144) may also be written under the conservative form

> Epg= / f(z)dz, VP EVNQ, (3.145)
Qev
up =g(P), VP € VNN, (3.146)
where
Epg==)_ / Vou(z) - np(z)dy(z). (3.147)
Mey [-)KpmaKQ
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Note that Eg p = —Ep,g. Unfortunately, the exchange term Ep g between P and @ is not, in general,
a function of the only unknowns up and ug (this property was used, in the previous sections, to obtain
convergence results of finite volume schemes). Another way to write (3.144) is, thanks to (3.143),

_ ;}( [ Veal). np(2)dr(2) ) (uq — up) = [ s vpevo,

Hence a new exchange term from P to @ might be Epg = — (faKP Vyo(z)-np (x)dfy(;c)) (ug —up) and

the scheme is therefore conservative if Epg = —FEg p. Unfortunately, this is not the case for a general
dual mesh.

There are several ways of constructing a dual mesh from a primal mesh. A common way (see e.g. FEZOUI,
LANTERI, LARROUTUROU and OLIVIER [1989)]) is to take a primal mesh (M) consisting of triangles and
to construct the dual mesh with the medians (of the triangles of M), joining the centers of gravity of
the triangles to the midpoints of the edges of the primal mesh. The main interest of this way is that the
resulting scheme (called FVFE/M below, Finite Volume Finite Element with Medians) is very close to
the piecewise linear finite element scheme associated to M. Indeed the FVFE/M scheme is defined by
(3.145)-(3.147) while the piecewise linear finite element scheme writes

Z Epq = / f(@)pp(x)dz, VP €V N,
Qev Q

up =g(P), VP € VN o1,

where Ep g is defined by (3.147).
These two schemes only differ by the right hand sides and, in fact, these right hand sides are “close” since

m(Kp) = /Qcpp(:c)da:, VPeV.

This is due to the fact that [ pp(z)de = m(T)/3 and m(Kp NT) = m(T)/3, for all T € M and all
vertex P of T'.

Thus, convergence properties of the FVFE /M scheme can be proved by using the finite element techniques.
Recall however that the piecewise linear finite element scheme (and the FVFE/M scheme) does not satisfy
the (discrete) maximum principle if M does not satisfy the Delaunay condition.

There are other means to construct a dual mesh starting from a primal triangular mesh. One of them is
the Voronoi mesh associated to the vertices of the primal mesh, another possibility is to join the centers
of gravity; in the latter case, the control volume associated to a vertex, say S, of the primal mesh is then
limited by the lines joining the centers of gravity of the neighboring triangles of which S is a vertex (with
some convenient modification for the vertices which are on the boundary of ). See also BARTH [1994]
for descriptions of dual meshes.

Note that the proof of convergence which we designed for finite volume with admissible meshes does not
generalize to any “FVFE” (Finite Volume Finite Element) method for several reasons. In particular,
since the exchange term between P and @ (denoted by Epg) is not, in general, a function of the only
unknowns up and ug (and even if it is the transmissibilities may become negative) and also since, as in
the case of the finite element method, the concept of consistency of the fluxes is not clear with the FVFE
schemes.

3.4.4 Generalization to the three dimensional case

The methods described in the three above sections generalize to the three-dimensional case, in particular
when the primal mesh is a tetrahedral mesh. With such a mesh, the Delaunay condition no longer ensures
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the non negativity of the transmissibilities in the case of the piecewise linear finite element method. It
is however possible to construct a dual mesh (the “three-dimensional Voronoi” mesh) to a Delaunay
triangulation such that the FVFE scheme leads to positive transmissibilities, and therefore such that the
maximum principle holds, see CORDES and PuTTI [1998].

Note that the theoretical results (convergence and error estimate) which were shown for the classical finite
volume method on an admissible mesh (sections 3.1.2 page 37 and 3.2 page 62) still hold for CFV/DM
in three-dimensional, since the dual mesh is admissible.

3.5 Mesh refinement and singularities

Some problems involve singular source terms. In the case of petroleum engineering for instance, one may
model (in two space dimensions) the well with a Dirac measure. Other problems may require a better
precision of some unknown in certain areas. This section is devoted to the treatment of this kind of
problem, either with an adequate treatment of the singularity or by mesh refinement.

3.5.1 Singular source terms and finite volumes

It is possible to take into account, in the discretization with the finite volume method, the singularities
of the solution of an elliptic problem. A common example is the study of wells in petroleum engineering.
As a model example we can consider the following problem, which appears, for instance, in the study of
a two phase flow in a porous medium. Let B be the ball of IR? of center 0 and radius rp (B represents a
well of radius 7,). Let @ = (—R, R)? be the whole domain of simulation; r, is of the order of 10 cm while
R can be of the order of 1 km for instance. An approximation to the solution of the following problem
is sought:

—div(Vu)(z) =0, z € Q\B,
u(z) = P,, z € 0B, (3.148)
“BC”on 011,

where “BC” stands for some “smooth” boundary conditions on 99 (for instance, Dirichlet or Neumann
condition). This system is a mathematical model (under convenient assumptions...) of the two phase
flow problem, with u representing the pressure of the fluid and P, an imposed pressure at the well. In
order to discretize (3.148) with the finite volume method, a mesh 7 of Q is introduced. For the sake of
simplicity, the elements of T are assumed to be squares of length h (the method is easily generalized to
other meshes). It is assumed that the well, represented by B, is located in the middle of one cell, denoted
by K, so that the origin 0 is the center of Ky. It is also assumed that the mesh size, h, is large with
respect to the radius of the well, r, (which is the case in real applications, where, for instance, h ranges
between 10 and 100 m). Following the principle of the finite volume method, one discrete unknown ug
per cell K (K € T) is introduced in order to discretize the following system:

/K Vu(z) -ng(z)dy(z) =0, KeT, K +# Ky,

j Vu(z) - ng, (z)dy(z) = | Vu(z) - np(z)dy(z),
Ko oB

(3.149)

where np denotes the normal to P, outward to P (with P = K, K, or B).

Hence, we have to discretize Vu - ng on 0K (and Vu-np on dB) in terms of {ur,L € T} (and “BC”
and Pp).

The problems arise in the discretization of Vu-ng, and Vu-np. Indeed, if 0 = K|L is the common edge
to K and L (elements of T), with K # Ko and L # K, since the solution of (3.148) is “smooth” enough
with respect to the mesh size, except “near” the well, Vu - nx can be discretized by %(uL —ug) on a.
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In order to discretize Vu near the well, it is assumed that Vu - np is constant on 0B. Let ¢(z) =
—27r,Vu - np for £ € 0B (recall that np is the normal to 0B, outward to B). Then ¢ € R is a new
unknown, which satisfies

—Vu -npdy(z) =gq.
aB

Denoting by | - | the euclidian norm in IR?, and u the solution to (3.148), let v be defined by

v(z) = % In(|z|) + u(z), =€ Q\ B, (3.150)
v(z) = % In(r,) + P,, z € B. (3.151)

Thanks to the boundary conditions satisfied by v on 8B, the function v satisfies —div(Vv) = 0 on the
whole domain 2, and therefore v is regular on the whole domain 2. Note that, if we set

u(z) = —%ln(m) +v(z), a.e. T €Q,

then
—div(Vu) = gdp on Q,

where 4y is the Dirac mass at 0. A discretization of Vu - ng, is now obtained in the following way. Let o
be the common edge to Ky € T and Ky, since v is smooth, it is possible to approximate Vv - ng, on o
by %(vk, — Uk,), where vk, is some approximation of v in K; (e.g. the value of v at the center of K;).
Then, by (3.151), it is natural to set

VK, = % In(r,) + Py,

and by (3.150),

VK, = % ln(h) + Uk, -

By (3.150) and from the fact that the integral over o of V(3L In(|z|)) - nk, is equal to %, we find the
following approximation for [ Vu - ng,dy:

h
—% + % ln(a) +uk, — P,.
The discretization is now complete, there are as many equations as unknowns. The discrete unknowns
appearing in the discretized problem are {ux,K € T,K # Ky} and ¢q. Note that, up to now, the
unknown ug, has not been used. The discrete equations are given by (3.149) where each term of (3.149)
is replaced by its approximation in terms of {ux,K € T,K # Ko} and ¢. In particular, the discrete
equation “associated” to the unknown g is the discretization of the second equation of (3.149), which is

4

h

Y (L (L) +uk, — P) =0, (3.152)
pr 2r 'y

where {K;,i =1,2,3,4} are the four neighbouring cells to Kj.

It is possible to replace the unknown ¢ by the unknown ug, (as it is done in petroleum engineering) by

setting

¢ _q., . h
the interest of which is that it yields the usual formula for the discretization of Vu - ng, on o if o is the
common edge to K; and Ky, namely % (ug, — uk,); the discrete equation associated to the unknown

uk, is then (from (3.152))
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and (3.153) may be written as:
1

—i+ o In(E)’

q=1p(Pp— uk,), with i, =

This last equation defines ip, the so called “well-index” in petroleum engineering. With this formula for p,
the discrete unknowns are now {ug, K € T}. The discrete equations associated to {ux, K € T, K # Ko}
are given by the first part of (3.149) where each terms of (3.149) is replaced by its approximation in terms
of {ug, K € T} (using also “BC” on 012). The discrete equation associated to the unknown wug, is

4
Z(uKi - uKo) = _iP(PP - uKo)7
i=1
where {K;,i = 1,2,3,4} are the four neighbouring cells to Kj.
Note that the discrete unknown uf, is somewhat artificial, it does not really represent the value of u in
K. In fact, if € Ko, the “approximate value” of u(z) is —5L ln(%) + P, and ug, = § — 3% ln(%) + P,

3.5.2 Mesh refinement

Mesh refinement consists in using, in certain areas of the domain, control volumes of smaller size than
elsewhere. In the case of triangular grids, a refinement may be performed for instance by dividing each
triangle in the refined area into four subtriangles, and those at the boundary of the refined area in two
triangles. Then, with some additional technique (e.g. change of diagonal), one may obtain an admissible
mesh in the sense of definitions 3.1 page 37, 3.5 page 62 and 3.8 page 78; therefore the error estimates
3.3 page 52, 3.5 page 68 and 3.8 page 80 hold under the same assumptions.

In the case of rectangular grids, the same refining procedure leads to “atypical” nodes and edges, i.e. an
edge o of a given control volume K may be common to two other control volumes, denoted by L and
M. This is also true in the triangular case if the triangles of the boundary of the refined area are left
untouched.

Let us consider for instance the same problem as in section 3.1.1 page 33, with the same assumptions
and notations, namely the discretization of

_Au(may) = f(way)7 (x,y) €= (071) X (Oa 1)7
u(z,y) =0, (z,y) € 0Q.

It is easily seen that, in this case, if the approximation of the fluxes is performed using differential
quotients such as in (3.6) page 34, the fluxes on the “atypical” edge o cannot be consistent, since the
lines joining the centers of K and L and the centers of K and M are not orthogonal to . However, the
error which results from this lack of consistency can be controlled if the number of atypical edges is not
too large.

In the case of rectangular grids (with a refining procedure), denoting by £ the set of “atypical” edges of a
given mesh T, i.e. edges with separate more than two control volumes, and 7 the set of “atypical” control
volumes, i.e. the control volumes containing an atypical edge in their boundaries; let ex denote the error
between u(zx) and ug for each control volume K, and e denote the piecewise constant function defined
by e(z) = ek for any x € K, then one has

llellz2@) < Clsize(T) + Y m(K)).

KeT,

The proof is similar to that of Theorem 3.3 page 52. It is detailed in BELMOUHOUB [1996].
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3.6 Compactness results

This section is devoted to some functional analysis results which were used in the previous section. Let 2
be a bounded open set of R?, d > 1. Two relative compactness results in L?(Q) for sequences “almost”
bounded in H!(§)) which were used in the proof of convergence of the schemes are presented here. Indeed,
they are variations of the Rellich theorem (relative compactness in L?(f2) of a bounded sequence in H'(2)
or H}(Q)). The originality of these results is not the fact that the sequences are relatively compact in
L?(Q), which is an immediate consequence of the Kolmogorov theorem (see below), but the fact that the
eventual limit, in L?(2), of the sequence (or of a subsequence) is necessarily in H'(Q) (or in Hg () for
Theorem 3.10), a space which does not contain the elements of the sequence.

We shall make use in this section of the Kolmogorov compactness theorem in L?(Q) which we now recall.
The essential part of the proof of this theorem may be found in BREZIS [1983].

Theorem 3.9 Let w be an open bounded set of RN, N >1,1< ¢ < oo and A C L9(w). Then, A is
relatively compact in LY(w) if and only if there exists {p(u), u € A} C LI(RYN) such that

1. p(u) =wu a.e. onw, for allu € A,
2. {p(u), u € A} is bounded in LI(RYN),

8. |lp(w)(- +n) = p(w)||Lamry = 0, as n — 0, uniformly with respect to u € A.

Let us now state the compactness results used in this chapter.

Theorem 3.10 Let Q be an open bounded set of R® with a Lipschitz continuous boundary, d > 1, and
{tn, n € N} a bounded sequence of L?>(Q). For n € IN, one defines @y, by i, = up a.e. on Q and @, =0
a.e. on R\ Q. Assume that there exist C € R and {hn, n € N} C Ry such that h, — 0 as n = o0
and

lan(- +n) = @all}2may < Clnl(Inl + ha),¥n € N, ¥y € R (3.154)

Then, {un, n € IN} is relatively compact in L?(Q). Furthermore, if u, — u in L2() as n — oo, then
u € H}(Q).

PRrOOF of Theorem 3.10

Since {h,, n € IN} is bounded, the fact that {u,, n € IN} is relatively compact in L?(Q2) is an immediate
consequence of Theorem 3.9, taking N =d, w = Q, ¢ = 2 and p(u,) = @,. Then, assuming that u,, — u
in L?(Q2) as n — oo, it is only necessary to prove that u € HJ (). Let us first remark that @, — @ in
L*(R?%), as n — oo, with & = u a.e. on Q and @ = 0 a.e. on R*\ Q.

Then, for ¢ € C®(R?), one has, for all n € R, 57 # 0 and n € N, using the Cauchy-Schwarz inequality
and thanks to (3.154),

i — @ VOl + ha)
[ nlatn) 2inle) g, o VO
R4 In| In|
which gives, letting n — oo, since h,, — 0,

/}Rd (a(z + 771'— U o (ayde < V/Cllgll s,

and therefore, with a trivial change of variables in the integration,

||‘P||L2(1Rd);

/ (lz=n) = 0@) 7y < VOl (me. (3.155)
R4 |
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Let {e;, ¢ = 1,...,d} be the canonical basis of R? Fori € {1,...,d} fixed, taking n = he; in (3.155)
and letting h — 0 (with h > 0, for instance) leads to
dp(z) .

™ Je 6—%U($)d$ < \/6||<P||L2(1Rd);
for all ¢ € C*(RY).
This proves that D;a (the derivative of 4 with respect to z; in the sense of distributions) belongs to
L*(IR%), and therefore that & € H'(IR%). Since u is the restriction of & on € and since & = 0 a.e. on
R\ Q, therefore u € HJ (). This completes the proof of Theorem 3.10. m

Theorem 3.11 Let Q be an open bounded set of R?, d > 1, and {un, n € N} a bounded sequence of
L?(Q). Forn € IN, one defines i, by i, = u, a.e. on Q and i, =0 a.e. on R\ Q. Assume that there
exist C € R and {h,, n € N} C Ry such that h, — 0 as n — oo and such that

llin(- +1) = @nll}2gay < Clnl,¥n € N, ¥y € RY, (3.156)

and, for all compact w C (2,

[un(-+ 1) = unllZ2@) < Clal(Inl + hn),Yn € N, ¥ € RY, [5] < d(@, 2°). (3.157)

(The distance between & and R®\ Q is denoted by d(@,Q°).)
Then {un, n € IN} is relatively compact in L*>(Q). Furthermore, if up, — u in L?(2) as n — oo, then
u € HY(Q).

PROOF of Theorem 3.11

The proof is very similar to that of Theorem 3.10. Using assumption 3.156, Theorem 3.9 yields that {u,,
n € IN} is relatively compact in L2(2). Assuming now that u, — u in L*(Q), as n — oo, one has to
prove that u € H(Q).

Let ¢ € C°(Q) and € > 0 such that () = 0 if the distance from z to R?\ Q is less than . Assumption
3.157 yields

llellL2 ),

- C hn
[ e =) VORI
Q In| In|
for all n € R such that 0 < || < e.

From this inequality, it may be proved, as in the proof of Theorem 3.10 (letting n — oo and using a
change of variables in the integration),

/Q (p(z — ’&— ‘P(”f))u(x)dx <VClellr),

for all n € R such that 0 < || < e.
Then, taking n = he; and letting h — 0 (with h > 0, for instance) one obtains, for all i € {1,...,d},

Op(x

- [ 28D @)t < Vgl
Q 0%

for all ¢ € C°(Q).

This proves that D;u (the derivative of u with respect to x; in the sense of distributions) belongs to

L2(9), and therefore that u € H'(Q2). This completes the proof of Theorem 3.11. "



Chapter 4

Parabolic equations

The aim of this chapter is the study of finite volume schemes applied to a class of linear or nonlinear
parabolic problems. We consider the following transient diffusion-convection equation:

ug(z,t) — Ap(u)(z, 1) + div(vu)(z,t) + bu(z, 1) = f(z,1), 2 € Q, 1€ (0,T), (4.1)

where € is an open polygonal bounded subset of R?, withd =2 ord=3,T > 0,b> 0, ve R? is,
for the sake of simplicity, a constant velocity field, f is a function defined on 2 x IR which represents a
volumetric source term. The function ¢ is a nondecreasing Lipschitz continuous function, which arises in
the modelling of general diffusion processes. A simplified version of Stefan’s problem may be expressed
with the formulation (4.1) where ¢ is a continuous piecewise linear function, which is constant on an
interval. The porous medium equation is also included in equation (4.1), with p(u) = ™, m > 1.
However, the linear case, i.e. ¢(u) = u, is of full interest and the error estimate of section 4.2 will be
given in such a case. In section 4.3 page 100, we study the convergence of the explicit and of the implicit
FEuler scheme for the nonlinear case with v =0 and b = 0.

Remark 4.1 One could also consider a nonlinear convection term of the form div(ve(u))(z,t) where
¢ € CY(IR,R). Such a nonlinear convection term will be largely studied in the framework of nonlinear
hyperbolic equations (chapters 5 and 6) and we restrain here to a linear convection term for the sake of
simplicity.

An initial condition is given by

u(z,0) = ug(z), z € N. (4.2)

Let 0Q denote the boundary of Q, and let Q4 C 9Q and 99Q, C 99 such that 924 U 9, = 00 and
004 N 0N, = . A Dirichlet boundary condition is specified on 9Q4 C 99Q. Let g be a real function
defined on 094 x IR, the Dirichlet boundary condition states that

u(z,t) = g(z,t), x € 04, t € (0,T). (4.3)
A Neumann boundary condition is given with a function ¢ defined on 89, x R:

—Vo(u)(z,t) -n(z) = g(z,t), z € 0Q,, t € (0,T), (4.4)
where n is the unit normal vector to 912, outward to 2.
Remark 4.2 Note that, formally, Ap(u) = div(e¢'(u)Vu). Then, if ¢'(u)(z,t) = 0 for some (z,t) €
Q x (0,T), the diffusion coefficient vanishes, so that Equation (4.1) is a “degenerate” parabolic equation.

In this case of degeneracy, the choice of the boundary conditions is important in order for the problem
to be well-posed. In the case where ¢ is positive, the problem is always parabolic.
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In the next section, a finite volume scheme for the discretization of (4.1)-(4.4) is presented. An error
estimate in the linear case (that is ¢(u) = u) is given in section 4.2. Finally, a nonlinear (and degenerate)
case is studied in section 4.3; a convergence result is given for subsequences of sequences of approximate
solutions, and, when the weak solution is unique, for the whole set of approximate solutions. A uniqueness
result is therefore proved for the case of a smooth boundary.

4.1 Meshes and schemes

In order to perform a finite volume discretization of system (4.1)-(4.4), admissible meshes are used in
a similar way to the elliptic cases. Let 7 be an admissible mesh of €2 in the sense of Definition 3.1
page 37 with the additional assumption that any o € Ey is included in the closure of 94 or included
in the closure of 99,. The time discretization may be performed with a variable time step; in order
to simplify the notations, we shall choose a constant time step k € (0,T). Let N, € IN* such that
Ny = max{n € IN,nk < T}, and we shall denote t, = nk, for n € {0,..., N + 1}. Note that with a
variable time step, error estimates and convergence results similar to that which are given in the next
sections hold.

Denote by {u%, K € T, n € {0,...,Nj + 1}} the discrete unknowns; the value u% is an expected
approximation of u(zk,nk).

In order to obtain the numerical scheme, let us integrate formally Equation (4.1) over each control volume
K of T, and time interval (nk, (n + 1)k), for n € {0,..., Ni}:

(n+1)k
/ (&, tnsr) — (e, tn))de - /k /B V() (&, t) - g (2)dy(z)dt+ .
" (n1)k -

I((n+1)k (n+1)k
/ / v - ng(z)u(z, t)dy(z)dt + b/ / u(z,t)dzdt = / / f(z,t)dzdt.
nk 0K nk nk K

where ng is the unit normal vector to 0K, outward to K.

Recall that, as usual, the stability condition for an explicit discretization of a parabolic equation requires
the time step to be limited by a power two of the space step, which is generally too strong a condition
in terms of computational cost. Hence the choice of an implicit formulation in the left hand side of (4.5)
which yields

. / (@ tu) =@ t)de = [ Vo(w)(@tuss) - (x)dv(w)

(n+1)k
/ v ng(x)u(z, thyr)dy(z +b/ u(z, tpy1)dedt = / Sz, t)dzdt,
oK

There now remains to replace in Equation (4.5) each term by its approximation with respect to the
discrete unknowns (and the data). Before doing so, let us remark that another way to obtain (4.6) is to
integrate (in space) formally Equation (4.1) over each control volume K of T, at time ¢ € (0,7). This
gives

(4.6)

/ we,de = | Vi(w)(et) - nx(@)dr(@)

(4.7
/;Kv-nK(a:) (z,t)dy(z +b/ (z,t)dz /fmt

An implicit time discretization is then obtained by taking ¢ = t,41 in the left hand side of (4.7), and
replacing uy(z,tp+1) by (u(z,tnt1) — u(z,t,))/k. For the right hand side of (4.7) a mean value of f
between t,, and t,4+1 may be used. This gives (4.6). It is also possible to take f(z,t,+1) in the right hand
side of (4.7). This latter choice is simpler for the proof of some error estimates (see Section 4.2).
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Writing the approximation of the various terms in Equation (4.6) with respect to the discrete unknowns
(namely, {u%, K € T,n € {0,..., Ny +1}}) and taking into account the initial and boundary conditions
yields the following implicit finite volume scheme for the discretization of (4.1)-(4.4), using the same
notations and introducing some auxiliary unknowns as in Chapter 3 (see equations (3.20)-(3.23) page
41):

n+l _ . n
m(K) 2 3 Fr S el + m(K)but = m(K) fE,
k g€€K ’ oEEK (4.8)
VK € T,Vn € {0,..., Ni},
with
dk,.Fg, = —m(o) (go(ug) - cp(u?()) for o € €k, forn € {1,..., N + 1}, (4.9)
Fg ,=—Fp, for all o € &ng such that o = K|L, forn € {1,..., N + 1}, (4.10)

1 nk
Fg,= E/ /f}(x,t)dv(x)dt for o € £k such that 0 C 0N, forn € {1,..., N, +1}, (4.11)
(n-1)k Jo

and

ul = g(y,,nk) for o C 00y, forn € {1,..., Ny + 1}, (4.12)

The upstream choice for the convection term is performed as in the elliptic case (see page 41, recall that
VKo =m(o)v.ng,),

no_ UTIL{a ifv'nK,a >0, : _

Uy = { b, i v g, <0, for all o € &in¢ such that o = K|L, (4.13)
n _ | Uk, ifv-ng,>0,

Up 4 = { ut i vongy <0, for all o € £ such that o C 0. (4.14)

Note that, in the same way as in the elliptic case, the unknowns u?*! may be eliminated using (4.9)-(4.12).
There remains to define the right hand side, which may be defined by:

1 (n+1)k
= K ..., N 4.1
Ir ) /nk /Kf(x,t)dxdt,\f €T,Vne{0,...,Ni}, (4.15)

or by:

1
= =) /Kf(m,tnﬂ)da:,VK € T,Vne€{0,...,Ni}. (4.16)

Initial conditions can be taken into account by different ways, depending on the regularity of the data
ug. For example, it is possible to take

1

e = )

/ uo(x)dz, K € T, (4.17)

or

u =ug(rk), K €T. (4.18)



96

Remark 4.3 It is not obvious to prove that the implicit finite volume scheme (4.8)-(4.14) (with (4.15) or
(4.16) and (4.17) or (4.18)) has a solution. Once the unknowns F}}ng are eliminated, a nonlinear system
of equations has to be solved. A proof of the existence and uniqueness of a solution to this system is

proved in the next section for the linear case, and is sketched in Remark 4.9 for the nonlinear case.

Remark 4.4 (Comparison with finite difference and finite element) Let us first consider the case
of the heat equation, that is the case where v =0, b = 0, ¢(s) = s for all s € IR, with Dirichlet condi-
tion on the whole boundary (02 = 012). If the the mesh consists in rectangular control volumes with
constant space step in each direction, then the discretization obtained with the finite volume method
gives (as in the case of the Laplace operator), the same scheme than the one obtained with the finite
difference method (for which the discretization points are the centers of the elements of 7) except at
the boundary. In the general nonlinear case, finite difference methods have been used in ATTEY [1974],
KAMENOMOSTSKAJA, S.L. [1995] and MEYER [1973], for example.

Finite element methods have also been classically used for this type of problem, see for instance AMIEZ
and GREMAUD [1991] or CIAVALDINI [1975]. Following the notations of section 3.4.1, let M be a finite
element mesh of 2, consisting of triangles (see e.g. CIARLET, P.G. [1978] for the conditions on the
triangles), and let ¥V C Q be the set of vertices of M. For K € V (note that here K denotes a point of
Q), let px be the shape function associated to K in the piecewise linear finite element method for the
mesh M. A finite element formulation for (4.1), with the implicit Euler scheme in time, yields for a node
/ev/in/Omega:

H([@h@ - @)ex@is) + [ Vuri@) - Ver@ds = [ 1o tun)ox @)

Let us approximate u™ by the usual Galerkin expansion:

1 1
wtl = Z uz"' pr and u" = Z utor
Ley Ley

where u] is expected to be an approximation of v at time ¢,, and node L, for all L and n; replacing in
the above equation, this yields:

%Z/Q(u?+1_u§b)soL(x)<pK(x)da:+Z/ngbﬂvch(x).wK(a:)d:c:/Qf(x,tnﬂ)cpK(g;)dx, (4.19)

LeV Ley

Hence, the finite element formulation yields, at each time step, a linear system of the form CU™*! +
AU = B (where U! = (u’}jl)ﬁ{ev’KeQ, and A and C are N x N matrices); this scheme, however, is
generally used after a mass-lumping, i.e. by assigning to the diagonal term of C' the sum of the coefficients
of the corresponding line and transforming it into a diagonal matrix; we already saw in section 3.4.1 that
the part AU™! may be seen as a linear system derived from a finite voluse formulation; hence the mass
lumping technique the left hand side of (4.19) to be seen as the result of a discretization by a finite volume
scheme.

4.2 FError estimate for the linear case

We consider, in this section, the linear case, ¢(s) = s for all s € IR, and assume 9Q4 = 01, i.e. that a
Dirichlet boundary condition is given on the whole boundary, in which case Problem (4.1)-(4.4) becomes

ue(z,t) — Au(z, t) + div(vu)(z,t) + bu(z,t) = f(z,t), z € Q, t € (0,T),

U(SL',O) = UO(ZU), T € Q,
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u(z,t) = g(z,t), z € 89, t € (0,T);

the finite volume scheme (4.8)-(4.14) then becomes, assuming, for the sake of simplicity, that zx € K
forall K € T,

n+1 n
u —U
K)-K K Frtl s K)bu™ = m(K) o
mE) = D FRL + D vroug ! + m(K)buit! = m(K)fE, (4.20)
o€k el
VK € T,Vn €{0,..., Ny},
with
Fg , = =Tk (u] —uf) for all o € &y such that o = K|L, for n € {1,..., Ny + 1}, (4.21)
Fg , = —75(9(ys,nk) — uk) for all o € E such that o C 99, for n € {1,..., Ny +1}, (4.22)
and
Uy | = U, ifv-ng, >0, . B
{ ug  =uf, if v-ng, <0, for all o € &iny such that o = K|L, (4.23)
uﬁ& = ul, if v .ong, >0,
{ Wl = g(ye,nk), ifv-ng, <0, OFal0€Exsuch thatoCoh (4.24)

The source term and initial condition f and wug, are discretized by (4.16) and (4.18).

A convergence analysis of a one-dimensional vertex-centered scheme was performed in GUO and STYNES
[1997] by writing the scheme in a finite element framework. Here we shall use direct finite volume
techniques which also handle the multi-dimensional case.

The following theorem gives an L™ estimate (on the approximate solution) and an error estimate. Some
easy generalizations are possible (for instance, the same theorem holds with b < 0, the only difference is
that in the L estimate (4.25) the bound c also depends on b).

Theorem 4.1 Let Q be an open polygonal bounded subset of RY, T >0, u € C>(2 x R4, R), b> 0
and v € RY. Let up € C2(Q,R) be defined by ug = u(-,0), let f € C°(Q x Ry,R) be defined by
f = uy — div(Vu) + div(vu) + bu and g € C°(0Q x R4, IR) defined by g =u on 0Q x Ry. Let T be an
admissible mesh in the sense of Definition 3.1 page 37 and k € (0,T). Then there exists a unique vector
(ur)xeT satisfying (4.20)-(4.24) (or (4.8)-(4.14)) with (4.16) and (4.18). There exists ¢ only depending
onug, T, f and g such that

sup{|ug|, K € T,ne{l,...,Ny +1}} <ec. (4.25)

Furthermore, let €} = u(zk,ty) —ul, for K € T andn € {1,..., Ny + 1}, and h = size(T). Then there
ezists C € R4 only depending on b, u, v, Q2 and T such that

(O (ex)*m(K))% < C(h+k), Vne{1,..., Ny +1}. (4.26)

PROOF of Theorem 4.1
For simplicity, let us assume that xx € K for all K € 7. Generalization without this condition is
straightforward.

(i) Existence, uniqueness, and L™ estimate
For a given n € {0,..., N}, set f& =0 and u% = 0in (4.20), and ¢(y,,(n+ 1)k) = 0 for all o € £ such
that ¢ C 99. Multiplying (4.20) by uxt' and using the same technique as in the proof of Lemma 3.2
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page 42 yields that u%"" = 0 for all K € 7. This yields the uniqueness of the solution {u%™, K € T} to
(4.20)-(4.24) for given {u%, K € T}, {f§, K € T} and {g9(ys, (n+1)k), 0 € £,0 C 0Q4}. The existence
follows immediately, since (4.20)-(4.24) is a finite dimensional linear system with respect to the unknown
{ut', K € T} (with as many unknowns as equations).

Let us now prove the estimate (4.25).
Set my = min{f(z,t), z € Q, t € [0,2T]} and m, = min{g(z,t), z € 9Q, t € [0, 2T}
Let n € {0,...,Ni}. Then, we claim that
min{u%™, K € T} > min{min{u%, K € T} + kmys,0,m,}. (4.27)

Indeed, if min{u%", K € T} < min{0,m,}, let Ko € T such that u?{’;l = min{u", K € T}. Since
"+1 < 0 and u"+1 < mg writing (4.20) with K = K, and n leads to

u’;('gl > ufk, +kfg, > min{ug, K € T} + kmy,
this proves (4.27), which yields, by induction, that:

min{u}, K € T} > min{min{u%, K € T},0,m,} + nkmin{m,0},Yn € {0,..., N + 1}.

Similarly,

max{ul, K € T} < max{max{u%, K € T},0, M,} + nkmax{M;,0},¥n € {0,..., Ny + 1},
with My = max{f(z,t), € Q, t € [0,2T]} and M, = max{g(z,t), z € 09, t € [0,2T]}.
This proves (4.25) with ¢ = ||uol|Le(a) + ll9llL>(02x(0,2)) + 2T || fll L (2x (0,21))

(i) Error estimate

As in the stationary case (see the proof of Theorem 3.3 page 52), one uses the regularity of the data
and the solution to write an equation for the error e} = u(zk,t,) — u}, defined for K € 7 and
n € {0,..., N+ 1}. Note that e}, =0 for K € T. Let n € {0,..., Ni}. Integrating (in space) Equation
(4.1) over each control volume K of T, at time ¢ = ¢,41, gives, thanks to the choice of f (see (4.16)),

/ ug(x, tpy1)de —/ (Vu(x,t) — vu(x,tTH_l)) -ng (z)dy(z) + b/ w(z, tpye1)de = m(K) fg. (4.28)

K 8K K

Note that, for all x € K and all K € T, a Taylor expansion yields, thanks to the regularity of u:
u(z,tnt1) = (1/k) (u(zk, tni1) — u(zk, tn)) + sk (@) with |sk (z)| < Ci(h + k)

with some C; only depending on u and T. Therefore, defining S% = / sk (x)dz, one has: |SE| <

K
Cim(K)(h + k).

One follows now the lines of the proof of Theorem 3.3 page 52, adding the terms due to the time derivative
ug. Substracting (4.20) to (4.28) yields

el —en
m(K)E—K 4 3" (3 + With) + bm(K)et! =
oc€EK (429)
bm(K)p — Y m(o)(Rk, +rk,) — Sk, VK €T,

ocefk

where (with the notations of Definition 3.1 page 37),
G""'1 7',,(@2"‘1 n'H) VK € T,Vo € Ek N&int, 0 = K|L,
G"“Ll = 1,eM VK € T, Vo € Ek N Eext,

I/V"+1 m(0)v - ng o (U(To, 45 tnt1) — :rl-:-l)
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where 2,y = zk (resp. z1) if 0 € &int, 0 = K|L and v-ng, > 0 (resp. v-ng, <0) and 2z, + = zx
(resp. yo) if 0 = Ex NEext and v -ng , > 0 (resp. v -ng,, < 0),

1
n o __ n+1ly _
Pr = u(TK,t"") m(K) /KU(%tnﬂ)dx,
m(o)Rk , = 7o (w(zg, ") — w(zp, ")) + / Vu(z, t,)ng ody(z) if o = K|L € &y,

m(o)RY , = 7o (u(zk,t" ") — g(yo, ") + / Vu(z, ty) nk  dy(z) if 0 € Eg N Eing,

and
m(0)r% 5 = V- o ((0)u(@a 1 trsr) = / (0)u(®, tns1)dy (@), for any o € E.

As in Theorem 3.3, thanks to the regularity of u, there exists Cs, only depending on u, v and T', such
that |R% |+ [rk ,| < C2h and |pf| < C2h, for any K € T and o € k-

Multiplying (4.29) by e%™!, summing for K € T, and performing the same computations as in the proof
of Theorem 3.3 between (3.56) to (3.60) page 54 yields, with some C3 only depending on u, v, b, Q and
T,

= Z (ex)? ||6"+1||1,T + b||en+1||L2(Q) <
Fier (4.30)
03h2+01(h+k‘)z ( n+1|+kz n+16K,
KeT KeT

where the second term of the right hand side is due to the bound on S% and where e?“ is a piecewise

constant, function defined by

et (z) =ept!, forzs e K,K € T.
Inequality (4.30) yields

€7 I22() < 2kC3h? + 2kCim(Q)(k + B)lle7 (| r2() + €z,
which gives

e 1720y < NeHTag) + Ca(kh® + k(k + h)[lef | L2()), (4.31)
where Cy € IR, only depends on u, v, b, 2 and T. Remarking that for € > 0, the following inequality
holds:

Cuk(k + h)leF ™ lr2 () < ElleF 112y + (1/€*)CR* (k + h)?,
taking €2 = k/(k + 1), (4.31) yields

leF ™ 122 () < L+ R)lleflIZa () + Cakh®(1+ k) + (1 + k)*Cik(k + h)*. (4.32)
Then, if ||e7-||L2(Q) < ¢ (h + k)%, with ¢, € R, one deduces from (4.32), using h < h+k and k < T,
that
||€T%+1||2L2(9) < eng1(h+k)? with ¢y = (14 k)e + Csk and Cs = C4(1+T) + CF(1 +T)*.

(Note that Cs only depends on u, v, b, Q and T)).
Choosing ¢g = 0 (since ||e)||r2(q) = 0), the relation between ¢, and ¢,y yields (by induction) ¢, <
Cse?*n. Estimate (4.26) follows with C2? = Cye??. "
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Remark 4.5 The error estimate given in Theorem 4.1 may be generalized to the case of discontinuous
coefficients. The admissibility of the mesh is then redefined so that the data and the solution are piecewise
regular on the control volumes as in Definition 3.8 page 78, see also HERBIN [1996].

4.3 Convergence in the nonlinear case

4.3.1 Solutions to the continuous problem

We consider Problem (4.1)-(4.4) with v.= 0, b = 0, 00, = 92 and § = 0, that is a homogeneous
Neumann condition on the whole boundary, in which case the problem becomes

u(z,t) — Ap(u)(z,t) = f(z,t), for (z,t) € 2 x(0,T), (4.33)
with
Vo(u)(z,t) -n(z) =0, for (x,t) € 00 x (0,T), (4.34)

and the initial condition

u(z,0) = up(z), for all z € Q. (4.35)

We suppose that the following hypotheses are satisfied:
Assumption 4.1

(i) Q is an open bounded polygonal subset of R? and T > 0.

(i) The function ¢ € C(IR,R) is a nondecreasing locally Lipschitz continuous function.
(iii) The initial data uo satisfies ug € L®(R).
(iv) The right hand side f satisfies f € L>( x IRY).

Equation (4.33) is a degenerate parabolic equation. Formally, Ap(u) = div(¢’(v)Vu), so that, if ¢'(u) =
0, the diffusion coefficient vanishes. Let us give a definition of a weak solution u to Problem (4.33)-
(4.35) (the proof of the existence of such a solution is given in KAMENOMOSTSKAJA, S.L. [1995],
LADYZENSKAJA, SOLONNIKOV and URAL'CEVA [1968], MEIRMANOV [1992], OLEINIK [1960]).

Definition 4.1 Under Assumption 4.1, a measurable function u is a weak solution of (4.33)-(4.35) if
u %L"O(Q x (0,T)),
|| (wte.001a.0) + olute. ) Av(@, 1) + f(o.000(2.0)) da dt + (436)
/;uo(a:)z/)(m,o)dx =0, for all ¢y € Ar,
where A7 = {¢ € C*1(Q x [0,T]), Vb -n = 0 on 9Q x [0,T], and 4(-,T) = 0}, and C%1(Q x [0,7T))
denotes the set of functions which are restrictions on Q x [0, 7] of functions from R? x IR into IR which

are twice (resp. once) continuously differentiable with respect to the first (resp. second) variable. (Recall
that, as usual, n is the unit normal vector to 912, outward to Q.)
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Remark 4.6 It is possible to use a solution in a stronger sense, using only one integration by parts for
the space term. It then leads to a larger test function space than Ap.

Remark 4.7 Note that the function u formally satisfies the conservation law

/Qu(a:,t)dx:/Quo(w)dx-i-/ot/gf(x,t)dmdt, (4.37)

for all ¢ € [0,7]. This property is also satisfied by the finite volume approximation.

4.3.2 Definition of the finite volume approximate solutions

As in sections 3.1.2 page 37 and 3.2.1 page 62, an admissible mesh of Q is defined, with respect to which
a functional space is introduced: this space contains the approximate solutions obtained from the finite
volume discretization over the admissible mesh.

Definition 4.2 Let 2 be an open bounded polygonal subset of R%, T be an admissible mesh in the
sense of Definition 3.5 page 62, T > 0, k € (0,T) and Ny, = max{n € IN;nk < T}. Let X(T,k) be
the set of functions u from Q x (0, (Nj + 1)k) to IR such that there exists a family of real values {u%,
K eT,ne{0,...,Ni}}, with u(z,t) = u} for ae. z € K, K € T and for ae. t € [nk,(n + 1)k),
n e {0,...,Nk}.

Since we only consider, for the sake of simplicity, a Neumann boundary condition, we can easily eliminate
the unknowns F , located at the edges in equation (4.8) using the equations (4.9), (4.10), and (4.11).
An explicit version of the scheme can then be written in the following way:

(i) M S (o) - plu)) = m() R
k LeN(K) (4.38)
VK € T,Vn € {0,...,Ng}.
1
ud = () /Kug(x)dx, VK €T, (4.39)
1 (n+1)k
= o / / F(, )dodt, VK € T, ¥n € {0,..., Ni}. (4.40)
nk K
KI|L)

(Recall that 7|1, = m(
dk|L

, see Definition 3.5 page 62.)

Remark 4.8 The definition using the mean value in (4.39) is motivated by the lack of regularity assumed
on the data ug.

The scheme (4.38)-(4.40) is then used to build an approximate solution, ur € X(7,k) by

ur (z,t) = uk,Vo € K,Vt € [nk,(n+ 1)k),VK € T,¥n € {0,..., Ni}. (4.41)

Remark 4.9 The implicit finite volume scheme is defined by
utt —un "
()~ 37 g () - (i) = m(K) S,

LeEN(K)

VK € T,Vn € {0,..., Ny}

(4.42)
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The proof of the existence of k™", for any n € {0,..., Ny}, can be obtained using the following fixed

point method:

it =, forall K € T, (4.43)

and

n+1,m+1 n
u —u n m n m n
R D I (A B O ST S
LeN(K) ( - )
VK €T, Vm € IN.

Equation (4.44) gives a contraction property, which leads first to prove that for all K € T, the sequence
(™)) men converges. Then we deduce that (ujt"™) e also converges.

We shall see further that all results obtained for the explicit scheme are also true, with convenient
adaptations, for the implicit scheme. The function ur j is then defined by ur x(z,t) = u’}(“, for all x €

K, for all t € [nk, (n + 1)k).

The mathematical problem is to study, under Assumption 4.1 and with a mesh in the sense of Definition
3.5, the convergence of ut x, to a weak solution of Problem (4.33)-(4.35), when h = size(7) — 0 and k — 0.
Exactly in the same manner as for the elliptic case, we shall use estimates on the approximate solutions
which are discrete versions of the estimates which hold on the solution of the continous problem and which
ensure the stability of the scheme. We present the proofs in the case of the explicit scheme and show in
several remarks how they can be extended to the case of the implicit scheme (which is significantly easier
to study). The proof of convergence of the scheme uses a weak-* convergence property, as in CIAVALDINI
[1975], which is proved in a general setting in section 4.3.5 page 112. For the sake of completeness,
the proof of uniqueness of the weak solution of Problem (4.33)-(4.35) is given for the case of a regular
boundary; this allows to prove that the whole sequence of approximate solutions converges to the weak
solution of problem (4.33)-(4.35), in which case an admissible mesh for a smooth domain can easily be
defined (see Definition 4.4 page 112).

4.3.3 Estimates on the approximate solution
Maximum principle

Lemma 4.1 Under Assumption 4.1, let T be an admissible mesh in the sense of Definition 3.5 page 62

and k € (0,T). Let U = [Juol|zeo (@) + Tllfllz(2x(0,1)), B = sup M Assume that the
—U<Lz<y<U r—y
condition
E< GO , foral KeT, (4.45)
Z TK|L
LeN(K)

is satisfied. Then the function ut y defined by (4.38)-(4.41) verifies

lluT k|l (@ (0,1)) < U- (4.46)
PRrROOF of Lemma 4.1

Let n € {0,..., N — 1} and assume u}, € [-U,+U] forall K € T.
Let K € T, Equation (4.38) can be written as

k p(uf) — p(uk)

un+1 — 1— T L K u +
K < m(K) LE%K) KIL ™ yn ) K
k p(ui) — p(uk)

m(K) LE%%}()( | uf —uf ) L K
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p(up) — p(uk)

u? —um

with the convention that =0ifu} —uk =0.

Thanks to the condition (4.45) and since ¢ is nondecreasing, the following inequality can be deduced:

lufett| < sup [uf| + kIl fllLo(@x(0,1))-
LeT

Then, since K is arbitrary in 7T,

sup [ui™| < sup [u| + K| fll e @x(0,7)- (4.47)
KeT LeT

Using (4.47), an induction on n yields, for n € {0,..., Ni}, supger |[ufk| < [|uoll Lo (@) +nEl fllLe@x(0,1))
which leads to Inequality (4.46) since Npk < T. [

Remark 4.10 Assume that there exist o, 8, v € R such that m(K) > ah?, m(0K) < Bh4=1, for all
K €T, and d|;, > 7h, for all K|L € &y (recall that h = size(T)). Then, k < Ch? with C = (ary)/(BS)
yields (4.45).

Remark 4.11 Let (T, kn)new be a sequence of admissible meshes and time steps, and (u7; &, )Jnew the
associated sequence of approximate finite volume solutions; then , thanks to (4.46), there exists a function
u € L*®(Q x (0,T)) and a subsequence of (ur; i, )Jnew which converges to u for the weak-x topology of
L>(Q x (0,7)).

Remark 4.12 Estimate (4.46) is also true, with U = [|ug||re(q) + 27| f||zec(2x(0,21)), for the implicit
scheme, because the fixed point method guarantees (4.47) (with || f[| e (@x(0,27)) instead of || f|| L@ x(0,7))
and until n = Ny), without any condition on k.

Space translates of approximate solutions

Let us now define a seminorm, which is the discrete version of the seminorm in the space L2(0,T; H'(Q2)).

Definition 4.3 (Discrete L2(0,7; H'(Q2)) seminorm) Let  be an open bounded polygonal subset of
R¢, T an admissible finite volume mesh in the sense of Definition 3.5 page 62, T > 0, k € (0,T) and
Ny = max{n € N;nk < T}. For u € X(T, k), let the following seminorms be defined by:

|u(-,t)|ifr = Z kL (uf —uk)?, for ae. t € (0,T) and n = max{n € N;nk < t}, (4.48)
K|L€&ins
and
N,
|u|%,7’,k = Zk 2 Tr|L (U} — uf)? (4.49)

n=0 K|LEEint

Let us now state some preliminary lemmata to the use of Kolmogorov’s theorem (compactness properties
in L?(Q x (0,7T))) in the proof of convergence of the approximate solutions.

Lemma 4.2 Let Q be an open bounded polygonal subset of R%, T an admissible mesh in the sense of

Definition 3.5 page 62, T > 0, k € (0,T) and u € X(T,k). For all n € RY, let Q, be defined by
Q,={zeQ,[z,z+n] CQ}. Then:

(- +1,7) =l Mz, < 0.y < [l 7 kIl +2size(T)), ¥y € RY, (4.50)
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PROOF of Lemma 4.2

Reproducing the proof of Lemma 3.3 page 44 (see also the proof of (3.110) page 74), we get, for a.e.
€ (0,7):

lu(-+n,8) = u(,D)|72,) < lu( DR Flul(nl + 2size(T)), ¥y € R™. (4.51)
Integrating (4.51) on t € (0,7T) gives (4.50). L]

The set ,, defined in Lemma 4.2 verifies Q \ Q, C Ugee., ,wn,0, With w, o = {y —tn, y € 0, t € [0,1]}.
Then, m(Q\ Q) < |n| m(9N), since m(@,) < nm(c). Then, an immediate corollary of Lemma 4.2 is the
following:

Lemma 4.3 Let Q be an open bounded polygonal subset of R%, T an admissible mesh in the sense of
Definition 3.5 page 62, T >0, k € (0,T) and u € X(T, k). Let 4 be defined by i = u a.e. on Q x (0,T),
and @ =0 a.e. on R4\ Q x (0,T). Then:

@ +m,) = a(, )7 qgasry < Il (Iulim(lnl + 2size(T)) + 2m(69)IIUIIim(Qx(0,T»), (4.52)
vn e R

Remark 4.13 Estimate (4.52) makes use of the L (2 x (0,T))-norm of u € X (T, k). A similar estimate
may be proved with the L2(Q x (0,T))-norm of u (instead of the L (Q x (0,7))-norm). Indeed, the right
hand side of (4.52) may be replaced by C’n(|u|i7—,k + [lull32/q %(0, T)) ), where C only depends on . This
estimate is proved in Theorem 3.7 page 73 where it is used %or the convergence of numerical schemes for
the Neumann problem (for which no L® estimate on the approximate solutions is available). The key to
its proof is the “trace lemma” 3.10 page 71.

Let us now state the following lemma, which gives an estimate of the discrete L2(0,T; H'(f2)) seminorm
of the nonlinearity.

Lemma 4.4 Under Assumption 4.1, let T be an admissible mesh in the sense of Definition 3.5 page 62.
Let £ € (0,1) and k € (0,T) such that

m(K)

B Z TK|L,

LEN(K)

k<(1-=¢) forall K € T. (4.53)

Let ur, € X(T,k) be given by (4.38)-(4.41).
Let U = ||uol|peo(@) + Tl flle(ox(0,m)) and B be the Lipschitz constant of ¢ on [-U,U]. Then there
exists Fy > 0, which only depends on Q, T, ¢, ug, f and & such that

lo(ur )i 7k < Fr. (4.54)

PROOF of lemma 4.4

Let us first remark that the condition (4.53) is stronger than (4.45). Therefore, the result of lemma 4.1
holds, i.e. |u%| < U, for all K € T, n € {0,..., N}. Multiplying equation (4.38) by ku?, and summing
the result over n € {0,..., Ny} and K € T yields:

Y > mE)(ug — uf)uf~

T;\ZOKET . (455)

n=0 KeT LeEN(K) n=0 KeT
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In order to obtain a lower bound on the first term on the left hand side of (4.55), let us first remark that:

(it — eyl = S (i) = () — Sk — i) (456)
Now, applying (4.38), using Young’s inequality, the following inequality is obtained:
n 1 n nw)? L (FR)?
(i i <K+ O[(ny D mnled) i) + ] (48D

LEN(K)
which yields in turn, using the Cauchy-Schwarz inequality:

2

(UZH . u?()Q < m(kK)Q (1 +§)|: Z TK|L] [ Z TK\L(SO(Uz) - ‘P(U?{))2]

LEN (K) LEN(K) (4.58)
L9 £’
£ .
Taking condition (4.53) into account gives:
2 1 k fn 2
! =) < (=€) [ 3 e (o) - otup) ]+ LEEIRE 4 59)
m LEN(K)

Using (4.56) and (4.59) leads to the following lower bound on the first term of the left hand side of (4.55):

Ny,
S mE) g - uk)uk > 22 ) (g ™)? = (ufe)?)
n=0KeT KET

LESS [ X (et - o) o

n=0 K€ET LeN(K)

”fzkz

n=0 KeT
Let us now handle the second term on the left hand side of (4.55). Let ¢ € C(IR,IR) be defined by

d(z) = zp(x) — / (y)dy, where zo € IR is an arbitrary given real value. Then the following equality
holds:

Zo

¢(uf) — ¢uk) = uf (p(uf) — p(uk)) — / (p(z) — p(ui))da. (4.61)
The following technical lemma is used here and several times in the sequel:

Lemma 4.5 Let g : IR — IR be a monotone Lipschitz continuous function, with a Lipschitz constant
G > 0. Then:

| / ¢)de| > ;G( (d) = g(c)%, Ve,d€TR. (4.62)

PRrROOF of Lemma 4.5

In order to prove Lemma 4.5, we assume, for instance, that g is nondecreasing and ¢ < d (the other
cases are similar). Then, one has g(s) > h(s), for all s € [c¢,d], where h(s) = g(c) for s € [¢,d — ] and
h(s) =g(c) + (s —d+1)G for s € [d—1,d], with IG = g(d) — g(c), and therefore:

d d
[ @) = g(eDds > [ () - g(e)ds = 5(ald) - g(e) = 55(9(@d - 9(c),
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this completes the proof of Lemma 4.5. =
Using Lemma, 4.5, (4.61) and the equality Z Z Tk |L(P(ul) — d(uk)) = 0 yields:
KeT LEN(K)
Ny,
SR Y i (vwd) - e(up))uk Zk S rknlel) - oup)). (463)
n=0 K€ET LeN(K) n—O KeT LeEN(K)

Since k < T we deduce from (4.46) that the right hand side of equation (4.55) satisfies

Ni
> kY m(EK)ul fi] < 2Tm(Q)U| @ 0.21))- (4.64)

n=0 KeT
Relations k < T, (4.55), (4.60), (4.63) and (4.64) lead to

2 ,
SEEY. Y inlp(ul) — p(uR)) <

n=0 KeTLeN(K) (4.65)
2Tm(Q)|| fll L= (@x (0,21)) <U+ —||f||L°°(Q><(0 2T))T) + 2m( MlwolZ e ()
which concludes the proof of the lemma. [

Remark 4.14 Estimate (4.54) also holds for the implicit scheme , without any condition on k. One
multiplies (4.42) by u"+1 the last term on the right hand side of (4.56) appears with the opposite sign,
which considerably sunphﬁes the previous proof.

Time translates of approximate solutions

In order to fulfill the hypotheses of Kolmogorov’s theorem, the study of time translates must now be
performed. The following estimate holds:

Lemma 4.6 Under Assumption 4.1 page 100, let T be an admissible mesh in the sense of Definition 3.5
page 62 and k € (0,T). Let ury € X(T,k) be given by (4.38)-(4.41). Let U = ||uT i||Lo(@x(0,1)) and B
be the Lipschitz constant of ¢ on [-U,U]. Then:

{ le(wr k(- -+ 7)) — e(ur e (-, -))||i2(QX(0,T—T)) < (4.66)

2B (|p(ur i)} - + BTmE@UIIf ll1=(0x 0,17 ) Y7 € (0,T).

PROOF of Lemma 4.6

Let 7 € (0,T). Since B is the Lipschitz constant of ¢ on [~U,U], U = |lu7 i||Le(@x(0,1)) and ¢ is
nondecreasing, the following inequality holds:

, )
/ (olur szt + 7)) — plura(e,1)) dedt < B / A(t)dt, (4.67)
Qx(0,T—71) 0
where, for almost every t € (0,7 — 7),

A) = [ (wlurata,t+ ) = plurale ) (urslot +7) = urs(z, ) do

Let t € (0,T — 7). Using the definition of ur j (4.41), this may also be written:

At) = " m(E) (i) — (e ®) ) (@ —uie®), (4.68)

KeT
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with no(t), n1(t) € {0, ..., Ni} such that no(t)k <t < (no(t) + 1)k and ny(t)k <t + 7 < (n1(t) + 1)k.
Equality (4.68) may be written as

ni (t)

A = 3 )=o) (Y mE) g - ur),

KeT n=no(t)+1

which also writes

A = Y (puit®) - p(ure™)) (anttw (K)(uk — ™)), (4.69)

KeT
with x,(t,t +7) =1if nk € (t,t + 7] and x,(t,t +7) = 0if nk ¢ (¢, t + 7].
In (4.69), the order of summation between n and K is changed and the scheme (4.38) is used. Hence,

Ny
At) =k xnlt,t+7) [ S (p(u®) — (e ®)

n=1 KeT

> rnlo™) —e(ui) + mE) )]

LEN(K)
Gathering by edges, this yields:

O=kD | 3 o) o) o) + o)

n=1 K|LEEm:

(i =)+ 3 (™) — o) m(K) f 4 xalt,t + 7).
KeT

Using the inequality 2ab < a? + b2, this yields:

A1) < 3 Ao(t) + 5 A1(8) + Ax(0) + As(), (4.70)
with
Ni
A = kY xaltt +1( Y Trin(e@i®) — oup®))?),
n=1 K|LEEins
Ny,
A=k xalt,t +1)( Y i) — p(up®))?),
n=1 K|LEEn
Ny,
A = kY xnltt+1)( Y Tl ) — eui)?),
n=1 K|L€EEins
and

Ny
As() = kY xnlt,t + 1) (Y (0 ?) — p(up)m(K) f1).

n=1 KeT

Note that, since t € (0,7 — 7), no(t) € {0,..., N}, and, for m € {0,..., N}, no(t) = m if and only if
t € [mk, (m + 1)k). Therefore,

T—7 (m4+1)k N
/0 dt<z / EY xnltt+7)( S mrin(e]) — o(u)?)dt,

K|L€&int
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which also writes

T—1 (m+1)k , N
.A w<2ﬁ/ (Dt t+m)dt > maulep) - e (@471

n=1 K|LEEins

The change of variable t = s + (n — m)k yields

(m+1)k 2mk—nk+k 2mk—nk+k
/ Xn(t,t+T)dt=/ xn(s—}—(n—m)k,s—!—(n—m)k—}—T)ds=/ Xm (8,8 +7)ds,

mk 2mk—nk 2mk—nk

then, for all m € {0,..., Ny},

(m+1)k , Nk
/ (an(t,t+7'))dt§/ Xm (8,8 + 7)ds = T,
mk n=1 R
since xm(s,s +7) = 1 if and only if mk € (s, s + 7] which is equivalent to s € [mk — 7, mk).
Therefore (4.71) yields
T—71
| Aot < rlotur )l (.72
0

Similarly:

T—71
/ Ay ()dt < Tlp(ur i) 7 (4.73)
0

Let us now study the term fOTfT Ax(t)dt:

T-7 T—7
/0 t)dt < Z k Z Tr|L(P (plut™) — go(u%fl))z/o Xn(t, t + 7)dt. (4.74)

n=1 K|LEEins

Since fo Xn(t,t + 7) < 7 (recall that x,(¢t,t +7) = 1 if and only if ¢t € [nk — 7,nk)), the following
inequality holds:

/OT ' Az (t)dt < Tlp(ur i) 7 - (4.75)
In the same way:
7 4 =
Jo " As( < ;k IgT K)2BU| f|| e (@x(o, T)))/ Xn(t,t +7)dt (4.76)
< 7Tm(Q)2BU || f|| e (2x(0,7))-
Using inequalities (4.67), (4.70) and (4.72)-(4.76), (4.66) is proved. n

Remark 4.15 Estimate (4.66) is again true for the implicit scheme , with || f||ze @ x(0,27)) instead of
1 £ 1l oo @2 (0,7)-

An immediate corollary of Lemma 4.6 is the following.



109

Lemma 4.7 Under Assumption 4.1 page 100, let T be an admissible mesh in the sense of Definition 3.5
page 62 and k € (0,T). Let urr € X(T,k) be given by (4.38)-(4.41). Let U = ||uT k||~ (ax (1) and B
be the Lipschitz constant of ¢ on [-U,U]. One defines & by & = ur a.e. on Q x (0,T), and & =0 a.e.
on R\ Q x (0,T). Then:

le(@( - + 7)) = (@, DEaggarsy < 2A7B( 10T ) rpt
BTm()U||fll=(@x(0,1)) + Bm(QU?),
V7 € R.

4.3.4 Convergence

Theorem 4.2 Under Assumption 4.1 page 100, let U = ||uol| () + Tl fllL(@x(0,m)) and

B ap C@-s)

—U<z<y<U rT—=yY
Let £ € (0,1) be a given real value. For m € IN, let T, be an admissible mesh in the sense of Definition
3.5 page 62 and k,, € (0,T) satisfying the condition (4.53) with T = Tp and k = ky,. Let ur,, 1, be
given by (4.88)-(4.41) with T = Ty, and k = k,,,. Assume that size(T;,) — 0 as m — co.
Then, there ezists a subsequence of the sequence of approzimate solutions, still denoted by (uT,, k.. )meN,
which converges to a weak solution u of Problem (4.33)-(4.35), as m — oo, in the following sense:
(i) ur, k, converges tou in L=(Q x (0,T)), for the weak-* topology as m tends to +oo0,
(i3) (p(urs, k..)) converges to p(u) in L*(Q x (0,T)) as m tends to +oo,
where ur,, k. and o(uT,, k..) also denote the restrictions of these functions to Q x (0,T).

PROOF of Theorem 4.2

Let us set u,, = u7,, k,, and assume, without loss of generality, that ¢(0) = 0. First remark that,
by (4.53), k, — 0 as m — 0. Thanks to Lemma 4.1 page 102, the sequence (um,)men is bounded in
L*>(2 x (0,T). Then, there exists a subsequence, still denoted by (um,)men, such that u,, converges, as
m — 00, to u in L>(Q x (0,T)), for the weak-x topology.

For the study of the sequence (¢ (um))men, we shall apply Theorem 3.9 page 91 with N =d+1, ¢ =2,
w=0x(0,T) and p(v) = & with & defined, as usual, by & = v on 2x (0, T) and ¥ = 0 on R4\ Qx (0, 7).
The first and second items of Theorem 3.9 are clearly satisfied; let us prove hereafter that the third is
also satisfied. By Lemma 4.4, the sequence (|¢(tm)|1, 7,k Jmen is bounded. Let 7 € R% and 7 € R,
since

llp(@m (- +mn,- + 7)) = @(lm (-, )l L2@ra+ry <

llo(@m (- +n,-) = @(Um (-, )| L2qra+ry + lo@m (-, - + 7)) = @(@m (5 )| L2 @ra+r),
lemmata 4.3 and 4.7 give the third item of Theorem 3.9 and this yields the compactness of the sequence
((um))men in L*(2 x (0,T)).
Therefore, there exists a subsequence, still denoted by (¢ (um))men, and there exists x € L2(2 x (0,7'))
such that ¢(ur,, k,.) converges, as m — 0o, to x in L2(2 x (0,T)). Indeed, since (¢(um))men is bounded
in L>(Q x (0,7)), this convergence holds in L2(2 x (0,7)) for all 1 < g < co. Furthermore, since ¢ is
nondecreasing, Theorem 4.3 page 112 gives that x = p(u).

Up to now, the following properties have been shown to be satisfied by a convenient subsequence:

(1) (um)men converges to u, as m — 00, in L®(Q x (0,T")) for the weak-+ topology,

(i) (p(um))men converges to p(u) in L'(Q x (0,7)) (and even in LP(2 x (0,T)) for all p € [0, 00)).
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There remains to show that u is a weak solution of Problem (4.33)-(4.35), which concludes the proof of
Theorem 4.2.

Let m € IN. For the sake of simplicity, we shall use the notations T = Tp,, h = size(T) and k = k,,,. Let

¥ € Ap. We multiply (4.38) page 101 by k¢ (zk,nk), and sum the result onn € {0,..., Ny} and K € T.
We obtain

Tlm + T2m = T3m7 (477)
with
Ny,
Tim =Y > m(K)(ug™ —uk)y(zk,nk),
n=0KeT
Ny,
Tom == kY. > micn(p(ud) - p(uh)) ok, nk),
n=0 K€ET LeEN(K)
and

Tom = 3k S b(asc, nbym(K) 13-

n=0 KeT

We first consider T7,,.

N
Tim= 3 3 m(K)uk (b(ax, (n— k) — blax,nk)) +

n=1KeT
> m(K) (uf (o, kN — uf(ax, 0))-
KeT
Performing one more step of the induction in Lemma 4.1, it is clear that |u%’“+l| < U+2T|fllz(@x(0,2T))>

forall K e T.
Since 0 < T — Nk < k, there exists C4,, which only depends on 9, T and , such that |[¢(xk, Nik)| <
kC1,4. Hence,

Z m(K)uR* ) (zg, kNg) = 0 as m — oco.
KeT

Since

I Z uye 1k — uollpi(e) = 0, as m — oo,
KeT

(where 1x(z) = 1if z € K, 0 otherwise), one has

Z m(K)ulp(zk,0) — / up (z)¢(x,0)dz as m — oo.
Q

KeT

Since (Um)meN converges, as m — +00, to u in L®(Q x (0,T)), for the weak-x topology, and since
|u%’“| < U + T fll=(ax(o,1)), for all K € T, the following property also holds:

Ny, T
Z Z m(K)uy (¢(xK, (n—1k) - zp(:cK,nk)) — —/0 /Qu(x,t)wt(x,t)dxdt as m — 0.

n=1KeT

Therefore,
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T
Tim — —/0 /Qu(:c,t)zpt(a:,t)d:cdt — /ng(a:)ib(:c,O)dw, as m — oo.

We now study T5,,,. This term can be rewritten as

¢($K7 ’I’Lk‘) - ¢($L> nk)
dk|L '

Tom = —Zk Y mE[L)(p(uf) - o(uk))

n=0 K|LEEns

It is useful to introduce the following expression:

(n+1)k
T3, / / (i (2, 1)) A, k) drdt

:Zk2<puK/A¢xnk

n 0 KeT
= Zk > (p(uk) —e@h)) [ Vip(z,nk) -ng pdy(z).
n=0 K|LEEm: K|L

The sequence (©(Un))men converges to p(u) in L (Q x (0,T)); furthermore, it is bounded in L* so that
the integral between T and (N, + 1)k tends to 0. Therefore:

—>/ / u(z, t))Ay(z, t)dzdt, as m — co.

The term T, + T3, can be written as

Tom + Tspm, Zk Y m(K|L)(p(uk) = o(uf)) R 1

n=0 K|Le&E

with

1 ¢(Z‘L,nk) — ¢($K;”k)
RY = ———— Vi(z,nk) - ng rdy(z) — .
oL m(K|L) K|L dk|L
Thanks to the regularity properties of ¢ there exists Cy, which only depends on 1, such that |R}% ;| <
Cyh. Then, using the estimate (4.54), we conclude that Ty, + T3, — 0 as m — co. Therefore,

Tom — — / / u(z, t))Ay(x, t)dzdt, as m — co.

Let us now study T3,.
Define fr € X(T,k) by fre(z,t) = f& if (z,t) € K x (nk,nk + k). Since frr — fin L1(Q x (0,7)
and since f € L*>(Q x (0,27),

T
T3m — /Q/O f(z, t)y(z,t)dtdz, as m — oo.

Passing to the limit in Equation (4.77) gives that u is a weak solution of Problem (4.33)-(4.35). This
concludes the proof of Theorem 4.2. =

Remark 4.16 This convergence proof is quite similar in the case of the implicit scheme, with the addi-
tional condition that (k.,)memwN converges to zero, since condition (4.53) does not have to be satisfied.
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Remark 4.17 The above convergence result was shown for a subsequence only. A convergence theorem
is obtained for the full set of approximate solutions, if a uniqueness result is valid. Such a result can be
easily obtained in the case of a smooth boundary and is given in section 4.3.6 below. For this case, an
extension to the definition 3.5 page 62 of admissible meshes is given hereafter.

Definition 4.4 (Admissible meshes for regular domains) Let Q be an open bounded connected
subset of R?, d = 2 or 3 with a C? boundary 8. An admissible finite volume mesh of € is given by an
open bounded polygonal set £’ containing €2, and an admissible mesh 77 of ' in the sense of Definition
3.5 page 62. The set of control volumes of the mesh of Q are {K'NQ, K’ € T' such that mgq(K'NQ) > 0}
and the set of edges of the mesh is £ = {o NQ, o € &' such that ma_1(c NQ) > 0}, where £ denotes the
set of edges of 7' and my denotes the N-dimensional Lebesgue measure.

Remark 4.18 For smooth domains (2, the set of edges £ of an admissible mesh of €2 does not contain
the parts of the boundaries of the control volumes which are included in the boundary 92 of (2.

4.3.5 Weak convergence and nonlinearities

We show here a property which was used in the proof of Theorem 4.2.

Theorem 4.3 Let U > 0 and ¢ € C([-U,U]) be a nondecreasing function. Let w be an open bounded
subset of RN, N > 1. Let (tn)nex C L®(w) such that

(i) =U <up <U a.e. inw, for all n € IN;

(i) there exists u € L= (w) such that (un)new converges to u in L*°(w) for the weak-* topology;

(iii) there exists a function x € L'(w) such that (o(uy))neN converges to x in L' (w).

Then x(z) = p(u(z)), for a.e. z € w.

PROOF of Theorem 4.3

First we extend the definition of ¢ by p(v) = p(-=U) + v+ U for all v < —U and ¢(v) = (U) +v—-U
for all v > U, and denote again by ¢ this extension of ¢ which now maps IR into IR, is continuous and
nondecreasing. Let us define ay from IR to R by a_(t) = inf{v € R, p(v) = t} and a,(t) = sup{v €
R, p(v) =t}, for all t € R.

Note that the functions ay are increasing and that

(i) a— is left continuous and therefore lower semi-continuous, that is

t= lim t, = a_(t) <liminf a_(t,),

n—oo n—oo

(ii) a4 is right continuous and therefore upper semi-continuous, that is

t = lim t, = a4 (t) > limsup at(t,)-

n—00 n—oo

Thus, since we may assume, up to a subsequence, that ¢(u,) = x a.e. in w,

o (x(x)) < liminf a_ (p(un(2)) < limsupa (p(un(2))) < oy (x(@)), (478)

n—oo n—oo

for a.e. € w.
A direct application of the definition of the functions a_ and a4 gives

o ((p(un(2))) < un(@) < oy ((un())). (4.79)

Let LY} = {¢ € L'(w), ¢ > 0 a.e.}. Let ¢ € L. We multiply (4.79) by () and integrate over w, it
yields
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/w a_ ((plun(@)))tla)de < / un(@)(2)da < / i ((p(un (@) (). (4.80)

w

Applying Fatou’s lemma to the sequences of L! positive functions a_(p(uy))y — a_(o(=U))y and
04 (P(U))) — ay (p(un)b yields, with (4.78),

n—oo

/ o (x(@)p(@)dz < limint [ a_ (plun())p(a)dz,

and

timsup [ ay (ifua(@))¥(@)te < [ ar(x@)i@)ds.

n— 0o w

Then, passing to the liminf and lim sup in (4.80) and using the convergence of (uy)nen to u in L®(w)
for the weak-x topology gives

/ o (x(@))(@)dz < / u(e)p(z)dz < / ey (x(@))(2)d.

Thus, since 9 is arbitrary in L}, the following inequality holds for a.e. z € w:

a—(x(@) < u(@) < ay(x(z)),

which implies in turn that x(z) = ¢(u(zx)) for a.e. z € w. This completes the proof of Theorem 4.3.
|

Remark 4.19 Another proof of Theorem 4.3 is possible by passing to the limit in the inequality

0< /(@(un)(w) = ¢(v(2)))(un(z) — v(@))dz, Vv € L= (w),

which leads to

0< /(X(w) — p(v())) (u(z) — v(z))dz, Yo € L (w).
From this inequality, one deduces that x = ¢(u) a.e. on w.

A third proof is possible by using the concept of nonlinear weak-+ convergence, see Definition 6.3 page
189.

4.3.6 A uniqueness result for nonlinear diffusion equations

The uniqueness of the weak solution to variations of Problem (4.33)-(4.35) has been proved by several
authors. For precise references we refer to MEIRMANOV [1992]. Also rather similar proofs have been
given in BERTSCH, KERSNER and PELETIER [1995] and GUEDDA, HILHORST and PELETIER [1997].
Recall that this uniqueness result allows to obtain a convergence result on the whole set of finite volume
approximate solutions to Problem (4.1)-(4.4) (see Remark 4.17).

The uniqueness of the weak solution to Problem (4.33)-(4.35) immediately results from the following
property.

Theorem 4.4 Let Q be an open bounded subset of R? with a C? boundary, and suppose that items (i),
(i) and (iv) of Assumption 4.1 are satisfied. Let u; and us be two solutions of Problem (4.33)-(4.85)
in the sense of Definition 4.1 page 100, with initial conditions uo,1 and ug2 and source terms vi and va
respectively, that is, for u1 (resp. ua), uo = uo1 (resp. uo = uo2) in (4.35) and f = v1 (resp. v2) in

(4.83).
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Then for all T > 0,

T T
/ / s (2, 8) — us(a, )|dedt < T / o (&) — o 2 ()| dr + / / (T = ) Jon (&, 1) — va(a, £)|derdt.
o Ja Q 0 Jo
Before proving Theorem 4.4, let us first show the following auxiliary result.

The existence of regular solutions to the adjoint problem

Lemma 4.8 Let Q be an open bounded subset of R? with a C? boundary, and suppose that ¢ is a
nondecreasing locally Lipschitz-continuous function. Let T > 0, w € CX(Q x (0,T)) such that [w| < 1,
and g € C*(Q x [0,T]) such that there exists r € R with 0 < r < g(z,t), for all (z,t) € 2 x (0,T).

Then there exists a unique function ¢ € C>1(Q x [0,T]) such that

iz, t) + gz, t) AY(x,t) = w(z, t), for all (z,t) € Q x (0,T), (4.81)
Vi -n(z,t) =0, for all (z,t) € 0Q x (0,T), (4.82)
Y(z,T)=0, forallze. (4.83)

Moreover the function v satisfies
[z, t)| <T —t, for all (z,t) € Q2 x(0,T), (4.84)

and

/0 ' /Q o(@, 1) (A¢(w,t))2d:vdt < 4T /0 ’ /Q \Vw(z, t)|? dad. (4.85)

PROOF of Lemma 4.8

It will be useful in the following to point out that the right hand side of (4.85) does not depend on g.
Since the function g is bounded away from zero, equations (4.81)-(4.83) define a boundary value problem
for a usual heat equation with an initial condition, in which the time variable is reversed. Since (2, g and
w are sufficiently smooth, this problem has a unique solution ¢ € A7, see LADYZENSKAJA, SOLONNIKOV
and URAL’CEVA [1968]. Since |w| < 1, the functions T — ¢t and —(T — t) are respectively upper and
lower solutions of Problem (4.81)-(4.82). Hence we get (4.84) (see LADYZENSKAJA, SOLONNIKOV and
URAL’CEVA [1968]).

In order to show (4.85), multiply (4.81) by Av(z,t), integrate by parts on Q x (0,7), for 7 € (0,T]. This
gives

%/QT|V¢(:E,O)|2d$ - %/wa(m)ﬁdz + /OT/Qg(m,t)(Aw(m,t))Qdmdtz

(4.86)
— /Vw(:c,t) -V(z,t)dzdt.
o Jo
Since V¢ (-,T) = 0, letting 7 = T in (4.86) leads to
1 2 ! 2 e
: /Q Ve (z, 0)[dz + /0 /Q gz, 1) (A¢(m,t)) dedt = s

—/T/ Vuw(z,t) - Vip(z, t)dzdt.
o Ja

Integrating (4.86) with respect to 7 € (0,7') leads to
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—//|wxr|2d:cdr< —/|wx0|dm +
/ / (2. 1) (A, t)) dodt  + (4.88)
/ / |[Vw(z,t) - Vip(z,t)|dzdt.

Using (4.87) and (4.88), we get

1 (T A T
5/0 /Q|V¢(x77)|2da:dr < 2T/0 /Q|Vw(x,t) - Vi (x, t)|dzdt. (4.89)

Thanks to the Cauchy-Schwarz inequality, the right hand side of (4.89) may be estimated as follows:

[/OT/Q|VUJ(3U,t)-V¢(x,t)|dwdt] < / /IW o 1) Pddt
/ /|Vw z,t)|*dzdt.

/ |Vw(z,t) - Vip(z, t)|dzedt
Q

With (4.89), this implies

[/T/ |Vw(z,t) .V¢(m,t)|dxdt]2 < 4T/T
0 Q

x/0¥/§2|Vw(a:,t)|2dxdt.

T T
/ / Vw(w,t) - Vib(z, £)|dodt < AT / / V(w, ) 2dedt,
0 Q 0 Q
which, together with (4.87), yields (4.85). L]

Therefore,

Proof of the uniqueness theorem

Let u; and us be two solutions of Problem (4.36), with initial conditions ug,; and ug,2 and source terms

v1 and vy respectively. We set uq = u1 —u2, vg = v1 —v2 and ug,q = up,1 — Uo,2- Let us also define, for all
t)) — t

(,t) € Qx R, q(x, 1) = w(ultl(zfmg - 52(1(1;(:’) D) it uy (,4) # ua(a, ), else q(a, ) = 0. For all T € R,

and for all ¢ € Ar, we deduce from (4.36) that

T
| [uate.0 (a0 + a(o,080(5,)) + valo, 006Gz, 0) ot +
Q
]uo,d(x)z/)(a:,O)dw =0.
Q
Let w € C°(Q x (0,T)), such that |w| < 1. Since ¢ is locally Lipschitz continuous, we can define its

Lipschitz constant, say Bar, on [—M, M], where M = max{||u1||ze@x(0,1)), |t2]lL(@x(0,r))} S0 that
0<q< By ae. onQx(0,7T).

(4.90)

Using mollifiers, functions q1,, € C2°(2 x (0,7)) may be constructed such that [|g1,» — ql|z2@x(0,7)) < %
and 0 < ¢1,, < By, for n € IN*. Let ¢, = 1,0 + % Then

1
< gn(z,t) < By + o for all (z,t) € 2 x (0,T),

S|
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and
0o JQ Qn(mat) OT Q )
/ / a0 )
o Ja
which shows that
T 2
(qn(mat) - Q(mat)) Tm(Q) 1
dzdt <2 — ).
[ < (55 )
It leads to B
||q:b/q_q||L2(QX(07T)) — 0 as n — oo. (4.91)

Let ¢, € Ar be given by lemma 4.8, with g = g,. Substituting % by %, in (4.90), using (with g = ¢,
and ¢ = 1,,) (4.81) and (4.84) give

|/ /ud £,0)(w(z,0) + (gla,1) — gul, ) A2, 1) )drdt] - <

(4.92)
/ /|ud 2, H)|(T —t)dmdt+T/|u0d )\dz.
The Cauchy-Schwarz inequality yields
/ /|ud 5. 9)|(g(@, 1) — gu (@, 8)) Aoy (s, t)|dxdt] < am?
(4.93)

// wtqnqnxt ddt/ /qnmt A¢n(xt))dmdt,

We deduce from (4.85) and (4.91) that the right hand side of (4.93) tends to zero as n — co. Hence the
left hand side of (4.93) also tends to zero as n — oo. Therefore letting n — oo in (4.92) gives

T T
|/0 Aud(m,t)w(m,t)dzdﬂ < /0 /Q|Ud($at)|(T_t)d$dt + (4.94)

T / o 4() | de.
Q

Inequality (4.94) holds for any function w € C°(Q x (0,T)), with |w| < 1. Let us take as functions w
the elements of a sequence (Wp)men such that w,, € C(Q x (0,T)) and |w,| < 1 for all m € IN, and
the sequence (W, )men converges to sign(ug(-,-)) in L'(Q x (0,7T)). Letting m — oo yields

T T
/0 /Q|ud(a:,t)|d:cdt g/o /Q|Ud(x,t)|(T—t)d:cdt—l—T/Q|uo,d(a:)|d:c,

which concludes the proof of Theorem 4.4. [



Chapter 5

Hyperbolic equations in the one
dimensional case

This chapter is devoted to the numerical schemes for one-dimensional hyperbolic conservation laws. Some
basics on the solution to linear or nonlinear hyperbolic equations with initial data and without boundary
conditions will first be recalled. We refer to GODLEWSKI and RAVIART [1991], GODLEWSKI and RAVIART
[1996], KRONER [1997], LEVEQUE [1990] and SERRE [1996] for extensive studies of theoretical and/or
numerical aspects; we shall highlight here the finite volume point of view for several well known schemes,
comparing them with finite difference schemes, either for the linear and the nonlinear case. Convergence
results for numerical schemes are presented, using a “weak BV inequality” which will be used later in
the multidimensional case. We also recall the classical proof of convergence which uses a “strong BV
estimate” and the Lax-Wendroff theorem. The error estimates which can also be obtained will be given
later in the multidimensional case (Chapter 6).

Throughout this chapter, we shall focus on explicit schemes. However, all the results which are presented
here can be extended to implicit schemes (this requires a bit of work). This will be detailed in the
multidimensional case (see (6.9) page 148 for the scheme).

5.1 The continuous problem
Consider the nonlinear hyperbolic equation with initial data:

{ u(z,t) + (f(u))z(z,t) =0 z€R, teRy, (5.1)

u(m70) =u0($)7 T € ]R’J

where f is a given function from IR to IR, of class C!, ug € L*°(IR) and where the partial derivatives of
u with respect to time and space are denoted by u; and u.

Example 5.1 (Biirgers equation) A simple flow model was introduced by Biirgers and yields the
following equation:
ug(x,t) + u(z, t)uy (z,t) — eugy(x,t) =0 (5.2)

Biirgers studied the limit case which is obtained when ¢ tends to 0; the resulting equation is (5.1) with
2

£(s) = % ie.

wi(z,t) + 52,6 = 0

117
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Definition 5.1 (Classical solution) Let f € C'(IR,IR) and uo € C*(IR,IR); a classical solution to
Problem (5.1) is a function u € C*(IR x R, IR) such that

ug(z,t) + f'(u(z,t))uz(x,t) =0, VeeR,Vte Ry,
u(z,0) =wg(z), VzelR.

Recall that in the linear case, i.e. f(s) = csforall s € IR, for some ¢ € IR, there exists (for ug € C*'(IR,R))
a unique classical solution. It is u(x,t) = ug(z — ct), for all x € IR and for all ¢ € IRy. In the nonlinear
case, the existence of such a solution depends on the initial data wug; in fact, the following result holds:

Proposition 5.1 Let f € C'(IR,IR) be a nonlinear function, i.e. such that there exist s1, s» € R with
f'(s1) # f'(s2); then there exists ug € C°(IR,IR) such that Problem (5.1) has no classical solution.

Proposition 5.1 is an easy consequence of the following remark.

Remark 5.1 If u is a classical solution to (5.1), then u is constant along the characteristic lines which
are defined by
z(t) = f'(uo(w0))t + xo, t € Ry,

where 9 € IR is the origin of the characteristic. This is the equation of a straight line issued from the
point (zg,0) (in the (z,t) coordinates). Note that if f depends on z and w (rather than only on u), the
characteristics are no longer straight lines.

The concept of weak solution is introduced in order to define solutions of (5.1) when classical solutions
do not exist.

Definition 5.2 (Weak solution) Let f € C'(IR,IR) and 4o € L*°(IR); a weak solution to Problem
(5.1) is a function u such that

ue LR x RY),
/ / u(z, t)ps(x, t)dtdr + / fu(z,t)) s (z, t)dtdr + / uo(z)p(z,0)dx = 0, (5.3)
RJR, R JR, R
V(,O € CCI(IR X ]R+,]R).
Remark 5.2
1. Ifue CY(R xIR4, R)NL®(IR x RY) then u is a weak solution if and only if u is a classical solution.

2. Note that in the above definition, we require the test function ¢ to belong to C! (R x R4, IR), so that
¢ may be non zero at time ¢t = 0.

One may show that there exists at least one weak solution to (5.1). In the linear case, i.e. f(s) = cs, for
all s € R, for some ¢ € IR, this solution is unique (it is u(z,t) = uo(z — ct) for a.e. (z,t) € R x Ry).
However, the uniqueness of this weak solution in the general nonlinear case is no longer true. Hence the
concept of entropy weak solution, for which an existence and uniqueness result is known.

Definition 5.3 (Entropy weak solution) Let f € C!(IR,IR) and uy € L*(IR); the entropy weak
solution to Problem (5.1) is a function u such that

ue L°(R x RY),

~/IR/IR+n x,t))pe(x,t) dtdw+/ /IR+ u(z,t)) s (z, t)dtda:+/]Rn(u0(:c))g0(x,0)dw >0, (5.4)

V(p € Ccl(IR‘ X IR‘JFJRJF)J
for all convex function n € C*(R,IR) and ® € C'(R,R) such that & =n'f’.
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Remark 5.3 The solutions of (5.4) are necessarily solutions of (5.3). This can be shown by taking in
(5.4) n(s) = s for all s € R, n(s) = —s, for all s € R, and regularizations of the positive and negative
parts of the test functions of the weak formulation.

Theorem 5.1 Let f € C1(IR,R), ug € L®(IR), then there exists a unique entropy weak solution to
Problem (5.1).

The proof of this result was first given by Vol’pert in VOL’PERT [1967], introducing the space BV (IR)
which is defined hereafter and assuming ug € BV (IR), see also OLEINIK [1963] for the convex case. In
KrusHkov [1970], Krushkov proved the theorem of existence and uniqueness in the general case ug €
L*(IR), using a regularization of uo in BV (IR), under the slightly stronger assumption f € C3(IR,1IR).
Krushkov also proved that the solution is in the space C(R 4, L},.(R)). Krushkov’s proof uses particular
entropies, namely the functions | - —&| for all K € IR, which are generally referred to as “Krushkov’s
entropies”. The “entropy flux” associated to |- —&| may be taken as f(-Tk) — f(-Lk), where aTb denotes
the maximum of @ and b and alb denotes the minimum of a and b, for all real values a,b (recall that

f(aTd) — f(alb) = sign(a — b)(f(a) — f(1))).
Definition 5.4 (BV(IR)) A function v € L},.(IR) is of bounded variation, that is v € BV (R), if

[v|Bv () = sup{/ z)dz, ¢ € CH(R,R),|p(z)| <1 Ve € R} < +00. (5.5)

Remark 5.4

1. If v : R — IR is piecewise constant, that is if there exists an increasing sequence (z;);cz with R =
Uiez [Ti, Ti+1] and a sequence (v;)iez such that v|(,; 4,,,) = Vi, then |v|py(R) = ez [Vir1 —vil.

2. Ifve Cl(IR,,IR) then |U|BV(IR) = ”vz”Ll(]R)

3. The space BV(R) is included in the space L>°(IR); furthermore, if v € BV (R) N L'(IR) then
lullrem) < |ulpvm)-

4. Let w € BV(R) and let (z;11/2)icz be an increasing sequence of real values such that IR =
Uiez [®i—1/2,Titp1/2]- Fori € Z ,let K; = (x;_1/2,%i11/2) and u; be the mean value of u over K.
Then, choosing conveniently ¢ in the definition of |u|py(R), it is easy to show that

D luigs —uil < Julpymw)- (5.6)
icz

Inequality (5.6) is used for the classical proof of “BV estimates” for the approximate solutions given
by finite volume schemes (see Lemma 5.7 page 137 and Corollary 5.1 page 137).

Note that (5.6) is also true when u; is the mean value of u over a subinterval of K; instead of the
mean value of u over K.
Krushkov used a characterization of entropy weak solutions which is given in the following proposition.

Proposition 5.2 (Entropy weak solution using “Krushkov’s entropies”) Let f € C'(IR,R)
and ug € L>®(IR), u is the unique entropy weak solution to Problem (5.1) if and only if u is such that

v e LR xRY),
/ / u(z,t) — k|lo(z, t)dtdz+
lR+

/ / u(z,t)Tk) — f(u(;c,t)J_/c))cpm(x,t)dtdx +/ |uo(x) — K|p(z,0)dz > 0,
R R
v Vo € C1(R x Ry, Ry), Vs € R.

(5.7)
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The result of existence of an entropy weak solution defined by (5.4) was already proved by passing to
the limit on the solutions of an appropriate numerical scheme, see e.g. OLEINIK [1963], and may also be
obtained by passing to the limit on finite volume approximations of the solution (see Theorem 5.2 page
134 in the one-dimensional case and Theorem 6.4 page 178 in the multidimensional case).

Remark 5.5 An entropy weak solution is sometimes defined as a function u satisfying:

’ // u(m,t)%(x,t)dtdx+/ f(u(m,t))%(m,t)dtda:-q-/ uo () (@, 0)dz = 0,
R JR, R IR, o
Vo € C:(R x Ry, R).
3 /m/lm n(u(w,t))ﬂot(m,t)dtdx-i-/m/er ®(u(z,t))p, (z, t)dtds > 0, (5.8)

Vo € CL(R x R}, Ry),
\ for all convex function n € C1(IR,IR) and & € C*(IR,R) such that & = n'f’.
The uniqueness of an entropy weak solution thus defined depends on the functional space to which u is

chosen to belong. Indeed, the uniqueness result given in Theorem 5.1 is no longer true with u defined by
(5.8) such that

u, f(u) € L, R x Ry), u € L°(R X (g,00)), Ve € R (5.9)

Under Assumption (5.9), every term in (5.8) makes sense. Note that (5.9)-(5.8) is weaker than (5.4). An
easy counterexample to a uniqueness result of the solution to (5.8)-(5.9) is obtained with f(s) = s? for
all s € R and up(x) = 0 for a.e. € IR. In this case, a first solution to (5.8)-(5.9) is u(z,t) = 0 for
a.e. (z,t) € R x R4 (it is the entropy weak solution). A second solution to (5.8)-(5.9) is defined for a.e.
(z,t) e R x Ry by

u(z,t) =0, if £ < —V/t or = > /1,

u(a:,t):%, if —Vt<z</t.
This second solution is not an entropy weak solution: it does not satisfy (5.4). Also note that this second
solution is not in the space C(IR4, L}, (IR)) nor in the space L (IR xR ) (it belongs to L= (R4, L (IR))).
Indeed, under the assumption u € L*°(IR x R4) N C(Ry4, L}, (IR)), the solution of (5.8) is unique.

The entropy weak solution to (5.1) satisfies the following L™ and BV stability properties:

Proposition 5.3 Let f € C'(IR,R) and ug € L>®(IR). Let u be the entropy weak solution to (5.1).
Then, u € C(R4,LE (R)); furthermore, the following estimates hold:

loc
L [u(- t)l[zer) < l[uollze(r), for all t € R
2. If Ug € BV(]R,), then |u(,t)|Bv(]R) S |UO|BV(]R): fOT all t € ]R_,_.

5.2 Numerical schemes in the linear case

We shall first introduce the numerical schemes in the linear case f(u) = win (5.1). The problem considered
in this section is therefore

{ut(a:,t)—i—uz(x,t) =0 reR, te Ry,

u(z,0) =wuo(z), ze€R. (5.10)

Assume that ug € C'(IR,IR); Problem (5.10) has a unique classical solution, as defined in Definition 5.1,
which is u(xz,t) = uo(x — ¢t) for all (z,t) € R x Ry. If ug € L*°(IR), then Problem (5.10) has a unique
weak solution, as defined in Definition 5.2, which is again u(z,t) = uo(z — t) for a.e. (z,t) € R x R;.
Therefore, if ug > 0, the solution w is also nonnegative. Hence, it is advisable for many problems that
the solution given by the numerical scheme should preserve the nonnegativity of the solution.
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5.2.1 The centered finite difference scheme

Assume ug € C(R,R). Let h € R} and z; = ih for all i € Z. Let k € IR} be the time step. With
the explicit Euler scheme for the time discretization (the implicit Euler scheme could also be used), the
centered finite difference scheme associated to points x; and k is

utt —ul uly —ul ;
i iy % =0, VYneN, Vie Z, (5.11)

k 2h
u) =wug(xz;), Vie Z.

The discrete unknown u? is expected to be an approximation of u(z;,nk) where u is the solution to
(5.10).
It is well known that this scheme should be avoided. In particular, for the following reasons:

1. it does not preserve positivity, i.e. ul > 0 for all i € ZZ does not imply u} > 0 for all i € Z ; take
for instance u? =0 for i < 0 and w9 =1 for ¢ > 0, then uf = —k/(2h) < 0;

2. it is not “L*°-diminishing”, i.e. max{|u{|, i € Z} =1 does not imply that max{|u}|, i € Z} < 1;
for instance, in the previous example, max{|u?|, i € Z } = 1 and max{|u}|,i € Z} =1+ k/(2h);

3. it is not “L*-diminishing”, i.e. Y., (u?)? = 1 does not imply that Y .., (u})? < 1; take for
instance u? = 0 for i # 0 and u? = 1 for ¢ = 0, then u$ = 1,u = k/(2h),ul; = —k/(2h), so that
Yiez (ui)? =1+ K /(2h%) > 1;

4. it is unstable in the von Neumann sense: if the initial condition is taken under the form wug(z) =
exp(ipz), where p is given in Z , then u(z,t) = exp(—ipt) exp(ipz) (i is, here, the usual complex
number, ug and u take values in €). Hence exp(—ipt) can be seen as an amplification factor, and
its modulus is 1. The numerical scheme is stable in the von Neumann sense if the amplification
factor for the discrete solution is less than or equal to 1. For the scheme (5.11), we have u} =
u(; — (u?_|_1 - ug_l)k/(Zh) = exp(ipjh)&p nk, with &, p 1 = 1 — (exp(iph) —exp(—iph))k/(2h). Hence
|€p.nk]2 = 1+ (k% /h?)sin® ph > 1 if ph # gr for any q in Z .

In fact, one can also show that there exists ug € C}(IR,IR) such that the solution given by the numerical
scheme does not tend to the solution of the continuous problem when h and k tend to 0 (whatever the
relation between h and k).

Remark 5.6 The scheme (5.11) is also a finite volume scheme with the (spatial) mesh 7 given by
Tiy1i/2 = (i + 1/2)h in Definition 5.5 below and with a centered choice for the approximation of
u(Tiy1/2,nk): the value of u(x;y1/2,nk) is approximated by (u} + u},,)/2, see (5.14) where an up-
stream choice for u(z;41/2,nk) is performed. In fact, the choice of w{ is different in (5.14) and in (5.11)
but this does not change the unstability of the centered scheme.

5.2.2 The upstream finite difference scheme

Consider now a nonuniform distribution of points z;, i.e. an increasing sequence of real values (x;)icz
such that lim; ,+. x; = £oo. For all i € Z, we set h;_y/o = x; — x;—1. The time discretization is
performed with the explicit Euler scheme with time step k£ > 0. Still assuming ug € C(IR,1IR), consider
the upwind (or upstream) finite difference scheme defined by

n+1 n n n
U Uy U T U )
= N Z
A + Py 0, Vne N, Vie Z, (5.12)

u? =wug(x;), Vie Z.

(2

Rewriting the scheme as
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u?“ =(1-

n k n
W l)ui +h- Uit

=3 =3

it appears that if inf;ez h;_1/2 > 0 and if k is such that k¥ < inf;cz h;_,/o then u?“ is a convex

combination of u? and u? ;; by induction, this proves that the scheme (5.12) is stable, in the sense that
if wo is such that Uy, < ug(z) < Uy for a.e. € IR, where Uy, Uy € R, then U, < ul! < Uy for any
1 € Z and n € IN.

Moreover, if ug € C?*(R, R)NL>®(IR) and v, and ug belong to L= (IR), it is easily shown that the scheme
is consistent in the finite difference sense, i.e. the consistency error defined by

n (@i, (n+1)k) —u(zg,nk) | u(z;,nk) —u(z;_1,nk)
R = k + s

i3

(5.13)

is such that |R?| < Ch, where h = sup;c z h; and C' > 0 only depends on uq (recall that w is the solution
to problem (5.10)). Hence the following error estimate holds:

Proposition 5.4 (Error estimate for the upwind finite difference scheme)

Letug € C?(R,R)NL*®(RR), such that uf and uf € L=(R). Let (x;)iczz be an increasing sequence of real
values such that lim;_, 4, x; = £o0o. Let h = sup;c 5 hi_%, and assume that h < oo and inf;e z h;_y /9 >
0. Let k > 0 such that k < inficzz h;_1/2. Let u denote the unique solution to (5.10) and {u}, i € Z ,
n € IN} be given by (5.12); let e} = u(z;,nk) —u?, for anyn € N andi € ZZ, and let T €]0,+o0[ (note
that u(z;,nk) is well defined since u € C*(R x Ry, R)).

Then there exists C € Ry, only depending on ug, such that |e?'| < ChT, for anyn € IN such that nk < T,
and for any i € Z .

PROOF of Proposition 5.4
Let i € Z and n € IN. By definition of the consistency error R? in (5.13), the error el satisfies

it e e —ely _ pn
k hi_% v
Hence k &
€?+1 = 6?(1 - . ) =+ h-—le:‘l;l + k‘R:"
’L—E Z_E

Using |R}| < Ch (for some C only depending on uo) and the assumption k < inficz h;_1 /2, this yields
lef ™| < sup [e]}| + Ckh.
j€Z
Since € = 0 for any ¢ € Z, an induction yields
sup |e}| < Cnkh
i€Z
and the result follows. n

Note that in the above proof, the linearity of the equation and the regularity of uo are used. The next
questions to arise are what to do in the case of a nonlinear equation and in the case ug € L*(IR).
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5.2.3 The upwind finite volume scheme

Let us first give a definition of the admissible meshes for the finite volume schemes.

Definition 5.5 (One-dimensional admissible mesh) An admissible mesh 7 of IR is given by an
increasing sequence of real values (;11/2)icz, such that R = Uje z [¥;_1/2, Tiy1/2]. The mesh T is the
set T = {K;, i € Z } of subsets of IR defined by K; = (x;_1/2,%;41/2) for all i € Z . The length of K
is denoted by h;, so that h; = ;412 — 2j_1/2 for all i € Z . Tt is assumed that h = size(7T) = sup{hi,
i € Z} < 400 and that, for some a € R, ah < inf{h;, i € Z }.

Consider an admissible mesh in the sense of Definition 5.5. Let k € IR} be the time step. Assume
up € L®(IR) (this is a natural hypothesis for the finite volume framework). Integrating (5.10) on each
control volume of the mesh, approximating the time derivatives by differential quotients and using an
upwind choice for u(z;, 1,nk) yields the following (time explicit) scheme:

u’.H'l —ul
hi+——t4+ul—ul, =0, VnelN, Vie Z,
k 1 (5.14)
u? :—/ uo(z)dz, Vi€ Z .
hi Jk,
The value uf is expected to be an approximation of u (solution to (5.10)) in K; at time nk. It is
easily shown that this scheme is not consistent in the finite difference sense if u? is considered to be
an approximation of u(x;,nk) with, for instance, z; = (z;_1/2 + Tiy1/2)/2 for all i € Z. Even if
uo € CP(IR,IR), the quantity R? defined by (5.13) does not satisfy (except in particular cases) |R?| < Ch,
with some C' only depending on ug.

It is however possible to interpret this scheme as another expression of the upwind finite difference
scheme (5.12) (except for the minor modification of v?, i € Z). One simply needs to consider ul as
an approximation of u(z;y1/2,nk) which leads to a consistency property in the finite difference sense.
Indeed, taking z; = z;41/2 (for j =i and 4 — 1) in the definition (5.13) of R} yields |R}| < Ch, where C
only depends on ug. Therefore, a convergence result for this scheme is given by the proposition 5.4. This
analogy cannot be extended to the general case of “monotone flux schemes” (see Definition 5.6 page 129
below) for a nonlinear equation for which there may be no value of x; (independant of u) leading to such
a consistency property, see Remark 5.11 page 129 for a counterexample (the analogy holds however for
the scheme (5.28), convenient for a nondecreasing function f, see Remark 5.13).

The approximate finite volume solution u7 ; may be defined on IR x IR from the discrete unknowns u7,
i € Z, n € IN which are computed in (5.14):

urk(z,t) = ul for x € K; and t € [nk, (n + 1)k). (5.15)
The following L estimate holds:

Lemma 5.1 (L™ estimate in the linear case) Let ug € L®(IR) and U, Uy € R such that U, <
ug(x) < U for a.e. x € R. Let T be an admissible mesh in the sense of Definition 5.5 and let k € IR’
satisfying the Courant-Friedrichs-Levy (CFL) condition

i€z

(note that taking k < ah implies the above condition). Let ut i be the finite volume approzimate solution
defined by (5.14) and (5.15).
Then,

Un <urp(z,t) <Um for a.e. z € R and a.e. t € Ry.
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PROOF of Lemma 5.1

The proof that Uy, < ul! < Upy, for all i € Z and n € IN, as in the case of the upwind finite difference
scheme (see (5.12) page 121), consists in remarking that equation (5.14) gives, under the CFL condition,
an expression of u'*! as a linear convex combination of u? and u?_,, for all i € Z and n € IN. L]

The following inequality will be crucial for the proof of convergence.

Lemma 5.2 (Weak BV estimate, linear case) Let T be an admissible mesh in the sense of Defini-
tion 5.5 page 123 and let k € R, satisfying the CFL condition

k< (1-¢) inf b, (5.16)

for some & € (0,1) (taking k < (1 — &)ah implies this condition,).

Let {ul, i € Z, n € IN} be given by the finite volume scheme (5.14). Let R € RY and T € R’ and

assume h = size(T) < R, k <T. Letio € Z, i1 € Z and N € IN be such that —R € Fio, R e fil and
€ (Nk,(N + 1)k] (note that ig < i1).

Then there exists C' € ]Ri, only depending on R, T, ug, a and &, such that

iiT N

SN kP —up | < ChTV (5.17)

i=i9 n=0

PROOF of Lemma 5.2

Multiplying the first equation of (5.14) by ku} and summing on i = 4g,...,4 and n = 0,... N yields
A+ B =0 with

i1 N
A= 3 Y hr -l

i=19 n=0

and

B = ZZk P —ul ) )u

i= Z() n=0

Noting that

=S S R -+ L3 R -

i=ip n=0 i=1g

and using the scheme (5.14) gives

therefore, using the CFL condition (5.16),

i1 N i1
A —(1-85 3 Skl -l - 5 3 hilud)’

1=ip n=0 i=1g

We now study the term B, which may be rewritten as

1 i1 N
~ 33 Sk a3 MO

i=ip n=0
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Thanks to the L™ estimate of Lemma 5.1 page 123, this last equality implies that

B> = ZZk )2 = Tmax{—Upn, Uy }>.

zzonO

Therefore, since A+ B = 0 and Z i, i < 4R, the following inequality holds:

0>§ZZk ul —ul 1) — (4R + 2T) max{—U,,, Upr}?,

i=ip n=0

which, in turn, gives the existence of C; € R%, only depending on R, T', ug and £ such that

ZZ’“ Ll )< O (5.18)

i=1i9 n=0

Finally, using

21<ZESE

l—‘lo i= zo

the Cauchy-Schwarz inequality leads to

i1 N 4R
klul —u? ||]? < C12T—
[Z Z |uz uz—l” = Cl oh’

i=ip n=0

which concludes the proof of the lemma. [

Contrary to the discrete Hj estimates which were obtained on the approximate finite volume solutions
of elliptic equations, see e.g. (3.24), the weak BV estimate (5.17) is not related to an a priori estimate
on the solution to the continuous problem (5.10). It does not give any compactness property in the
space Lloc(]R) (there are some counterexamples); such a compactness property is obtained thanks to a

“strong BV estimate” (with, for instance, an L™ estimate) as it is recalled below (see Lemma 5.6). In the
one-dimensional case which is studied here such a “strong BV estimate” can be obtained if ug € BV (IR),
see Corollary 5.1; this is no longer true in the multidimensional case with general meshes, for which only
the above weak BV estimate is available.

Remark 5.7 The weak BV estimate is a crucial point for the proof of convergence. Indeed, the property
which is used in the proof of convergence (see Proposition 5.5 below) is, with the notations of Lemma
5.2,

i1 N
Y kul —ul | =0, as h =0, (5.19)

i=ig n=0
for R, T, up, a and £ fixed.

If a piecewise constant function w7, such as given by (5.15) (with some « in IR, not necessarily given
by (5.14)), is bounded in (for instance) L*°(IR x IR, ) and converges in Lloc(]R x Ry) as h — 0 and
k — 0 (with a possible relation between k and h) then (5.19) holds. This proves that the hypothesis
(5.19) is included in the hypotheses of the classical Lax-Wendroff theorem of convergence (see Theorem
5.3 page 138); note that (5.19) is implied by (5.17) and that it is weaker than (5.17)).

We show in the following remark how the “ weak” and “ strong” BV estimates may “formally” be

obtained on the “continuous equation”; this gives a hint of the reason why this estimate may be obtained
even if the exact solution does not belong to the space BV(IR x IR). A similar remark also holds in the
nonlinear case (i.e. for Problem (5.1)).
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Remark 5.8 (Formal derivations of the strong and weak BV estimates) When approximat-
ing the solution to (5.10) by the finite volume scheme (5.14) (with h; = h for all ¢, for the sake of
simplicity), the equation to which an approximation of a solution is sought is “close” to the equation

Up + Uy — EUgy =0 (5.20)

where € = % is positive under the CFL condition (5.16), which ensures that the scheme is diffusive.

We assume that v is regular enough, with null limits for u(z,t) and its derivatives as x — Fo0.

(i) “Strong” BV estimate.
Derivating the equation (5.20) with respect to the variable =, multiplying by sign, (u(z,t)), where sign,
denotes a nondecreasing regularization of the function sign, and integrating over IR yields

(f 9r(otes00d) + [ e, g, (e, ) = < | S o) e 0, <0,

where ¢/ = sign, and ¢,.(0) = 0. Since

| o g, (us (o, 0)ds = [ (60 (o, 0))dz =0,
R

R

this yields, passing to the limit on the regularization, that |lus(-,t)||11(r) is nonincreasing with respect to
t. Copying this formal proof on the numerical scheme yields a strong BV estimate, which is an a priori
estimate giving compactness properties in L}, (R x IR ), see Lemma 5.7, Corollary 5.1 and Lemma 5.6
page 136.

(i1) “Weak” BV estimate
Multiplying (5.20) by u and summing over IR x (0,T") yields

1 1 T
—/ uw?(z, T)dx — = / u?(x,0)dx +/ / eul(z,t)dzdt =0,
2 /R 2 Jr o JRr

which yields in turn

T
1
6/ / uy(x, )dedt < S luollF2(r)-
0 R 2

This is the continuous analogous of (5.18). Hence if h — k = ¢ > £h (this is Condition (5.16), note that
this condition is more restrictive than the usual CFL condition required for the L stability), the discrete
equivalent of this formal proof yields (5.18) (and then (5.17)).

In the first case, we derivate the equation and we use some regularity on ug (namely ug € BV (IR)). In
the second case, it is sufficient to have ug € L*®°(IR) but we need the diffusion term to be large enough
in order to obtain the estimate which, by the way, does not yield any estimate on the solution of (5.20)
with € = 0. This formal derivation may be carried out similarly in the nonlinear case.

Let us now give a convergence result for the scheme (5.14) in L*(IR x RY) for the weak-x topology.
Recall that a sequence (v,)nenw C L°(IR X IR} ) converges to v € L®(IR x R ) in L*(IR x IR} ) for the
weak-x topology if

/ / (vn(z,t) — v(z,t))¢p(z, t)dzdt — 0 as n — oo, Vo € L' (IR x IRY).
R: /R

A stronger convergence result is available, and comes from the nonlinear study given in Section 5.3.
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Proposition 5.5 (Convergence in the linear case) Let ug € L*°(IR) and u be the unique weak solu-
tion to Problem (5.10) page 120 in the sense of Definition 5.2 page 118, with f(s) = s for all s € R. Let
£ €(0,1) and a > 0 be given. Let T be an admissible mesh in the sense of Definition 5.5 page 123 and
let k € R satisfying the CFL condition (5.16) page 124 (taking k < (1 — &)ah implies this condition,
note that & and o do not depend on T ).

Let ur, be the finite volume approzimate solution defined by (5.14) and (5.15). Then ury — u in
L>*(IR x IRY) for the weak-x topology as h = size(T) — 0.

PROOF of Proposition 5.5

Let (T, km)menw be a sequence of meshes and time steps satisfying the hypotheses of Proposition 5.5
and such that size(7,,) — 0 as m — oc.

Lemma 5.1 gives the existence of a subsequence, still denoted by (7, km)men, and of a function u €
L>(R x RY) such that w7, x,, — v in L°(IR x RY) for the weak-x topology, as m — —+oco. There
remains to show that u is the solution of (5.3) (with f(s) = s for all s € R). The uniqueness of the weak
solution to Problem (5.10) will then imply that the full sequence converges to u.

Let p € C}(R x Ry,R). Let m € N and 7 = T, k = ky,, and h = size(T). Let us multiply the first
equation of (5.14) by (k/h;)¢(x,nk), integrate over x € K; and sum for all i+ € Z and n € IN. This
yields
Ay + B, =0
with
Z Z ntl _ / o(z,nk)ds
€Z neEN i

and

1
Br= 3 3 bl —uily)g /K pla k)

1€EZ nelN

Let us remark that A, = A1 m — A}, with

Alm = —/ / ut (T, t)oe(z,t — k)dxdt —/ uo(x)p(z,0)dx
E JR R

and

Z / (z,0) dm—/ uo(z)p(z,0)dz.

<y

Using the fact that )., uf1k, = uo in L, (IR) as m — oo, we get that A} ,, — 0 as m — co. (Recall
that 1k, (z) =1if z € K; and 1k, (z) =0if = ¢ K;.)

Therefore, since ur,x = u in L% (IR xR ) for the weak-x topology as m — 00, and @4 (-, —k) LR x (k,00) —*
¢y in L' (IR x RY) (note that k — 0 thanks to (5.16)),

mngrrlooAm_mgrilooAlm— /]R+Lu(x,t)@t(w,t)dxdt—/Ruo(x)cp(x,O)dw.

Let us now turn to the study of B,,. We compare B,,, with

(n+1)k
Bim = — / / ut (2, t) @z (z, nk)dzdt,
nk R

nelN

which tends to — f]R fIR x,t)pz (2, t)dzdt as m — co. The term Bj ,, can be rewritten as
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B =Y Yk} —ufl1)pe_y,mh).
1€Z nelN
Let R > 0 and T > 0 be such that ¢(z,t) = 0 if |[z] > R ort > T. Then, there exists C' € R}, only
depending on ¢, such that, if h < R and k < T (which is true for h small enough, thanks to (5.16)),

nw N
| B = Bum| < Ch DY kluf —uf 4, (5.21)
i=iop n=0
where ig € ZZ,i; € Z and N € N are such that —R € K;,, R € K;, and T € (Nk, (N + 1)k].
Using (5.21) and Lemma 5.2, we get that B, — B, — 0 and then

B,, = —/ / u(z,t) g (z,t)dedt as m — oo,
R: /R

which completes the proof that u is the weak solution to Problem (5.10) page 120 (note that here the
useful consequence of lemma 5.2 is (5.19)). L]

Remark 5.9 In Proposition 5.5, a simpler proof of convergence could be achieved, with £ = 0, using
a multiplication of the first equation of (5.14) by (k/h;)¢(x;_1/2,nk). However, this proof does not
generalize to the general case of nonlinear hyperbolic problems.

Remark 5.10 Proving the convergence of the finite difference method (with the scheme (5.12)) with
up € L®(IR) can be done using the same technique as the proof of the finite volume method (that is
considering the finite difference scheme as a finite volume scheme on a convenient mesh).

5.3 The nonlinear case

In this section, finite volume schemes for the discretization of Problem (5.1) are presented and a theorem
of convergence is given (Theorem 5.2) which will be generalized to the multidimensional case in the next
chapter. We also recall the classical proof of convergence which uses a “strong BV estimate” and the
Lax-Wendroff theorem. This proof, however, does not seem to extend to the multidimensional case for
general meshes. The following properties are assumed to be satisfied by the data of problem (5.1).

Assumption 5.1 The flur function f belongs to C*(IR,IR), the initial data uy belongs to L>°(IR) and
Unm, Uy € IR are such that U,, < ug < Ups a.e. on R.

5.3.1 Meshes and schemes

Let 7 be an admissible mesh in the sense of Definition 5.5 page 123 and k € IR’ be the time step. In the
general nonlinear case, the finite volume scheme for the discretization of Problem (5.1) page 117 writes
hs
Wt —ul) + [l = s =0, VnEN, Vie Z,

k 1 [Zit+1/2 (5.22)
= uo(z)dz, Yie Z,

o

u
Ti-1/2

where v is expected to be an approximation of u at time ¢, = nk in cell K;. The quantity f, /2 is
often called the numerical flux at point ;;1/2 and time ¢, (it is expected to be an approximation of f(u)

at point 2;,1/> and time t,). Note that a common expression of fi’jrl /2 is used for both equations 7 and
i+ 1 in (5.22); therefore the scheme (5.22) satisfies the property of conservativity, common to all finite
volume schemes. In the case of a so called “scheme with 2p + 1 points” (p € IN*), the numerical flux may

be written
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fﬁkl/2 = g(u?—p—i—la s au?+p)a (523)

where ¢ is the numerical flux function, which determines the scheme. It is assumed to be a locally
Lipschitz continuous function.
As in the linear case (5.15) page 123, the approximate finite volume solution is defined by

urk(z,t) =uj for z € K; and t € [nk, (n + 1)k). (5.24)

The property of consistency for the finite volume scheme (5.22), (5.23) with 2p + 1 points, is ensured by
writing the following condition:

9(s,...,8) = f(s), VseR. (5.25)

This condition is equivalent to writing the consistency of the approximation of the flux (as in the elliptic
and parabolic cases, which were described in the previous chapters, see e.g. Section 2.1).

Remark 5.11 (Finite volumes and finite differences) We can remark that, as in the elliptic case,
the condition (5.25) does not generally give the consistency of the scheme (5.22) when it is considered as
a finite difference scheme. For instance, assume f(s) = s? for all s € R, p =1 and g(a,b) = fi(a) + f2(b)
for all a, b € R with fi(s) = max{s,0}?, f2(s) = min{s,0}? (which is shown below to be a “good
choice”, see Example 5.2). Assume also hy; = h and hgit1 = h/2 for all ¢ € ZZ. In this case, there is
no choice of points z; € IR such that the quantity (f7, /2= ) /2) /hi is an approximation of order 1 of
(f (w)g (z;,nk), for any regular function u, when uf* = u(z;,nk) for all i € Z . Indeed, up to second order
terms, this property of consistency is achieved if and only if fi(a)|ziy1 — zi| + fi(a)|xi—1 — x;| = f'(a)h;
for all i € Z and for all a € IR. Choosing a > 0 and a < 0, this condition leads to |z;+1 — z;| = h; and
|Zit+1 — @i| = hiyq for all ¢ € ZZ, which is impossible.

Examples of convenient choices for the function g will now be given. An interesting class of schemes is
the class of 3-points schemes with a monotone flux, which we now define.

Definition 5.6 (Monotone flux schemes) Under Assumption 5.1, the finite volume scheme (5.22)--
(5.23) is said to be a “monotone flux scheme” if p = 1 and if the function g, only depending on f, U,
and Uy, satisfies the following assumptions:

e g is locally Lipschitz continuous from IR? to IR,
o g(s,s) = f(s), for all s € [Up,,Unml,

e (a,b) — g(a,b), from [Up,Ur]? to R, is nondecreasing with respect to a and nonincreasing with
respect to b.

The monotone flux schemes are worthy of consideration for they are consistent in the finite volume
sense, they are L>-stable under a condition (the so called Courant-Friedrichs-Levy condition) of the type
k < C1h, where C; only depends on g and ug (see Section 5.3.2 page 131 below), and they are “consistent
with the entropy inequalities” also under a condition of the type k < Csh, where Cy only depends on g
and ug (but Cy may be different of C4, see Section 5.3.3 page 131).

Remark 5.12 A monotone flux scheme is a monotone scheme, under a Courant-Friedrichs-Levy condi-
tion, which means that the scheme can be written under the form

n+1l __ n n ,n
ui™ = H(uiq,u; 7ui+1)7

with H nondecreasing with respect to its three arguments.
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Example 5.2 (Examples of monotone flux schemes) (see also GODLEWSKI and RAVIART [1996],
LEVEQUE [1990] and references therein). Under Assumption 5.1, here are some numerical flux functions
g for which the finite volume scheme (5.22)-(5.23) is a monotone flux scheme (in the sense of Definition
5.6):

e the flux splitting scheme: assume f = fi + fo, with fi, fo € C1(IR,IR), f{(s) > 0 and fi(s) <0
for all s € [Up,Up] (such a decomposition for f is always possible, see the modified Lax-Friedrichs
scheme below), and take

g(a,b) = fi(a) + f2(b).

Note that if f' > 0, taking f1 = f and fo = 0, the flux splitting scheme boils down to the upwind
scheme, i.e. g(a,b) = f(a).

e the Godunov scheme: the Godunov scheme, which was introduced in GopuNov [1976], may be
summarized by the following expression.

_ J min{f(&),€ € [a,b]} if a <D,
g(a,b) = { max{ f(£),£ € [b,a]} if b < a. (5.26)

e the modified Lax-Friedrichs scheme : take

g(a,b) = M + D(a —b), (5.27)
with D € IR such that 2D > max{|f'(s)|,s € [Un,Un]}. Note that in this modified version of
the Lax-Friedrichs scheme, the coefficient D only depends on f, U, and Uy, while the original
Lax-Friedrichs scheme consists in taking D = h/(2k), in the case h; = h for all i € IN, and therefore
satisfies the three items of Definition 5.6 under the condition h/k > max{|f'(s)|,s € [Un,Unm]}.
However, an inverse CFL condition appears to be necessary for the convergence of the original Lax-
Friedrichs scheme (see remark 6.11 page 179); such a condition is not necessary for the modified
version.

Note also that the modified Lax-Friedrichs scheme consists in a particular flux splitting scheme
with f1(s) = (1/2)f(s) + Ds and f2(s) = (1/2)f(s) — Ds for s € [Up,, Uns]-

Remark 5.13 In the case of a nondecreasing (resp. nonincreasing) function f, the Godunov monotone
flux scheme (5.26) reduces to g(a,b) = f(a) (resp. f(b)). Then, in the case of a nondecreasing function
f, the scheme (5.22), (5.23) reduces to

ultt —yn

hisz’ + f(ui) = f(uiy) =0, (5.28)

i.e. the upstream (or upwind) finite volume scheme. The scheme (5.28) is sometimes called “upstream
finite difference” scheme. In that particular case (f monotone and 1D) it is possible to find points z; in
order to obtain a consistent scheme in the finite difference sense (if f is nondecreasing, take =; = 2;11/2
as for the scheme (5.14) page 123).
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5.3.2 L*-stability for monotone flux schemes

Lemma 5.3 (L™ estimate in the nonlinear case) Under Assumption 5.1, let T be an admissible
mesh in the sense of definition 5.5 page 123 and let k € R’ be the time step.

Let ur i, be the finite volume approxzimate solution defined by (5.22)-(5.24) and assume that the scheme is
a monotone flux scheme in the sense of definition 5.6 page 129. Let g1 and g2 be the Lipschitz constants
of g on [Up, Unm]? with respect to its two arguments.

Under the Courant-Friedrichs-Levy (CFL) condition

k< M, (5.29)
g1+ 92
(note that taking k < ah/(g1 + g2) implies (5.29)),
the approzimate solution ut i satisfies
Un <urp(z,t) <Um for a.e. z € R and a.e. t € Ry.

PROOF of Lemma 5.3
Let us prove that

Un <ul <Up,Vie Z,Vn € NN, (5.30)

by induction on n, which proves the lemma. Assertion (5.30) holds for n = 0 thanks to the definition of
u? in (5.22) page 128. Suppose that it holds for n € IN.
For all i € ZZ , scheme (5.22), (5.23) (with p = 1) gives

n+l __ _pn _n n n n n n
up™ = (1 bi+% a,'f%)“i +bi+%ui+1+ai7%ui_1,

with
k g(u?,uiyy) — fu}) £ 0B Ly
1 e h_ ul — yl I u; 75 Uiy
i+ i i i+1
0if uf = ufyy,
and

EQ(U?_DU?) - f(uf’)
a® . = h; ul | —u?
0if ul =u? ;.

H n n
if wi # wiy,

Since f(ul) = g(ul,ul) and thanks to the monotonicity of g, 0 < b7 1 < g2k/h; and 0 < a? , < gik/h;,
2 2

177"
for all i € Z. Therefore, under condition (5.29), the value "' may be written as a convex linear
combination of the values u? and u? ;. Assertion (5.30) is thus proved for n + 1, which concludes the
proof of the lemma. [

5.3.3 Discrete entropy inequalities

Lemma 5.4 (Discrete entropy inequalities) Under Assumption 5.1, let T be an admissible mesh in
the sense of definition 5.5 page 123 and let k € R”. be the time step.

Let ur i, be the finite volume approzimate solution defined by (5.22)-(5.24) and assume that the scheme is
a monotone flur scheme in the sense of definition 5.6 page 129. Let g1 and g2 be the Lipschitz constants
of g on [Up,Un]? with respect to its two arguments. Under the CFL condition (5.29), the following
inequation holds:
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k 7
g Tr,uly Tk) — g(ul Lk, ulyy LK) — g(ul Th,ul Tk) + g(u?y Lk, ul LK) < 0, (5:31)
VnelN,Vie Z, VkelR.

Recall that aTb (resp. alb) denotes the maximum (resp. the minimum) of the two real numbers a and b.

h.
2 (= k) = g = w])+

PROOF of Lemma 5.4
Thanks to the monotonicity properties of g and to the condition (5.29) (see remark 5.12),

uptt = H(u} y,u},uy,), Vi€ Z,Vn € NN,

K3
where H is a function from IR® to IR which is nondecreasing with respect to all its arguments and such

that k = H(k, k, k) for all k € R.
Hence, for all k € IR,

n+1 n n n
wy < H(ui Tk, ui TRyuiy TK),

and

k < H(ui T ui T, uiy, Tk),

2

which yields

uMt T < Hul | Tr,ul Tk, uly, TK).

In the same manner, we get

n+1 n n n
upm Lk > H(ui Lk, u Le,uiy LK),

and therefore, by substracting the last two equations,

|u§lJrl — k| <H(ui  Th,ul Tr,uly Tk) — H(ui ) Le,u Lk, ufy LK),

that is (5.31). n

In the two next sections, we study the convergence of the schemes defined by (5.22), (5.23) with p =1
(see the remarks 5.14 and 5.15 and Section 5.4 for the schemes with 2p + 1 points).

We first develop a proof of convergence for the monotone flux schemes; this proof is based on a weak BV
estimate similar to (5.17) like the proof of proposition 5.5 page 127 in the linear case. It will be generalized
in the multidimensional case studied in Chapter 6. We then briefly describe the BV framework which
gave the first convergence results; its generalization to the multidimensional case is not so easy, except
in the case of Cartesian meshes.

5.3.4 Convergence of the upstream scheme in the general case

A proof of convergence similar to the proof of convergence given in the linear case can be developed. For
the sake of simplicity, we shall consider only the case of a nondecreasing function f and of the classical
upstream scheme (the general case for f and for the monotone flux schemes being handled in Chapter
6). We shall first prove a “weak BV” estimate.

Lemma 5.5 (Weak BV estimate for the nonlinear case) Under Assumption 5.1, assume that f is
nondecreasing. Let £ € (0,1) be a given value. Let T be an admissible mesh in the sense of definition 5.5
page 123, let M be the Lipschitz constant of f in [Un,Un) and let k € R’ satisfying the CFL condition

infiez h;

F<(-9Te

(5.32)
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(The condition k < (1 — §)ah/M implies the above condition.) Let {ul}, i € ZZ, n € IN} be given by

the finite volume scheme (5.22), (5.23) with p =1 and g(a,b) = f(a). Let R € R} and T € R’ and

assume h < R and k < T. Letig € Z, i, € Z and N € IN be such that —R € Kzo, R e K,l,and
€ (Nk,(N 4+ 1)k]. Then there exists C € R, only depending on R, T, ug, o, f and &, such that

Z Z k| f (u Tl <ch (5.33)

i=19 n=0

PROOF of Lemma 5.5

We multiply the first equation of (5.22) by ku?, and we sum on ¢ = ig,...,i; and n =0,...,N. We get
A+ B =0, with

71 N
A=) hiuptt - uul,

i=ip n=0
and
B= Z Z R(f) = Fuiy))ur.
i=19 n=0
We have

i N i1
]. n n 1
A= D) Z § hi(uf ™ —uf)? + 2 z hal(u 1) = (u)?].

i=19 n=0 i=1o0

Using the scheme (5.22), we get

———ZZ ( L) + Zh u ) = )7,

’L—‘Lo n=0 1= Zo

and therefore, using the CFL condition (5.32),

44>___]f- }:}:k( 34D2—%§:hmﬁf. (5.34)

1= ‘LoTL 0 izio

We now study the term B.
Denoting by @ the function ®(a) = f;m sf'(s)ds, for all a € IR, an integration by parts yields, for all

(a,b) € R?,
b
®(b) — @(a) = b(f(b) - f(a)) - / (f(s) — f(a))dz.
Using the technical lemma 4.5 page 105 which states f:(f(s) — f(a))dz > 55 (f(b) — f(a))?, we obtain
b(f(b) = f(a)) = 537 (F(b) = (@) + 2(b) — ®(a).

The above inequality with a = «]' ; and b = u]’ yields

22M22k( ~fiy) +Zk[¢> ult) — B(ul_y)].

S
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Thanks to the L™ estimate of Lemma 5.1 page 123, there exists C; > 0, only depending on ug and f
such that

i1 N 9
B> S S k() - ) - TCL.

i=i0 n=0

Therefore, since A+ B = 0 and Zz;zo h; < 4R, the following inequality holds:

in N
0263 3 k(F0) ~ i)~ ARM max{ ~U, Unr}? ~ 2MTC;,

1=10 n=0

which gives the existence of C; € IR’ , only depending on R, T, ug, f and ¢ such that

Sy F(FD) - 7l ) <

i=10 n=0

The Cauchy-Schwarz inequality yields

L& 2 4R
(3" S kf) - fi )] < G2r =,
— ah
i=1ip n=0
which concludes the proof of the lemma. [

We can now state the convergence theorem.

Theorem 5.2 (Convergence in the nonlinear case) Assume Assumption 5.1 and f nondecreasing.
Let £ € (0,1) and a > 0 be given. Let M be the Lipschitz constant of f in [Up,Un]. For an admissible
mesh T in the sense of Definition 5.5 page 123 and for a time step k € R} satisfying the CFL condition
(5.32) (taking k < (1 —&)ah/M is a sufficient condition, note that & and o do not depend of T), let ur i
be the finite volume approzimate solution defined by (5.22)-(5.24) with p =1 and g(a,b) = f(a).

Then the function ut y converges to the unique entropy weak solution u of (5.1) page 117 in L}, (R xIR.)
as size(T) tends to 0.

PRroOOF

Let Y be the set of approximate solutions, that is the set of ur j, defined by (5.22)-(5.24) with p = 1 and
g(a,b) = f(a), for all (T, k) where T is an admissible mesh in the sense of Definition 5.5 page 123 and
k € IR satisfies the CFL condition (5.32). Thanks to Lemma 5.3, the set Y is bounded in L®(IR xR, ).

The proof of Theorem 5.2 is performed in three steps. In the first step, a compactness result is given for
Y, only using the boundeness of Y in L>*°(IR, x IR). In the second step, it is proved that the eventual
limit (in a convenient sense) of a sequence of approximate solutions is a solution (in a convenient sense)
of problem (5.1). In the third step a uniqueness result yields the conclusion. For steps 1 and 3, we refer
to chapter 6 for a complete proof.

Step 1 (compactness result)

Let us first use a compactness result in L*° (IR, x IR ;) which is stated in Proposition 6.4 page 189. Since Y’
is bounded in L*°(IR x R), for any sequence (u,,)men Of Y there exists a subsequence, still denoted by
(um)meN, and there exists p € L (IR x R4 % (0,1)) such that (u,,)men converges to u in the “nonlinear
weak-x sense”, that is

/IR - O(um (z, 1))z, t)dtde — /]R/]R+ /01 O(u(z, t, a))p(z, t)dadtdr, as m — oo,

for all p € L'(R x IRy ) and all # € C(IR,R). In other words, for any § € C(R,R),
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O(um) = pe in L2(IR x R ;) for the weak-x topology as m — oo, (5.35)
where iy is defined by

1
po(z,t) :/ 0(u(z, t,a))da, for a.e. (z,t) € R x Ry.
0

Step 2 (passage to the limit)

Let (um)mew be a sequence of Y. Assume that (um,;)men converges to g in the nonlinear weak-x sense
and that u,, = w7, ,, (for all m € IN) with size(7,) — 0 as m — oo (note that kn,, — 0 as m — oo,
thanks to (5.32)).

Let us prove that p is a “solution” to problem (5.1) in the following sense (we shall say that u is “an
entropy process solution” to problem (5.1)):

B E L*® ]P{xIR+x(0 1)),
/ /m + / 1, t,0) = slgn(e, 1)+ (F(ue, 6,00 TR) = F((e,t,0) Le)pa o, 0)) dadide 5 oo

/ luo(x) — K|p(z,0)dz >0, Vo € CL(R x R4, Ry), Vs € R.
R
Let k € IR. Setting

1
v(z,t) = / |u(z,t,0) — k|da, for a.e. (z,t) € R x R4
0

and

w(z,t) = /1 (f(u(w,t,a)"l'n) - f(,u(a:,t,a)J_/-z))da, for a.e. (z,t) € R x R4,
0

the inequality in (5.36) writes

)
/}R /R 00 001(3,0) + 0 ), ) dtd + /m Juo(2) — klp(z, 0)dz > 0, 5.7

VCP S Ccl(]R X R+,]R,+).
Let us prove that (5.37) holds; for m € IN we shall denote by T = T,,, and k = k,,,. We use the result of
Lemma 5.4, which writes in the present particular case f’' > 0,

Un—l—l —

hi%+w{‘—w?_l <0,Vie Z,Vn e N,
where v’ = |ul — k| and w? = f(ulTk) — f(ulLk) = |f(ul) — f(K)|.
The functions vr,, ., and wr,, r,. are defined in the same way as the function ur,, ;... i. e. with constant
values v? and wf in each control volume K; during each time step (nk, (n + 1)k). Choosing 6 equal to
the continuous functions | - —k| and |f(-) — f(x)| in (5.35) yields that the sequences (v7;, k.. )men and
(W7, ky Jme converge to v and w in L*(IR x IR7) for the weak-+ topology.
Applying the method which was used in the proof of Proposition 5.5 page 127, taking v! instead of u! in
the definition of A, (for I = n and n + 1) and w} instead of u} in the definition of By, (for j =i and
i — 1), we conclude that (5.37) holds.
Indeed, a weak BV inequality holds on the values w* (that is (5.17) page 124 holds with w7 instead of
u? for j =i and i — 1), thanks to Lemma 5.5 page 132 and the relation

F(uf) = 6] = [ f(uly) = &l < |f(ul) = f(ul)], Vi€ Z,Yn € N,
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(Note that here, as in the linear case, the useful consequence of the weak BV inequality, is (5.19) page
125 with w? instead of u} for j =i and i —1.)

This concludes Step 2.

Step 8 (uniqueness result for (5.86) and conclusion)

Theorem 6.3 page 173 states that there exists at most one solution to (5.36) and that there exists u €
L>*(IR xR ) such that p solution to (5.36) implies p(z,t, @) = u(z,t) for a.e. (z,t,a) € R xR4 x(0,1).
Then, u is necessarily the entropy weak solution to (5.1).

Furthermore, if (u;)men converges to u in the nonlinear weak-* sense, an easy argument shows that
(Um)men converges to u in Lj, (R x Ry) (and even in LP (IR x IRy ) for all 1 < p < o0), see Remark
(6.15) page 192.

Then, the conclusion of Theorem 5.2 follows easily from Step 2 and Step 1 by way of contradiction (in
order to prove the convergence of a sequence urt;, r,, CY to u, if size(7,,) = 0 as m — oo, without any
extraction of a “subsequence”). (]

Remark 5.14 In Theorem 5.2, we only consider the case f' > 0 and the so called “upstream scheme”.
It is quite easy to generalize the result for any f € C'(IR,IR) and any monotone flux scheme (see the
following chapter). It is also possible to consider other schemes (for instance, some 5-points schemes, as
in Section 5.4). For a given scheme, the proof of convergence of the approximate solution towards the
entropy weak solution contains 2 steps:

1. prove an L estimate on the approximate solutions, which allows to use the compactness result of
Step 1 of the proof of Theorem 5.2,

2. prove a “weak BV” estimate and some “discrete entropy inequality” in order to have the following
property:
If (um)men is a sequence of approximate solutions which converges in the nonlinear weak-x sense,
then

m—IN

lim /]R /]R +(|um(x,t)—m|<pt(w,t)+(f(um(w,t)"l'f<a)— F e, 1) L)) (2, 1)) ez

+/ luo(x) — K|p(z,0)dz >0, Vo € Ct(R x Ry, Ry), V& € IR.
R

5.3.5 Convergence proof using BV

We now give the details of the classical proof of convergence (considering only 3 points schemes), which
requires regularizations of ug in BV (IR). It consists in using Helly’s compactness theorem (which may
also be used in the linear case to obtain a strong convergence of ur, to u in L}, ,(IR xR )). This theorem
is a direct consequence of Kolmogorov’s theorem (theorem 3.9 page 91). We give below the definition of
BV (Q) where Q is an open subset of IRP(2), p > 1 (already given in Definition 5.5 page 119 for 0 = R)

and we give a straightforward consequence of Helly’s theorem for the case of interest here.

Definition 5.7 (BV(Q)) Let p € IN* and let Q be an open subset of IRP. A function v € L}, () has a
bounded variation, that is v € BV (), if |[v|gy(q) < 0o where

lvlBv) = sup{/ v(z)divp(z)dz, p € Cp (Q,RP), |p(x)] < 1, Vz € Q}. (5-38)
Q

Lemma 5.6 (Consequence of Helly’s theorem) Let A C L®(IR?). Assume that there exists C' €
R and, for all T > 0, there exists Ct € Ry such that

||v||L°°(]R2) < 07 Yo € A7
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and
[v|Bv (R x(-T,1)) < C1, YU € A, VT > 0.

Then for any sequence (v,)neN of elements of A, there exists a subsequence, still denoted by (vp)new,
and there exists v € L®(IR?), with [vl|pe(m2)y < C and |v|py@wx(—1,1)) < C1 for all T > 0, such that
L (R*) asn — oo, that is I, lon(2) —v(z)|dz — 0, as n = oo for any compact set & of IR?.

vp = v in L,

In order to use Lemma 5.6, one first shows the following BV stability estimate for the approximate
solution:

Lemma 5.7 (Discrete space BV estimate) Under Assumption 5.1, assume that ug € BV (IR); let T
be an admissible mesh in the sense of Definition 5.5 page 123 and let k € R’ be the time step. Let {u},
i € Z,n €N} be given by (5.22), (5.23) and assume that the scheme is a monotone flux schemej in the
sense of Definition 5.6 page 129. Let g1 and g2 be the Lipschitz constants of g on [Uy,, Upm]? with respect
to its two arguments. Then, under the CFL condition (5.29), the following inequality holds:

Z lul —ultt < E lugyy —u|, V n € N. (5.39)
i€Z i€z

PROOF of Lemma 5.7

First remark that, for n =0, Y.. , |ud; — uf| < |uo|pv(m) (see Remark 5.4 page 119).
For all 1 € ZZ , the scheme (5.22), (5.23) (with p = 1) leads to

n+l _ ., n n n n n n n
uplm = uj +bi+%(ui+1—ui)+ai (u g —ul),
and

“?jll =ujy; + b?—l,—% (uiys —uiyy) + a?_,_% (ui' —uity),
where a;;1/9 and b; /> are defined (for all i € Z) in Lemma 5.3 page 131. Substracting one equation
to the other leads to

n+1 _

n+1 __
ui_H U,

i = (uy — ) (1 - ?+% - a?+%) + b?+%(u?+2 —uiy) + az."f%(u? —uiq).
Under the condition (5.29), we get

“z'n++11 —uf M < Juyy —ud|(1 - b&% - a?+%) + b?+g|uz'n+2 —ud| + GZ%W? —ui |

Summing the previous equation over i € Z gives (5.39). ]

Corollary 5.1 (Discrete BV estimate) Under assumption 5.1, let ug € BV(IR); let T be an admis-
sible mesh in the sense of Definition 5.5 page 123 and let k € R’ be the time step. Let ur, be the
finite volume approzimate solution defined by (5.22)-(5.24) and assume that the scheme is a monotone
flux scheme in the sense of Definition 5.6 page 129. Let g1 and go be the Lipschitz constants of g on
[Upm, Unr)? with respect to its two arguments and assume that k satisfies the CFL condition (5.29). Let
ur p(z,t) = uf for a.e. (z,t) € K; xR_, for all i € Z (hence ury, is defined a.e. on R?). Then, for
any T > 0, there exists C € R, only depending on ug, g and T such that:

luTkBY (R X (~T,T)) < C. (5.40)



138

PROOF of Corollary 5.1
As in Lemma 5.7, remark that Y., |[u2 ; — u?| < |uo|pv (r)-
Let us first assume that 7' < k. Then, the BV semi-norm of ur, satisfies

[ut k| BV (R x(-T,T)) < 2T Z udyr —ugl.
ieZ
Hence the estimate (5.40) is true for C' = 2T |ug|py (r)-
Let us now assume that £ < T. Let N € IN* such that Nk < T < (N + 1)k. The definition of
| - BV ®x(—1,1)) yields

lur k| BV (R x(—7,1) S T Y icz Uy, — uf|+
N-1

N-1
Z Z kluiy, —ui'| + (T — Nk) Z |uﬁ_1 —ul| + Z Z halutt — ul|. (5.41)

n=0i€Z IEZ n=0 icZ

Lemma 5.7 gives Y .. [ufy; — u}| < |uo|py(w) for all n € IN, and therefore,

N-1
Z Z klui,, —ui'| + (T — Nk) Z |uﬁ1 —ul| < Tluo| By (R)- (5.42)
n=0 icZ IEZ

In order to bound the last term of (5.41), using the scheme (5.22) yields, for all i € Z and all n € IN,

k k
uf*h — | < h—igl|u? —ui |+ h—ig2|u? — Uil
Therefore,
Z hiluf ™ = u?| < k(g1 + g2) Z lul’ — ufy ], for all n € N,
i€z i€z

which yields, since Nk < T,

N-1
> D hilul*! —uf| < Tlgy + g2) ol svm)- (5.43)
n=0 i€ Z
Therefore Inequality (5.40) follows from (5.41), (5.42) and (5.43) with C' = T'(2 + g1 + g2)|uo|BV(R)-

Consider a sequence of admissible meshes and time steps verifying the CFL condition, and the associated
sequence of approximate solutions (prolonged on R x IR_ as in Corollary 5.1). By Lemma 5.3 page
131 and Corollary 5.1, the sequence of approximate solutions satisfies the hypotheses of Lemma 5.6 page
136. It is therefore possible to extract a subsequence which converges in Lj,,(IR x IR4) to a function
v € L*(IR x RY}). It must still be shown that the function u is the unique weak entropy solution of
Problem (5.1). This may be proven by using the discrete entropy inequalities (5.31) and the strong BV

estimate (5.39) or the classical Lax-Wendroff theorem recalled below.

Theorem 5.3 (Lax-Wendroff) Under Assumption 5.1, let oo > 0 be given and let (Tm)men be a
sequence of admissible meshes in the sense of Definition 5.5 page 123 (note that, for all m € IN, the mesh
Tm satisfies the hypotheses of Definition 5.5 where T = T, and « is independent of m). Let (kpy)menN
be a sequence of (positive) time steps. Assume that size(Ty,) — 0 and ky, — 0 as m — oo.

For m € IN, setting T = T, and k = ky,, let w,, = ur i be the solution of (5.22)-(5.24) with p =1
and some g from RR? to R, only depending on f and o, locally Lipschitz continuous and such that
9(s,8) = f(s) for all s € R.
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Assume that (Um)men s bounded in L°(IR x R4) and that u,, — u a.e. on IR x Ry. Then, u is a
weak solution to problem (5.1) (that is u satisfies (5.3)).

Furthermore, assume that for any k € R there exists some locally Lipschitz continuous function G, from
R? to IR, only depending on f, uo and &, such that G.(s,s) = f(sTk) — f(sLk) for all s € R and such
that for all m € IN

1 1
E(|u?+1—ﬁ|—|u?—ﬁ|)+E(G (ui uiy1) — Ge(ui_q,ui)) <0,Vie Z,Vn € N, (5.44)

where {ul, i € Z, n € IN} is the solution to (5.22)-(5.23) for T = Tm and k = ky,. Then, u is the
entropy weak solution to Problem (5.1) (that is u is the unique solution of (5.4)).

PROOF of Theorem 5.3

Since (um)men is bounded in L*(R x R4) and u, — u a.e. on IR x R4, the sequence (um)menN
converges to u in L], (IR x Ry ). This implies in particular (from Kolmogorov’s theorem, see Theorem
3.9) that, for all R > 0 and all T > 0,

2T
sup / / [um(x,t) — upm(x — n,t)|dxdt — 0 as n — 0.
m€eIN

Then, taking n = asize(T,,) (for m € IN) and letting m — oo yields, in particular,

2T
/ / |Um (2,t) — U (z — asize(Tr), t)|dxdt — 0 as m — oo. (5.45)

For m € IN, let {u?, i € Z, n € IN} be the solution to (5.22)-(5.23) for 7 = T, and k = k,, (note that
u? depends on m, even though this dependency is not so clear in the notation). We also set k,,, = k and
size(T,) = h, so that k and h are depending on m (but recall that « is not depending on m).

Let R>0and T > 0. Letig € Z, iy € Z and N € IN be such that —R € K;,, R € K;, and
€ (Nk,(N + 1)k]. Then, for h < R and k¥ < T (which is true for m large enough),

i1 N 2T
ah Z Zk|u —ul 4] </ / |um (2, t) — um(x — ah, t)|dzdt.

1=10 n=0

Therefore, Inequality (5.45) leads to (5.19), that is

i N
h Z Z klul —ui 1] = 0 as m — oo. (5.46)

i=ip n=0
Using (5.46), the remainder of the proof of Theorem 5.3 is very similar to the proof of Proposition 5.5
page 127 and to Step 2 in the proof of Theorem 5.2 page 134 (Inequality (5.46) replaces the weak BV
inequality).
In order to prove that u is solution to (5.3), let us multiply the first equation of (5.22) by (k/h;)p(z,nk),
integrate over x € K; and sum for all 4 € ZZ and n € IN. This yields

A+ B,=0
with

and
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1
B = 3 S kol ) — o(ul D) [ olenbds

1€Z neN
As in the proof of Proposition 5.5, one has

lim A, =—/ / u(x,t)got(w,t)d:cdt—/ uo(x)p(z,0)dx.
m——+00 Ry /R R

Let us now turn to the study of B,,. We compare B,, with

(n+1)k
By m = = Z / /IR f(uT,k (.’L‘, t))Som (a:,nk)dz'dt,

nelN

which tends to — f]R Jr fu(z,t))pq (2, t)dzdt as m — oo since f(uri) = f(u) in Lj,,
m — 0o.
The term Bj ,, can be rewritten as

= Z Z E(f(ui) — f(uznfl))QO(mi—l/%nk):

i€Z neEN

(R x IRy) as

which yields, introducing g(u?_;,u}),

Z Zk ui1,ui))p(Ti1/2,nk)

i€Z nelN

+ Z Zk up 1, U f(U?A))SO(mifl/b”k)-

1€Z neN
Similarly, introducing f(ul) in By,

1
Bu=Y k() —g(u;zl,uzbng | otantyas

i€Z neN . ¢ K

+ > DK ufyy) = f@i) o | (e, nk)da.

i€Z nelN v K
In order to compare B,, and By, let R > 0 and T' > 0 be such that ¢(z,t) =01if || > Ror¢t > T. Let
A > 0 be such that ||um||z~@®xr,) < A for all m € IN. Then there exists C' > 0, only depending on ¢
and the Lipschitz constants on g on [—A, A]?, such that, if h < R and k < T (which is true for m large
enough),

i N
|Bm — Bim| < Ch Y > kfuf —ull |, (5.47)
1=10 n=0
where ig € ZZ,i; € Z and N € N are such that —R € K;,, R € K;, and T € (Nk, (N + 1)k].
Using (5.47) and (5.46), we get |By, — B1,m| = 0 and then

B, — —/ fu(z,t))ps (z, t)dtdz as m — oo,
Ry

which completes the proof that u is a solution to problem 5.3.

Under the additional assumption that u,, satisfies (5.44), one proves that u satisfies (5.7) page 119 (and
therefore that u satisfies (5.4)) and is the entropy weak solution to Problem (5.1) by a similar method.
Indeed, let x € R. One replaces u! by |ul — k| in A4,, (for I = n and n + 1) and one replaces g by G in
B,,,. Then, passing to the limit in A, + B,, < 0 (which is a consequence of the inequation (5.44)) leads
the desired result.

This concludes the proof of Theorem 5.3 [
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Remark 5.15 Theorem 5.3 still holds with (2p + 1)-points schemes (p > 1). The generalization of the
first part of Theorem 5.3 (the proof that u is a solution to (5.3)) is quite easy. For the second part of
Theorem 5.3 (entropy inequalities) the discrete entropy inequalities may be replaced by some weaker ones
(in order to handle interesting schemes such as those which are described in the following section).
However, the use of Theorem 5.3 needs a compactness property of sequences of approximate solutions in
the space L} (IR xIR4). Such a compactness property is generally achieved with a “strong BV estimate”
(similar to (5.39)). Hence an extensive literature on “T'VD schemes” (see HARTEN [1983]), “ENO
schemes”. .. (see GODLEWSKI and RAVIART [1991], GODLEWSKI and RAVIART [1996] and references
therein). The generalization of this method in the multidimensional case (studied in the following chapter)
does not seem so clear except in the case of Cartesian meshes.

5.4 Higher order schemes

Consider a monotone flux scheme in the sense of Definition 5.6 page 129. By definition, the considered
scheme is a 3 points scheme; recall that the numerical flux function is denoted by g. The approximate
solution obtained with this scheme converges to the entropy weak solution of Problem (5.1) page 117
as the mesh size tends to 0 and under a so called CFL condition (it is proved in Theorem 5.2 for a
particular case and in the next chapter for the general case). However, 3-points schemes are known to
be diffusive, so that the approximate solution is not very precise near the discontinuities. An idea to
reduce the diffusion is to go to a 5-points scheme by introducing “slopes” on each discretization cell and
limiting the slopes in order for the scheme to remain stable. A classical way to do this is the “MUSCL”
(Monotonic Upwind Scheme for Conservation Laws, see VAN LEER [1979]) technique .

We briefly describe, with the notations of Section 5.3.1, an example of such a scheme, see e.g. GODLEWSKI
and RAVIART [1991] and GODLEWSKI and RAVIART [1996] for further details. Let n € IN.

e Computation of the slopes

5 ul g —ul .
p; = —h l+h/i—1 ! higs ! EZ.
it =5+ 5=

e Limitation of the slopes

PR = alp?, i € Z , where of is the largest number in [0, 1] such that

hi

2

i

ug + 5

n-~n n n n n n n-~n n n n n
Py € [uf Ludyq,ui Tul ] and uj ai'py € [uf Lui q,ui Tu 4]

In practice, other formulas giving smaller values of o are sometimes needed for stability reasons.

e Computation of u?*" for i € Z
One replaces g(u?,u*') in (5.23) by :

hi

hi+1 n+1
. hivt iy,

gui g, ui uity, o) = guf + b7 uiy — 5 Pi
The scheme thus constructed is less diffusive than the original one and it remains stable thanks to the
limitation of the slope. Indeed, if the limitation of the slopes is not active (that is a = 1), the space
diffusion term disappears from this new scheme, while the time “antidiffusion” term remains. Hence it
seems appropriate to use a higher order scheme for the time discretization. This may be done by using,
for instance, an RK2 (Runge Kutta order 2, or Heun) method for the discretization of the time derivative.

The MUSCL scheme may be written as
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Un+1 _yr
k
where U™ = (ul!);c z; hence it may be seen as the explicit Euler discretization of

=H(U™) for n € NN,

Uy = H{U);
therefore, the RK2 time discretization yields to the following scheme:

Un+1 —_pyn

L %H(Un) + %(F(U“ + KH(U™))) for n € N,

Going to a second order discretization in time allows larger time steps, without loss of stability.

Results of convergence are possible with these new schemes (with eventually some adaptation of the
slope limitations to obtain convenient discrete entropy inequalities, see VILA [1986]. It is also possible
to obtain error estimates in the spirit of those given in the following chapter, in the multidimensional
case, see e.g. CHAINAIS-HILLAIRET [1996], NOELLE [1996], KRONER, NOELLE and ROKYTA [1995].
However these error estimates are somewhat unsatisfactory since they are of a similar order to that of the
original 3-points scheme (although these schemes are numerically more precise that the original 3-points
schemes).

The higher order schemes are nonlinear even if Problem (5.1) page 117 is linear, because of the limitation
of the slopes.

Implicit versions of these higher order schemes are more or less straightforward. However, the numerical
implementation of these implicit versions requires the solution of nonlinear systems. In many cases, the
solutions to these nonlinear systems seem impossible to reach for large k; in fact, the existence of the
solutions is not so clear, see PFERTZEL [1987]. Since the advantage of implicit schemes is essentially
the possibility to use large values of k, the above flaw considerably reduces the opportunity of their use.
Therefore, although implicit 3-points schemes are very diffusive, they remain the basic schemes in several
industrial environments. See also Section 7.1.3 page 201 for some clues on implicit schemes applied to
complex industrial applications.



Chapter 6

Multidimensional nonlinear
hyperbolic equations

The aim of this chapter is to define and study finite volume schemes for the approximation of the
solution to a nonlinear scalar hyperbolic problem in several space dimensions. Explicit and implicit
time discretizations are considered. We prove the convergence of the approximate solution towards the
entropy weak solution of the problem and give an error estimate between the approximate solution and
the entropy weak solution with respect to the discretization mesh size.

6.1 The continuous problem

We consider here the following nonlinear hyperbolic equation in d space dimensions (d > 1), with initial
condition

ug(z,t) + div(vf(u))(z,t) =0,z € R% t € Ry, (6.1)
u(z,0) = uo(x), z € R, (6.2)

where u; denotes the time derivative of u (¢t € IRy ), and div the divergence operator with respect to the
space variable (which belongs to IR?). Recall that |z| denotes the euclidean norm of z in R¢, and z - y
the usual scalar product of z and y in R%.

The following hypotheses are made on the data:
Assumption 6.1

(i) ug € LX(R?), Up, Upr € R, Uy < ug < Ut ace,
(i4) v € C*(R? x Ry, RY),

(i) divv(z,t) = 0, Y(z,t) € R? x Ry,

(iv) AV < oo such that |v(z,t)| <V, V(z,t) € R x Ry,

(v) f € CY(R,R).

Remark 6.1 Note that part (iv) of Assumption 6.1 is crucial. It ensures the property of “propagation
in finite time” which is needed for the uniqueness of the solution of (6.3) and for the stability (under
a “Courant-Friedrichs-Levy” (CFL) condition) of the time explicit numerical scheme. Part (iii) of As-
sumption 6.1, on the other hand, is only considered for the sake of simplicity; the results of existence and
uniqueness of the entropy weak solution and convergence (including error estimates as in the theorems
6.5 page 179 and 6.6 page 180) of the numerical schemes presented below may be extended to the case
divv # 0. However, part (iii) of Assumption 6.1 is natural in many “applications” and avoids several
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technical complications. Note, in particular, that, for instance, if divv # 0, the L*°-bound on the solution
of (6.3) and the L™ estimate (in Lemma 6.1 and Proposition 6.1) on the approximate solution depend
on v and T'. The case F(x,t,u) instead of v(z,t) f(u) is also feasible, but somewhat more technical, see
CHAINAIS-HILLAIRET [1996] and CHAINAIS-HILLAIRET [1999].

Problem (6.1)-(6.2) has a unique entropy weak solution, which is the solution to the following equation
(which is the multidimensional extension of the one-dimensional definition 5.3 page 118).

u € L®(IR? x IR*)
/ / oz, 1) + ®(u(z, )v(z,1) - Vo(a, t)] dwdt +
Ry 1Rd

n(uo(2))¢(z,0)dz > 0, Yo € CF(R? x Ry, Roy),
IRd
Vn € CH(IR,R), convex function, and ® € C*(IR,R) such that ® = f'n’

where V¢ denotes the gradient of the function ¢ with respect to the space variable (which belongs to
IR?). Recall that C™(E, F') denotes the set of functions C™ from E to F, with compact support in E.
The characterization of the entropy weak solution by the Krushkov entropies (proposition 5.2 page 119)
still holds in the multidimensional case. Let us define again, for all K € IR, the Krushkov entropies (|-—k|)
for which the entropy flux is f(-Tk) — f(-Lk) (for any pair of real values a,b, we denote again by aTb
the maximum of @ and b, and by aLlb the minimum of @ and b). The unique entropy weak solution is
also the unique solution to the following problem:

u € L°(R? x R%),
/]R ) / fu(, ) = ke, ) + (£ (e, ) TR) = Flu(z,t) LK) )v(z,t) - Vo(o,t)|dedt + 63)

d|u0(m) — klp(z,0)dz > 0, V& € R, Vo € C°(R% x R4, Ry).
R

As in the one-dimensional case (Theorem 5.1 page 119), existence and uniqueness results are also known
for the entropy weak solution to Problem (6.1)-(6.2) under assumptions which differ slightly from as-
sumption 6.1 (see e.g. KRUSHKOV [1970], VOL’PERT [1967]). In particular, these results are obtained
with a nonlinearity F' (in our case F' = v f) of class C3. We recall that the methods which were used in
KRUSHKOV [1970] require a regularization in BV (IR%) of the function ug, in order to take advantage,
for any T > 0, of compactness properties which are similar to those given in Lemma 5.6 page 136 for
the case d = 1. Recall that the space BV () where Q is an open subset of R?, p > 1, was defined in
Definition 5.7 page 136; it will be used later with @ = R% or @ = R? x (=T, T).

The existence of solutions to similar problems to (6.1)-(6.2) was already proved by passing to the limit
on solutions of an appropriate numerical scheme, see CoNwWAY and SMOLLER [1966]. The work of
CoNwAY and SMOLLER [1966] uses a finite difference scheme on a uniform rectangular grid, in two
space dimensions, and requires that the initial condition uo belongs to BV (IR%) (and thus, the solution
to Problem (6.1)-(6.2) also has a locally bounded variation). These assumptions (on meshes and on uy)
yield, as in Lemma 5.6 page 136, a (strong) compactness property in L, (R? x IR) on a family of
approximate solutions. In the following, however, we shall only require that ug € L™ (IRd) and we shall
be able to deal with more general meshes. We may use, for instance, a triangular mesh in the case of
two space dimensions. For each of these reasons, the BV framework may not be used and a (strong)
compactness property in L} . on a family of approximate solutions is not easy to obtain (although this
compactness property does hold and results from this chapter). In order to prove the existence of
a solution to (6.1)-(6.2) by passing to the limit on the approximate solutions given by finite volume
schemes on general meshes (in the sense used below) in two or three space dimensions, we shall work
with some “weak” compactness result in L>°, namely Proposition 6.4, which yields the “nonlinear weak-x
convergence” (see Definition 6.3 page 189) of a family of approximate solutions. When doing so, passing
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to the limit with the approximate solutions will give the existence of an “entropy process solution” to
Problem (6.1)-(6.2), see Definition 6.2 page 171. A uniqueness result for the entropy process solution to
Problem (6.1)-(6.2) is then proven. This uniqueness result proves that the entropy process solution is
indeed the entropy weak solution, hence the existence and uniqueness of the entropy weak solution. This
uniqueness result also allows us to conclude to the convergence of the approximate solution given by the
numerical scheme (that is (6.7), (6.5)) towards the entropy weak solution to (6.1)-(6.2) (this convergence
holds in L?, (R? x IR, ) for any 1 < p < 00).

loc

Note that uniqueness results for “generalized” solutions (namely measure valued solutions) to (6.1)-(6.2)
have recently been proved (see DIPERNA [1985], SZEPESSY [1989], GALLOUET and HERBIN [1994]).
The proofs of these results rely on the one hand on the concept of measure valued solutions and on the
other hand on the existence of an entropy weak solution. The direct proof of the uniqueness of a measure
valued solution (i.e. without assuming any existence result of entropy weak solutions) leads to a difficult
problem involving the application of the theorem of continuity in mean. This difficulty is easier to deal
within the framework of entropy process solutions (but in fact, measure valued solutions and entropy
process solutions are two presentations of the same concept).

Developing the above analysis gives a (strong) convergence result of approximate solutions towards the
entropy weak solution. But moreover, we also derive some error estimates depending on the regularity of
Ug-

In the case of a Cartesian grid, the convergence and error analysis reduces essentially to a one-dimensional
discretization problem for which results were proved some time ago, see e.g. KUZNETSOV [1976], CRAN-
DALL and MAJDA [1980], SANDERS [1983]. In the case of general meshes, the numerical schemes are
not generally “TVD” (Total Variation Diminushing) and therefore the classical framework of the 1D
case (see Section 5.3.5 page 136) may not be used. More recent works deal with several convergence
results and error estimates for time explicit finite volume schemes, see e.g. COCKBURN, COQUEL and
LeFLoCH [1994], CHAMPIER, GALLOUET and HERBIN [1993], ViLA [1994], KRONER and ROKYTA
[1994], KRONER, NOELLE and ROKYTA [1995], KRONER [1997]: following Szepessy’s work on the con-
vergence of the streamline diffusion method (see SZEPESSY [1989]), most of these works use DiPerna’s
uniqueness theorem, see DIPERNA [1985] (or an adaptation of it, see GALLOUET and HERBIN [1994] and
EYMARD, GALLOUET and HERBIN [1995]), and the error estimates generalize the work by KUzZNETSOV
[1976]. Here we use the framework of CHAMPIER, GALLOUET and HERBIN [1993], EYMARD, GALLOUET,
GHILANI and HERBIN [1998]; we prove directly that any monotone flux scheme (defined below) satisfies
a “weak BV” estimate (see lemmata 6.2 page 151 and 6.3 page 157). This inequality appears to be a key
for the proof of convergence and for the error estimate. Some convergence results and error estimates are
also possible with some so called “higher order schemes” which are not monotone flux schemes (briefly
presented for the 1D case in section 5.4 page 141). These results are not presented here, see NOELLE
[1996] and CHAINAIS-HILLAIRET [1996] for some of them.

Note that the nonlinearity considered here is of the form v(z,t) f (). This kind of flux is often encountered
in porous medium modelling, where the hyperbolic equation may then be coupled with an elliptic or
parabolic equation (see e.g. EYMARD and GALLOUET [1993], VIGNAL [1996a], VIGNAL [1996b], HERBIN
and LABERGERIE [1997]). It adds an extra difficulty to the case F'(u) because of the dependency on z
and t. Note again (see Remark 6.1) that the method which we present here for a nonlinearity of the form
v(z,t) f(u) also yields the same results in the case of a nonlinearity of the form F(z,t,u), see the recent
work of CHAINAIS-HILLAIRET [1999].

The time implicit discretization adds the extra difficulties of proving the existence of the approximate
solution (see Lemma 6.1 page 155) and proving a so called “strong time BV estimate” (see Lemma 6.5
page 160) in order to show that the error estimate for the implicit scheme may still be of order h'/* even
if the time step k is of order v/h, at least in particular cases.

We first describe in section 6.2 finite volume schemes using a “general” mesh for the discretization of



146

(6.1)-(6.2). In sections 6.3 and 6.4 some estimates on the approximate solution given by the numerical
schemes are shown and in Section 6.5 some entropy inequalities are proven. We then prove in section 6.6
the convergence of convenient subsequences of sequences of approximate solutions towards an entropy
process solution, by passing to the limit when the mesh size and the time step go to 0. A byproduct
of this result is the existence of an entropy process solution to (6.1)-(6.2) (see Definition 6.2 page 171).
The uniqueness of the entropy process solution to problem (6.1)-(6.2) is then proved; we can therefore
conclude to the existence and uniqueness of the entropy weak solution and also to the L = convergence
for any finite p of the approximate solution towards the entropy weak solution (Section 6.6). Using the
existence of the entropy weak solution, an error estimate result is given in Section 6.7 (which also yields
the convergence result). Therefore the main interest of this convergence result is precisely to prove the
existence of the entropy weak solution to (6.1)-(6.2) without any regularity assumption on the initial
data. Section 6.8 describes the notion of nonlinear weak-x convergence, which is widely used in the proof
of convergence of section 6.6.

Section 6.9 is not related to the previous sections. It describes a finite volume approach which may be
used to stabilize finite element schemes for the discretization of a hyperbolic equation (or system).

6.2 Meshes and schemes

Let us first define an admissible mesh of IR¢ as a generalization of the notion of admissible mesh of R as
defined in definition 5.5 page 123.

Definition 6.1 (Admissible meshes) An admissible finite volume mesh of RY, with d = 1,2 or 3
(for the discretization of Problem (6.1)-(6.2)), denoted by T, is given by a family of disjoint polygonal
connected subsets of IR? such that IR is the union of the closure of the elements of 7~ (which are called
control volumes in the following) and such that the common “interface” of any two control volumes is
included in a hyperplane of R? (this is not necessary but is introduced to simplify the formulation).
Denoting by h = size(T) = sup{diam(K), K € T}, it is assumed that h < 400 and that, for some o > 0,

ah? < m(K),

m(0K) < Lhi-1, VK € T, (6:4)

where m(K) denotes the d-dimensional Lebesgue measure of K, m(8K) denotes the (d — 1)-dimensional
Lebesgue measure of K (0K is the boundary of K) and N(K) denotes the set of neighbours of the
control volume K; for L € N(K), we denote by K|L the common interface between K and L, and by
ng,z, the unit normal vector to K|L oriented from K to L. The set of all the interfaces is denoted by £.

Note that, in this definition, the terminology is “mixed”. For d = 3, “polygonal” stands for “polyhedral”
and, for d = 2, “interface” stands for “edge”. For d = 1 definition 6.1 is equivalent to definition 5.5 page
123.

In order to define the numerical flux, we consider functions g € C’(]Rz,]R) satisfying the following
assumptions:

Assumption 6.2 Under Assumption 6.1 the function g, only depending on f, v, U, and Uys, satisfies

e g is locally Lipschitz continuous from R? to R,
* g(s,s) = f(s), for all s € [Unm,Un),

e (a,b) = g(a,b), from [U,,,Un)? to R, is nondecreasing with respect to a and nonincreasing with
respect to b.
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Let us denote by g1 and g the Lipschitz constants of g on [Um,Un|? with respect to its two arguments.

The hypotheses on g are the same as those presented for monotone flux schemes in the one-dimensional
case (see definition 5.6 page 129); the function g allows the construction of a numerical flux, see Remark
6.3 below.

Remark 6.2 In Assumption 6.2, the third item will ensure some stability properties of the schemes
defined below. In particular, in the case of the “explicit scheme” (see (6.7)), it yields the monotonicity
of the scheme under a CFL condition (namely, condition (6.6) with £ = 0). The second item is essential
since it ensures the consistency of the fluxes. All the examples of functions g given in Examples 5.2 page
130 satisfy these assumptions. We again give the important example of the “generalized 1D Godunov
scheme” obtained with a one-dimensional Godunov scheme for each interface (see e.g., for the explicit
scheme, see COCKBURN, COQUEL and LEFLOCH [1994], VILA [1994)),

[ max{f(s),b<s<a}lifb<a
g(a,b)—{ min{f(s), a <s < b} if a <,

and also the framework of some “flux splitting” schemes:

g(a,b) = fi(a) + f2(b),

with fi, fo» € CY(R,R), f = f1 + fo, f1 nondecreasing and f, nonincreasing (this framework is consider-
ably more simple that the general framework, because it reduces the study to the particular case of two
monotone nonlinearities).

Besides, it is possible to replace Assumption 6.2 on g by some slightly more general assumption, in order
to handle, in particular, the case of some “Lax-Friedrichs type” schemes (see Remark 6.11 below).

In order to describe the numerical schemes considered here, let 7 be an admissible mesh in the sense of
Definition 6.1 and k > 0 be the time step. The discrete unknowns are u%, n € IN*, K € T. The set {u%,
K € T} is given by the initial condition,
ul = L/ uo(z)dz, VK € T. (6.5)
m(K) Jk ’
The equations satisfied by the discrete unknowns, u%, n € IN*, K € T, are obtained by discretizing
equation (6.1). We now describe the explicit and implicit schemes.

6.2.1 Explicit schemes

We present here the “explicit scheme” associated to a function g satisfying Assumption 6.2. In this case,
for stability reasons (see lemmata 6.1 and 6.2), the time step k € IR’} is chosen such that

o?h
k<(l—8)——,
where £ € (0,1) is a given real value; recall that g; and g2 are the Lipschitz constants of g with respect
to the first and second variables on [U,,, Unx]? and that U, < up < Uy a.e. and |[v(z,t)| <V < +o0,
for all (x,t) € R x R. Consider the following explicit numerical scheme:

(6.6)

n+l _ . n
m(K) KK 37 (v gufuf) —vEk 9 uR)) =0, VK € T,VneN,  (6.7)
LeN(K)
where
1 (n+1)k
o=y [ [ @t n d@a
' k Jok K|L
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and
1 (n+1)k
VLK = A / v(z,t) - np k)T dy(z)dt
K|L
1 n+1)k
=7 / v(z,t) -ng,) dy(z)dt.
K|L
Recall that at = aT0 and a= = —(aJ_O) for all @ € IR and that dvy is the integration symbol for the

(d — 1)-dimensional Lebesgue measure on the considered hyperplane.

Remark 6.3 (Numerical fluxes) The numerical flux at the interface between the control volume K
and the control volume L € N(K) is then equal to v ; g(uk,u})—v k g(uf,u%); this expression yields
a monotone flux such as defined in definition 5.6 page 129, given in the one-dimensional case. However,
in the multidimensional case, the expression of the numerical flux depends on the considered interface;
this was not so in the one-dimensional case for which the numerical flux is completely defined by the
function g.

The approximate solution, denoted by w7, is defined a.e. from R? x R to IR by

urp(z,t) =ufk, ifee K, te€ [nk,(n+1)k), K€ T,ne€N. (6.8)

6.2.2 TImplicit schemes

The use of implicit schemes is steadily increasing in industrial codes for reasons such as robustness and
computational cost. Hence we consider in our analysis the following implicit numerical scheme (for which
condition (6.6) is no longer needed) associated to a function g satisfying Assumption 6.2:

n+1l _
m(K) T S n gl ) — of e 9@t ul) =0, VK € T, Vn e N, (6.9)
LeN(K)

where {u%, K € T} is still determined by (6.5). The implicit approximate solution ur , is defined now
a.e. from R? x R4 to R by

ur(z,t) =upt!, ifz e K, t€ (nk,(n+1)k], K € T,n € IN. (6.10)

6.2.3 Passing to the limit

We show in section 6.6 page 171 the convergence of the approximate solutions wr i (given by the numerical
schemes above described) towards the unique entropy weak solution u to (6.1)-(6.2) in an adequate sense,
when size(7) — 0 and k — 0 (with, possibly, a stability condition). In order to describe the general line
of thought leading to this convergence result, we shall simply consider the explicit scheme (that is (6.5),
(6.7) and (6.8)) (the implicit scheme will also be fully investigated later).

First, in section 6.3, by writing u"+1 as a convex combination of u% and (u})Len(k), the L stability is
easily shown under the CFL condition (6.6) (urj is proved to be bounded in L (IR xIR7 ), independently
of size(T) and k).

By a classical argument, if any possible limit of a family of approximate solutions ur, (where 7 is an
admissible mesh in the sense of Definition 6.1 page 146 and k satisfies (6.6)) is the entropy weak solution
to problem (6.1)-(6.2) then ur; converges (in L*°(IR* x IR%) for the weak-x topology, for instance),
as h = size(T) — 0 (and k satisfies (6.6)), towards the unique entropy weak solution to problem (6.1)-
(6.2). Unfortunately, the L™ estimate of section 6.3 does not yield that any possible limit of a family
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of approximate is solution to problem (6.1)-(6.2), even in the linear case (f(u) = u) (see the proofs
of convergence of Chapter 5). The “BV stability” can be used (combined with the L* stability) to
show the convergence in the case of one space dimension (see section 5.3.5 page 136) and in the case of
Cartesian meshes in two or three space dimensions. Indeed, in the case of Cartesian meshes, assuming
uo € BV(R?) and assuming (for simplicity) v to be constant (a generalization is possible for v regular
enough), the following estimate holds, for all T > k:

Nk

kz Z m(K|L)uk —uf| < T|UO|BV(]Rd)a
n=0 K|Le&

where N7 € IN is such that (N7 + 1)k < T < (N7 + 2)k, and the values % are given by (6.5) and
(6.7). Such an estimate is wrong in the general case of admissible meshes in the sense of Definition 6.1
page 146, as it can be shown with easy counterexamples. It is, however, not necessary for the proof of
convergence. A weaker inequality, which is called “weak BV” as in the one-dimensional case (see lemma
5.5 page 132) will be shown in the multidimensional case for both explicit and implicit schemes (see
lemmata 6.2 page 151 and 6.3 page 157); the weak BV estimate yields the convergence of the scheme in
the general case. As an illustration, consider the case f' > 0; using an upwind scheme, i.e. g(a,b) = f(a),
the weak BV inequality (6.16) page 151, which is very close to that of the 1D case (lemma 5.5 page 132),
writes

Nt i
C

2 k 2 (v, + VL) f(uk) — fF(ul)| < N (6.11)
n=0 (K,L)EE}
where % = {(K,L) € T?>,L € N(K),K|L C B(0,R) and u% > u7}} and C only depends on v, g, uo, a,
&, R and T (see Lemma 6.2).
We say that Inequality (6.11) is “weak”, but it is in fact “three times weak” for the following reasons:

1

\/’_17

2. In the left hand side of (6.11), the quantity which is associated to the K|L € £}, interface is zero
if f is constant on the interval to which the values u% and u} belong; variations of the discrete
unknowns in this interval are therefore not taken into account.

1. the inequality is of order and not of order 1.

3. The left hand side of (6.11) involves terms (v ; + v7 ) which are not uniformly bounded from
below by C m(K|L) with some C' > 0 only depending on the data (that is v, ug and g) and not on
T (note that, for instance, v ;, = v} g = 0if v-ng 1 =0).

For the convergence result (namely Theorem 6.4 page 178) the useful consequence of (6.11) is

Nt

hYy kY (Wikp +E)lf(uk) = f(uf) = 0ash—0,
n=0 (K,L)EER

as in the 1D case, see Theorem 5.2 page 134. For the error estimate in Theorem 6.5 page 179, the bound
C/v/hin (6.11) is crucial. Note that a “twice weak BV” inequality in the sense (ii) and (iii), but of order
1 (that is C instead of C/v/h in the right hand side of (6.11)), would yield a sharp error estimate, i.e.
C.h'/? instead of C,h'/* in (6.94) page 179.

Note that, in order to obtain (6.11), £ > 0 is crucial in the CFL condition (6.6).

Recall also that (6.11) together with the L=°(IR? x IR*) bound does not yield any (strong) compactness

1 (R% x R) on a family of approximated solutions.

property in L

In the linear case (that is f(s) = cs for all s € IR, for some ¢ in IR), the inequality (6.11) is used in
the same manner as in the previous chapter; one proves that the approximate solution satisfies the weak
formulation to (6.1)-(6.2) (which is equivalent to (6.3)) with an error which goes to 0 as h — 0, under
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condition (6.6). We deduce from this the convergence of ur (as h — 0 and under condition (6.6))
towards the unique weak solution of (6.1)-(6.2) in L®(IR% x R?} ) for the weak-* topology. In fact, the
convergence holds in Lf’oc(]Rd x IR4) (strongly) for any 1 < p < oo, thanks to the argument developped

for the study of the nonlinear case.

The nonlinear case adds an extra difficulty, as in the 1D case; it will be handled in detail in the present
chapter. This difficulty arises from the fact that, if wr ) converges to u (as h — 0, under condition (6.6))
and f(ur) to g, in LO(R? x IR% ) for the weak-+ topology, there remains to show that py = f(u) and
that u is the entropy weak solution to problem (6.1)-(6.2). The weak BV inequality (6.11) is used to
show that, for any “entropy” function 7, i.e. convex function of class C' from IR to IR, with associated
entropy flux ¢, i.e. ¢ such that ¢’ = f'n’, the following entropy inequality is satisfied:

/}R ) /]R (a0, 1) + o, ¥ 1) - Vipler 1)) dad + /]R o)l 0de 20,
VC,O € CSO(IRd X ]R‘+7]R‘+)7

where p,, (resp. pp) is the limit of n(ur k) (resp. ¢(urx)) in L°(R? x R} ) for the weak-x topology
(the existence of these limits can indeed be assumed). From (6.12), it is shown that ur ) converges to
win L} (R* x Ry) (as h — 0, k satisfying (6.6)), and that u is the entropy weak solution to problem
(6.1)-(6.2). This last result uses a generalization of a result on measure valued solutions of DiPerna (see

DIPERNA [1985], GALLOUET and HERBIN [1994]), and is developped in section 6.6 page 171.

6.3 Stability results for the explicit scheme

6.3.1 L stability

Lemma 6.1 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k>0, let g € C(R* R) satisfy Assumption 6.2 and assume that (6.6) holds; let ur j be given by (6.8),
(6.7), (6.5); then,

Un <ul <Uy,VneIN,VK €T, (6.13)

and

||UT,k||Loo(1Rd><IR*+) < ||U0||Loo(1Rd)- (6.14)

PROOF of Lemma 6.1

Note that (6.14) is a straightforward consequence of (6.13), which will be proved by induction. For n = 0,

since U,, < ug < Uy a.e., (6.13) follows from (6.5).

Let n € IN, assume that U, < uf% < Uy for all K € 7. Using the fact that divv = 0, which yields
Z (Vi 1, — VI k) = 0, we can rewrite (6.7) as

LeEN(K)
n+1

m(K) " S (o (g uf) — F) — F cg(ul,ul) — FR)) =0, (615)
LeEN(K)

Set, for u} # up,

n Q(U%auz) - f(uTIL() — " Q(UzaUTf() - f(urlb()

n —
Tk,L — VK,L P p LK o P )
Ug —Uuf, Ug —Up,

T j— 1 n — n
and 7 ; = 0if uf = uf.
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Assumption 6.2 on g and Assumption 6.1 yields 0 < 7% ; < Vm(K|L)(g1 + g2). Using (6.15), we can
write

k
ught = (1 T m(K) Z Tﬁ,L)UK Z TR,LUL
LEN(K) LEN(K)
which gives, under condition (6.6), 1nf uft <ut < sup ul, for all K € T. This concludes the proof of
LeET
(6.13), which, in turn, yields (6.14).

Remark 6.4 Note that the stability result (6.14) holds even if £ = 0 in (6.6). However, we shall need
& > 0 for the following “weak BV?” inequality.

6.3.2 A “weak BV?” estimate

In the following lemma, B(0, R) denotes the ball of IR¢ of center 0 and radius R (IR is always endowed
with its usual scalar product).

Lemma 6.2 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k> 0. Let g € C(IR?,R) satisfy Assumption 6.2 and assume that (6.6) holds. Let ur.j, be given by (6.8),
(6.7), (6.5).

LetT >0, R >0, Nr = max{n € N,n <T/k}, T ={K € T,K C B(0,R)} and £} = {(K,L) €
T2,Le N(K),K|L C B(0,R) and u% > u?}.

Then there exists C' € IR, only depending on v, g, ug, o, £, R, T such that, for h< R and k < T,

Nt

Dok D [k, max (00 p) = @)+, max . (9(a.p) = f)+
n=0 (K,L)EER (6.16)
Viac(,, max (@ = 9@.a) + |, max ()~ g(p,0))) -
C
<
SR
and
Nt g C
> Y mU)ut -kl < (6.17)
n=0KecTgr

PROOF of Lemma 6.2

In this proof, we shall denote by C; (i € IN) various quantities only depending on v, g, ug, @, &, R, T
Multiplying (6.15) by ku’% and summing the result over K € Tg, n € {0, ..., Ny} yields

By + By =0, (6.18)
with
Nrk
=Y T mUOuR R - )
n=0K€ecTr
and

Nt i

=YY Y (vkalouhour) - fuk)uk — of (o, ufe) = fluj))ui)-

n=0 KE€Tr LEN(K)
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Gathering the last two summations by edges in Bj leads to the definition of Bs:

Nt

Bo=Yk > | vk (uk(o(uup) - Fuh) - up(gluf,uf) - f(u3))) -

n=0 (K,L)EER
of e (ke (g(u,ufe) — F(uf)) — ug (g(u, uf) — F(up)))].

The expression |Bs — Ba| can be reduced to a sum of terms each of which corresponds to the boundary of a
control volume which is included in B(0, R+h)\ B(0, R— h); since the measure of B(0, R+h)\ B(0,R—h)
is less than Ch, the number of such terms is, for n fixed, lower than (Cyh)/(ah?) = C3h'~?. Thanks to
(6.14), using the fact that m(0K) < (1/a)h?~!, that |v(x,t)| < V, that g is bounded on [U,,,Up]?, and
that g(s,s) = f(s), one may show that each of the non zero term in |Bs — Bs| is bounded by C;h?~L.
Furthermore, since (Nt + 1)k < 2k, we deduce that

|Bs — Ba| < Ci. (6.19)

Denoting by ® a primitive of the function (-)f'(-), an integration by parts yields, for all (a,b) € R?,

b b
B(b) - B(a) = / 51'(s)ds = b(f(8) — 9(a,)) — a(f(a) — g(a, b)) — / (f(s) - glaD))ds.  (6.20)

Using (6.20), the term Bz may be decomposed as

B3 = By — Bs,
where
Ny g u” u™
Bi=Yk Y <K [ 06 - stuieuppds + i [ C 160 —g(uz,usz))ds>
n=0 (K,L)EER UK UL
and

Nt i

Bs=Yk > (ks —vix) (i) - o).

n=0 (K,L)e€x
The term Bjs is again reduced to a sum of terms corresponding to control volumes included in B(0, R +
h)\ B(0, R — h), thanks to divv = 0; therefore, as for (6.19), there exists Cs € R such that
B; < Cs.

Let us now turn to an estimate of By. To this purpose, let a,b € IR, define C(a,b) = {(p, q) € [aLb,aTb]?;
(g — p)(b—a) > 0}. Thanks to the monotonicity properties of g (and using the fact that g(s, s) = f(s)),
the following inequality holds, for any (p, q) € C(a, b):

b d q
/ (f(s) — g(a,b))ds > / (£(s) — g(a,b))ds > / (f(s) = 9(p, @))ds > 0. (6.21)

The technical lemma 4.5 page 105 can then be applied. It states that

[ 000 =00l > 5000 00D, Vg e

for all monotone, Lipschitz continuous function 6 : IR — IR, with a Lipschitz constant G > 0.
From Lemma 4.5, we can notice that
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646 - stm.aas >

s

(9(ps ) — 9(p, @))ds > %mp) — 9(p0)%, (6.22)

and

/ — g(p,q))ds > / "(9(s,9) — 9(p, q))ds > i(ﬂq)—g(p,q))z. (6.23)

Multiplying (6.22) (resp. (6.23)) by g2/(g1 + g2) (resp. ¢1/(91 + 92)), taking the maximum for (p,q) €
C(a,b), and adding the two equations yields, with (6.21),

10) - gm0+ max  (f(g) —9(pq))?). (6.24)

b
—g(a,b))ds > ———
/a (f(5) ~gla,b))ds 2 2(g1 + 92) ((p,qr)%%)(ca,b)( (p.q)€C(a;b)

We can then deduce, from (6.24):

Nr i
By > Z Z
2(91 + 92) n=0 (K,L)e€n
n — 2 _ 2 (6.25)
Vi, ms  (0@p) ~ F@F + 2 m 2 0@P) = F@)?)+
n _ 2 2
Vi, iz U@ 9,0+, max  (F0) —9(p,0))”) -
This gives a bound on Bs, since (with Cg = Cy + C5):
By > By — Cs. (6.26)
Let us now turn to B;. We have
NTk n+1 n\2 1 Nt p+1 1 0 2
Z 3 m( —ug)?+5 Y m(K) (uK ) -5 > m(K) (uK) . (6.27)
n 0KeTr KeTr KeTr

Using (6.15) and the Cauchy-Schwarz inequality yields the following inequality:

(u?(+1 u%)2 <

b Y @hotoi) X ok (sukoun) - si)” + o (ot u) - Fu)):

2
m(K) LEN(K) LeN(K)

Then, using the CFL condition (6.6), Definition 6.1 and part (iv) of Assumption 6.1 gives

m(K) (uj™ —uk)® <

1-¢ 2 2
k > [ (ot ud) - Fwi)) +of ik (9, uk) - Fi) ] (6.28)
g1+ 92 LEN(K)
Summing equation (6.28) over K € Tg and over n =0, ..., N, and reordering the summation leads to
NT k Nk
5 Y mE) g - < 5o e DILADS
2 KTy 2o+ 92) 1 (K,L)eEn (6.29)

v;;,L(@(u?(,uz) — PR + (gl ) - Fp)?)+
of i ((Fk) = g(uf, ui))? + (F(u) - g(ul, ui))?)] + Cr,
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where C7 accounts for the interfaces K|L C B(0, R) such that K ¢ Tg and/or L ¢ Tg (these control
volumes are included in B(0, R + h) \ B(0, R — h)).

Note that the right hand side of (6.29) is bounded by (1 — £)B4 + C7 (from (6.25)). Using (6.18), (6.26)
and (6.27) gives

Nt

_ 2 _ 2
e + TP [ R (uzsr;lsagc@}(g(q,p) f@) +, max . (9(g,p) = f(P)) )+
n=0 (K,L)€En
n - 2 - 2 6.30
Vi, o (F@) — g a))” + |, max - (F0) ~g(p0))?) ] (6:30)
1 2
<53 m(K)(u(}() +Cg + Cy = Cs.
KeTr
Applying the Cauchy-Schwarz inequality to the left hand side of (6.16) and using (6.30) yields
Nz g
Dk [ Uk <uz A (9(q,p) — (@) + up I (9(q,p) — f(p)))+
n=0 (K,L)e€n
Vi ic(,, mae (@)~ 90) + |, max (/) = 9(p,0)] (6.31)
NT,k 1
< Cg(Zk Z (vi,L + ”f,K)) :
n=0 (K,L)c€n
Noting that
0,R+h C
Z (UKL+ULK Z Vm@K)<V hd l—m( (’ + )):ﬁ
ah? h
(K,L)ES" KETr+n
and (N7, + 1)k < 2T, one obtains (6.16) from (6.31).
Finally, since (6.15) yields
m(K)uf —uil <k Y (volo(uk,up) = R +oF slo(ul, uk) — Fio)),
LeN(K)
Inequality (6.17) immediately follows from (6.16). This completes the proof of Lemma 6.2. m

6.4 Existence of the solution and stability results for the implicit
scheme

This section is devoted to the time implicit scheme (given by (6.9) and (6.5)). We first prove the existence
and uniqueness of the solution {u%,n € IN,K € T} of (6.5), (6.9) and such that v} € [Up,Un] for all
K €T and all n € IN. Then, one gives a “weak space BV” inequality (this is equivalent to the inequality
(6.16) for the explicit scheme) and a “(strong) time BV” estimate (Estimate (6.45) below). This last
estimate requires that v does not depend on t (and it leads to the term “k” in the right hand side of
(6.95) in Theorem 6.6). The error estimate, in the case where v depends on ¢, is given in Remark 6.12.

6.4.1 Existence, uniqueness and L* stability

The following proposition gives an existence and uniqueness result of the solution to (6.5), (6.9). In this
proposition, v may depend on ¢ and one does not need to assume ug € BV(IRd).
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Proposition 6.1 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k> 0. Let g € C(IR*,R) satisfy Assumption 6.2.
Then there exists a unique solution {u%, n € N, K € T} C [Upn,Unm] to (6.5),(6.9).

PROOF of Proposition 6.1

One proves Proposition 6.1 by induction. Indeed, {u%, K € T} is uniquely defined by (6.5) and one has
u% € [Upm,Unml, for all K € T, since Uy, < ug < Upr a.e.. Assuming that, for some n € IN, the set {u?,
K € T} is given and that u?% € [Uy,, Un], for all K € T, the existence and uniqueness of {u*!, K € T},
such that u;t € [Uy,, Up] for all K € T, solution of (6.9), must be shown.

Step 1 (uniqueness of {ut™, K € T}, such that u'it € [Up, Un] for all K € T, solution of (6.9))
Recall that n € IN and {u%, K € T} are given. Let us consider two solutions of (6.9), respectively
denoted by {ux, K € T} and {wg, K € T}; therefore, {ux, K € T} and {wg, K € T} satisfy {ug,
KeT}ClUnUnml, {wk, K € T} C [Un,Un),

Ug — U
m(K) ==+ 3 (v 9(ur,ur) = Vi k 9(ur,uk)) =0, VK €T, (6.32)
LeN(K)
and
WK — u% n n
m(K)T + Z (UK,L g(wk,wr) — VL K g(wr,wg)) =0, VK € T. (6.33)
LeN(K)

Then, substracting (6.33) to (6.32), for all K € T,

m(kK) (uk —wr)+ Y vk r(9(ur,ur) — g(wk,ur))
LeN(K)
+ > vRp(wr,un) — glwr,we)) = Y vE k(g(ur, uk) — g(wr, ux)) (6.34)
LEN(K) LEN(K)
- Y v} k(g(wr,uk) — g(wr, wk)) =0

LeN(K)

thanks to the monotonicity properties of g, (6.34) leads to

m(K
U ik —wkl + Y vlofur,un) — glw,ur)
LEN(K)
+ > i klg(wr,uk) = g(wp,wie)| <Y ok plg(wi,ur) — 9wk, wi)) (6.35)
LEN(K) LEN(K)
+ > vfklg(ur,uk) — g(wr,ux)|.
LEN(K)

Let ¢ : R? = R* be defined by ¢(z) = exp(—7|z|), for some positive v which will be specified later.
For K € T, let px be the mean value of ¢ on K. Since ¢ is integrable over R? (and thanks to (6.4)),
one has Y p o7 vk < (1/(ah®))|l@llp1qray < oo. Therefore the series

> or( Y vk plg(wr,ur) — g(wr,wr)|) and Y or( D v} glg(ur,uk) — g(wr,uk))|)

KeT LeN(K) KeT LeN(K)

are convergent (thanks to (6.4) and the boundedness of v on R? and g on [U,,, Upr]?).
Multiplying (6.35) by ¢k and summing for K € T yields five convergent series which can be reordered
in order to give
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m(K
S 2wk € Y vhealalunus) - glwseus)lox - il

KeT KeT LEN(K)
+3 Y i klg(wr,uk) — g(we, w)|lox — e,
KET LeN(K)

from which one deduces

Z aK|uK — ’U)K| < Z bK|uK — ’U)K|, (6.36)
KeT KeT
with, for all K € T, ax = "BEog and b = Y vk o1 + 0} k9 lox — @Ll-
LEN(K)

For K € T, let xx be an arbitrary point of K. Then,

1
aK > Eahd inf{p(z), x € B(zk,h)}

and

2V (g1 + g2) B
«

bk < sup{|Ve(z)|, z € B(zk,2h)}.

Therefore, taking v > 0 small enough in order to have

inf{y(y), y € B(z,h)} > Csup{|Vy(y)|, y € B(x,2h)}, V& € R* (6.37)

with C' = (2kV (g1 + g2))/a?, yields ax > bg for all K € T. Hence (6.36) gives ux = wg, for all K € T.
A choice of v > 0 verifying (6.37) is always possible. Indeed, since |Vy(z)| = vexp(—7|z|), taking v > 0
such that yexp(3yh) < 1/C is convenient.

This concludes Step 1.

Step 2 (existence of {u%t, K € T}, such that u™ € [Up, U] for all K € T, solution of (6.9)).
Recall that n € IN and {u?%, K € T} are given. For r € IN*, let B, = B(0,r) = {z € R%, |z| < r} and
T.={K €T, K C B,} (as in Lemma 6.2). Let us assume that r is large enough, say r > rg, in order to
have T, # 0.

It K eT\T,,set u%) = u%. Let us first prove that there exists {ug), K € T;} C [Un, Un], solution to

() n
u —u n n
m(K) == 37 (v, g(ui) u) — of i

x 9w WD) =0, VK € T,. (6.38)
LEN(K)

Then, we will prove that passing to the limit as r — oo (up to a subsequence) leads to a solution
{u!, K € T} to (6.9) such that w5 € [U,,, Up] for all K € T.

For a fixed r > rg, in order to prove the existence of {u%), K € 7;} C [Un,Unm] solution to (6.38),
a “topological degree” argument is used (see, for instance, DEIMLING [1980] for a presentation of the
degree).

Let U = {u%, K € 7,} and assume that U, = {u(lp, K € 7.} is a solution of (6.38). The families U,
and U may be viewed as vectors of R, with N = card(7,). Equation (6.38) gives

k n n n
w2 Wk 90 )~k o o) = i, VK € T,

LeN(K)

which can be written on the form

(6.39)

T
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where G, is a continuous map from RY into R".

One may assume that g is nondecreasing with respect to its first argument and nonincreasing with
respect to its second argument on IR? (indeed, thanks to the monotonicity properties of g given by
Assumption 6.2, it is sufficient to change, if necessary, g on R?\ [U,,, Un]?, setting, for instance, g(a, b) =
9(Un T(UnLa), Uy T(UprLbd))). Then, since u% € [Up,Upy], for all K € T, and ug) =u} € [Un,Uuml,
for all K € T\ 7,, it is easy to show (using div(v) = 0) that if U, satisfies (6.39), then one has
u(KT) € [Up, Unr), for all K € T,. Therefore, if C, is a ball of R™ of center 0 and of radius great enough,
Equation (6.39) has no solution on the boundary of C,, and one can define the topological degree of
the application I'd — G, associated to the set C, and to the point U?, that is deg(Id — G,,C,,U).
Furthermore, if A € [0,1], the same argument allows us to define deg(Id — A\G,,C,,U). Then, the
property of invariance of the degree by continuous transformation asserts that deg(Id — AG,,C,, U) does
not depend on A € [0, 1]. This gives

deg(Id — G,,C,,U") = deg(Id,C,,U).
But, since U} € C,,

deg(Id,C,.,U}) = 1.

Hence

deg(Id — G,,C,,U) #0.

This proves that there exists a solution U, € C, to (6.39). Recall also that we already proved that the
components of U, are necessarily in [Uy,, Upy].

In order to prove the existence of {ux*', K € T} C [Up, Upr) solution to (6.9), let us pass to the limit as
r — oo. For r > rg, let {ug), K € T} be a solution of (6.38) (given by the previous proof). Since {u%),
r € IN} is included in [Uy,, Un], for all K € T, one can find (using a “diagonal process”) a sequence
(ri)iew, with r; = 00, as | = 00, such that (u%)iew converges (in [Uy,, Un]) for all K € 7. One sets

u! = lim;_, o, u}t. Passing to the limit in (6.38) (this is possible since for all K € 7, this equation is
satisfied for all [ € IN large enough) shows that {uz*!, K € T} is solution to (6.9).
(r) n+1

Indeed, using the uniqueness of the solution of (6.9), one can show that uy’ — u};
KeT.
This completes the proof of Proposition 6.1. (]

,as 7 — oo, for all

6.4.2 “Weak space BV” inequality

One gives here an inequality similar to Inequality (6.16) (proved for the explicit scheme). This inequality
does not make use of ug € BV(IR%) and v can depend on ¢. Inequality (6.17) also holds but is improved
in Lemma 6.5 when uy € BV (IR?) and v does not depend on ¢.

Lemma 6.3 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k> 0. Let g € C(R* R) satisfy Assumption 6.2 and let {uk,n € N,K € T} be the solution of (6.9),
(6.5) such that Wit € [Up,Unm] for all K € T and all n € N (existence and uniqueness of such a
solution is given by Proposition 6.1).

LetT >0, R >0, Ny = max{n € N,n < T/k}, Tr = {K € T,K C B(0,R)} and £} = {(K,L) €
T2,Le N(K),K|L C B(0,R) and u > u?}.

Then there exists C,, € R, only depending on v, g, ug, o, R, T such that, for h< R and k < T,
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Nt
k VR max ,p) — + max ,p) — +
> (KL%H[K,L(uz+lspsqwl<g<q D@+, max (o) 1)
’ R
6.40)

v} max —9(p,q) + max —g(p, (
L,K(uﬁlspngl(f(q) 9o.0)+ |, max | (0) = g0 2))
< G
h

Furthermore, Inequality 6.17 page 151 holds.

PROOF of Lemma 6.3

We multiply (6.9) by ku%“, and sum the result over K € Tg and n € {0,..., N7 }. We can then follow,
step by step, the proof of Lemma 6.2 page 151 until Equation (6.27) in which the first term of the right
hand side appears with the opposite sign. We can then directly conclude an inequality similar to (6.30),
which is sufficient to conclude the proof of Inequality (6.40). Inequality 6.17 page 151 follows easily from
(6.40). ]

6.4.3 “Time BV?” estimate

This section gives a so called “strong time BV estimate” (estimate (6.45)). For this estimate, the fact that
ug € BV(]Rd) and that v does not depend on ¢ is required. Let us begin this section with a preliminary
lemma on the space BV (IR?).

Lemma 6.4 Let T be an admissible mesh in the sense of Definition 6.1 page 146 and let u € BV(IRd)
(see Definition 5.38 page 136). For K € T, let ux be the mean value of u over K. Then,

c
> m(KIDux - usl < —lulpyme), (6.41)
K|LeE

where C only depends on the space dimension (d=1, 2 or 3).

PROOF of Lemma, 6.4

Lemma 6.4 is proven in two steps. In the first step, it is proved that if (6.41) holds for all u € BV (R?)N
C'(R% IR) then (6.41) holds for all w € BV (IR%). In Step 2, (6.41) is proved to hold for u € BV(IR%) N
CY(R% R).

Step 1 (passing from BV (R?) N C'(R?,R) to BV(IRY))

Recall that BV (R?) C L}, (R%). Let u € BV (IR?), let us regularize u by a sequence of mollifiers.

Let p € C(R?, R4.) such that [,. p(z)dz = 1. Define, for all n € IN*, p, by pn(z) = np(nz) for all
z € R? and u,, = u * pp, that is

un(z) = /}R uly)pa(z — y)dy, Vo € R

It is well known that (u,)nen- is included in C*° (IR IR) and converges to u in L}, (R%) as n — oc.
Then, the mean value of u,, over K converges, as n — 00, to uk, for all K € T. Hence, if (6.41) holds
with u, instead of w (this will be proven in Step 2) and if |us|py(re)y < |ulpy (e for all n € IN*,
Inequality (6.41) is proved by passing to the limit as n — oo.

In order to prove |un|py(re) < |u|gy ey for all n € IN* (this will conclude step 1), let n € IN* and
@ € C®(R%R?) such that |p(z)| < 1 for all z € R?. A simple computation gives, using Fubini’s
theorem,



159

| um@ave@as= [ ([ ute—y)divo)is) )y < lulovimo, (6.42)
since, setting 1, = p(y + -) € C°(R%,R?) (for all y € RY),
| ua=p)divp@)dz = [ u(@)divi,()dz < [ulsyme, Yo € R,
R4 R

and

/}Rd pn(y)dy = 1.

Then, taking in (6.42) the supremum over ¢ € C°(IR%, R?) such that |o(x)| < 1 for all z € R? leads to
[un|Byma) < |ulByme)-

Step 2 (proving (6.41) if u € BV(R%) nC' (R4, R))

Recall that B(z, R) denotes the ball of IR¢ of center z and radius R. Since u € C*(R% R),

/ u(z)divp(z)dr = — Vu(z) - o(z)dz.
R R

Then |u|gymey = |(|Vul)llp1ray and we will prove (6.41) with ||(|Vul)||L1(re) instead of |u|gy (ga)-
Let K|L € £, then K € T, L € N(K) and

UK — UL = ———— Km // y))dzdy.

Forallz € K and all y € L,

w() - u(y) = / Vuly + tz — ) - (z - y)dt.

Then,

m(K)m <)|uK—uL|</// IVuly + t(z — y))||z - y|dtdz)dy

</ / | 19ty + o = )z yidade)dy

Using |x — y| < 2h and changing the variable z in z = 2 — y (for all fixed y € L and ¢ € (0,1)) yields

1
m(K)m(L)|lug —ug| < 2h/(/ / |Vu(y + tz)|dzdt)dy,
L Jo JB(0,2h

which may also be written (using Fubini’s theorem)

m(K)m(L)|ug —ur| < 2h/B(0 - (/0 /L|Vu(y + tz)|dydt)dz. (6.43)

For all K € T, let xx be an arbitrary point of K.
Then, changing the variable y in { = y + tz (for all fixed z € L and ¢ € (0,1)) in (6.43),

1
m(K)m(L)lug —ur| < 2h / / |Vu(€)|dédt)dz,
B(0,2h) B(zr,3h)

which yields, since T is an adimissible mesh in the sense of Definition 6.4 page 146,
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2hd
m(K|L)fux — ug| < —rm(B(0,2h)) / IVu(e)|de.
a’h B(a1,3h)

Therefore there exists C7, only depending on the space dimension, such that

c
m(K|Dlux — ur] < 74 / Vu(e)|de, VKL € €. (6.44)
B(zy,3h)

Let us now remark that, if M € 7 and L € T, M N B(zr,3h) # 0 implies L C B(zar,5h). Then, for a
fixed M € T, the number of L € T such that M N B(zr,3h) # ( is less or equal to m(B(0,5h))/(ah?)
that is less or equal C2/a where C only depends on the space dimension.

Then, summing (6.44) over K|L € £ leads to

¢, C C,C
> mKID = s < 2 S [ 9u(@)ide = LR IVuDlLae

K|LeE MeT

Note that, in Lemma 6.4 the estimate (6.41) depends on «. This dependency on « is not necessary in the
one dimensinal case (see (5.6) in Remark 5.4) and for particular meshes in the two and three dimensional
cases. Recall also that, except if d = 1, the space BV (IR?) is not included in L*®(IR%). In particular, it
is then quite easy to prove that, contrary to the 1D case given in Remark 5.4, it is not possible, for d = 2
or 3, to replace, in (6.41), ux by the mean value of u over an arbitrary ball (for instance) included in K.

Let us now give the “strong time BV estimate”.

Lemma 6.5 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k> 0. Let g € C(R%IR) satisfy Assumption 6.2. Assume that ug € BV (IRY) and that v does not
depend on t.

Let {u,n € IN,K € T} be the solution of (6.9), (6.5) such that v € [Upm,Unm] for all K € T and all
n € IN (existence and uniqueness of such a solution is given by Proposition 6.1 page 155).

Then, there exists Cy, only depending on v, g, ug and a such that

K
> % uitt — u| < Cy, Vn € IN. (6.45)
KeT
PRrooF of lemma 6.5
Since v does not depend on ¢, one denotes vk, = v 1, for all K € T and all L € N(K).
For n € IN, let

A = m _—
n E (K) A
KeT

and
Bo=Y | Y [vkr g(uf,ul) — vk g(uf,uk)]l.
KeT LeN(K)

Since ug € BV(]Rd) and divv = 0, there exists Cp > 0, only depending on v, g, ug and «, such that
By < Cy. Indeed,

Bo< Y > Vig+g)m(E|L)uf —uf|.
KeT LeEN(K)
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Thanks to lemma 6.4, By < Cp with Cy = 2V (g1 + 92)0(1/a4)|U0|Bv(]Rd), where C only depends on the
space dimension (d =1, 2 or 3).

From (6.9), one deduces that B, 1 < A,, for all n € IN. In order to prove Lemma 6.5, there only remains
to prove that A, < B, for all n € IN (and to conclude by induction).

Let n € IN, in order to prove that A, < B,, recall that the implicit scheme (6.9) writes

uptt —ul
m(K)% + Z (vKL glu ™ utth) — v K g(uzﬂ,u’}jl)) =0. (6.46)
LeN(K)

From (6.46), one deduces, for all K € T,

U%H_UK n+l  n+1 n+1

m(K) e Y7 ok (g(uit upth) — gluf,upt)
LeN(K)

+ > vk (ko) — gl u)) = > vk (gEtut) - g(ul,uik™))
LEN(K) LeN(K)

> v (g(ul,ult) - guf, ug)
LeEN(K)

> vkpgiou)+ Y vk gul,uk).

LEN(K) LeN(K)

Using the monotonicity properties of g, one obtains for all K € T,

luft! — ul| + ¥ (Wl ) — g nty
— 5 VKL |9 yUr, g(uf,ur)|
LeN(K)

+ > vk |9, ui™) — g(uf, uk)|

LEN(K) (6.47)
<|- Z vk, 09Uk, ut) + Z vr,x g(ur, uk)|

LEN(K) LEN(K)

+ ) vk lguioul™) —glui,uf) + D vnk lg(upttutt) — g(uf, uptt).

LEN(K) LEN(K)

m(K)

In order to deal with convergent series, let us proceed as in the proof of proposition 6.1. For 0 < v < 1,
let ¢, : R? = IR* be defined by ¢, (z) = exp(—7y|z|).

For K € T, let ¢, k be the mean value of ¢, on K. As in Proposition 6.1, since ¢, is integrable over
R 3 ke ¥y, k < 0o. Therefore, multiplying (6.47) by ¢, x (for a fixed v) and summing over K € T
yields six convergent series which can be reordered to give

gt — ug

Zm(K) K k A ‘P’y,K

KeT

< 1= > vkpg@iul)+ > vk 9ul,uk)ley
KeT  LeN(K) LeEN(K)

+300Y vk gl ) = g(uf, ul )9k — 9r,il
KeT LeEN(K)

+3 S vk lo@l uit) — gl ui)l oy — 9rul
KeT LeN(K)

For K € T, let zx € K be such that 9, xk = ¢,(zk). Let K € T and L € N(K). Then there exists
s € (0,1) such that ¢y, — ¢4,k = Voy (2K + s(xr — 2K)) - (v — k). Using |V, ()| = yexp(—v|z|),
this yields [y, — ¢q,k| < 2hyexp(2h)@y,x < 20y exp(2h)py k-

Then, using the assumptions 6.1 and 6.2, there exists some a only depending on k, V, h, a, g1 and g
such that
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u —U
> () Mkl (1 a)
KeT
<Y - Y vkpg@ioup)+ D vrk g(uf,ui)|ey,x < Bn.
KeT  LeN(K) LeN(K)

Passing to the limit in the latter inequality as v — 0 yields A,, < B,,. This completes the proof of Lemma
6.5. [

6.5 Entropy inequalities for the approximate solution

In this section, an entropy estimate on the approximate solution is proved (Theorem 6.1), which will
be used in the proofs of convergence and error estimate of the numerical scheme. In order to obtain
this entropy estimate, some discrete entropy inequalities satisfied by the approximate solution are first
derived.

6.5.1 Discrete entropy inequalities

In the case of the explicit scheme, the following lemma asserts that the scheme (6.7) satisfies a discrete
entropy condition (this is classical in the study of 1D schemes, see e.g. GODLEWSKI and RAVIART [1991],
GODLEWSKI and RAVIART [1996]).

Lemma 6.6 Under assumption 6.1 page 143, let T be an admissible mesh in the sense of Definition 6.1
and k> 0. Let g € C(R?,R) satisfying assumption 6.2 and assume that (6.6) holds.

Let ury, be given by (6.8), (6.7), (6.5); then, for all k € R, K € T and n € IN, the following inequality
holds:

n+1 _ _ n _
m(K) [usc F"|k lufc = & + Z [ VR (g(u?(T/c,u%Tn) —g(u?{Ln,uﬁJ_ﬁ))—
LEN(K) (6.48)
VT K (g(u%Tn,uTIL{TR) — g(u} Lk, u?(J_n))] <0.

PRrROOF of lemma 6.6
From relation (6.7), we express u;t' as a function of u% and u}, L € N(K),

ug' = uk + m(K) Y (0 k 9(uf, uk) — vk g 9(uk, uf)).

LeN(K)
The right hand side is nondecreasing with respect to u}, L € N(K). It is also nondecreasing with respect
to u%, thanks to the Courant-Friedrichs-Levy condition (6.6), and the Lipschitz continuity of g.
Therefore, for all k € IR, using divv = 0, we have:

k
utt T <uf Tk + (&) Z [vg,K gL Tr,ugTK) —vi 1 g(uk Tk, u%Tm)] (6.49)
LeN(K)
and
k
uptt L > ulb Lk + () Z (i x 9(ul Lk, uf LK) —vi  g(uf Lk, up LK)). (6.50)
LeN(K)

The difference between (6.49) and (6.50) leads directly to (6.48). Note that using divv = 0 leads to
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m(K) |u%+l - 'i|k_ |urlb( - ﬁ' +
S [ k(i TR ulTr) — fuf Tr) — g(uk Lo, ul Le) + fluf Lr)) - (6.51)

LeN(K)
VT K (g(usz, ukTk) — f(uETk) — g(ul Lk, vk LK) + f(u%J_n))] <0.

For the implicit scheme, one obtains the same kind of discrete entropy inequalities.

Lemma 6.7 Under assumption 6.1 page 143, let T be an admissible mesh in the sense of Definition 6.1
page 146 and k > 0. Let g € C(R?, R) satisfying assumption 6.2.

Let {u%,n € N, K € T} C [Upn,Un] be the solution of (6.9),(6.5) (the existence and uniqueness of such
a solution is given by Proposition 6.1). Then, for all k € R, K € T and n € IN, the following inequality
holds:

luf™" — 6] — luk — &

m(K) .

Z [UI"{’L (g(uﬁﬂ"l'ko, w1 TER) — g(u%“J.n,uﬁ“J_ﬁ))
LEN(K) (6.52)
—vE K (g(uﬁ“Tn,u}“Tn) - g(ug"'lJ_ka,uTI‘{HJ_n))] <0.

PRrROOF of lemma 6.7
Let k € R, K € T and n € IN. Equation (6.9) may be written as

n k n n

“?{H =Ug — m Z (vk,L g(U%“,UZ“) — VLK g(uﬁﬂ,uﬁ“))-
LeN(K)

The right hand side of this last equation is nondecreasing with respect to u% and with respect to u?frl

for all L € N(K). Thus,

k
W SRR = s S (e g TR) <o 0 TR g )).
LeN(K)
i k n n
Writing &k = k — m(E) Z (k.1 9(k,K) — V[ i 9(k, K)), one may remark that
LeN(K)
k
k< upTk— m(K) Z (Wi 1 9k, ul T TR) = 0} g g(up™ Tk, K)).
LEN(K)
Therefore, since uH' Tk = uHH or &,
k
ut T <ufTr— m(E) Z (VgL g TR, ut ' Tr) — VI K gt TR, uE Tr)). (6.53)
LEN(K)

A similar argument yields

k

wpt L > ul L — ()

Z (vk.1, gt L, utt Lk) — vl K gui Le,uptt LK), (6.54)
LeEN(K)

Hence, substracting (6.54) to (6.53) gives (6.52). L]
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6.5.2 Continuous entropy estimates for the approximate solution

For © = R? or R¢ x IR, we denote by M(f) the set of positive measures on €, that is of o-additive
applications from the Borel o-algebra of Q in R. If p € M(Q) and ¢ € C.(Q), one sets (u,1) = [ ¢dp.
The following theorems investigate the entropy inequalities which are satisfied by the approximate so-
lutions w7 in the case of the time explicit scheme (Theorem 6.1) and in the case of the time implicit
scheme (Theorem 6.2).

Theorem 6.1 Under assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 page
146 and k > 0. Let g € C(R?,R) satisfy assumption 6.2 and assume that (6.6) holds.

Let ur, be given by (6.8), (6.7), (6.5); then there exist urr € M(R? x Ry) and pr € M(R?) such
that

| /IR /IRd( lur i (z,t) — Klei(z, 1)+
(f(ur k2, t) Tk) — flur iz, t)Lk))v(z,t) - V<p(:c,t))d:cdt +

. Juo(2) — Kli(z, 0)dz > (6)

_/]RMR (Icpt(a:,t)| +|Vg0(a:,t)|)dp7—,k(m,t)—/BdQO(HJ,O)dNT(fU);

Ve €R, Vype CP(R?xR,,R,).

\

The measures pr,, and p verify the following properties:

1. For all R > 0 and T > 0, there exists C' depending only on v, g, ug, a, £, R and T such that, for
h<Rand k<T,

prx(B(0,R) x [0,T]) < CVh. (6.56)
2. The measure pr is the measure of density |uo(-) — ur,0(-)| with respect to the Lebesgue measure,
where ur, is defined by uro(z) = u% for ae. z € K, for all K € T.
If ug € BV(IRY), then there exists D, only depending on ug and «, such that

pr(R?) < Dh. (6.57)

Remark 6.5

1. Let u be the weak entropy solution to (6.1)-(6.2). Then (6.55) is satisfied with u instead of w7
and p7r =0and pur =0.

2. Let BVi,.(IR?) be the set of v € L}, (IR?) such that the restriction of v to Q belongs to BV (Q) for
all open bounded subset {2 of R
An easy adaptation of the following proof gives that if ug € BVj,.(IR%) instead of BV (IR%) (in the

second item of Theorem 6.1) then, for all R > 0, there exists D, only depending on ug, @ and R,
such that pu7(B(0,R)) < Dh.

PRrROOF of Theorem 6.1
Let p € C¥(R% x Ry, Ry) and k € R.
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Multiplying (6.51) by k% = (1/m(K)) [/ (n+1)k Jx p(x, t)dxdt and summing the result for all K € 7 and
n € IN yields

T +T> <0,
with
n+l _ _ n o _ (n+1)k
=3 luk™ = £l = |uk — Al / / o(z, t)dzdt, (6.58)
k nk K
neNKeT
and
kY Y
nelN (K,L)EE,
o 195 (9l Tr,up TR) = F(ul Th) = glufe Lk, uf L) + f(uh LK)
—0k 198 (9(uR Th, uE TR) = f(up Th) — g(ufeLs,uf L) + f )) (6.59)
—0p i (9L TR, Wk TR) = f(uk Th) = gluf Le, uLk) + f( LK)
+v7 kT (g(uZTm,u?{Tn) — fW}Tk) — g(u} Lk, u% LK) + f(u )
where &, = {(K,L) € T2, u% > u}}.
One has to prove
To+Tu< [ (@t + Vol durse,) + [ o@.0dur(z), (6.0
RIxR R4
for some convenient measures pr . and w7, and Tig, Too defined as follows
To=— [ [ lurate) = oo, 0dadt - [ juna) - rlgta,0)da,
R4 JR4 R4
To=— [ [ ((ra@iTo - furs@ ) vt - Vol ) dodt.  (661)
R, JR

In order to prove (6.60), one compares 771 and T (this will give p7, and a part of 7 1) and one compares
T» and Ty (this will give another part of p7 k).

Inequality (6.17) (in the comparison of 77 and Tio) and Inequality (6.16) (in the comparison of T and
T50) will be used in order to obtain (6.56).

Comparison of T; and T

Using the definition of ur ; and introducing the function ur o (defined by uro(z) = u%, for a.e. z € K,
for all K € T) yields

n+l _ g _ (n+1)k
Tio = Z Z [uk ﬁ|k |uk Kl/ / o(z, (n + 1)k)dzdt +
nk K

neINKeT
(lur0(z) — k| — |uo(z) — &|)p(x,0)dz.

R4
The function | - —«| is Lipschitz continuous with a Lipschitz constant equal to 1, we then obtain
|“K — ukl (mt 1)k
T =Tl < Y ) K / / lp(@; (n+1)k) = p(a, t)]dzdt +

nEINKeT
[uo(z) — ut,0(z)|p(z,0)dz,
IRd
which leads to
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(n+1)k
T-Tol < 3 fui —ug|/ / (oo, 8)|dadt +
nENKeT nk K (6.62)
[uo(z) — uT,0(z)|p(z,0)ds.
]Rd
Inequality (6.62) gives
Ti-Tal< [ loaOldvratet) + [ plo0)dur () (6.63)
RIXR 4 R4

where the measures ur € M(R%) and v7; € M(IR% x IR,) are defined, by their action on C.(IR?%) and
C.(R% x R,), as follows

ro) = [ Juo@) = ur (@)oo, Yo € Cu(R)

(n+1)k
(V1,0 Z Z lulptt — u%|/k /Kip(a:,t)d:cdt,

nelN KeT

Vi € CC(]Rd x R,).
The measures p7r and v7 are absolutely continuous with respect to the Lebesgue measure. Indeed,
one has du7(z) = |uo(z) — ur,o(2)|dr and dvr i(z,t) = (X ,ew DkeT lulptt — Wi |1k [nk, (nt1)k))dzdt
(where 1q denotes the characteristic function of Q for any Borel subset Q of IR4T!).
If ug € BV (IR?), the measure pur verifies (6.57) with some D only depending on |u| pv(r¢) and a (this
is classical result which is given in Lemma 6.8 below for the sake of completeness).
The measure v, satisfies (6.56), with v ;, instead of pr i, thanks to (6.17) and condition (6.6). Indeed,
for R>0and T > 0,

vr 1 (B(0,R) x [0,T7]) / / |u"+1 — Uk |1k sk, (n41) k) dTdt,
B(0,R) nelN KeT

which yields, with ER = {K S T, K C B(O, ZR)} and NT,kk <T< (NT,k + l)k‘, h< Rand k < T,

Nt
vr(B(0,R) x [0,T]) <kz Z n+1 “%Sﬁ,
n=0 KeTon vh

where C] is given by lemma 6.2 and only depends on v, g, ug, a, &, R, T. Finally, since the condition
(6.6) gives k < Csh, where Cs only depends on v, g, ug, a, &, the last inequality yields, for h < R and
k<T,

vrk(B(0,R) x [0,T]) < Csv/h, (6.64)
with 03 = 0102.

Comparison of 75 and T
Using divv = 0, and gathering (6.61) by interfaces, we get

Tw=- Y | ((f(u?(TH)—f(U%M))—(f(u%TH)—f(U%M)))

n€N (K,L)e&,
(n+1)k
/ / "NEL @(wat))dv(x)dt].
K|L Jnk

Define, for all K € T, all L € N(K) and all n € IN,

(6.65)
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1 (n+1)k
it E/ / v(z,t) - nic ) (e, Oy (2)dt
nk K|L

and

1 (n+1)k
Coki=g [, [, 0@ ) el s
Note that (ve)%h = (v Then, (6.65) gives
KL= LK

ISP

n€N (K,L)EEn
(vcp)?(’j: (g(u?(Tm,u%Tn) — fu%Tk) — g(ul Lk, u} LK) + f(u?(J_m))

(00 (903 Ty up Th) = F(uE TR) — g(uf Li, up LK) + f (uf L) ) (6.66)
—(vp)R L (9L TE, ukTK) — fuk TK) — g(u} Lk, uk LK) + f(u?(J_/e))
+(op) k(9B TR, ufe TR) = F(uf Th) = g(uf Le,ufe L) + f(uf Ln))].
Let us introduce some terms related to the difference between ¢ on K € 7 and K|L € £,
rR L = i Lok — (o)L
and
Tk = Vi k¥R — (0)K L]-
Then, from (6.59) and (6.66),
ITo—Tool < D kY
nelN (K,L)e&,
T‘K”L (g(uKTn utTk) — f(uRTk) + g(u Lk, u? LK) — f(U%J_Ii)) +
g(u Lk, ul LK) — f(uﬁJ_n)) + (6.67)
+

(U LK) — g(uLJ_/i,u%J_n))
(ugLr) — g(uf Lr, ufLn))].

r?{’L Tk) — g(ul Tk, uk Tk)
TZ'}} fWPTE) — g(u} Th, Uk TkK)

For all (K, L) € &,, the following inequality holds:

+

TL:K (g(uKT/i ulbTr) — f(uRTK) +
fluk +

._+.

f
f

0<g(ugTr,uiTk) = flugTk) <  max  (g9(¢,p) — f(q)),
uy <p<g<uf
more precisely, one has g(ut Tk, ul?Tk) — f(ukTk) = 0, if K > u%, and one has g(u%k Tk, u}Tk) —
Wi Tk) =g(g,p) — f(q) with p =k and g = v’ if K € [u},u}], and with p = u7 and ¢ = u if K < uf.
In the same way, we can assert that

0 <glugLlr,uplk) = flukle) <  max (g(g,p) — f(q))-
uy <p<g<up

The same analysis can be applied to the six other terms of (6.67).
To conclude the estimate on |T5 — Tag|, there remains to estimate the two quantltles r . This will be

done with convenient measures applied to |Vy| and |¢;|. To estimate rK L, for 1nstance one remarks
that
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1 (n+D)k  p(ntl)k
it < / / / / lo(@,1) — oy, 8)|(v(y, 5) - nge.0) " dy(y)dvdtds.
nk n K JK|L

Em(K)
Hence
ot (n+D)k  p(nt+l)k
R < / | //KL/|chw+0 @), t+6(s — 1) - (y — )+
oz +0(y —z),t+0(s—1))(s—1)| -ng 1)t dody(y)dzdtds

which yields

it 1 (n+1)k  p(n+l)k - -
e el M R ) I R L Y TR R
Kliu(@ +0(y — o),t + 0(s = D)]) (v(y, 5) - i)+ dBdy(y) dodeds.

This leads to the definition of a measure pK ', given by its action on CC(IRd x R4):

it ) /("H)k/n("H //K|L/ ((h+ By + 0y — 2), 1+ 0(s — 1))

-ng 1)t ddy(y)drdtds, Vi € C.(R* x Ry),

in order to have 27‘?(” <MK Vel + |<Pt|)

We define in the same way uy ;, changing (v(y,s) - nk,z)* in (v(y,s) - nk,r)”. We finally define the
measure 7 by

(Frm) =k [(u;grfsa‘;{@(

neN (K,L)€E,

+(ug§21§a;(§u (9(q, ) ny K

(6.68)
+( max
up <p<g<up

+( , max <f<p)—g<p,q)>)<uz:};, >].

uy <p<g<uf

Since 27'KL (pKL, [Vl + |}, (6.67) and (6.68) leads to |T> — Tao| < (F1,k, | V| + |¢t]). Therefore,
setting pr r = V7 x + U7k, using (6.63) and T} + T» < 0,

Tio+To < /
]RdX]R+

which is (6.60) and yields (6.55).
There remains to prove (6.56).

For all K € T, let zx be an arbitrary point of K. For all K € T, all K € N(K) and all n € IN, the
supports of the measures u?(iL are included in the closed set B(z g, h) N [nk, (n + 1)k]. Furthermore,

(Iovto 01+ V(o O1)durata,t) + | ote.0dur (o)

pEt (R x Ry) < 20% (b + k) and p7 (R x Ry) < 207 g (h + k).
Then, for all R > 0 and T > 0, the definition of pr (1.e. WT ke = vTk + U1 1)) leads to

prk(B(0,R) x [0,T]) < C3vh
Ntk
20+ k) >k Y [vkn(, max  (glep) - @)+  max  (9(a.p) - f(0)

u? <p<g<u’y uy <p<g<Llul
n=0 (K,L)EEP, L=P=a=ti L=P=a=ti

+0pxc( , max  (f(a) = 9(p,0) + (F®) - 9p,0)))]

uy <p<g<uf "<p<q< 2



169

for h < R and k < T, where C3v/h is the bound of vr;(B(0,R) x [0,T]) given in (6.64). Therefore,
thanks to Lemma 6.2,

prk(B(0,R) x [0,T]) < CsVh+ (1 + Cz)h% =Cvh,

where C only depends on v, g, ug, a, & R and T. The proof of Theorem 6.1 is complete. [

The following theorem investigates the case of the implicit scheme.

Theorem 6.2 Under Assumption 6.1, let T be an admissible mesh in the sense of Definition 6.1 and
k> 0. Let g € C(R? R) satisfy Assumption 6.2.

Let {u%,n € N,K € T}, such that u% € [Upn,Unm] for all K € T and n € IN, be the solution of
(6.9),(6.5) (existence and uniqueness of such a solution are given by Proposition 6.1). Let ut,j be given
by (6.8). Assume that v does not depend on t and that ug € BV (IR?).

Then, there exist ur € M(R® x Ry) and pr € M(R?) such that

| /IR /IRd( luT k(2,t) — Klpd(z, 1)+
(fluri(z,t)Tk) — fluri(z,t)LK))v(z,t) - V<P($,t))d:cdt .
/ luo(z) — Klp(z,0)ds ) .
Rd
_/ (|¢t(m’t)| i |V¢(m’t)|)d/"'f’k(m’t) _/ o(z,0)dpr (),
R4xR 4 o

/\

{ Ve e R, Vype CP(R?x R, Ry).

The measures pr, and p verify the following properties:

1. For all R > 0 and T > 0, there exists C, only depending on v, g, ug, o, R, T such that, for h < R
and k < T,
prk(B(0, R) x [0,T]) < C(k + Vh). (6.70)

2. The measure ut is the measure of density |uo(-) —ur,o(-)| with respect to the Lebesgue measure and
there exists D, only depending on ug and o, such that

pr(R?Y) < Dh. (6.71)

PROOF of Theorem 6.2

Similarly to the proof of Theorem 6.1, we introduce a test function ¢ € C3° (IRd x R4, IRy) and a real
number £ € IR. We multiply (6.52) by (1/m(K)) f(ZH)k S p(x,t)dzdt, and sum the result for all K € T

.

and n € IN. We then define Ty and T» such that 77 + T» < 0 using equations (6.58) and (6.59) in which

we replace u? by ukt and u} by u}t'. Therefore we get (6.63), where the measure v7 is such that

for all T' > 0, there exists C only depending on v, g, ug a and T', such that, for ¥ < T,

vr (R4 x [0,T]) < Cik,

using Lemma 6.5 page 160, which is available if v does not depend on ¢ (and for which one needs that
ug € BV(IRY)).

The treatment of T; is very similar to that of Theorem 6.1, replacing u% by ux"" and u} by 7. But,
since v does not depend on ¢, the bounds on T?(’i are simpler. Indeed,
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7

(n+1)k
< / / /K 1600~ @ D) nia) )t

Now 27‘}1{% (,uK I |V<p|) where p7 is defined by

(W3 g ) km /n+l)k//K|L/ (ho(@+6 - 2),1)

(y ) - nk.0)*d0dy (y)dzdt, Vi € Co(R? x R4).

With this definition of ,uK ~, the bound on 7 (defined by (6.68), replacing u} by u%™!

up™)

and u} by
becomes, thanks to Lemma 6.3 page 157,

or.x(B(0,R) x [0,T]) < CaVh,
for h < R and k < T, where C> only depends on v, g, ug, &, R and T'.

Hence, defining (as in Theorem 6.1) p1 = v7 1 + D71, for all R > 0 and all T > 0 there exists C, only
depending on v, g, ug, &, R, T such that, for h < R and k < T,

,u’T,k(B(OaR) x [OaT]) < C(k + \/E):
which is (6.70) and concludes the proof of Theorem 6.2. m

Remark 6.6 In the case where v depends on ¢, Lemma 6.5 cannot be used. However, it is easy to show
(the proof follows that of Theorem 6.1) that Theorem 6.2 is true if (6.70) is replaced by

k
pTe(B(0, R) x [0,T]) < C(—= + Vh), (6.72)
Vh
which leads to the result given in Remark 6.12. The estimate (6.72) may be obtained without assuming
that up € BV (IR?) (it is sufficient that uo € L®(IR?)).

For the sake of completeness we now prove a lemma which gives the bound on the measure pus in the
two last theorems.

Lemma 6.8 Let T be an admissible mesh in the sense of Definition 6.1 page 146 and let u € BV (R?)
(see Definition 5.38 page 136). For K € T, let ux be the mean value of u over K. Define ur by
ur(z) =uk for a.e. x € K, for all K € T. Then,

C
lu = ur|lprray < ¥h|U|BV(1Rd)a (6.73)
where C only depends on the space dimension (d=1, 2 or 3).

PROOF of Lemma 6.8
The proof is very similar to that of Lemma 6.4 and we will mainly refer to the proof of Lemma, 6.4.

First, remark that if (6.73) holds for all u € BV (IRY)NC'(IR?,1R) then (6.73) holds for all u € BV (R?).
Indeed, let u € BV (IRY), it is proven in Step 1 of the proof of Lemma 6.4 that there exists a sequence
(un)new C C° (R4 R) such that u, — v in L}, (R?), as n — oo, and lunll gy may < llullpyme) for all
n € IN. One may also assume, up to a subsequence, that u, — u a.e. on R?. Then, if (6.73) is true with
un, instead of u, passing to the limit in (6.73) (for u,) as n — oo leads to (6.73) (for u) thanks to Fatou’s

lemma.
Let us now prove (6.73) if u € BV(R?) N C'(IR%,R) (this concludes the proof of Lemma 6.8). Since
u e C'(RYR),

lulgymay = I(IVu)ll L1 may;
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hence we shall prove (6.73) with ||(|Vu|)||L1(re) instead of [u|gy (gr4)-

For KeT,
/ u(z) — ureldz < / / lu(z) — uly)|dz)dy
K

Then, following the lines of Step 2 of Lemma 6.4,

1 1
/K o)~ < o [ /0 /K Vuly + t2)|dydt)dz. (6.74)

For all K € T, let xx be an arbitrary point of K.
Then, changing the variable y in £ = y + tz (for all fixed z € K and ¢ € (0,1)) in (6.74),

1 1
/K ju(a) —urclde < /B o /0 /B ICGITONE

which yields, since 7 is an admissible mesh in the sense of Definition 6.4 page 146,

/K lu(z) — ux|do < #m(fz(o,h))h Vu(€)|de.

B(zk ,2h)

Therefore there exists (', only depending on the space dimension, such that

/ (@) — uxcldz < CLh (Vu(€)|de, VK € T (6.75)
K «a B(zx ,2h)

As in Lemma 6.4, for a fixed M € T, the number of K € T such that M N B(xk,2h) # 0 is less or equal
to m(B(0,4h))/(ah?) that is less or equal to Ca/a where Cs only depends on the space dimension.
Then, summing (6.75) over K € T leads to

aic: oxe
> [ tute) - uxlde < 20 Y [ Vu@lds = LRI Tu s

KeT MeT
that is (673) with C = 0102. ]

6.6 Convergence of the scheme

This section is devoted to the proof of the existence and uniqueness of the entropy weak solution and of
the convergence of the approximate solution towards the entropy weak solution as the mesh size and time
step tend to 0. This proof will be performed in two steps. We first prove in section 6.6.1 the convergence
of the approximate solution towards an entropy process solution which is defined in Definition 6.2 below
(note that the convergence also yields the existence of an entropy process solution).

Definition 6.2 A function p is an entropy process solution to problem (6.1)-(6.2) if u satisfies
[ pe L®(R* x RY x (0,1)),
+oo
/ / / w(z, t,0))pr(z,t) + ®(u(z,t,a))v(z,t) -V(p(m,t))dadtda:
IRd

n(uo(z))e(z,0)dx > 0,
Rd

for any ¢ € CL(IR¢ x R4, R),
for any convex function n € C'(R,R), and & € C'(R,R) such that & = f'n’

(6.76)
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Remark 6.7 From an entropy weak solution u to problem (6.1)-(6.2), one may easily construct an
entropy process solution to problem (6.1)-(6.2) by setting u(z,t,@) = u(z,t) for a.e. (z,t,a) € R% x
R’} x (0,1). Reciprocally, if 41 is an entropy process solution to problem (6.1)-(6.2) such that there exists
u € L®(R? x RY) such that pu(z,t,@) = u(z,t), for a.e. (z,t,a) € R? x R% x (0,1), then u is an
entropy weak solution to problem (6.1)-(6.2).

In section 6.6.2, we show the uniqueness of the entropy process solution, which, thanks to remark 6.7,
also yields the existence and uniqueness of the entropy weak solution. This allows us to state and prove,
in section 6.6.3, the convergence of the approximate solution towards the entropy weak solution.

We now give a useful characterization of an entropy process solution in terms of Krushkov’s entropies (as
for the entropy weak solution).

Proposition 6.2 A function p is an entropy process solution of problem (6.1)-(6.2) if and only if,
pe LR x RY x (0,1)),
+o0
/ / / lu(z,t, o) — klo(z, t) + 2(p(z, t, @), k)v(z, t) -ch(a:,t))dadtd;c
md

+ [ o) ~ rlp(a, 00z > 0,
IRd
Vi € R, Vy € CHR? x Ry, R,),
where we set ®(a,b) = f(aTb) — f(ald), for all a, b € R.

(6.77)

PROOF of Proposition 6.2

The proof of this result is similar to the case of classical entropy weak solutions. The characterization
(6.77) can be obtained from (6.76), by using regularizations of the function |- —k|. Conversely, (6.76)
may be obtained from (6.77) by approximating any convex function n € C'(IR,IR) by functions of the

form: n, (- Za(")| —k{"|, with a{™ > 0. n

6.6.1 Convergence towards an entropy process solution

Let a > 0and 0 < £ < 1. Let (T, km)men be a sequence of admissible meshes in the sense of Definition
6.1 page 146 and time steps. Note that 7, is admissible with « independent of m. Assume that k,,
satisfies (6.6), for T = T,, and k = k,,,, and that size(7,,) = 0 as m — co.

By Lemma 6.1 page 150, the sequence (u7;, .. )men of approximate solutions defined by the finite volume
scheme (6.5) and (6.7) page 147, with 7 = T,, and k = ky,, is bounded in L®(R? x R ); therefore,
there exists p € L°(R? x R’} x (0,1)) such that w7, j, converges,as m tends to oo, towards p in the
nonlinear weak-x sense (see Definition 6.3 page 189 and Proposition 6.4 page 189), that is:

lim / / 0(ut, &, (2,1)) (2, t)dtdz —/ / / O(p(z, t, 0))(z, t)dadtdz,
m—oo Jpa R IR, (6.78)
Vo € L ]RxIR*) Vo € C(R,R).

Taking for 6, in (6.78), the Krushkov entropies (namely § = | - —&|, for all kK € IR) and the associated
functions defining the entropy fluxes (namely 6 = f(-,k) = f(-Tk) — f(-Lk)) and using Theorem 6.1
(that is passing to the limit, as m — oo, in (6.55) written with ur , = wr;, 1,.) yields that 4 is an entropy
process solution. Hence the following result holds:

Proposition 6.3 Under assumptions 6.1, let « > 0 and 0 < £ < 1. Let (T, km)men be a sequence of
admissible meshes in the sense of Definition 6.1 page 146 and time steps. Note that T, is admissible
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with a independent of m. Assume that k., satisfy (6.6), for T = Ty, and k = ky,, and that size(T,,) — 0
as m — 0o.

Then there exists a subsequence, still denoted by (Tr, km)men, and a function p € L°(R? x R’ x(0,1))
such that

1. the approzimate solution defined by (6.7), (6.5) and (6.8) with T = Ty, and k = ki, that is ur,, k,,,
converges towards p in the nonlinear weak- sense, i.e. (6.78) holds,

2. u is an entropy process solution of (6.1)-(6.2).

Remark 6.8 The same theorem can be proved for the implicit scheme without condition (6.6) (and thus
without &).

Remark 6.9 Note that a consequence of Proposition 6.3 is the existence of an entropy process solution
to Problem (6.1)-(6.2).

6.6.2 Uniqueness of the entropy process solution

In order to show the uniqueness of an entropy process solution, we shall use the characterization of an
entropy process solution given in proposition 6.2.

Theorem 6.3 Under Assumption 6.1, the entropy process solution u of problem (6.1),(6.2), as defined
in Definition 6.2 page 171, is unique. Moreover, there exists a function u € L°°(]Rd x RY) such that
u(z,t) = p(z,t,a), for a.e. (x,t,0) € R% x R% x (0,1). (Hence, with Proposition 6.3 and Remark 6.7,
there exists a unique entropy weak solution to Problem (6.1)-(6.2).)

PRrROOF of Theorem 6.3
Let s and v be two entropy process solutions to Problem (6.1)-(6.2). Then, one has p € L= (IR? x R% x
(0,1)), v € L2(R* x R x (0,1)) and

/}Rd/m/ (In(zt.0) - sl

+(f(u(=,t,0) Tr) = f(u(z,t,0) LK))v(z, t) 'Vw(mat)) dodtdx (6.79)
+/ [uo(x) — k|p(z,0)dz > 0, Yk € R, Vo € CL(R? x R, R,),

/]Rd /+°°/ |V Y>85, 8) — ks (y, 5)

+(f(ly, 5, 8)TR) = F(v(y, 5, ) LK)V(y, ) - Viply, 5) ) dBdsdy (6.80)
+/ luo(y) — Kle(y,0)dy > 0, Ve € R, Vp € Cr (R? x Ry, Ry).
R4

The proof of Theorem 6.3 contains 2 steps. In Step 1, it is proven that

// /]R/]R (e, t, @) = v, t, B) | (e, 1)

+ (@, t,0) Tola,t, 8)) = f(u(a,t,0) Lv(w,t, 8) ) v(,1) - V(a,1)| dudtdads > 0,
Ve € CHIRY x Ry, R,).

(6.81)
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In Step 2, it is proven that u(z,t,a) = v(z,t,8) for ae. (z,t,0,8) € R? x R% x (0,1) x (0,1). We
then deduce that there exists u € L®(IR* x RY) such that u(z,t,@) = u(z,t) for ae. (z,t,a) €
R x R’ x (0,1) (therefore u is necessarily the unique entropy weak solution to (6.1)-(6.2)).

Step 1 (proof of relation (6.81))
In order to prove relation (6.81), a sequence of mollifiers in IR and R? is introduced .
Let p € C°(R% R, ) and 5 € C*°(IR, IR, ) be such that

{x € R% p(x) # 0} C {x € R |z| < 1},

{z € R; p(z) # 0} C [-1,0] (6.82)

and

/le plx)dr =1, /]R plx)dr = 1.

For n € IN*, define p,, = n%p(nz) for all z € R and p, = np(nz) for all z € R.
Let ¢ € CL(IR% xR, R, ). For (y,s,8) € R*x Ry x(0,1), let us take, in (6.79), ¢(z,t) = ¥ (z,t)pn(z —
y)pn(t — s) and k = v(y, s, 8). Then, integrating the result over R% x R x (0,1) leads to

Ay + A + Az + Ay + A5 > 0, (6.83)
where
e[ L[ Ll
Yi(x,t) pr(x — y) pr(t — s)] dzdtdydsdadf,
Ay = / / / /]Rd/ /]Rd u(z,t, ) = v(y,s, B)|
(z,t)pn(x — y)p, (t — )]dmdtdydsdadﬁ,
4y = / / L L[] (et Totw, s, o) - futarta) vty,5,5))
v(z,t) - Vw(w,t)pn(w—y)ﬁn(t—s)] dxdtdydsdadp,
= [ 7L ] [t - sta 1vi.s.0)
v(z,t) - Vpn(x—y)w(x,t)ﬁn(t—s)]dmdtdydsdadﬂ
and

ts= [T o) = vty 50060, 0hpate )i

Passing to the limit in (6.83) as n — oo (using (6.80) for the study of Ay + A4 and As) will give (6.81).
Let us first consider A; and Az. Note that, using (6.82),

/ / pn(T — y)pn(t — s)dsdy = 1, Vo € R%, Vt € R
R4 Jo

Then,
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4 _/1 /1 /]R+ /]R |u(z, 8, —V(w,t,ﬂ)lzbt(x,t)] dzdtdadp|
/ / /]Rd/ /le v(z,t,B) — v(y, s, B)|[¢i(,t)|pn(x — y)pu(t — s)| dzdtdydsdp

< ||¢t||Loo(1Rd><1R*)E n,S),

with S = {(z,1) € R* x R; ¢(x,t) # 0} and

1 1
e(n,S) =sup{|lv — v(- +n,- + 7, )lL1(sx0.1)); Ml < o’ 0<7< E}'

Since v € L},.(R? x R4 x [0,1]) and S is bounded, one has ¢(n, S) = 0 as n — co. Hence,

1,1
Ay —>/0 / /]R+ /le [|N(w,t,a) —v(z,t, B)|¢e(z, t) | dxdtdadB, as n — oc. (6.84)

Similarly, let M be the Lipschitz constant of f on [—D, D] where D = max{||g||oo, [|V|loc }, With [|||cc =
||'||L®(Rde;x(0,1))7

s [ / / o (10 T8 — a0 1e,1,)

) - Vib(a, t)dadtdadp| < 2MVI(IVYDI Lo ra xrs ) €05 S),
which yields

s [ ] (et 0T 8) — siute ) L1, ) 659
v(z,t) - Vi(z,t)dzdtdadf, as n — oo.

Let us now consider Ay + Ay.
For (z,t,a) € R? x Ry x (0,1), let us take ¢(y,s) = ¢(x,t)pn(x — y)pn(t — s) and & = p(z,t,a) in
(6.80). Integrating the result over R% x R x (0,1) leads to

—A> — By >0, (6.86)

= [ [ [T (et 6) - Sutat o toty,s, )

(v(2,) = V(y,)) - Vou(® = 4) (3, )pn(t — )| dedtdydsdads.

Note that By = Ay if v is constant (and one directly obtains (6.88) below). In the general case, in order
to prove that Ay — By — 0 as n — oo (which then gives (6.88)), let us remark that, using divv =0,

/ / / /IR d / [ (et o) Tota,t,5) = S, 0) Lot t.5) 65)

(v(@,) = V(y,5)) - Vpu(z = y)t(z, )pn(t — 5)| dedtdydsdads = 0.

with

Indeed, the latter equality follows from an integration by parts for the variable y € IR?. Then, substracting
the left hand side of (6.87) to A4 — B, and using the regularity of v, there exists C4, only depending on
M, v and 9, such that |44 — By| < C1e(n,S). This gives Ay — By — 0 as n — oo and, thanks to (6.86),

limsup(A2 + A4) <0. (6.88)

n—oo
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Finally, let us consider As.
For z € R, let us take o(y, s) = ¢(,0)pn(z —y) [,;° pn(—7)dr and k = uo(z) in (6.80). Integrating the
resulting inequality with respect to = € R? gives

—As + Bsq + Bsp > 0, (6.89)

m=—[ [T[.], / V(5,5 6) Tuo(®)) = F(y,5, ) Luo(2)))

v(y,s) - Von(z — y)to(z,0)pn(—7)drdydzdsdp,
By = [ [ 0.0 = o) - uow)dyds.

Let So = {z € R% ¢(x,0) # 0} and

with

1
€o(n, So) = sup{ | [uo(z) —uo(z +m)ldz; [ < 3,
So

so that Bsy < [[¢(+, 0)|| Lo (me)€0(n, So)-

Since ug € Lloc(IRd) and since Sy is bounded, one has €9(n,Sp) = 0 as n — oo. Then, Bs;, — 0 as
n — oo.

Let us now prove that Bs, — 0 as n — oo (then, (6.89) will give (6.90) below). Note that Bs, =
—Bs5. + (B5a + B5c) with

m=[ [ ] / v(y, 5, 8) Tuo(y) = F(0(y,5, ) Luo(y)

) - Vpn(z — y)¢p(x,0)pn (—7)drdydzdsdf.
Integrating by parts for the x variable ylelds

m=[ [T ] / V(w5 0) Tuo(w) — f(¥(y, 5, 6) Luo(y))

) - Vp(x,0) pp(x — y) pn(—T)drdydxdsdf.

Noting that the integration with respect to s is reduced to [0,1/n], Bs. — 0 as n — oo.
There remains to study Bs, + Bs.. Noting that |f(aTb) — f(aTc)| < M[b— c| and |f(aLld) — f(alc)| <
M|b—c|if b, c € [-D, D], where D = [[ug|| e (ray and M is the Lipschitz constant to f on [-D, D],

|Bsa + Bse| < 20V / / / / o (@) — to(®) ||V pn (@ — )\ (, 0)pn (—7)drdydads,
0 R4 JIRE Js

which yields the existence of Cs, only depending on M, V and %, such that

1
|Bsa + Bse| < C’g/ / / |uo(z) — uo(x — 2)|n?dzdxds.
0 JSo/B(0,1)

Therefore, |Bs, + Bs:| < C3eo(n, Sp), with some Cs only depending on M, V and 4. Since go(n, So) — 0
as n — 0o, one deduces |Bs, + Bs:| — 0 as n — oco. Hence, Bs, — 0 as n — oo and (6.89) yields

limsup A5 < 0. (6.90)
n—oo

It is now possible to conclude Step 1. Passing to the limit as n — oo in (6.83) and using (6.84), (6.85),
(6.88) and (6.90) yields (6.81).

Step 2 (proof of p = v and conclusion)
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Let R > 0and T > 0. One sets w = VM (recall that V is given in Assumption 6.1 and that M is given
in Step 1).

Let ¢ € C{(R4,[0,1]) be a function such that p(r) = 1if r € [0, R+wT], p(r) =0if r € [R+wT +1,00)
and ¢'(r) <0, for all r € Ry.

One takes, in (6.81), ¢ defined by

P(@,t) = (|z| + wt) L=L, for 2 € R and t € [0,T],
Y(x,t) =0, for € R? and t > T.

The function ¢ is not in Cg° (R? x R,R.), but, using a usual regularization technique, it may be
proved that such a function can be considered in (6.81), in which case Inequality (6.81) writes

/o1 /01 /OT /]Rd ['“(”"’ t,a) —v(z,t,0)| (?ww’(lwl +wt) - %¢(|x| + wt)) +

(F e ) T, 1, ) — (st 0) Lota, 1, 8)) T ol + wt)v(a, 1) - 2 dmdedads > 0.

||
Since w = VM and ¢’ <0, one has (f(aTb) — f(aLb))¢'(|z| +wt)v(z,t) (z/|z]) < |a—Dblw(—¢'(|z|+wt)),
for a.e. (z,t) € R*xR* and all a, b € [-D, D] (D is defined in Step 1). Therefore, since ¢(|z| +wt) = 1
if (z,t) € B(0, R) x [0,T], the preceding inequality gives

1 1 T
/ / / / (. t,0) — v(o,t, B)|drdtdads < 0,
o Jo Jo JB(o,R)

which yields, since R and T are arbitrary, u(z,t, @) = v(=,t, 8) for a.e. (z,t,a,f) € R? x R x (0,1) x
(0,1).

Let us now deduce also from this uniqueness result that there exists u € L®(IR¢ x IR%) such that
p(z, t,a) = u(z, t), for a.e. (z,t,a) € RY x IR x (0,1) (then it is easy to see, with Definition 6.2, that
u is the entropy weak solution to Problem (6.1)-(6.2)).

Indeed, it is possible to take, in the preceeding proof, u = v (recall that the proposition 6.3 gives the
existence of an entropy process solution to Problem (6.1)-(6.2), see Remark 6.9). This yields u(z,t,a) =
pu(z,t, B) for a.e. (z,t,a,8) € R? x R x (0,1) x (0,1). Then, for a.e. (z,t) € R? x R%, one has

w(z,t,a) = p(=,t, B) for a.e. (o, B) € (0,1) x (0,1)
and, for a.e. a € (0,1),

w(z,t,a) = p(z,t,B) for a.e. € (0,1).
Thus, defining u from R x R to R by

1
u(z,1) = / u(z,t, B)dB,

one obtains pu(z,t,a) = u(z,t), for a.e. (2,t,a) € R? x R x (0,1), and u is the entropy weak solution
to Problem (6.1)-(6.2). This completes the proof of Theorem 6.3. m

6.6.3 Convergence towards the entropy weak solution

We now know that there exists a unique entropy process solution to problem (6.1)-(6.2) page 143, which
is identical to the entropy weak solution of problem (6.1)-(6.2); we may now prove the convergence of the
approximate solution given by the finite volume scheme (6.7), (6.5) and (6.8) towards the entropy weak
solution as the mesh size tends to 0.
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Theorem 6.4 Under Assumptions 6.1 page 143, let o € R} and & € (0,1) be given. For an admissible
mesh T in the sense of Definition 6.1 page 146 and for k > 0 satisfying (6.6) (note that a and £ are
fized), let ur i, be the solution to (6.7), (6.5) and (6.8).

Then, ut g — u in Lf’oc(]Rd x Ry ) for all p € [1,00), as h = size(T) — 0, where u is the entropy weak
solution to (6.1)-(6.2) page 143.

PROOF of Theorem 6.4

P (R%xTRy) forall p € [1,00), as h = size(T) — 0), let us proceed
by a classical way of contradiction which uses the uniqueness of the entropy process solution to Problem
(6.1)-(6.2) page 143. Assume that there exists 1 < py < 0o, € > 0, @ a compact subset of R, T > 0 and
a sequence ((Tm, km))men such that, for any m € IN, 7, is an admissible mesh, %, satisfies (6.6) (with
T = Tm and k = k,,,, note that a and ¢ are independent of m), size(7,,) — 0 as m — oo and

In order to prove that ur  — u (in L?

T
/ / |u Tk — ulPodzdt > £, ¥Ym € IN, (6.91)
0 Ja

where u7;, .. is the solution to (6.7), (6.5) and (6.8) with 7 = 7, and k = k,, and u is the entropy weak
solution to (6.1)-(6.2).

Using Proposition 6.3, there exists a subsequence of the sequence ((Tm, km))men, still denoted by ((7r,
Em))men, and a function p € L®°(IR? x R’} x (0,1)) such that

1. wr, k.. = B, @8 m — 00, in the nonlinear weak-x sense, that is:

mlgnoo ]Rde UTo ko (2, 1)) (2, t)dadt = / / / O(u(z, t, a))p(z, t)drdtda, (6.92)
Vo € L'(R? x R%), V0 € C(R,R),
2. p is an entropy process solution to (6.1)-(6.2).

By Theorem 6.3 page 173, one has p(-,-, @) = u, for a.e. a € [0,1] (and u is the entropy weak solution to
(6.1)-(6.2)). Taking first §(s) = s> in (6.92) and then §(s) = s and @u instead of ¢ in (6.92) one obtains:

/00/ (u,, k,, (2,1)) —u(z, 1)) p(z,t)dzdt — 0, as m — oo, (6.93)
0 JRM

for any function ¢ € L'(IR% x (0,T)). From (6.93), and thanks to the L°-bound on (u7., ,. )me, one
deduces the convergence of (u7., x,.)men towards u in L? (R* x R.) for all p € [1,00), which is in
contradiction with (6.91).

This completes the proof of our convergence theorem. [

Remark 6.10

1. Theorem 6.4 is also true with the implicit scheme instead of the explicit scheme (that is (6.9) and
(6.10) instead of (6.7) and (6.8)) without the condition (6.6) (and thus without &).

2. The following section improves this convergence result and gives an error estimate.
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6.7 FError estimate

6.7.1 Statement of the results

This section is devoted to the proof of an error estimate of time explicit and time implicit finite volume
approximations to the solution v € L®(R? x IR%) of Problem (6.1)-(6.2) page 143. Assuming that
up € BV(R?), a “h'/*” error estimate is shown for a large variety of finite volume monotone flux
schemes such as those which were presented in Section 6.2 page 146.

Under Assumption 6.1 page 143, let 7 be an admissible mesh in the sense of Definition 6.1 page 146 and
k> 0. Let g € C(IR? R) satisfying Assumption 6.2.

Let u be the entropy weak solution of (6.1)-(6.2) and let ur j be the solution of the time explicit scheme
(6.7), (6.5), (6.8), assuming that (6.6) holds, or ur  be the solution of the time implicit scheme (6.9),
(6.5), (6.10). Our aim is to give an error estimate between v and w7y k.

In the case of the explicit scheme, one proves, in this section, the following theorem.

Theorem 6.5 Under Assumption 6.1 page 143, let T be an admissible mesh in the sense of Definition
6.1 page 146 and k > 0. Let g € C(IR?, R) satisfy Assumption 6.2 and assume that condition (6.6) holds.
Let u be the unique entropy weak solution of (6.1)-(6.2) and ur i, be given by (6.8), (6.7), (6.5). Assume
Uy € BV(]Rd). Then, for all R > 0 and all T > 0 there exists C. € R, only depending on R, T, v, g,
ug, a and &, such that the following inequality holds:

T
/ / lur i (z,t) — u(z, t)|dodt < Cohi. (6.94)
0o JB(o,R)

(Recall that B(0,R) = {z € R?, |z| < R}.)

In Theorem 6.5, ug is assumed to belong to BV (IR%) (recall that uo € BV (IR?) if sup{ [ uo(z)divy(z)dz,
@ € C®(R4RY); |p(x)| < 1, Vo € R} < 00). This assumption allows us to obtain an h'/* estimate
in (6.94). If ug € BV (IR%) (but ug still belongs to L=(IR%)), one can also give an error estimate which
depends on the functions e(r, S) and g¢(r, S) defined in (6.109) and (6.116).

A slight improvement of Theorem 6.5 (and also Theorem 6.6 below) is possible. Using the fact that
u € C(Ry, L (IRY) and thus u(-,t) is defined for all t € IR, Theorem 6.5 remains true with

loc
/ lur i (2,8) — u(z, )|dz < CohM4, Vit € [0,T1,
B(0,R)

instead of (6.94). The proof of such a result may be handled with an adaptation of the proof a uniqueness
of the entropy process solution given for instance in EYMARD, GALLOUET and HERBIN [1995], see VILA
[1994] and COCKBURN, COQUEL and LEFLOCH [1994] for some similar results.

In some cases, it is possible to obtain h!/2, instead of h'/%, in Theorem 6.5. This is the case, for instance,
when the mesh 7 is composed of rectangles (d = 2) and when v does not depend on (x,t), since, in
this case, one obtains a “BV estimate” on ur . In this case, the right hand sides of inequalities (6.16)
and (6.17), proven above, are changed from C/v/h to C, so that the right hand side of (6.56) becomes
Ch instead of Cv/h, which in turn yields C.h'/? in (6.94) instead of C.h'/%. It is, however, still an
open problem to know whether it is possible to obtain an error estimate with h/2, instead of h!/%, in
Theorem 6.5 (under the hypotheses of Theorem 6.5), even in the case where v does not depend on (z,t)
(see COCKBURN and GREMAUD [1996] for an attempt in this direction).

Remark 6.11 Theorem 6.5 (and also Theorem 6.6) remains true with some slightly more general as-
sumption on g, instead of 6.2, in order to allow g to depend on T and k. Indeed, in (6.7), one can replace
g(u,u?) (and g(ul,u})) by gk rL(uk,ul,T,k) (and gr x(u},ul,T,k)). Assume that, for all K € T
and all L € N(K), the function (a,b) — gk r(a,b,T,k), from [U,,,Uym]? to R, is nondecreasing with
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respect to a, nonincreasing with respect to b, Lipschitz continuous uniformly with respect to K and L
and that gk r(a,a,T,k) = f(a) for all a € [Up,Up| (recall that U,, < uo < Uy a.e. on ]Rd). Then
Theorem 6.5 remains true.

However, note that condition (6.6) and C. in the estimate (6.94) of Theorem 6.5 depend on the Lipschitz
constants of gk, 1,(-,-, T, k) on [Um,Um]?. An interesting form for gx 1, is gx,1.(a, b, T, k) = cx.r.(T, k) f(a)
+ (l—CK,L(T, k)) f(b) + DK,L(T, k‘) (a—b), with some CK,L(T, k’) € [0, 1] and DK,L(T, k‘) > 0. In order to
obtain the desired properties on g, ., it is sufficient to take max{|f'(s)|, s € [Um,Um]} < Dr,.(T,k) < D
(for all K, L), with some D € IR. The Lipschitz constants of gk, on [Up,Unm]* only depend on D, f,
U, and Uyy.

For instance, a “Lax-Friedrichs type” scheme consists, roughly speaking, in taking Dk (T, k) of order
“h/k”. The desired properties on gk, are satisfied, provided that k/h < C, with some C' depending on
max{|f'(s)], s € [Um,Unm]}. Note, however, that the condition k/h < C is not sufficient to give a real
“h1/4” estimate, since the coefficient C, in (6.94) depends on D. Taking, for example, k of order “h*” leads
to an estimate “C,h'/%” which do not goes to 0 as h goes to 0 (indeed, it is known, in this case, that the
approximate solution does not converge towards the entropy weak solution to (6.1)-(6.2)). One obtains
a real “h!/4” estimate, in the case of that “Lax-Friedrichs type” scheme, by taking C; < (k/h) < Cs. In
order to avoid the condition C; < (k/h) (note that (k/h) < Cs is imposed by the Courant-Friedrichs-Levy
condition 6.6), a possibility is to take Dg r,(T,k) = D = max{|f'(s)|, s € [Un,Unm]} (this is related to
the “modified Lax-Friedrichs ” of Example 5.2 page 130 in the 1D case). Then D only depends on f and
up and, in the estimate “C.h'/4” of Theorem 6.5, C, only depends on R, T, v, f, ug, a and &, which
leads to a convergence result at rate “h'/*” as h — 0 (with fixed a and &).

In the case of the implicit scheme, one proves the following theorem.

Theorem 6.6 Under Assumption 6.1 page 143, let T be an admissible mesh in the sense of Definition
6.1 page 146 and k > 0. Let g € C(R?,R) satisfy Assumption 6.2. Let u be the unique entropy weak
solution of (6.1)-(6.2). Assume that ug € BV (IR?) and that v does not depend on t.

Let {u%, n € N, K € T} be the unique solution to (6.9) and (6.5) such that % € [Up,Unm] for all
K €T andn € IN (existence and uniqueness of such a solution is given by Proposition 6.1). Let ur x be
defined by (6.10).

Then, for all R > 0 and T > 0, there exists C, only depending on R, T, v, g, ug and «, such that the
following inequality holds:

T
/ / lur () — u(o, 8)|dadt < Cy(k + h¥)3. (6.95)
o JB(Oo,R)

Remark 6.12 Note that, in Theorem 6.6, there is no restriction on k (this is usual for an implicit
scheme), and one obtains an “h'/*” error estimate for some “large” k, namely if k¥ < h'/2. In Theorem
6.6, if v depends on ¢ and uy € L®(IR?%) (but uy not necessarily in BV (IR%)), one can also give an error
estimate. Indeed one obtains

T
k 1 1
/ / i (2, ) — u(, 8)|dedt < Co( - + h3)},
0 JB(0O,R) h2

which yields an “h!/*” error estimate if k is of order “h”.

Theorem 6.5 (resp. Theorem 6.6) is an easy consequence of Theorem 6.1 (resp. 6.2) and of a quite
general theorem of comparison between the entropy weak solution to (6.1)-(6.2) and an approximate
solution. This theorem of comparison (Theorem 6.7) may be used in other frameworks (for instance, to
compare the entropy weak solution to (6.1)-(6.2) and the approximate solution obtained with a parabolic
regularization of (6.1)). It is stated and proved in Section 6.7.3 where the proofs of theorems 6.5 and 6.6
are also given. First, in Section 6.7.2, two preliminary lemmata are given. Indeed, Lemma 6.10 is the
crucial part of the two following sections.
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6.7.2 Preliminary lemmata

Let us first give a classical lemma on the space BV.

Lemma 6.9 Let u € BV},.(IRP), p € IN*, that is u € L}, .(IR?) and the restriction of u to Q belongs to

loc

BV (Q) for all open bounded subset 2 of R? (see Definition 5.38 page 136 for the definition of BV (Q)).
Then, for all bounded subset Q of R? and for all a > 0,

llu(- +n) —ullLie) < Inllulsv@.), Yn € R, [n] < a, (6.96)
where Q, = {z € RP; d(z,Q) < a} and d(z, ) = inf{|z —y|, y € O} is the distance from x to Q.

PRrROOF of Lemma 6.9
Let Q be a bounded subset of IR and n € R?. The following equality classically holds:

lu(- +n) —ullLie) = sup{/Q(U(w +1) —u(@))e(@)ds, p € CZ(QR), llolle@ <1} (6.97)

Let ¢ € C2°(Q,IR) such that [|¢]|pe(o) < 1.
Since ¢(x) = 0 if z € Q) \ Q (recall that Q) = {x € R?; d(x, Q) < n}),

/u(:c)go(a:)dx:/ u(z)p(x)dx.
Q

Q)

Similarly, using an obvious change of variables,

/ w(z + n)p(x)dz = / u(@)p(x — n)dz.
Q

Q)

Therefore,

1
/Q (uz + 1) — u(@))p(e)de = /Q u(@)(p(e — 1) — p(@))dz = — /Q u(a)( / V(e — sn) - nds)de

[l [l

and, with Fubini’s theorem,

/(u(x +n) —u(z))p(z)des = / (/ u(x)V(z — sn) - ndx)ds. (6.98)
Q 0o Ja

Il

For all s € (0,1), Define ¢y € C(Q)y,IRP) by s(x) = @(x — sn)n; since ¢y € CF(Q)y,IRF) and
[¥s(z)| < |n| for all z € RP, the definition of |u|py(q, ) yields

J

u(z)Vo(z — sn) - ndx = / u(z)divys(z)dz < |nllulBv(q,,)-

Q

Il [l

Then, (6.98) gives
| (wle+ ) —u@)e@de < pullulzv e, ) (6.99)
Taking in (6.99) the supremum over ¢ € C°(2,R) such that [|¢[|z~(q) < 1 yields, thanks to (6.97),

lu(- +n) = ullzr @) < Inllulbve,,), Yn € R?,
and (6.96) follows, since | C €, if |n| < a. ]
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Remark 6.13 Let us give an application of the lemma 6.9 which will be quite useful further on. Let

u € BVjo.(R?), p € IN*. Let ¢, ¢ € C.(R?,Ry), a > 0 and 0 < ¢ < a such that [, p(z)dz = 1 and
p(x) =0for all z € RP, |z| >e. Let S = {.’L‘E]Rp,’(/J( ) #0}.

Then,

/IRP /]R WI(@)p(z — y)dyde < ||yl Lo me) [ul By (s.), (6.100)

where S, = {z € R, d(z,S) < a}.
Indeed, Lemma 6.9 gives

lu(-+ 1) —ullzigs) < Inllulsys.), Vi € R, n] < a. (6.101)
Using a change of variables in the left hand side of (6.100),
/ / D@ — y)dydz < [l e / ( / lu(z) — ulz — 2)|dz)p(z)dz
R? JIRP B(0,e) Js
Then, (6.101) yields
[ ) - u @t - g)dyds < el ulsvis, / 2)dz,
Rre JIRP

which gives (6.100).

Lemma 6.10 Under assumption 6.1, let ug € BV (R%) and @ € L®(IR* xRY) such that U,, <@ < Uy
a.e. on R? x R’. Assume that there exist p € M@R? x Ry) and po € M(IR?) such that

/ /d w(z,t) — klp(z,t)+
R /R

(e, 1) TR) — [l ) L)) v(a, 1) - Vepla, 1))t +
{ /]Rd luo(z) — Klp(z,0)dz > (6.102)
[ (et + V6@ 01) duta,t) = [ o, 0)lduo(a),

RexR+ R4

VkeR, Vpe CP(R xR ,Ry).

\

Let u be the unique entropy weak solution of (6.1)-(6.2) (i.e. u € L®(R% x R?) is the unique solution
to (6.102) with u instead of 4 and p =0, po =0).

Then for all ¢ € C®(R? x R, R,) there exists C only depending on 1 (more precisely on [|1]|co,
1¥¢lloo, [|VY]lco, and on the support of 1), v, f, and ug, such that

[, D0 - omen +
(f(u(a:,t)Tu(x,t)) — fa(z, t) Lu(z, ) ) ) - Vip(a t))] dodt >
3+

—Clo ({2, 0) # 0}) + (u({e # 0}) ({7#750}))
where {i) # 0} = {(z,1) € R? x Ry, v(x,1) # 0} and {:(-,0) # 0} = {z € RY, v(x,0) # 0}. (Note

that [|-]|c = ||'||L°°(Rdxﬂ{f+)')

(6.103)
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PROOF of Lemma 6.10

The proof of Lemma 6.10 is close to that of step 1 in the proof of Theorem 6.3. Let us first define mollifiers
in IR and IR?. For p =1 and p = d, one defines p, € C°(IR?,R) satisfying the following properties:

supp(pp) = {z € R”; py(z) # 0} C {z € RP; [z <1},

pp(z') Z 07 Vo € IR}J,

| poleyiz =1

and furthermore, for p = 1,

p(z) =0,V € Ry. (6.104)

For r € R, r > 1, one defines p, .(z) = r?pp(rz), for all z € RP.
Using the mollifiers p, » will allow to choose convenient test functions in (6.102) (which are the inequalities
satisfied by %) and in the analogous inequalities satisfied by u which are

[ [ [t = slintw ) + (£t 9)TR) = Flulys 5100 )¥(0:5) - Viply, )] duds+
Ry JR4

]Rdluo(y) - H|()0(ya0)dy >0, VK € ]R‘J V(p € CSO(IR‘d X ]R‘+7]R‘+)'

(6.105)

Indeed, the main tool is to take kK = u(y, s) in (6.102), k = @(z,t) in (6.105) and to introduce mollifiers
in order to have y close to x and s close to t.

Let 9 € C®(IR% x Ry, Ry), and let ¢ : (R? x R4 )?> = IR, be defined by:

(p(fL',t, Y, 8) = ¢($a t)pd,T(‘r - y)pl,T(t - 8)'

Note that, for any (y,s) € R x R, one has ¢(-,-,y,s) € C®(R% x Ry, Ry) and, for any (z,t) €
R? x R, one has p(z,t,-,-) € C¥(IR? x Ry, Ry). Let us take ¢(-,-,4,s) as test function ¢ in (6.102)
and ¢(z,t,-,-) as test function ¢ in (6.105). We take, in (6.102), k = u(y,s) and we take, in (6.105),
K = @i(x,t). We then integrate (6.102) for (y,s) € R? x R, and (6.105) for (z,t) € R? x R,. Adding
the two inequalities yields

Ei1 + Ers + Er3 + Eiq > —E, (6.106)

where

B [ [ [0~ w9l 0 o - e )] dodeayas,

Ba=[ [ / /]R (7@ 0Tu,5) - s, 0 Lu(w, )

2,1) - V(2. )pae(2 — y)prp(t — s)| dudtdyds,

Ba=-[ [ [ /m (fa@ 0 Tuty, ) - 1) Lu(y,5) )i, 1)
=v(z,1)) - Vpa,r(x — y)p1,,(t — s)dzdtdyds,

Fuu = /]R d / / [uo(@) — u(y, 8)[(, 0)pa,r (@ — y)pr,r(—5)dydsde
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and

B = | L (e = a0t~ 5) + 00,06 - )
R JRIXR,
+lp1,r(t — ) (VY (z,t)par(z —y) + (2, t)Vpa,r(z — ))|)d/,¢(ar t)dyds (6.107)

/ /]Rd /]Rd (,0)pa,r(z — y)p1,r(—35)|dpo (z)dyds.

One may be surprised by the fact that the inequation (6.106) is obtained without using the initial condition
which is satisfied by the entropy weak solution u of (6.1)-(6.2). Indeed, this initial condition appears
only in the third term of the left hand side of (6.105); since ¢(z,t,-,0) = 0 for all (z,t) € R% x IR, the
third term of the left hand side of (6.105) is zero when ¢(z,t,-,-) is chosen as a test function in (6.105).
However, the fact that u satisfies the initial condition of (6.1)-(6.2) will be used later in order to get a
bound on FEy4.

Let us now study the five terms of (6.106). One sets S = {t) # 0} = {(z,t) € R? x Ry; ¢(z,t) # 0}
and Sy = {¢(-,0) # 0} = {z € R%; ¢(x,0) # 0}. In the following, the notation C; (i € IN) will refer to
various real quantities only depending on ||9||oo, [|¥tllcos [V%Iloo, S5 So, Vv, f, and uyg.

Equality (6.107) leads to

By < (r+1)C1u(S) + Capo(So)- (6.108)
Let us handle the term Ej;. For all z € R? and for all t € R, one has, using (6.104),

/ / pan(@ — )pre(t — s)dsdy = 1.
R4 Jo
Then,

|E11—/ / e, £) — u(e, O, 1)) dodt] <

R, JIRY
[ L] o —uy,s)nwt(w,t)md,r(w—y)m,ru—s)]d:cdtdydss||wt||ooe<r,S),
0 R4 JO R?

with

1
e(r,S) = sup{llu — u(- +7,- + 7)llL1(s), Il < < - 0<7< -} (6.109)

<

Since uy € BV (IR?), the function u (entropy weak solution to (6.1)—(6.2)) belongs to BV (R¢ x (=T, T)),
for all T > 0, setting, for instance, u(.,t) = ug for t < 0 (see KRUSHKOV [1970] or CHAINAIS-HILLAIRET
[1999] where this result is proven passing to the limit on numerical schemes).

Then, Lemma 6.9 gives, since 7 > 1, (taking p=d +1, Q = S and a = v/2 in Lemma 6.9,)

e(r,8) < C: (6.110)
Hence,
Cy
By —/ / i, 1) — u(z, Oz, )] dedi] < 2. (6.111)
R4 r

In the same way, using |f(aTb) — f(aTc)| < M|b— | and |f(aLld) — f(aLlc)] < M|b—¢| for all a, b,
¢ € [Up, Upn] where M is the Lipschitz constant of f in [Up,, Up],

B [ + / i(a, 1) Tu(z, 1)) — [(a(z, ) Lu(z, 1))
z,t) - Vip(z, t))dzdt| < Cse(r, S) < %

(6.112)
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Let us now turn to E13. We compare this term with

Fugy = / /]R d / / (e, O Tue, 1)) — (i, ) Lu(@, 1)) ¥z, )

v(z,t)) - Vpa,r(x —y)p1,r(t — s) dedtdyds.

Since div(v(:,s) —v(z,t)) = 0 (on ]Rd) forallz € R ¢t € R, and s € R, one has Fy3; = 0. Therefore,
substracting E13p from Ej3 yields

o0 oo

E5 < 07/ A /]RJU(”?J) — u(y, s)|¢(z, 1) (6.113)

0
|v(y, 5) = v(2,1)) - Vpar(x — y)lpr,o(t — 5) dodtdyds.

The right hand side of (6.113) is then smaller than Cse(r, S), since |(v(y, s) — v(z,t)) - Vpar(z — y)| is
bounded by Cor? (noting that |z —y| < 1/r). Then, with (6.110), one has

Eq3 < % (6.114)
r

In order to estimate F\4, let us take in (6.105), for z € R? fixed, ¢ = ¢(z, -, ), with

@(x,y,s) = ¢($70)pd,r($ - y) /Oo pl,r(_T)dTa

and k = ug(z). Note that ¢(z,-,-) € C®°(R? x R, ,R,). We then integrate the resulting inequality
with respect to z € R%. We get

—Ey4 + Eys + E6 20,

Ba=-[ | /IR d / ) Tuo(a)) - (uly, 5) Luo(x))

v(y,s )Vpd r(@ = y))p1,r(—T)drdydeds,

Eis :/}Rd /w /Oooip(:c,O)pd,r(a:—y)p1,r(—7')|U0($) — uo(y)|drdydz.

To bound E;5, one introduces E 5, defined as

P = [ /}R d /]R d / ) Tuo(y) — f(u(y, 5) Luo(v)))

) - Vpq, r(x —y)¥(z,0)p1,(—7)drdydxds.
Integrating by parts for the x variable ylelds

with

B =-[ [ / [t o) = £(uto5) uo(w)
Y,8) - Vzﬁ(w O))pd (@ —y)p1,-(—7)drdydzds.
Then, noting that the time support of this integration is reduced to s € [0,1/r], one has

C
Eis < % (6.115)

Furthermore, one has

|Eys + Buso| < Cu / / / / luo(2) — wo()][v(y, 8) - Voar (@ — 9)li(@, 0)pr »(—7)drdydads,
0 R JIRE Js
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which is bounded by Ciseq(r, So), since the time support of the integration is reduced to s € [0,1/r],
where eo(r, So) is defined by

1
go(r; So) =sup{ | [uo(z) —uo(z +n)ldz; [n] < —}. (6.116)
So

Since ug € BV (IR%), one has (thanks to Lemma 6.9) £o(r,So) < Ci4/r and therefore, with (6.115),
Ei5 < Cis/r.

Since ug € BV (IR?), again thanks to Lemma 6.9, see remark 6.13, the term Ejg is also bounded by
016/7'-

Hence, since E14 < E15 + Eig,

Eqq < % (6.117)

Using (6.106), (6.108), (6.111), (6.112),(6.114), (6.117), one obtains

/IR+ /md [Iﬁ(m,t) —u(z,t) Y (z,t) +

(£@@. 0 Tu(w, ) - (@) Lu(z,0)) (v(a,0) - Vi(a,0)] dodt >
~Cr(r+ 1)(S) — Copol(Sy) — %

r

which, taking 7 = 1/4/u(S) if 0 < u(S) <1 (r = oo if u(S) =0 and r = 1 if u(S) > 1), gives (6.103).
This concludes the proof of the lemma 6.10. n

6.7.3 Proof of the error estimates

Let us now prove a quite general theorem of comparison between the entropy weak solution to (6.1)-(6.2)
and an approximate solution, from which theorems 6.5 and 6.6 will be deduced.

Theorem 6.7 Under assumption 6.1, let ug € BV (R?) and @ € L°(R* xIRY) such that Uy, < @ < Un
a.e. onTR? x RY. Assume that there ezist p € M(R® x Ry.) and po € M(IR?) such that (6.102) holds.
Let u be the unique entropy weak solution of (6.1)-(6.2) (note that v € L®(IR¢ x IRY) is solution to
(6.102) with u instead of @ and p =0, ug = 0).

Then, for all R > 0 and all T > 0 there exists C, and R, only depending on R, T, v, f and ug, such that
the following inequality holds:

I Jogo (@, 1) — (e, 0)ldedt < Celuo(B(O, R)) + [u(B(O, B) x [0, T)]?
+u(B(0, B) x [0,T))).

Recall that B(0, R) = {z € R?; |z| < R}.

PROOF of Theorem 6.7

The proof of Theorem 6.7 is close to that of Step 2 in the proof of Theorem 6.3. It uses Lemma 6.10
page 182, the proof of which is given in section 6.7.2 above.

Let R > 0 and T > 0. One sets w = VM, where V is given in Assumption 6.1 and M is the Lipschitz
constant of f in [Up,, Up] (indeed, since f € C*(IR,IR), one has M = sup{|f'(s)]; s € [Um,Unm]}).

Let p € CL(R4,[0,1]) be a function such that p(r) = 1if r € [0, R+ wT], p(r) =0if r € [R+wT +1, 00)
and p'(r) <0, for all » € R4 (p only depends on R, T, v, f and uyg).

One takes, in (6.103), ¢ defined by

Y(x,t) = p(|z| + wt) T=, for z € R* and ¢ € [0, T,
Y(x,t) =0, for € R? and ¢t > T.
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Note that p(|z| + wt) =1, if (2,t) € B(0, R) x [0,T].

The function 9 is not in C’go(]Rd x R4,R4), but, using a usual regularization technique, it may be
proved that such a function can be considered in (6.103), in which case Inequality (6.103) writes, with
R=R+wT +1,

T —_—

| [ 1@ - et (F e ol + wt) = Zpllal +w0) +

0 R4

(G, ) Tu(, 1) = f(ale, ) Lu(@,0))) Z5tp' (o] +wt) (v(w,t) - )] dodt >
~C(po(B(0, B)) + (u(B(0, B) x [0,T1))* + pu(B(0, R) x [0,T])),

where C only depends on R, T, v, f and uq.
Since w = VM and p' <0, one has

(#a, (e, 1) = Faw, ) Lu(z, 1)) ool +wt) (v(a,0) ) <
|Q~I/($,t) - u(m,t)|uw(—p’(|x| + wt)):
and therefore, since p(|z| + wt) = 1, if (z,t) € B(0,R) x [0,T7,

[N

/OT /B(O R)Iﬂ(a:,t) — u(z, t)|dzdt < CT(uo(B(0, R)) + (u(B(0, R) x [0,T)))% + u(B(0, R) x [0,T7])).

This completes the proof of Theorem 6.7. [

Let us now conclude with the proofs of theorems 6.5 page 179 (which gives an error estimate for the time
explicit numerical scheme (6.7), (6.5) page 147) and 6.6 page 180 (which gives an error estimate for the
time implicit numerical scheme (6.9), (6.5) page 147). There are easy consequences of theorems 6.1 and
6.2 and of Theorem 6.7.

PRrROOF of Theorem 6.5

Under the assumptions of Theorem 6.5, let & = u7 . Thanks to the L> estimate on w7y, (Lemma 6.1)
and to Theorem 6.1, & = w7 satisfies the hypotheses of Theorem 6.7 with p = p7 1 and po = pr (the
measures p7 j and g are given in Theorem 6.1).

Let R > 0 and T > 0. Then, Theorem 6.7 gives the existence of C; and R, only depending on R, T, v,
f and wg, such that

foT fB(O,R) |uT,k($at) - u(w,t)|d.z'dt <G (,UT(B(O7R)) + [,UT,k (B(OJR) x [OaT])]% (6.118)
+u1,1(B(0, B) x [0, T1)).

For h small enough, say h < Ry, one has h < R and k < T (thanks to condition 6.6, note that Ry only
depends on R, T', v, g, ug, o and &).
Then, for h < Ry, Theorem 6.1 gives, with (6.118),

T
/ / lur k (2, t) — u(z, t)|dzdt < Cy(Dh+ VChT + CVh) < Cahi,
o J/B(0,R)

where Cs only depends on R, T', v, g, ug, a and &.
This gives the desired estimate (6.94) of Theorem 6.5 for h < Ry.
There remains the case h > Ry. This case is trivial since, for h > Ry,

T
/ / hur (2, ) — u(z, £)|dadt < 2max{—Un, U }m(B(0,R) x (0,T)) < Ca(Ro)* < Cah?,
o JB(O,R)
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for some C3 only depending on R, T, v, g, ug, & and &.
This completes the proof of Theorem 6.5. [

PROOF of Theorem 6.6

The proof of Theorem 6.6 is very similar to that of Theorem 6.5 and we follow the proof of Theorem 6.5.
Under the assumptions of Theorem 6.6, using Theorem 6.2 instead of Theorem 6.1 gives that @ = ur
satisfies the hypotheses of Theorem 6.7 with p = p7  and po = p7 (the measures 7, and 7 are given
in Theorem 6.2).

Let R > 0 and T > 0. Theorem 6.7 gives the existence of C; and R, only depending on R, T, v, f and
ug, such that (6.118) holds.

For h < R and k < T Theorem 6.1 gives with (6.118),

T
/ / lur (2, 8) — u(z, O)|dzdt < Cy(Dh +VO(k +h3)3 + C(k + h¥)) < Ca(k + hd)3,
o JB@,R)

where Cy only depends on R, T', v, g, ug, Q. B
This gives the desired estimate (6.95) of Theorem 6.6 for h < R and k < T.
There remains the cases h > R and k > T'. These cases are trivial since

T
/ / lur i (z,t) —u(z,t)|dedt < 2max{—Up, Up}m(B(0,R) x (0,T)) < Cszinf{ _%,T%}
0 JB(0,R)
for some C3 only depending on R, T, v, g, ug.
This completes the proof of Theorem 6.6. [

6.7.4 Remarks and open problems

Theorem 6.5 page 179 gives an error estimate of order h'/4 for the approximate solution of a nonlinear
hyperbolic equation of the form u; + div(vf(u)) = 0, with initial data in L>° N BV by the explicit finite
volume scheme (6.7) and (6.5) page 147, under a usual CFL condition k¥ < Ch (see (6.6) page 147).

Note that, in fact, the same estimate holds if ug is only locally BV. More generally, if the initial data wug
is only in L°, then one still obtains an error estimate in terms of the quantities

}

S| =

1
e(r,S) = sup{/ |u(z,t) —u(z +n,t + 7)|dzdt; |n| < o 0<r<
s

and

1
go(r; So) =sup{ | [uo(z) —uo(z +n)ldz; [n < 3,
So
see (6.109) page 184 and (6.116) page 186. This is again an obvious consequence of Theorem 6.1 page
164 and Theorem 6.7 page 186.

We also considered the implicit schemes, which seem to be much more widely used in industrial codes in
order to ensure their robustness. The implicit case required additional work in order

(i) to prove the existence of the solution to the finite volume scheme,

(ii) to obtain the “strong time BV” estimate (6.45) if v does not depend on t.

For v depending on t, Remark 6.12 yields an estimate of order h'/* if k behaves as h; however, in the
case where v does not depend on t, then an estimate of order h'/* is obtained (in Theorem 6.6) for a
behaviour of k as vh; Indeed, recent numerical experiments suggest that taking k of the order of v/A
yields results of the same precision than taking k of the order of h, with an obvious reduction of the
computational cost.
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Note that the method described here may also be extended to higher order schemes for the same equation,
see CHAINAIS-HILLAIRET [1996]; other methods have been used for error estimates for higher order
schemes with a nonlinearity of the form F(u), as in NOELLE [1996]. However, it is still an open problem,
to our knowledge, to improve the order of the error estimate in the case of higher order schemes.

6.8 Nonlinear weak-x convergence

The notion of nonlinear weak-x convergence was used in Section 6.6.3. We give here the definition of this
type of convergence and we prove that a bounded sequence of L> converges, up to a subsequence, in the
nonlinear weak-x sense.

Definition 6.3 (Nonlinear weak-* convergence)
Let Q be an open subset of RY (N > 1), (un)new C L®(Q) and u € L°(Q x (0,1)). The sequence
(un)new converges towards u in the “nonlinear weak-+ sense” if

1
| stwt@netwiz » [ [ o(uta,coypte)dsdo asn +oc, 6119
Vo € L), Vg € C(R,R).

Remark 6.14 Let Q be an open subset of RY (N > 1), (un)nemw € L®(Q) and u € L®(Q x (0,1))
such that (u,)neN converges towards u in the nonlinear weak-+ sense. Then, in particular, the sequence
(un)new converges towards v in L (), for the weak-+ topology, where v is defined by

1
v(z) = / u(z,a)da, for a.e. x € Q.
0

Therefore, the sequence (u,)nen is bounded in L*°(Q) (thanks to the Banach-Steinhaus theorem). The
following proposition gives that, up to a subsequence, a bounded sequence of L>°(f2) converges in the
nonlinear weak-x sense.

Proposition 6.4 Let Q be an open subset of RY (N > 1) and (un)new be a bounded sequence of
L (). Then there erists a subsequence of (un)neN, which will still be denoted by (up)new, and a
function u € L>(Q x (0,1)) such that the subsequence (un)neN converges towards u in the nonlinear
weak-* sense.

Proor

This proposition is classical in the framework of “Young measures” and we only sketch the proof for the
sake of completeness.

Let (un)new be a bounded sequence of L>°(Q2) and r > 0 such that ||us||p~q) < r,V¥n € IN.

Step 1 (diagonal process)

Thanks to the separability of the set of continuous functions defined from [—r,r] into IR (this set is
endowed with the uniform norm) and the sequential weak-x relative compactness of the bounded sets of
L () , there exists (using a diagonal process) a subsequence, which will still be denoted by (un)nen,
such that, for any function g € C(IR,IR), the sequence (g(u,))new converges in L% (Q) for the weak-
topology towards a function p, € L>(1).

Step 2 (Young measure)
In this step, we prove the existence of a family (m,),cq such that

1. for all z € Q, m, is a probability on IR whose support is included in [—r, +7] (i.e. m, is a o-additive
application from the Borel o-algebra of R in IR such that m,(IR) =1 and m,(IR \ [-r,7]) = 0),
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2. pg(z) = [ 9(s)dmy(s) for a.e. z € Q and for all g € C(R,R).

The family m = (my)zcq is called a “Young measure”.

Let us first claim that it is possible to define pu, € L*(Q2) for g € C([—r,7],IR) by setting u, = py where
f € C(R,R) is such that f = g on [—r,r]. Indeed, this definition is meaningful since if f and h are two
elements of C(IR,IR) such that f = g on [—r,r] then uy and pj are the same element of L>°() (i.e.
pg = pp, a.e. on Q) thanks to the fact that —r < wu,, <r a.e. on Q and for all n € IN.

For z € 1, let

E, ={g9 € C([-r,7],R); lim __ /B( y g (2)dz exists in R},

—0m(B(0,h))
where B(z, h) is the ball of center z and radius h (note that B(x,h) C Q for h small enough).
If g € E,, we set

. 1
fig(x) = }113}) m /B(Lh) g (2)dz-

Then, we define T, from E, in IR by T,(g) = fig(x). It is easily seen that E, is a vector space which con-
tains the constant functions, that T, is a linear application from E, to IR and that T is nonnegative (i.e.
g(s) > 0 for all s € IR implies T;(g) > 0). Hence, using a modified version of the Hahn-Banach theorem,
one can prolonge T, into a linear nonnegative application T, defined on the whole set C([-r,r],IR). By
a classical Riesz theorem, there exists a (nonnegative) measure m, on the Borel sets of [—r,r] such that

T.(0) = [ gls)dma(s),¥g € O(t=r.r) ). (6.120)

-r

If g(s) = 1 for all s € [—r,r], the function g belongs to E, and fiy(z) = 1 (note that py =1 a.e. on Q).
Hence, from (6.120), m, is a probability over [—r,r], and therefore a probability over IR by prolonging it
by 0 outside of [—r,r]. This gives the first item on the family (m;)zeq-

Let us prove now the second item on the family (my)zcq. If ¢ € C([-r,7],IR) then g € E, for a.e.
z € Qand py(z) = fig(x) for a.e. z € Q (this is a classical result, since p, € L}, .(Q), see RUDIN [1987]).
Therefore, py(z) = Tp(9) = T2(g) for a.e. z € Q. Hence,

o) = /T g(s)dmy(s) for a.e. x € Q,

-r

for all g € C([-r,r],R) and therefore for all g € C(IR,R). Finally, since the support of m, is included
in [-'I‘, T]a

tg () = /]R g(s)dmy(s) for a.e. z € Q, Vg € C(R,R).

This completes Step 2.

Step 3 (construction of u)
It is well known that, if /m is a probability on IR, one has

/ o(s)dm(s) = / ' J(u(@))da, Vg € My, (6.121)
R 0

where My, is the set of bounded measurable functions from IR to IR and with

u(a) =sup{c € R; m((—o0,¢)) < a}, Va € (0,1).

Note that the function v is measurable, nondecreasing and left continuous. Furthermore, if the support
of m is included in [a, b] (for some a, b € IR, a < b) then u(a) € [a,b] for all @ € (0,1) and (6.121) holds
for all g € C(R,R).
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Applying this result to the measures m, leads to the definition of u as

u(z,a) = sup{c € R; m,((—o00,¢)) < a}, Va € (0,1), Vz € Q.

For all z € Q, the function u(z,-) is measurable (from (0,1) to IR), nondecreasing, left continuous and
takes its values in [—r,r]. Furthermore,

1
pg(x) = / g(u(z,a))da for a.e. z € 2, Vg € C(R,R).
0

Therefore,

1
| stun@etads » [ ([ su@@)da)p(a)da, asn - o,
Q e Jo
Vo € L1(Q), Vg € C(IR,IR).
In order to conclude the proof of Proposition 6.4, there remains to show that modifying u on a negligible
set leads to a function (still denoted by u) measurable with respect to (z,a) € Q x (0,1). Indeed, this

mesurability is needed in order to assert for instance, applying Fubini’s Theorem (see RUDIN [1987]),
that

L ' g(u(z, ))da)o(e)ds = / K | stuta, )pta)ds)do.

for all ¢ € L'(Q) and for all g € C(R,R).

For all g € C(IR,IR), one chooses for p, (which belongs to L>°(f2)) a bounded measurable function from
Q2 to R.
Let us define & = {ga1; a, b € @, a < b} where g, € C(IR,R) is defined by

gap(x) =1ifz <a,
gap(z) =22 ifa <z <,

gap(z) =0if z > b.
Since £ is a countable subset of C(IR,IR), there exists a Borel subset A of 2 such that m(A) =0 and

1y () = / g(s)dma(s), Vo € Q\ 4, Vg € £. (6.122)
R
Define for all @ € (0,1) v(., ) by

v(z,a) =0if z € A,

v(z,a) = sup{c € R, my((—00,¢)) < a}lif z € N\ A4,

so that u =wv on (2\ 4) x (0,1) (and then u = v a.e. on Q2 x (0,1)).

Let us now prove that v is measurable from Q x (0,1) to IR (this will conclude the proof of Proposition
6.4).

Since v(z,.) is left continuous on (0,1) for all z € Q, proving that v(.,a) is measurable (from € to IR)
for all @ € (0,1) leads to the mesurability of v on © x (0,1) (this is also classical, see RUDIN [1987]).
There remains to show the mesurability of v(.,a) for all a € (0,1).

Let a € (0,1) (in the following, « is fixed). Let us set w = v(., ) and define, for ¢ € R,

fe(x) = my((—o0,¢)) —a, z € N\ A4,

so that v(z,a) = w(z) =sup{c € R, f.(z) < 0} for all z € O\ A.
Using (6.122) leads to

mz((—oo,c)) = Sup{ug(x)a 9< 1(—oo,c) and g € 5}7 Vz € Q\A
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Then, the function f. : 2\ A — R is measurable as the supremum of a countable set of measurable
functions (recall that pg is measurable for all g € £).

In order to prove the measurability of w (from Q to IR), it is sufficient to prove that {z € Q\ 4; w(z) > a}
is a Borel set, for all a € IR (recall that w = 0 on A).

Let a € R, since f.(x) is nondecreasing with respect to ¢, one has

{z € Q\ 45 w(z) > a} = Npsofz € U\ 45 f,_1(2) <O}

Then {z € Q\ A; w(z) > a} is measurable, thanks to the measurability of f. for all ¢ € IR.
This concludes the proof of Proposition 6.4. [

Remark 6.15 Let Q be an open subset of RY (N > 1), (un)new C L®(R) and u € L®(Q x (0,1))
such that (un)nen converges towards u in the nonlinear weak-x sense. Assume that u does not depend
on q, i.e. there exists v € L>*(Q) such that u(z,a) = v(z) for a.e. (z,a) € Q x (0,1). Then, it is easy
to prove that (u,)neN converges towards v in LP(B) for all 1 < p < oo and all bounded subset B of (.
Indeed, let B be a bounded subset of Q. Taking, in (6.119), g(s) = s? (for all s € R) and ¢ = 15 and
also g(s) = s (for all s € R) and ¢ = 1gw leads to

/ (un(z) —v(z))?dr = 0, as n — oo.
B

This proves that (u,)n,ew converges towards u in L?(B). The convergence of (uy)nen towards u in LP(B)
for all 1 < p < oo is then an easy consequence of the L () bound on (un)nen (see Remark 6.14).

6.9 A stabilized finite element method

In this section, we shall try to compare the finite element method to the finite volume method for the
discretization of a nonlinear hyperbolic equation. It is well known that the use of the finite element is not
straightforward in the case of hyperbolic equations, since the lack of coerciveness of the operator yields
a lack of stability of the finite element scheme. There are several techniques to stabilize these schemes,
which are beyond the scope of this work. Here, as in SELMIN [1993], we are interested in viewing the
finite element as a finite volume method, by writing it in a conservative form, and using a stabilization
as in the third item of Example 5.2 page 130.

Let F € C'(IR,IR?), consider the following scalar conservation law:

ug(z,t) + div(F(u))(z,t) =0, z € R%, t € Ry, (6.123)

with an initial condition. Let 7 be a triangular mesh of IR?, well suited for the finite element method. Let
S denote the set of nodes of this mesh, and let (¢;);ecs be the classical piecewise bilinear shape functions.
Following the finite element principles, let us look for an approximation of u in the space spanned by
the shape functions ¢;; hence, at time ¢, = nk (where k is the time step), we look for an approximate

solution of the form
u(.,tn) = Zu?qﬁj;
jes
then, multiplying (6.123) by ¢;, integrating over R?, approximating F(> jes u;hﬁj) by Y jes F(u?)qﬁj
and using the mass lumping technique on the mass matrix yields the following scheme (with the explicit
Euler scheme for the time discretization):

ntl _ ,n
%/}R bi(z)de — 3" F(u?) /}R 63 (2)Vs(@)de = 0,

JES
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which writes, noting that /qﬁ] YWoi(x) /qﬁz )V¢;(z)dz and that ZV(bJ =0,
JES
n+1
St [ e+ S D) [ | @) Va (@) =0

JES

This last equality may also be written

n+1_u
/ ¢i()de + > E;j =0,

jES

where

Bis = 5Pl + P) - [ (6:2)V85(2) - () Vo1(2)ds
RZ

Note that Ej’i = _Ei,j-

This is a centered and therefore unstable scheme. One way to stabilize it is to replace E'; by

[ _ m O e
Ej; = B + Dyj(uif —uj),

where D; j = D;; (in order for the scheme to remain “conservative”) and D; ;j > 0 is chosen large enough
so that E7; is a nondecreasing function of u{ and a nonmincreasing function of u}, which ensure the
stability of the scheme, under a so called CFL condition, and does not change the “consistency” (see
(5.27) page 130 and Remark 6.11 page 179).

6.10 Moving meshes

For some evolution problems the use of time variable control volumes is advisable, e.g. when the domain
of study changes with time. This is the case, for instance, for the simulation of a flow in a porous medium,
when the porous medium is heterogeneous and its geometry changes with time. In this case, the mesh is
required to move with the medium. The influence of the moving mesh on the finite volume formulation
can be explained by considering the following simple transport equation:

ug(z,t) + div(uv)(z,t) =0, z € R?, t€ Ry, (6.124)

where v depends on the unknown u (and possibly on other unknowns). Let k be the time step, and set
t, = nk, n € IN. Let T(¢) be the mesh at time ¢. Since the mesh moves, the elements of the mesh vary
in time. For a fixed n € IN, let R(K,t) be the domain of IR? occupied by the element K (K € T (t,)) at
time ¢, t € [tn,tnt1], that is R(K,t,) = K. Let vs(z,t) be the velocity of the displacement of the mesh
at point z € R? and for all ¢ € [t,,t,.1] (note that v,(z,t) € R?). Let u}% and u%™ be the discrete
unknowns associated to element K at times t,, and #,,1 (they can be considered as the approximations of
the mean values of u(-,t,) and u(-,t,11) over R(K,t,) and R(K,t,+1) respectively). The discretization
of (6.124) must take into account the evolution of the mesh in time. In order to do so, let us first consider
the following differential equation with initial condition:

(3:1; (.’E t) = _vs(y(x7t)at)7 te [tﬂatn+1]7 (6125)

y(z,tn) = =

Under suitable assumptions on v (assume for instance that v is continuous, Lipschitz continuous with
respect to its first variable and that the Lipschitz constant is integrable with respect to its second variable),
the problem (6.125) has, for all z € IR?, a unique (global) solution. For z € IR?, define the function
y(z,-) from [t,, tn11] to R? as the solution of problem (6.125). Let (¢p)penw C CL(IR? IR, ) such that
0 < pp(z) < 1for z € R? and for all p € IN, and such that ¢, — 1k a.e. as p — +oo. Multiplying
(6.124) by 1, (,t) = ¢, (y(z,t)) and integrating over IR? yields
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ot

Using the explicit Euler discretization in time on Equation (6.126) and denoting by u™(z) a (regular)
approximate value of u(z,t,) yields

(P @)+ u, 090000 0) - v.lu(a,0.0) = () (0.0 - V(o)) da =0, (6.120

[ @ @y tr) = 0 @l t)) ot
71112 u™(z)(vs(z,tn) — v(z,tn)) - Vop(z)dz = 0,
which also gives (noting that ¢, (z,t) = ¢p(y(z,1)))
|3 (@ @p(u,tasn)) = 0@y o, 1)) do-
RZ

k (6.127)

div(u™(vs — v))(z,t,) - pp(z)dz = 0.
B2

Letting p tend to infinity and noting that 1x (y(z,t,)) = 1rk,t,)(®) and 1k (y(2,tni1)) = LRk t,40) (T),
(6.127) becomes

1 (/ u" Y (z)dr — / u”(m)dw) + / div((v — vg)u™)(z,t,)dz = 0,
kNS Rk tni1) R(K,tn) R(K,tn)

which can also be written

(W (R, 1)) — ulpm (R, )+
/ (v = V) (@ t) - 1 (2, to )" () dy () = O,
OR(K tn)

where uf = [1/m(R(K,t0))] [5x ) u™(@)de and ui"™ = [1/m(R(K, tn+1))] [gcy, 4™ (@)de. Re-
call that ng denotes the normal to 0K, outward to K. The complete discretization of the problem uses
some additional equations (on v, vs...).

| =

Remark 6.16 The above considerations concern a pure convection equation. In the case of a convection-
diffusion equation, such a moving mesh may become non-admissible in the sense of definitions 3.1 page
37 or 3.5 page 62. It is an interesting open problem to understand what should be done in that case.



Chapter 7

Systems

In chapters 2 to 6, the finite volume was successively investigated for the discretization of elliptic,
parabolic, and hyperbolic equations. In most scientific models, however, systems of equations have
to be discretized. These may be partial differential equations of the same type or of different types, and
they may also be coupled to ordinary differential equations or algebraic equations.

The discretization of systems of elliptic equations by the finite volume method is straightforward, following
the principles which were introduced in chapters 2 and 3. Examples of the performance of the finite
volume method for systems of elliptic equations on rectangular meshes, with “unusual” source terms
(in particular, with source terms located on the edges or interfaces of the mesh) may be found in e.g.
ANGOT [1989] (see also references therein), FIARD, HERBIN [1994] (where a comparison to a mixed
finite element formulation is also performed). Parabolic systems are treated similarly as elliptic systems,
with the addition of a convenient time discretization.

A huge literature is devoted to the discretization of hyperbolic systems of equations, in particular to
systems related to the compressible Euler equations, using structured or unstructured meshes. We shall
give only a short insight on this subject in Section 7.1, without any convergence result. Indeed, very few
theoretical results of convergence of numerical schemes are known on this subject. We refer to GODLEWSKI
and RAVIART [1996] and references therein for a more complete description of the numerical schemes for
hyperbolic systems.

Finite volume methods are also well adapted to the discretization of systems of equations of different
types (for instance, an elliptic or parabolic equation coupled with hyperbolic equations). Some examples
are considered in sections 7.2 page 206 and 7.3 page 210. The classical case of incompressible Navier-
Stokes (for which, generally, staggered grids are used) and examples which arise in the simulation of a
multiphase flow in a porous medium are described. The latter example also serves as an illustration of
how to deal with algebraic equations and inequalities.

7.1 Hyperbolic systems of equations
Let us consider a hyperbolic system consisting of m equations (with m > 1). The unknown of the system

is a function u = (uy,...,umy)t, from Q x [0,7T] to R™, where Q is an open set of R? (i.e. d > 1 is the
space dimension), and u is a solution of the following system:

where
Gi,j (.’L‘, t) = Fi,j(ma tv ’U/(IL', t))7

195
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and the functions F; = (Fij,...,Fn;)t (j = 1,...,d) and g = (g1,-..,9m)" are given functions from
O x[0,T]xIR™ (indeed, generally, a part of R™, instead of R™) to R™. The function F = (F1,..., Fy) is
assumed to satisfy the usual hyperbolicity condition, that is, for any (unit) vector of R?, n, the derivative
of F'-n with respect to its third argument (which can be considered as an m X m matrix) has only real
eigenvalues and is diagonalizable.

Note that in real applications, diffusion terms may also be present in the equations, we shall omit them
here. In order to complete System (7.1), an initial condition for ¢ = 0 and adequate boundary conditions
for x € 90 must be specified.

In the first section (Section 7.1.1), we shall only briefly describe the general method of discretization
by finite volume and some classical schemes. In the subsequent sections, some possible treatments of
difficulties appearing in real simulations will be given.

7.1.1 Classical schemes

Let us first describe some classical finite volume schemes for the discretization of (7.1) with initial and
boundary conditions, using the concepts and notations which were introduced in chapter 6. Let 7 be an
admissible mesh in the sense of Definition 6.1 page 146 and k be the time step, which is assumed to be
constant (the generalization to a variable time step is easy). We recall that the interface, K|L, between
any two elements K and L of T is assumed to be included in a hyperplane of R?. The discrete unknowns
are the u%, K € T,n € {0,...,N, + 1}, with N, € N, (N, + 1)k =T. For K € T, let N(K) be the
set of its neighbours, that is the set of elements L of 7 such that the (d — 1) Lebesgue measure of K|L is
positive. For L € N (K), let ng, 1, be the unit normal vector to K|L oriented from K to L. Let t, = nk,
forn € {0,..., N, + 1}.

A finite volume scheme writes

’U,%Jrl — u’?( n _ n
m(K) KK 4 > m(K|L)Fg; =m(K)gk,
LeN(K)
KeT,ne{0,...,Ni},

where

1. m(K) (resp. m(K|L)) denotes the d (resp. d — 1) Lebesgue measure of K (resp. K|L),

2. the quantity g%, which depends on u% (or u}”{“ or uf and u}”{“), for K € T, is some “consistent”

approximation of g on element K, between times ¢, and ¢,+1 (we do not discuss this approximation
here).

3. the quantity F ;, which depends on the set of discrete unknowns uf; (or u}yf" or uf, and ujy/™)

for M € T, is an approximation of F' - nk r on K|L between times ¢, and ¢p41.

In order to obtain a “good” scheme, this approximation of F' - nk ; has to be consistent, conservative
(that is Fg ,=FT ) and must ensure some stability properties on the approximate solution given by
the scheme (indeed, one also needs some consistency with respect to entropies, when entropies exist. .. ).
Except in the scalar case, it is not so easy to see what kind of stability properties is needed. ... Indeed, in
the scalar case, that is m = 1, taking ¢ = 0 and Q = R¢ (for simplicity), it is essentially sufficient to have
an L estimate (that is a bound on 4% independent of K, n, and of the time and space discretizations)
and a “touch” of “BV estimate” (see, for instance, chapters 5 and 6 and CHAINAIS-HILLAIRET [1996] for
more precise assumptions). In the case m > 1, it is not generally possible to give stability properties from
which a mathematical proof of convergence could be deduced. However, it is advisable to require some
stability properties such as the positivity of some quantities depending on the unknowns; in the case of
flows, the required stability may be the positivity of the density, energy, pressure...; the positivity of
these quantities may be essential for the computation of F(u) or for its hyperbolicity.
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The computation of Fg ; is often performed, at each “interface”, by solving the following 1D (for the
space variable) system (where, for simplicity, the possible dependency of F' with respect to z and ¢ is
omitted):

Ou 3fK,L(U)
E (Z, t) + 62

where fx 1 (u)(2,t) = F-nk 1 (u(z,t)), forall z € R and ¢t € (0,T'), which gives consistency, conservativity
(and, hopefully, stability) of the final scheme (that is (7.2)). To be more precise, in the case of lower
order schemes, F ; may be taken as: F ; = F.ng,r(w) where w is the solution for z = 0 of (7.3) with
initial condltlons w(z,0) = u?l %ifx <0 and u(z,0) = u? # if z > 0. Note that the variable z lies in IR, so
that the multidimensional problem has therefore been transformed (as in chapter 6) into a succession of
one-dimensional problems. Hence, in the following, we shall mainly keep to the case d = 1.

(2,8) =0, (7.3)

Let us describe two classical schemes, namely the Godunov scheme and the Roe scheme, in the case
d=1,Q=R, F(z,t,u) = F(u) and g = 0 (but m > 1), in which case System (7.1) becomes

Ou OF (u)
E (1'7 t) + oz
in order to complete this system, an initial condition must be specified, the discretization of which is
standard.

Let 7 be an admissible mesh in the sense of Definition 5.5 page 123, that is 7 = (K;)icz, with
Ki=(.’ll'i_1/2,.’ll'i+1/2), with Ti—1/2 < Tit1/25 i € Z. One sets hz = Tit1/2 — Ti-1/2, i € Z . The dis-
crete unknowns are ul, i € Z, n € {0,..., Ny + 1} and the scheme (7.2) then writes

(z,t) =0, z€R,te (0,T). (7.4)

uttt — uf

hzzT‘i‘ H_l F;n_%:O, ZEZ,nE{O,,Nk}, (75)
where F}}, , is a consistent approximation of F(u(xiy1/2,tn). This scheme is clearly conservative (in the
sense defined above). Let us consider explicit schemes, so that F i1/ is a function of u?, j € Z . The
principle of the Godunov scheme GobuUNOV [1976] is to take F}, , = F(w) where w is the solution, for
z =0 (and any ¢ > 0), of the following (Riemann) problem

Ou OF (u)

(z,t) =0, zeR,t € R, (7.6)

u(z,0) =u :‘, itz <0,
): Z+17 1f$>0 (77)
Then, w depends on u7, 4}, and F.

The time step is hmlted by the so called “CFL condition”, which writes k < Lh;, for all i € ZZ , where L
is given by F' and the initial condition. The quantity u”+1 given by the Godunov scheme, see GODUNOV
[1976], is, for all ¢« € Z, the mean value on K; of the exact solution at time k of (7.4) with the initial

condition (at time ¢t = 0) ug defined, a.e. on IR, by ug(z) = u! if 2;_1/5 < T < 2j11/2-

The Godunov scheme is an efficient scheme (consistent, conservative, stable), sometimes too diffusive
(especially if k is far from Lh; defined above), but easy improvements are possible, such as the MUSCL
technique, see below and Section 5.4. Its principal drawback is its difficult implementation for many
problems, indeed the computation of F(w) can be impossible or too expensive. For instance, this com-
putation may need a non trivial parametrization of the non linear waves. Note also that F' is generally
not given directly as a function of u (the components of u are called “conservative unknowns”) but as
a function of some “physical” unknowns (for instance, pressure, velocity, energy...), and the passage
from wu to these physical unknowns (or the converse) is often not so easy. .. it may be the consequence of
expensive and implicit calculations, using, for instance, Newton’s algorithm.
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Due to this difficulty of implementation, some “Godunov type” schemes were developed (see HARTEN,
Lax and VAN LEER [1983]). The idea is to take, for u?“, the mean value on K; of an approzimate
solution at time k of (7.4) with the initial condition (at time ¢ = 0), wg, defined by ug(z) = u?, if
Ti_1/2 < ¥ < Tiy1/2- In order for the scheme to be written under the conservative form (7.5), with a
consistent approximation of the fluxes, this approximate solution must satisfy some consistency relation
(another relation is needed for the consistency with entropies). One of the best known of this family
of schemes is the Roe scheme (see ROE [1980] and RoE [1981]), where this approximate solution is
computed by the solution of the following linearized Riemann problems:

Ou(z,t)
ot

Ou(z,t)
Ox

A, uf) —0,5€R, teR,, (7.8)
u(z,0) =ul, if z <0,

u(z,0) = u?,, if >0, (7.9)

where A(-, -) is an m X m matrix, continuously depending on its two arguments, with only real eigenvalues,
diagonalizable and satisfying the so called “Roe condition”:

A(u,v)(u —v) = F(u) — F(v),Yu,v € R™. (7.10)

Thanks to (7.10), the Roe scheme can be written as (7.5) with
Flo=F(u?) + A7 (uf, uyy) (uff — udyy)

i+
(= F(ud, ) + At (u}, ufyy) (uf —ufyy)),

where AT are the classical nonnegative and nonpositive parts of the matrix A: let A be a matrix with
only real eigenvalues, (Ap)p=1,...,m, and diagonalizable, let (¢p)p=1,....m be a basis of R™ associated to
these eigenvalues. Then, the matrix A* is the matrix which has the same eigenvectors as A and has
(max{Ap,0})p=1,..m as corresponding eigenvalues. The matrix A~ is (—A)*.

Roe’s scheme was proved to be an efficient scheme, often less expensive than Godunov’s scheme, with,
more or less the same limitation on the time step, the same diffusion effect and some lack of entropy
consistency, which can be corrected. It has some properties of consistency and stability. Its main drawback
is the difficulty of the computation of a matrix A(u,v) satisfying (7.10). For instance, when it is possible
to compute and diagonalize the derivative of F', DF(u), one can take A(u,v) = DF(u*), but the difficulty
is to find u* such that (7.10) holds (note that this condition is crucial in order to ensure conservativity
of Roe’s scheme). In some difficult cases, the Roe matrix is computed approximately by using a “limited
expansion” with respect to some small parameter.

(7.11)

7.1.2 Rough schemes for complex hyperbolic systems

The aim of this section is to present some discretization techniques for “complex” hyperbolic systems.
In many applications, the expressions of g and F' which appear in (7.1) are rather “complex”, and it is
difficult or impossible to use classical schemes such as the 1D Godunov or Roe schemes or their standard
extensions, for multidimensional problems, using 1D solvers on the interfaces of the mesh. This is the
case of gas dynamics (Euler equations) with real gas, for which the state law (pressure as a function of
density and internal energy) is tabulated or given by some complex analytical expressions. This is also
the case when modelling multiphase flows in pipe-lines: the function F' is difficult to handle and highly
depends on z and u, because, for instance, of changes of the geometry and slope of the pipe, of changes
of the friction law or, more generally, of the varying nature of the flow. Most of the attempts given
below were developed for this last situation. Other interesting cases of “complexity” are the treatment of
boundary conditions (mathematical literature is rather scarce on this subject, see Section 7.1.4 for a first
insight), and the way to handle the case where the eigenvalues (of the derivative of F' - n with respect to
its third argument) are of very different magnitude, see Section 7.1.3. Another case of complexity is the
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treatment of nonconservative terms in the equations. One refers, for instance, to BRUN, HERARD, LEAL
DE Sousa and UHLMANN [1996] and references therein, for this important case.

Possible modifications of Godunov and Roe schemes (including “classical” improvements to avoid ex-
cessive artificial diffusion) are described now to handle “complex” systems. Because of the complexity
of the models, the justification of the schemes presented here is rather numerical than mathematical.
Many variations have also been developed, which are not presented here. Note that other approaches
are also possible, see e.g. GHIDAGLIA, KUMBARO and LE CoqQ [1996]. For simplicity, one considers
the case d =1, Q = R, F(z,t,u) = F(u) and g = 0 (but m > 1) described in Section 7.1.1, with the
same notations. The Godunov and Roe schemes can both be written under the form (7.5) with F /2
computed as a function of uf and u},;; both schemes are consistent (in the sense of Section 7.1.1, i.e.
consistency of the “fluxes”) since F}} | 2 = F(u) if uf = u}, = u.

Going further along this line of thought yields (among other possibilities, see below) the “VFRoe” scheme
which is (7.5), that is:

’uf”+1 —ul .
hilT’+ Z.T_”,'_%—F;n_%:(), i€ Z,ne€{0,...,Ny}, (7.12)
with F[,, , = F(w), where w is the solution of the linearized Riemann problem (7.8), (7.9), with
A(u},u?y,) = DF(w*), that is:
dulz,1) du(z, 1)
B S ma t 1
5 TDF)— 0,7 € R, t€ Ry, (7.13)
u(z,0) = u?, if 7 <0,

u(z,0) = u?,, if >0, (7.14)
where w* is some value between uj and u,; (for instance, w* = (1/2)(u} + uj,,)). In this scheme, the
Roe condition (7.10) is not required (note that it is naturally conservative, thanks to its finite volume
origin). Hence, the VFRoe scheme appears to be a simplified version of the Godunov and Roe schemes.
The study of the scalar case (m = 1) shows that, in order to have some stability, at least as much as
in Roe’s scheme, the choice of w* is essential. In practice, the choice w* = (1/2)(uf + u}, ;) is often
adequate, at least for regular meshes.

Remark 7.1 In Roe’s scheme, the Roe condition (7.10) ensures conservativity. The VFRoe scheme is
“naturally” conservative, and therefore no such condition is needed. Also note that the VFRoe scheme
yields precise approximations of the shock velocities, without Roe’s condition.

Numerical tests show the good behaviour of the VFRoe scheme. Its two main flaws are a lack of entropy
consistency (as in Roe’s scheme) and a large diffusion effect (as in the Godunov and Roe schemes). The
first drawback can be corrected, as for Roe’s scheme, with a nonparametric entropy correction inspired
from HARTEN, HYMAN and Lax [1976] (see MASELLA, FAILLE, and GALLOUET [1996]). The two
drawbacks can be corrected with a classical MUSCL technique, which consists in replacing, in (7.9) page
198, u} and u?, | by u?+1/27_ and u?+1/27+, which depend on {uJ", Jj=1i—1,i,i+1,i+2} (see, for instance,
Section 5.4 page 141 and GODLEWSKI and RAVIART [1996] or LEVEQUE [1990]). For stability reasons,
the computation of the gradient of the unknown (cell by cell) and of the “limiters” is performed on some
“physical” quantities (such as density, pressure, velocity for Euler equations) instead of u. The extension
of the MUSCL technique to the case d > 1 is more or less straightforward.

This MUSCL technique improves the space accuracy (in the truncation error) and the numerical results
are significantly better. However, stability is sometimes lost. Indeed, considering the linear scalar equa-
tion, one remarks that the scheme is antidiffusive when the limiters are not active, this might lead to a
loss of stability. The time step must then be reduced (it is reduced by a factor 10 in severe situations. . .).
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In order to allow larger time steps, the time accuracy should be improved by using, for instance, an
order 2 Runge-Kutta scheme (in the severe situations suggested above, the time step is then multiplied
by a factor 4). Surprisingly, this improvement of time accuracy is used to gain stability rather than
precision. . .

Several numerical experiments (see MASELLA, FAILLE, and GALLOUET [1996]) were performed which
prove the efficiency of the VFRoe scheme, such as the classical Sod tests (SoD [1978]). The shock
velocities are exact, there are no oscillations. . .. For these tests, the treatment of the boundary conditions
is straightforward. Throughout these experiments, the use of a MUSCL technique yields a significant
improvement, while the use of a higher order time scheme is not necessary. In one of the Sod tests, the
entropy correction is needed.

A comparison between the VFRoe scheme and the Godunov scheme was performed by J. M. Hérard
(personal communication) for the Euler equations on a Van Der Wals gas, for which a matrix satisfying
(7.10) seems difficult to find. The numerical results are better with the VFRoe schem, which is also much
cheaper computationally. An improvment of the VFRoe scheme is possible, using, instead of (7.13)-(7.14),
linearized Riemann problems associated to a nonconservative form of the initial system, namely System
(7.4) or more generally System (7.1), for the computation of w (which gives the flux F/ /o in (7.12) by
the formula Flip= F(w)), see for instance BUFFARD, GALLOUET and HERARD [1998] for a simple
example.

In some more complex cases, the flux F' may also highly, and not continuously, depend on the space
variable z. In the space discretization, it is “natural” to set the discontinuities of F' with respect to = on
the boundaries of the mesh. The function F' may change drastically from K; to K;;;. In this case, the
implementation of the VFRoe scheme yields two additional difficulties:

(i) The matrix A(uj,u? ;) in the linearized Riemann problem (7.8), (7.9) now depends on 2:
A(ui,uly ) = D F(x,w*), where w* is some value between uf and u},; and D,F denotes the
derivative of F' with respect to its “u” argument.

(ii) once the solution, w, of the linearized problem (7.8) (7.9), for x = 0 and any ¢t > 0, is calculated,
the choice F, ;, = F(w w) again depends on z.

The choice of F}}, /, (point (ii)) may be solved by remarking that, in Roe’s scheme, F7 | , may be written
(thanks to (7.10)) as
", = 1 F F 1A” " " 7.15
i+l — 5( ( )+ ( 1,+1)) + 5 i+%(ui _ui+1)a ( : )
where A7\, , = [A(u],uf\,)|, and [A| = A* + A~

Under this form, the second term of the right hand side of (7.15) appears to be a stabilization term,
which does not affect the consistency. Indeed, in the scalar case (m = 1), one has A7, /2= = |F(ul) —
F(u?,,)|/|u —u?y,|, which easily yields the L* stability of the scheme (but not the consistency with
respect to the entropies). Moreover, the scheme is stable and consistent with respect to the entropies,
under a Courant-Friedrichs-Levy (CFL) condition, if F7, , is nondecreasing with respect to uj' and
nonincreasing with respect to ug,;, which holds if A7, , > sup{|F'(s)|, s € [u},ui},] or [uf},uf]}.
This remark suggests a slightly different version of the VFRoescheme (closer to Roe’s scheme), which is
the scheme (7.12)-(7.14), taking

s = 3 (PO) + Ffi)) + 5|DF @) uf i)
n (7.12), instead of F*

Trije = = F(w). Note that it is also possible to take other convex combinations of

F(u}) and F(u}, ) in the latter expression of F without modifying the consistency of the scheme.

i+1/2°

When F' depends on z, the discontinuities of F' being on the boundaries of the control volumes, the

generalization of (7.15) is obvious, except for the choice of A7, /2 The quantity F(u}) is replaced by
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F(zi,u}), where z; is the center of K;. Let us now turn to the choice of a convenient matrix A7, /2 for
this modified VFRoe scheme, when F' highly depends on z. A first possible choice is

?—4—1/2 = (1/2)(|DuF (i, uit)| + |DuF (®it1, uiy1)|)-

The following slightly different choice for A7, ; /2 Seems, however, to give better numerical results (see
FAILLE and HEINTZE [1999]). Let us define

A; =D, F(z;,ul),Vie Z
(for the determination of A?H /2 the fixed index n is omitted). Let (/\I(,i))pzl,...,m be the eigenvalues of A;

(with /\521 < /\,(,i), for all p) and (cpg,i))pzly___,m a basis of R™ associated to these eigenvalues. Then, the

(=) (+)
i+1/2 | i+1/2
(max{| A |, AT 1) p=1....m as corresponding eigenvalues. The choice of Aby gy s
A

n A5 LA
ny =S+, (7.16)

matrix A [resp. A ] is the matrix which has the same eigenvectors as A; [resp. A;y1] and has

where X is a parameter, the “normal” value of which is 1. Numerically, larger values of A\, say A = 2 or
A = 3, are sometimes needed, in severe situations, to obtain enough stability. Too large values of A yield
too much artificial diffusion.

The new scheme is then (7.12)-(7.14), taking

1 1

B = 5 (F@nul) + Floiuln)) + SA% (= ully). (7.17)
where AP, | /2 is defined by (7.16). It has, more or less, the same properties as the Roe and VFRoe schemes
but allows the simulation of more complex systems. It needs a MUSCL technique to reduce diffusion
effects and order 2 Runge-Kutta for stability. It was implemented for the simulation of multiphase flows
in pipe lines (see FAILLE and HEINTZE [1999]). The other difficulties encountered in this case are the
treatment of the boundary conditions and the different magnitude of the eigenvalues, which are discussed
in the next sections.

7.1.3 Partial implicitation of explicit scheme

In the modelling of flows, where “propagation” phenomena and “convection” phenomena coexist, the
Jacobian matrix of F often has eigenvalues of different magnitude, the “large” eigenvalues (large meaning
“far from 0”, positive or negative) corresponding to the propagation phenomena and “small” eigenvalues
corresponding to the “convection” phenomena . Large and small eigenvalues may differ by a factor 10 or
100.

With the explicit schemes described in the previous sections, the time step is limited by the CFL condition
corresponding to the large eigenvalues. Roughly speaking, with the notations of Section 7.1.1, this
condition is (for all i € Z) k < |A\|~1h;, where X is the largest eigenvalue. In some cases, this limitation
can be unsatisfactory for two reasons. Firstly, the time step is too small and implies a prohibitive
computational cost. Secondly, the discontinuities in the solutions, associated to the small eigenvalues,
are not sharp because the time step is far from the CFL condition of the small eigenvalues (however,
this can be somewhat corrected with a MUSCL method). This is in fact a major problem when the
discontinuities associated to the small eigenvalues need to be computed precisely. It is the case of interest
here.

A first method to avoid the time step limitation is to take a “fully implicit” version of the schemes

developed in the previous sections, that is F} /2 function of u?“, J € Z, instead of u}, j € Z (the
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terminology “fully implicit” is by opposition to “linearly implicit”, see below and FERNANDEZ [1989]).
However, in order to be competitive with explicit schemes, the fully implicit scheme is used with large
time steps. In practice, this prohibits the use of a MUSCL technique in the computation of the solution
at time t,41 by, for instance, a Newton algorithm. This implicit scheme is therefore very diffusive and
will smear discontinuities.

A second method consists in splitting the system into two systems, the first one is associated with the
“small” eigenvalues, and the second one with the “large” eigenvalues (in the case of the Euler equations,
this splitting may correspond to a “convection” system and a “propagation” system). At each time step,
the first system is solved with an explicit scheme and the second one with an implicit scheme. Both use
the same time step, which is limited by the CFL condition of the small eigenvalues. Using a MUSCL
technique and an order 2 Runge-Kutta method for the first system yields sharp discontinuities associated
to the small eigenvalues. This method is often satisfactory, but is difficult to handle in the case of
severe boundary conditions, since the convenient boundary conditions for each system may be difficult
to determine.

Another method, developed by E. Turkel (see TURKEL [1987]), in connexion with Roe’s scheme, uses a
change of variables in order to reduce the ratio between large and small eigenvalues.

Let us now describe a partially linearly implicit method (“turbo” scheme) which was successfully tested
for multiphase flows in pipe lines (see FAILLE and HEINTZE [1999]) and other cases (see FERNANDEZ
[1989]). For the sake of simplicity, the method is described for the last scheme of Section 7.1.2, i.e. the
scheme defined by (7.12)- (7.14), where Fi'i% is defined by (7.17) and (7.16) (recall that F' may depend

on z).

Assume that I C {1,...,m} is the set of index of large eigenvalues (and does not depend on ). The aim
here is to “implicit” the unknowns coresponding to the large eigenvalues only: let A;, Al +i /2 and AEH /2

(+)

i11/27 with the same large eigenvalues

be the matrix having the same eigenvectors as A;, Az( +i /2 and A

(i.e. corresponding to p € I) and 0 as small eigenvalues. Let

A?H/z = (/\/2)(‘454-1/2 Agﬂ/z)

Then, the partially linearly implicit scheme is obtained by replacing F in (7.5) by Fr defined by

i+1/2 i+1/2

F;-T_L‘_% =Fli+3 SA(uftt — ) + A (ui —ulyy)

n 'I'L+1 n+1
+3 Az+2( iUt uy el

In order to obtain sharp discontinuities corresponding to the small eigenvalues, a MUSCL technique is
used for the computation of F}} /2 Then, again for stability reasons, it is preferable to add an order
2 Runge-Kutta method for the time discretization. Although it is not so easy to implement, the order
2 Runge-Kutta method is needed to enable the use of “large” time steps. The time step is, in severe
situations, very close to that given by the usual CFL condition corresponding to the small eigenvalues,
and can be considerably larger than that given by the large eigenvalues (see FAILLE and HEINTZE [1999]
for several tests).

7.1.4 Boundary conditions

In many simulations of real situations, the treatment of the boundary conditions is not easy (in particular
in the case of sign change of eigenvalues). We give here a classical possible mean (see e.g. KUMBARO
[1992] and DuBoIS and LEFLOCH [1988]) of handling boundary conditions (a more detailed description
may be found in MASELLA [1997] for the case of multiphase flows in pipe lines).

Let us consider now the system (7.4) where “z € IR” is replaced by “z € Q” with Q = (0,1). In order for
the system to be well-posed, an initial condition (for ¢ = 0) and some convenient boundary conditions
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for x = 0 and z = 1 are needed; these boundary conditions will appear later in the discretization (we do
not detail here the mathematical analysis of the problem of the adequacy of the boundary conditions, see
e.g. SERRE [1996] and references therein). Let us now explain the numerical treatment of the boundary
condition at x = 0.

With the notations of Section 7.1.1, the space mesh is given by {K;, i € {0,..., Ny}}, with Zf\gl h; = 1.
Using the finite volume scheme (7.5) with 7 € {1,..., N7} instead of i € Z needs, for the computation
of u{”“, with {ul, i € {1,..., N7}} given, a value for FI"/2 (which corresponds to the flux at point z = 0

and time t = t,).

For the sake of simplicity, consider only the case of the Roe and VFRoe schemes. Then, the “interior
fluxes”, that is F}, , for i € {1,...,N7 — 1}, are determined by using matrices A(u},u}, ;) (i €
{1,..., Ny —1}). In the case of the Roe scheme, FJ%, /s 1s given by (7.11) or (7.15) and A(-,-) satisfies
the Roe condition (7.10). In the case of the VFRoe scheme, F}, /2 is given through the resolution of
the linearized Riemann problem (7.8), (7.9) with e.g. A(u},u}, ;) = DF((1/2)(u} + u},)). In order
to compute Fl"/z, a possibility is to take the same method as for the interior fluxes; this requires the
determination of some w{. In some cases (e.g. when all the eigenvalues of D, F'(u) are nonnegative), the
given boundary conditions at « = 0 are sufficient to determine the value ug, or directly F1"/2, but this is
not true in the general case.... In the general case, there are not enough given boundary conditions to
determine ug and missing equations need to be introduced. The idea is to use an iterative process. Since
A(uf,u?) is diagonalizable and has only real eigenvalues, let A1,..., A, be the eigenvalues of A(uf,u?)
and ¢1,...,0m a basis of IR™ associated to these eigenvalues. Then the vectors u§ and u} may be
decomposed on this basis, this yields

m m
n o_ Cne T — E e
Uy = E Qo Pi, U = a1, Pi-
i=1 =1

Assume that the number of negative eigenvalues of A(uf,ul) does not depend on uf (this is a simplifying
assumption); let p be the number of negative eigenvalues and m — p the number of positive eigenvalues
of A(uf,ul).

Then, the number of (scalar) given boundary conditions is (hopefully ...) m — p. Therefore, one takes,
for ul, the solution of the (nonlinear) system of m (scalar) unknowns, and m (scalar) equations. The
m unknowns are the components of ug and the m equations are obtained with the m — p boundary
conditions and the p following equations:

Qp,; = 014, if \; < 0. (7.18)

Note that the quantities ag,; depend on A(uf,u?); the resulting system is therefore nonlinear and may
be solved with, for instance, a Newton algorithm.

Other possibilities around this method are possible. For instance, another possibility, perhaps more
natural, consists in writing the m — p boundary conditions on uf,, instead of uf and to take (7.18) with
the components of u7), instead of those of u, where u7), is the solution at z = 0 of (7.8), (7.9) with
i = 0. With the VFRoe scheme, the flux at the boundary = = 0 is then F7}, = F(ul,,). In the case of a
linear system with linear boundary conditions and with the VFRoe scheme, this method gives the same
flux F1"/2 as the preceding method, the value u? /2 is completely determined although u{ is not completely
determined.

In the case of the scheme described in the second part of Section 7.1.2, the following “simpler” possibility
was implemented. For this scheme, F}’jrl/z is given, for i € {1,..., Ny — 1}, by (7.15) with (7.16). Then,
the idea is to take the same equation for the computation of F1”/2 but to compute uf as above (that is
with m — p boundary conditions and (7.18)) with the choice A(uf,u}) = D, F(x1,u?).
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This method of computation of the boundary fluxes gives good results but is not adapted to all cases
(for instance, if p changes during the Newton iterations or if the number of boundary conditions is not
equal to m — p...). Some particular methods, depending on the problems under consideration, have to
be developped.

We now give an attempt for the justification of this treatment of the boundary conditions, at least for a
linear system with linear boundary conditions.
Consider the system

ug(z,t) +ug(z,t) =0,z € (0,1), t € Ry, (7.19)
vt($7t) —vz(m,t) =0,z € (071)7t€IR+7 ’
with the boundary conditions
u(0,t) + av(0,t) =0, t € Ry, (7.20)
v(1,t) + Bu(l,t) =0,t € R4, )
and the initial conditions
U(.CC,O) = u0($)7 T e (07 1)7 (721)

’U(.’II,O) = 'Uo(.’L'), T € (07 1);

where @ € R*, B € R*, ug € L*®() and vy € L>®°(Q) are given. It is well known that the problem
(7.19)-(7.21) admits a unique weak solution (entropy conditions are not necessary to obtain uniqueness
of the solution of this linear system).

A stable numerical scheme for the discretization of the problem (7.19)-(7.21) will add some numerical
diffusion terms. It seems quite natural to assume that this diffusion does not lead a coupling between the
two equations of (7.19). Then, roughly speaking, the numerical scheme will consist in an approximation
of the following parabolic system:

wg(z,t) + ug(z,t) — eugz(z,t) =0, 2 € (0,1),t € Ry,

v(z,t) — vy (2,1) — Uz (x,t) =0, 2 € (0,1),t € Ry, (7.22)

for some ¢ > 0 and 5 > 0 depending on the mesh (and time step) and ¢ — 0, n = 0 as the space and
time steps tend to 0.

In order to be well posed, this parabolic system has to be completed with the initial conditions (7.21)
and (for all ¢ > 0) four boundary conditions, i.e. two conditions at = 0 and two conditions at z = 1.
This is also the case for the numerical scheme which may be viewed as a discretization of (7.22). There
are two boundary conditions given by (7.20). Hence two other boundary conditions must be found, one
at z = 0 and the other at z = 1.

If these two additional conditions are, for instance, v(0,t) = u(1,t) = 0, then the (unique) solution to
(7.20)-(7.22) with these two additional conditions does not converge, as € — 0 and n — 0, to the weak
solution of (7.19)-(7.21). This negative result is also true for a large choice of other additional boundary
conditions. However, if the additional boundary conditions are (wisely) chosen to be v,(0,t) = u,(1,t) =
0, the solution to (7.20)-(7.22) with these two additional conditions converges to the weak solution of
(7.19)-(7.21).

The numerical treatment of the boundary conditions described above may be viewed as a discretization
of (7.20) and v;(0,t) = u,(1,t) = 0; this remark gives a formal justification to such a choice.
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7.1.5 Staggered grids

For some systems of equations it may be “natural” (in the sense that the discretization seems simpler) to
associate different grids to different unknowns of the problem. To each unknown is associated an equation
and this equation is integrated over the elements (which are the control volumes) of the corresponding
mesh, and then discretized by using one discrete unknown per control volume (and time step, for evolution
problems). This is the case, for instance, of the well known discretization of the incompressible Navier-
Stokes equations with staggered grids, see PATANKAR [1980] and Section 7.2.2.

Let us now give an example in order to show that staggered grids should be avoided in the case of
nonlinear hyperbolic systems since they may yield some kind of “instability”. As an illustration, let us
consider the following “academic” problem:

ut(z,t) + (vu),(z,t) =0,z € R, t € Ry,

vi(z,t) + (Uz)w(wat) =0,zeR,t€ Ry, (7.23)
u(x,O) = U()(-'E), z € R, ’
U(.’E,O) = UO(x)a z € R,

where ug is a bounded function from IR to [0,1]. Taking u = v equal to the weak entropy solution of the
Biirgers equation (namely u; + (u?), = 0), with initial condition ug, leads to a solution of the problem
(7.23). One would expect a numerical scheme to give an approximation of this solution. Note that the
solution of the Biirgers equation, with initial condition ug, also takes its values in [0, 1], and hence, a
“good” numerical scheme can be expected to give approximate solutions taking values in [0,1]. Let us
show that this property is not satisfied when using staggered grids.

Let k be the time step and h be the (uniform) space step. Let z; = ih and z;41/5 = (i + 1/2)h, for
i € Z . Define, for i € Z , K; = (x;_1/2,Tit1/2) and K12 = (T4, Tig1)-

The mesh associated to u is {K;,i € ZZ } and the mesh associated to v is {K;y1/2,i € Z }. Using the
principle of staggered grids, the discrete unknowns are u?, i € ZZ, n € IN*, and (A /25 i€ Z,neIN%.
The discretization of the initial conditions is, for instance,

1
ud = 7 uo(z)dz, i € Z,
K;
v) 1= 1/ uo(z)dz, i € Z (7:24)
i+l — 7 0 ’ .
+3 h K. .

itd
The second equation of (7.23) does not depend on u. It seems reasonable to discretize this equation with
the Godunov scheme, which is here the upstream scheme, since ug is nonnegative. The discretization of
the first equation of (7.23) with the principle of staggered grids is easy. Since AR /2 is always nonnegative,
we also take an upstream value for u at the extremities of the cell K;. Then, with the explicit Euler
scheme in time, the scheme becomes

1, . 1 .
2T =) + o (] yuf =0 yuil ) =0,i€ Z,n €N,
(7.25)
1 1
+1 2 2\ — :
E(vzn—i—% _U:L+%)+E((U?+%) —(Uzn;%) )—O,ZEZ,’I’LE]N

It is easy to show that, whatever k and h, there exists up (function from IR to [0,1]) such that sup{u}l,i €
Z } is strictly larger than 1. In fact, it is possible to have, for instance, sup{ul,i € Z} = 1+ k/(2h).
In this sense the scheme (7.25) appears to be unstable. Note that the same phenomenon exists with the
implicit Euler scheme instead of the explicit Euler scheme . Hence staggered grids do not seem to be the
best choice for nonlinear hyperbolic systems.
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7.2 Incompressible Navier-Stokes Equations

The discretization of the stationary Navier-Stokes equations by the finite volume method is presented in
this section. We first recall the classical discretization on cartesian staggered grids. We then study, in
the linear case of the Stokes equations, a finite volume method on a staggered triangular grid, for which
we show, in a particular case, the convergence of the method.

7.2.1 The continuous equation

Let us consider here the stationary Navier-Stokes equations:

ou®
—vAuD (z +Zu(’) )+ P ) = @), w e Vi=1,....d,

630] Ox;
d i (7.26)
ou® 0 Q
1221 6$i (.'E) =0z €
with Dirichlet boundary condition
uWD(z)=0,2€00,Vi=1,...,d, (7.27)

under the following assumption:

Assumption 7.1

(i)  Q is an open bounded connected polygonal subset of R%,d=2,3,
(i) v >0,
(i) f9 e L2(Q),Vi=1,...,d.

In the above equations, u(Y) represents the ith component of the velocity of a fluid, v the kinematic
viscosity and p the pressure. The unknowns of the problem are u(? i € {1,...,d} and p. The number
of unknown functions from Q to IR which are to be computed is therefore d + 1. Note that (7.26) yields
d + 1 (scalar) equations.

We shall also consider the Stokes equations, which are obtained by neglecting the nonlinear convection
term.

—vAu(z) + 8;’( Y=fD(z),ze O Vi=1,...,d,

1 gl Z (7.28)
Ou =0,z €.

—1 6.’[1,

There exist several convenient mathematical formulations of (7.26)-(7.27) and (7.28)-(7.27), see e.g.
TEMAM [1977]. Let us give one of them for the Stokes problem. Let

d (%)
V={u=@®,. . uD)e (HLQ)), Zau — =0}.

Under assumption 7.1, there exists a unique function u such that
u €V,
d . , d - . (7.29)
vy [ V@) e @)z = 3 [ 190 (@)da, Yo = (0, o) € V. '
i=1 7€ i=1 70
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Equation (7.29) yields the existence of p € L? (unique if [, p(x)dz = 0) such that
Cuaa® 1+ %P _ 0 ), vi
vAu'" + B fYinD(Q),Vie{l,...,d}. (7.30)
i
In the following, we shall study finite volume schemes for the discretization of Problem (7.26)-(7.27) and
(7.28)-(7.27). Note that the Stokes equations may also be successfully discretized by the finite element
method, see e.g. GIRAULT and RAVIART [1986] and references therein.

7.2.2 Structured staggered grids

The discretization of the incompressible Navier-Stokes equations with staggered grids is classical (see
PATANKAR [1980]): the idea is to associate different control volume grids to the different unknowns. In
the two-dimensional case, the meshes consist in rectangles. Consider, for instance, the mesh, say 7T, for
the pressure p. Then, considering that the discrete unknowns are located at the centers of the elements of
their associated mesh, the discrete unknowns for p are, of course, located at the centers of the element of
T. The meshes are staggered such that the discrete unknowns for the z-velocity are located at the centers
of the edges of T parallel to the y-axis, and the discrete unknowns for the y-velocity are located at the
centers of the edges of T parallel to the z-axis. The two equations of “momentum” are associated to the
x and y-velocity (and integrated over the control volumes of the considered mesh) and the “divergence
free” equation is associated to the pressure (and integrated over the control volume of 7). Then the
discretization of all the terms of the equations is straightforward, except for the convection terms (in
the momentum equations) which, eventually, have to be discretized according to the Reynolds number
(upstream or centered discretization. .. ). The convergence analysis of this so-called “MAC” (Marker and
Cell) is performed in NICOLAIDES [1992] in the linear case and NICOLAIDES and WU [1996] in the case
of the Navier-Stokes equations.

7.2.3 A finite volume scheme on unstructured staggered grids

Let us now turn to the case of unstructured grids; the scheme we shall study uses the same control
volumes for all the components of the velocity. The pressure unknowns are located at the vertices, and a
Galerkin expansion is used for the approximation of the pressure. Note that other finite volume schemes
have been proposed for the discretization of the Stokes and incompressible Navier-Stokes equations on
unstructured grids (BoTTA and HEMPEL [1996]), but, to our knowledge, no proof of convergence has
been given yet.

We again use the notion of admissible mesh, introduced in Definition 3.1 page 37, in the particular case
of triangles, if d = 2, or tetrahedra, if d = 3. We limit the description below to the case d = 2 and to the
Stokes equations. Let  be an open bounded polygonal connected subset  of IR?. Let 7 be a mesh of
consisting of triangles, satisfying the properties required for the finite element method (see e.g. CIARLET,
P.G. [1978]), with acute angles only. Defining, for all K € T, the point zx as the intersection of the
orthogonal bisectors of the sides of the triangle K yields that 7 is an admissible mesh in the sense of
Definition 3.1 page 37. Let St be the set of vertices of 7. For S € S7, let ¢s be the shape function
associated to S in the piecewise linear finite element method for the mesh 7. For all K € T, let Sk C St
be the set of the vertices of K.

A possible finite volume scheme using a Galerkin expansion for the pressure is defined by the following
equations, with the notations of Definition 3.1 page 37:

i 9¢ i
v Y F+ Y ps [ G @ =m() S,

oc€EK SeSk (731)
VKT, Vi=1,...d,
F[((i)a:Ta(Ug?_Ug))a ifo'egint,(j:K|L,7::].,---,d,

¢ I ' (7.32)
Ko = ToUK ifo€elexiNék,i=1,...,d,
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> Z @ / 995 (2)dw = 0, ¥S € 7, (7.33)
KeTi=1
/ > ps¢s(z)dz =0, (7.34)
QSEST
(&) _
K = K /Kf(x)d:c, VK e€T. (7.35)

The discrete unknowns of (7.31)-(7.35) are u&?, KeT,i=1,...,dand ps, S € St.
The approximate solution is defined by

pT = Z PsPs, (7.36)
SeST
uD(z) =u?, ae.z e K,VKeT,Vi=1,...,d. 7.37
T K

The proof of the convergence of the scheme is not straightforward in the general case. We shall prove
in the following proposition the convergence of the discrete velocities given by the finite volume scheme
(7.31)-(7.35) in the simple case of a mesh consisting of equilateral triangles.

Proposition 7.1 Under Assumption 7.1, let T be a triangular finite element mesh of Q, with acute
angles only, and let, for all K € T, xx be the intersection of the orthogonal bisectors of the sides of the
triangle K (hence T is an admissible mesh in the sense of Definition 3.1 page 37). Then, there exists a
unique solution to (7.31)-(7.35), denoted by {ug?, KeT,i=1,...,d} and {ps, S € St}. Furthermore,
if the elements of T are equilateral triangles, then ur — u in (L*(Q))?, as size(T) — 0, where u is the
(unique) solution to (7.29) and uy = (u%p, . ,ug‘f))d is defined by (7.87).

PROOF of Proposition 7.1.

Step 1 (estimate on ut) '
Let 7 be an admissible mesh, in the sense of Proposition 7.1, and {u&?, KeT,i=1,...,d}, {ps,
S € St} be a solution of (7.31)-(7.33) with (7.35).

Multiplying the equations (7.31) by u( )

UZ 3 7o (Dyul?)? Z > m(K)u £ (7.38)
i=10€e€ i=1KeT
with D,u() = |u(Li) - ug?| if 0 € &g, 0 = K|L, i € {1,...,d} and D,u® = |u§?| if 0 € Eext N &k,
ied{l,...,d}.
In step 2, the existence and the uniqueness of the solution of (7.31)-(7.35) will be essentially deduced
from (7.38).

Using the discrete Poincaré inequality (3.13) in (7.38) gives an L? estimate and an estimate on the
“discrete H} norm” on the component of the approximate velocities, as in Lemma 3.2 page 42, that is:

, summing over ¢ =1,...,d and K € T and using (7.33) yields

Pl 7 < C 1|z < C,Vi € {1,...d},

where C only depends on Q, vu and f®,i=1,...,d.

As in Theorem 3.1 page 45 (thanks to Lemma 3.3 page 44 and Theorem 3.10 page 91), this estimate
gives the relative compactness in (L?(Q))?¢ of the set of approximate solutions ur, for 7 in the set of
admissible meshes in the sense of Proposition 7.1. It also gives that if u7, — u in (L?(92))?, as n — oo,
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where u7, is the solution associated to the mesh 7y, and size(7,) — 0 as n — oo, then u € (H}(Q))%.
This will be used in Step 3 in order to prove the convergence of ur to the solution of (7.29).

Step 2 (existence and uniqueness of ur and pr)
Let T be an admissible mesh, in the sense of Proposition 7.1. Replace, in the right hand side of (7.33),

“0” by “gs” with some {gg, S € S} C R. Eliminating Fl((i?g, the system (7.31)-(7.33) becomes a linear

system with as many equations as unknowns. The sets of unknowns are {ug?, KeT,i=1,...,d} and
{ps, S € St}. Ordering the equations and the unknowns yields a matrix, say A, defining this system.

Let us determine the kernel of A; let f\) = 0 and gg = O for all K € T, all S € Sy and all i € {1,...,d}.

Then, (7.38) leads to u{ = 0 for all K € T and all i € {1,...,d}. Turning back to (7.31) yields that pr
(defined by (7.36)) is constant on K for all K € 7. Therefore, since 2 is connected, p7 is constant on
Q. Hence, the dimension of the kernel of A is 1 and so is the codimension of the range of A. In order to
determine the range of A, note that

Z ps(z)=1,Vz € Q.

SeST

Then, a necessary condition in order that the linear system (7.31)-(7.33) has a solution is

D> gs=0 (7.39)

SeST

and, since the codimension of the range of A is 1, this condition is also sufficient. Therefore, under the
condition (7.39), the linear system (7.31)-(7.33) has a solution, this solution is unique up to an additive
constant for pr. In the particular case gs = 0 for all S € St, this yields that (7.31)-(7.35) has a unique
solution.

Step 3 (convergence of ur to u)

In this step the convergence of us towards u in (L2(Q))¢ as size(7) — 0 is shown for meshes consisting of
equilateral triangles. Let (7,)nen be a sequence of meshes (such as defined in Proposition 7.1) consisting
of equilateral triangles and let (ut,)new be the associated solutions. Assume that size(7,) — 0 and
ur, = u in (L?(Q))% as n — oo. Thanks to the compactness result of Step 1, proving that u is the
solution of (7.29) is sufficient to conclude this step and to conclude Proposition 7.1.

By Step 1, u € (H}(Q))?. It remains to show that u € V (which is the first part of (7.29)) and that u
satisfies the second part of (7.29).

For the sake of simplicity of the notations, let us omit, from now on, the index n in 7, and let h = size(T).
Note that zx (which is the intersection of the orthogonal bisectors of the sides of the triangle K) is the
center of gravity of K, for all K € T. Let ¢ = (o,..., (@)t € V and assume that the functions ¢
are regular functions with compact support in Q, say (¥ € C(Q) for all i € {1,...,d}. There exists
C > 0 only depending on ¢ such that

. 1 .
(%) _ () 2
P\(zK) / 'Y (x)dz| < Ch?, 7.40
forall K € T andi=1,...,d. Let us proceed as in the proof of convergence of the finite volume scheme

for the Dirichlet problem (Theorem 3.1 page 45).
Assume that h is small enough so that ¢(z) = 0 for all z such that z € K, K € T and Ex N Eext 7 0.
Note that (0¢s)/(0x;) is constant in each K € T and that

) LINEIN0)
> / %(x)w(’)(x)dm‘= _ /Q b5 (z) 8(;; ~(@)dz =0

i=1

Then,
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5¢S 1 (@) _
S S ws [ 2w o | # @i =0

i=1KeT SeSk

Therefore, multiplying the equations (7.31) by (1/m(K)) [, ¢V (z)dz, for each i = 1,...,d, summing
the results over K € 7 and i € {i...,d} yields

v T (uf) - uf . @) (g x—; ) (z)dz) =
ZIKLZES el K)(m(L)/L‘p () m(K)~/K(p o (7.41)

ZZf(’)/ ¢ (z)dx

i=1KeT

Passing to the limit in (7.41) as n — oo and using (7.40) gives, in the same way as for the Dirichlet problem
(see Theorem 3.1 page 45), that u satisfies the equation given in (7.29), at least for v € V N (C°(Q))4.
Then, since V N (C°(Q))? is dense (for the (Hg(£2))%-norm) in V (see, for instance, LIONS [1996] for a
proof of this result), u satisfies the equation given in (7.29).

Since u € (Hg (2))?, it remains to show that u is divergence free. Let ¢ € C>°(Q). Multiplying (7.33) by
¢(S), summing over S € St and noting that the function } 5.5 ¢(S)ds converges to ¢ in H 1), one
obtains that u is divergence free and then belongs to V. This completes the proof that u is the (unique)
solution of (7.29) and concludes the proof of Proposition 7.1. ]

7.3 Flows in porous media

7.3.1 Two phase flow

This section is devoted to the discretization of a system which may be viewed as an elliptic equation
coupled to a hyperbolic equation. This system appears in the modelling of a two phase flow in a porous
medium. Let Q be an open bounded polygonal subset of IR%, d = 2 or 3, and let a and b be functions of
class C* from IR to IR;. Assume that a is nondecreasing and b is nonincreasing. Let g and % be bounded
functions from 092 x R4 to IR, and up be a bounded function from € to IR. Consider the following
problem:

ut(z,t) —div(a(u)Vp)(z,t) = 0, (z,t) € QA xRy,
(1 —u)i(z,t) —div(b(u)Vp)(z,t) = 0, (z,t) € 2 xRy,
Vp(z,t) -n(z) = g(z,t), (z,t) € 00 x Ry, (7.42)
u(z,t) = u(z,t), (z,t)€0xRy ;g(z,t) >0,

u(z,0) = wo(z), z €,

where n is the normal to 99, outward to Q. The unknowns of this system are the functions p and u (from
OxR4 toR). Adding the two first equations of (7.42), this system may be viewed as an elliptic equation
with respect to the unknown p, for a given u (note that there is no time derivative in this equation), with
a Neumann condition, coupled to a hyperbolic equation with respect to the unknown u (for a given p).
Note that, for the elliptic problem with the Neumann condition, the compatibility condition on g writes

M(U(.’E,t))g(.’l},t)d’}/(.’lf) = 07 te IR‘-H
a0
where M = a + b. It is not known whether the system (7.42) has a solution, except in the simple
case where the function M is a positive constant (which is, however, already an interesting case for real
applications).
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In order to discretize (7.42), let 7 be an admissible mesh of €2 in the sense of Definition 3.5 page 62 and
k > 0 be the time step. The discrete unknowns are p% and u% for K € T and n € IN*. The discretization
of the initial condition is

1
uly = @/Kuo(x)dx, KeT.

In order to take into account the boundary condition on u, define, with ¢, = nk,

1 tn1
Uk = a1 u(z,t)dy(z)dt, K IN.
K km(0K N oQ) /mmasz /t" u(z,t)dy(z)dt, K €T, ne

The scheme will use an “upstream choice” of a(u) and b(u) on each “interface” of the mesh, that is, for
all K € T, L € N(K),

(a(u)k,r = a(uk) if p?ll > pﬁ*f
(a(u)k,r = a(ur) if p?<+1 < p2+1,
(b(u))fe,r = b(uk) if p?l 2192*1
(b(u)k,L =bul) if pg™ <pp™,
The discrete equations are, for all K € 7, n € IN,
uf !t — 1 1
m(K) M S e - ) (e
LEN(K)
tn+1 ) tn+1
Tz, t)dy(x) K/ / (z,t)dy(z)dt =
JOKNOD It OKNAQ Jt,
—u}
—m(K) 71( = > @ - 0wk
LEN(K)
tn+1 tn+1
(z,t)dv(x) (z,t)dy(z)dt =
OKNAQ Jt, OKNON Jt,

Recall that g (a:, t) = max{g(z,t),0}, g~ = (—g)* and 7x |, = m(K|L)/dg , (see Definition 3.1 page 37).
This finite volume scheme gives very good numerical results under a usual stability condition on the time
step with respect to the space mesh. It can be generalized to more complicated systems (in particular, for
the simulation of multiphase flows in porous medium such as the “black 0il” case of reservoir engineering,
see EYMARD [1992]). It is possible to prove the convergence of this scheme in the case where the function
M is constant and the function g does not depend on ¢. In this case, the scheme may be written as a finite
volume scheme for a stationary diffusion equation with respect to the unknown p (which does not depend
on t) and an upstream finite volume scheme for a hyperbolic equation with respect to the unknown wu.
The proof of this convergence is given below (Theorem 7.1) under the assumptions that a(u) = » and
b(u) = 1 — u (see also VIGNAL [1996a]). Note that the elliptic equation with respect to the pressure
may also be discretized with a finite element method, and coupled to the finite volume scheme for the
hyperbolic equation. This coupling of finite elements and finite volumes was introduced in FORSYTH
[1991], where it is called “CVFE” (Control Volume Finite Element), in SONIER and EYMARD [1993] and
in EYMARD and GALLOUET [1993], where the convergence of the finite element-finite volume scheme is
shown under the same assumptions.

7.3.2 Compositional multiphase flow

Let us now turn to the study of a system of partial differential equations which arises in the simulation of
a multiphase flow in a porous medium (the so called “Black Oil” case in petroleum engineering, see e.g.
EvMARD [1992]). This system consists in a parabolic equation coupled with hyperbolic equations and
algebraic equations and inequalities (these algebraic equations and inequalities are given by an assumption
of thermodynamical equilibrium). It may be written, for z € Q and ¢t € R, as:
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o2 (01 (B)u) 1) — v (fu,0,0)Vp) ) = 0, (7.43)

%(Pz(ﬁa o)1 —u—v)(1—0))(x,t) — div(fa(u, v,¢)Vp)(z,t) =0, (7.44)

o (P22, )1 = u = e+ ps(p)e) 1) — v (fs (.0, V) 1) = 0, (7.45)
(v(z,t) =0 and c(z,t) < f(p(z,t)) or (c(z,t) = f(p(x,t)) and v(x,t) > 0), (7.46)

where () is a given open bounded polygonal subset of R? (d = 2 or 3), f1, f2, f3 are given functions from
R2 to R, f, p1, p3 are given functions from IR to IR and ps is a given function from IR? to R.. The
problem is completed by initial and boundary conditions which are omitted here. The unknowns of this
problem are the functions u,v,¢,p from Q x R to R.

In order to discretize this problem, let & be the time step (as usual, k may in fact be variable) and 7 be a
cartesian mesh of Q. Following the ideas (and notations) of the previous chapters, the discrete unknowns
are ul, v, % and p%, for K € T and n € IN* and it is quite easy to discretize (7.43)-(7.45) with a
classical finite volume method. Note that the time discretization of the unknown p must generally be
implicit while the time discretization of the unknowns wu,v,c may be explicit or implicit. The explicit
choice requires a usual restriction on the time step (linearly with respect to the space step). The only
new problem is the discretization of (7.46), which is now described.

Let n € IN. The discrete unknowns at time t,1, namely ux, v, ¢t and ptt, K € T, have to be

computed from the discrete unknowns at time ¢, namely u%, v, ¢ and p}, K € T. Even if the time
discretization of (7.43)-(7.45) is explicit with respect to the unknowns u, v and ¢, the system of discrete
equations (with unknowns u?jl, v?(H, cﬁ“ and p;‘;rl, K € T) is nonlinear, whatever the discretization
of (7.46). It can be solved by, say, a Newton process. Let | € IN be the index of the “Newton iteration”,
and wptth ot and p (K € T) be the computed unknowns at iteration I. As usual, these
unknowns are, for [ = 0, taken equal to u, v%, ¢ and p%. In order to discretize (7.46), a “phase index”

is introduced; it is denoted by i%, for all K € T and n € IN and it is defined by:

if i% = 0 then v =0 (and % < f(pk)),
if i% =1 then ¢% = f(p%) (and v} >0).

In the Newton process for the computation of the unknowns at time ¢,,41, a “phase index”, denoted by

. . . o1 . . . . X . 141
zﬁ“’l is also introduced, with i%™% = i%. This phase index is used in the computation of /" LA

1,041 1,41 1,041 1,041 . 1 1, 1,0 1,0 41,0
ot b L LI and B (K e T, starting from wgth ot et pnt Ll and gt

Setting vt = 0 if i = 0, and U = fEETIY) if i = 1, the computation of (inter-
mediate) values of u}“’“l, v?;rl’lﬂ, C%H’HI, p;‘;rl’l“ is possible with a “Newton iteration” on (7.43),

(7.44), (7.45) (note that the number of unknowns is equal to the number of equations). Then, for each
K € T, three cases are possible:

. . . 1.1
L if G < fppt ) and otH > 0, then set it = it

7

, o 1,041
2. if ¢EtUH S f(ETY (and necessarily i = 0), then set ¢tV = fETYT) and
n+1,0+1 1
lK =1,

3. if v <0 (and necessarily i = 1), then set vt = 0 and T = 0.

. . . 1
This yields the final values of u/xt /T Rt IELIFL pnd LI o g g7t (K e 7).

» Ck ' Pk

When the “convergence” of the Newton process is achieved, say at iteration [*, the values of the unknowns
at time t,11 are found. They are taken equal to those indexed by (n + 1,1*) (for u,v,c,p,4). It can be
proved, under convenient hypotheses on the function f (which are realistic in the applications), that there
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is no “oscillation” of the “phase index” during the Newton iterations performed from time ¢,, to time ¢,
(see EYMARD and GALLOUET [1991]). This method, using the phase index, was also successfully adapted
for the treatment of the obstacle problem and the Signorini problem, see HERBIN and MARCHAND [1997].

7.3.3 A simplified case

The aim of this section and of the following sections is the study of the convergence of two coupled finite
volume schemes, for the system of equations u; — div(uVp) = 0 and Ap = 0, defined on an open set
Q. A finite volume mesh 7 is used for the discretization in space, together with an explicit Euler time
discretization. Similar results are in VIGNAL [1996a] and VIGNAL and VERDIERE [1998] where the case
of different space meshes for the two equations is also studied.

We assume that the following assumption is satisfied.

Assumption 7.2 Let Q be an open polygonal bounded connected subset of R%, d = 2 or 3, and 99 its
boundary. We denote by n the normal vector to 02 outward to Q.
Let g € L2(09) be a function such that

/ o()d () =0,
oQ

and let 00T ={z € 99, g(z) > 0}, QT =QUINT and 00 ={z € IQ, g(z) < 0}. Let ug € L>()
and @ € L® (001 x RY) represent respectively the initial condition and the boundary condition for the
unknown u.

The set
DOt xRy)={pe C®(R*xR,R), o =00n 0~ xR}

will be the set of test functions for Equation (7.51) in the weak formulation of the problem, which is
given below.

Definition 7.1 A pair (u,p) € L®(Q x R}) x H'(Q) (u is the saturation, p is the pressure) is a weak
solution of

Ap(z) =0, Vz € 0,
Vp(z) -n(z) = g(z), Vz € 09,
ui(z,t) — div(uVp)(z,t) =0, Vz € Q,Vte Ry, (7.47)
u(z,0) = ug(x), Yz € 0,
u(z,t) = u(z,t), Ve € 00TVt € R.
if it verifies
pe HY(Q), (7.48)
u € L*(Q xRY), (7.49)
/ Vp(z) - VX(z)dz — | X(z)g(z)dy(z) = 0,VX € H'(Q). (7.50)
Q 80

and
/ / w(z ) (i £) — Vp(z) - V(e ) dedt + / uo(2)p(z, 0)dr-+
R+ @ (7.51)
/ / A, t)p(z, O)g(2)dy(@)dt = 0,Yp € DQF x R).
R, Joa+
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Under Assumption 7.2, a classical result gives the existence of p € H'(2) and the uniqueness of Vp where
p is the solution of (7.48),(7.50), which is a variational formulation of the classical Neumann problem.
Additional hypotheses on the function g are necessary to get the uniqueness of u € L°°(]Rd x IRY)
solution of (7.51). The existence of u results from the convergence of the scheme, but not its uniqueness,
which could be obtained thanks to regularity properties of Vp. We shall assume such regularity, which
ensures the uniqueness of the function u and allows an error estimate between the finite volume scheme
approximation of the pressure and the exact pressure. In fact, for the sake of simplicity, we assume (in
Assumption 7.3 below) that p € C2(Q). This is a rather “strong” assumption which can be weakened.
However, a convergence result (such as in Theorem 7.1) with the only assumption p € H!(Q) seems
not easy to obtain. Note also that similar results of convergence (for the “pressure scheme” and for the
“saturation scheme”) are possible with an open bounded connected subset of R? with a C? boundary
(instead of an open bounded connected polygonal subset of ]Rd) using Definition 4.4 page 112 of admissible
meshes.

Assumption 7.3 The pressure p, weak solution in H' () to (7.50), belongs to C?(1Q).

Remark 7.2 The solution (u,p) of (7.48)-(7.51) is also a weak solution of

(1 =u)¢(z,t) — div((1 — u)Vp)(z,t) = 0.

Remark 7.3 The finite volume scheme will ensure the conservation of each of the quantities u and
1 — u. It can be extended to more complex phenomena such as compressibility, thermodynamic equilib-
rium. . . (see Section 7.3.2)

Remark 7.4 The proof which is given here can easily be extended to the case of the existence of a source
term which writes

Ap(ﬂv) =v(2), z €Q,
Vp(z) - n(z) = g(z), x € 09,
(a:,t) div(uVp)(z,t) + u(z,t)v(z) = s(z, t)vt(z), z€Q,te Ry,
U( z,0) = uo(), z€Q,
u(z,t) = u(z,t), z €N, te Ry,

where v € L2(2) with / g(z)dy(z) + /U(x)da: =0and s € L*(Q x IRY). All modifications which are

19} Q
connected to such terms will be stated in remarks.

7.3.4 The scheme for the simplified case

Let Q be an open polygonal bounded connected subset of IR?. Let 7 be an admissible mesh, in the sense
of Definition 3.5 page 62, and let h = size(7). Assume furthermore that, for some a > 0, d, > ah for all
o€ gint-

The pressure finite volume scheme

We first define the approximate pressure, using the finite volume scheme defined in section 3.2 page 62
(that is (3.85)-(3.87)).
(i) The values Gk, for K € T, are defined by

GK:/ o(@)dv (@ )ifm(aKﬂaﬂ);éO
Gk =0, if m(@Kﬂ@Q)

(7.52)
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(ii) The scheme is defined by

- Z TK|L<PL —pK) =Gk, VK €T, (7.53)
LEN(K)
and
Z m(K)pk = 0. (7.54)
KeT

We recall that, from lemma, 3.6 page 63, there exists a unique function pr € X (7) defined by pr(z) = px
for a.e. x € K, for all K € T, where (pk) ke satisfy equations (7.52)-(7.54). Then, using Theorem 3.5
page 68, there exist C; and Cs, only depending on p and (2, such that

llpT = pllz2@) < Cih (7.55)

and

po—pk 1 ) 2 2
K|Lze:8 m(K|L)dk 1 driL n(K|D) KlLVp(x) nk,1dy(z))” < (C2h)?. (7.56)

Last but not least, using lemma 3.11 page 73, there exists C'3, only depending on g and 2, such that

Z TriL(pL — PK)* < (Cs)”. (7.57)
K|LEEns

The saturation finite volume scheme

Let us now turn to the finite volume discretization of the hyperbolic equation (7.51). In order to write
the scheme, let us introduce the following notations: let

G\ = / g* (z)dy(z) and Gl = / g9~ (@)dy(2),
OKNOQ OKNOQ

so that ng’ - Gg;) =Gk. Let

G = /8 @) = 3G

KeT

(note that G(*) does not depend on 7). The scheme (7.53) may also be written

> TxiL (pL _pK) +6H -6 =0, vKeT. (7.58)
LEN(K)

Remark 7.5 In the case of the problem with source terms, the right hand side of the equation (7.53) is
replaced by Gx + Vi~ — Vi) with

VI((i) =/ vt (z)dz.
K

Then, in the equation (7.58) the quantities G%) are replaced by G%) + VI((i).
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Let £ € (0,1). Given an admissible mesh T, the time step is defined by a real value k > 0 such that

k< inf m(#) 1-¢)

TRET N rkn(pn —pr)t A+ Gy
LeN(K)

(7.59)

Remark 7.6 Since the right hand side of (7.59) has a strictly positive lower bound, it is always possible
to find values k > 0 which satisfy (7.59). Roughly speaking, the condition (7.59) is a linear condition
between the time step and the size of the mesh. Let us explain this point in more detail: in most practical
cases, function g is regular enough so that |p;, — px|/dk/|r is bounded by some C only depending on g
and Q. Assume furthermore that the mesh 7 is admissible in the sense of Definition 3.5 page 62 and
that, for some o > 0, dx,, > ah, for all K € T and o € £. Then the condition ¥ < Dh, with
D = ((1—¢€)a)/(d(C + ||lgllp=(s9))), implies the condition (7.59). Note also that for all g € L*(8Q) we
already have a bound for |pr|; 7 (but this does not yield a bound on |p;, — px|/dk|r). Finally, note
that condition (7.59) is easy to implement in practise, since the values 7x|;, and px are available by the
pressure scheme.

Remark 7.7 In the problem with source terms, the condition (7.59) will be modified as follows:

k < inf m(K) (1-¢) .
- KeT Z TK‘L(pL _pK)+ + G-([;"") 4 V_[((+)
LEN(K)
The initial condition is discretized by:
1
0 -~ K . .
uj (K /Kuo(m)dw, VK eT (7.60)

We extend the definition of @ by 0 on 902~ x IR, and we define u, for K € 7 and n € IN, by

1 (n+1)k
I ) m if K 9]
W= R L s Dd @, i m(K 000) £0, 1)

a% =0, if m(OK NoN) =0.

Hence the following function may be defined on 02 x IR :

ark(z,t) =k, Ve € OKNON,VK € T,Vt € [nk,(n +1)k), n € IN.

The finite volume discretization of the hyperbolic equation (7.51) is then written as the following relation
between w7 and all u}, L € T.

m(K) (i —uf)—k [ D rrpuksor—pr) +8RGE —ukGlO] =0, VK € T, vn e N, (7.62)
LeN(K)
in which the upstream value uY ; is defined by

UTIl(,L =uk, if px > pr,

. 7.63
ufk = up, if pr > pk. ( )

The approximate solution, denoted by wr , is defined a.e. from  x R4y — to IR by

urk(z,t) =uk, Ve e K,VK € T, Vt € [nk,(n +1)k), Vn € IN. (7.64)
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Remark 7.8 In the case of source terms, the following term is defined:
(n+1)k
sk = / s(x, t)dxdt

and the term k(s}‘(VIE,H — u’}(VI((_)) is added to the right hand side of (7.62) .

7.3.5 Estimates on the approximate solution
Estimate in L°(Q x R7})

Lemma 7.1 Under the assumptions 7.2 and 7.8, let T be an admissible mesh in the sense of Definition
3.5 page 62 and k > 0 satisfying (7.59). Then, the function ur defined by (7.52)-(7.54) and (7.60)-
(7.64) satisfies

lluT kllLe(@xmy) < max{{|uollLe (), 1@l (pa+ xm1)} (7.65)

PRrOOF of Lemma 7.1
Relation (7.62) can be written as

k — —
upt = ui | _m( Z Tk |L(PK — PL) +GEK))]+
. LeN(K)
() 3 rripud(on — pr)T + G k).
LeN(K)

Using

Z TK‘L(pL —pK)+ +GS;) = Z TK|L(pK —pL)7 +G([;)a
LEN(K) LeEN(K)

and Tnequality (7.59), the term u/;"" may be expressed as a linear combination of terms u}, L € T, and

a'%, with positive coefficients. Thanks to relation (7.58), the sum of these coefficients is equal to 1. The
estimate (7.65) follows by an easy induction. m

Remark 7.9 In the case of source terms, Lemma 7.1 remains true with the following estimate instead
of (7.65):

||UTk||L°°(Q><IR )<max{”U0“L°°(Q) (]| Lo (0Q+ xR} ) |E; ||L°°(Q><]R )}

Weak BV estimate

Lemma 7.2 Under the assumptions 7.2 and 7.3, let T be an admissible mesh in the sense of Definition
3.5 page 62. Let h = size(T) and a > 0 be such that d, > ah for all o € Eing. Let k > 0 satisfying (7.59).
Let {u’, K € T, n € IN} be the solution to (7.60)-(7.63) with {px, K € T} given by (7.52)-(7.54). Let
T > k be a given real value, and let Nt be the integer value such that N7k < T < (Nt + 1)k. Then
there exists H, which only depends on T, Q, ug, u, g, o and &, such that the following inequality holds:

Nz g Nz g

H
Y. Y mrlpr —prllu — o +£Y D ST G i —a| < —~. (7.66)

n=0 K|LEEint n=0 KE€T

=
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PROOF of Lemma 7.2
For n € IN and K € 7T, multiplying (7.62) by u% yields

m(K) (uul —ukul) — k(Y mrpul puik (o — pr) + GRu G — (Wk)*GY)) = 0. (7.67)

LeN(K)

Writing ur uf — uhuly = —2(upt! —ul)? — 2(uk)? + 2 (uFH")? and summing (7.67) on K € T and
n€{0,...,Nr} gives

1 1 N

1
—5 2 > mE) i —uR)? + 5 > m(E)((ug" )~ (u)?)
n=0KeT KeT
N,k (7.68)

_kz Z Z Tr| LU, Wk (PL — PK) + arur G — )26y =o.

n=0KeT LeN(K)
Using (7.63) gives, for all K € T,

> Trpukuk(er —pr) = Y, Trn(ui)’(ex —pr)t - Y Trppupui(pr —pr)t.

LeN(K) LeN(K) LeN(K)
Then,

=Y > mrpuk ok —pr) =Y > k)’ — uiuk)(px —pr)T.

KeT LEN(K) KeT LEN(K)
> —uput = (ufk —ui)® + 3((uk)? — (uf)?),

=3 ) mrppuipuk(er —pr) = Y D Trn(uk —uf)*(px —pr)t

KeT LeN(K) KeT LeEN(K)

IZ Z 7k L (k) *(px —pr)*

KeT LEN(K)

Z Z TK|L (uf) (pK pL)

KeT LeN(K)

= 22 Z i (ufe — uf)*(px —pL) "

KeTLeN(K)

Z Z TK|L (uk) pK pL)

KeT LEN(K)

M n
Therefore, since (u7%)

and, using (7.58),

=3 > mrpukukr—pr)= 1YY trp(uk —uf) (px —pr)t

KeT LeEN(K) KeTLeN(K)
1 z G(+) z G( )
KeT KET
Hence
Nt

_kz Z ( Z TK\LU?(,Lu}(pL —pK) + ﬂ’}(u’}{Gg) _ (U%)2Gg€)) _

n=0 KET LEN(K)

Nt i

YOS trinlor —prli —up)? + Y G5 (u — ap)?) - (7.69)
n=0 K|LEEn: KeT
N,k

Y S (@GP @) - 65 wi)?).

n=0KeT
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Using (7.62), we get

N,k Nt

- n n : k2 n n - 2
Z Z m(K)(ug"" - uk)” = Z Z m(K) ( Z Tk |1k, (P — PK) + G - KG%)) .
n=0KeT n=0KeT LEN(K)

Then, for all K € T, using again (7.58) and the definition (7.63),

Nt
2 2 mE) i —uk)” =
n=0KeT
Nt i

—=T n 2
3 Z (Y mrn(u} —uf)(pr - px)* + G (@ — uf))”.
n= OKGT LEN(K)

The Cauchy-Schwarz inequality yields

Ntk Ntk

> S w3 Y (30 menten -+ 65)
n=0KeT n= OKeT LeN(K)

> rinon = pi) (g = i) + G<+>< — ).
LeN(K)

Using the stability condition (7.59) and reordering the summations gives

NT,k NT,k
Yo D mE) (i — )’ < Y k(1-§)
n=0KeT n=0 (7.70)
> el - prll - w)? + 30 G @ - up)?).
K|LEEins KeT

Using (7.68), (7.69) and (7.70), we obtain

> m(K)((ug™ )2 - (u%)?)

KeTN

T,k

+5k2( > wilpi —pol(ui —up)? + Y0 G (u — ak)?) (7.71)
n=0 K|LEEins KeT
Nt i

—kY° Y0 (G R) - G WR)) <o.
n=0KeT

Then, setting Cy = m(Q)||u0||im(Q) + 2TG(+)”U’”L°°(8Q+><IR*) which only depends on Q, ug, 7', g and u,

Nz g
S m(E) (™ 2+ 8 S 6 (wi)? < ¢y
KeT n=0KeT
(this inequality will not be used in the sequel) and
Nt & Nt & C
_ 4
kz Z Tk |L|PK — pr|(uk — u?)? + kz z Gg) (uf —al%)? < R (7.72)

n=0 K|LEEins n=0KeT

The Cauchy-Schwarz inequality yields
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IV'I")c NT,k
kY Y e —polluf —uf | + £ S G |u — a | <
n=0 K|LEE;nt n=0KeT
JVT,)C NT,k
1
kY Y mrulpx —poluk —u)? + k> Y G (uk —ak)?)? (7.73)
n=0 K|LEE&;nt n=0KeT
Nz g 1
2
(kZ( > kil —pul+ ) Gg)))
n=0 K|LEEn KeT
The expression W, defined by W = Z Tk|L|PK — 1|, verifies
K|LE&n:
W <( Z r1L) % ( Z i (Pr — pr)?)E < Cs( Z )|L)? (7.74)
K‘LEgint KlLEgint KlLEgint
using (7.57). Recall that C3 only depends on g and .
Since
1 dm(Q
! «
K|LEEins K|LEEn
and
Y6 = [ gt@ara),
KeT 09
we finally conclude that (7.66) holds.
Ntk
Remark 7.10 In the case of source terms, one adds the term k Z Z VI((+)|u?( — s%| in the left hand
n=0KeT

side of (7.66) (and H also depends on v and s).

7.3.6 Theorem of convergence

We already know, by the results of section 3.2 page 62, that the pressure scheme converges. Let us now
prove the convergence of the saturation scheme (7.62). Thanks to the estimate (7.65) in L>(Q x RY)
(Lemma 7.1), for any sequence of meshes and time steps, such that the size of the mesh tends to 0, we can
extract a subsequence such that the approximate saturation converges to a function u in L*(Q x ]Ri)
for the weak-x topology. We have to show that u is the (unique) solution of (7.49), (7.51) (the uniqueness
of the solution is given by Assumption 7.3).

Theorem 7.1 Under assumptions 7.2 and 7.3, let £ € (0,1) and a > 0 be given. For an admissible mesh
T, in the sense of Definition 3.5 page 62, such that d, > « size(T) for all o € Einy and for a time step
k > 0 satisfying (7.59), let ur ), be defined by (7.52)-(7.54) and (7.60)-(7.64). Then wr ) converges to
the solution u of (7.49), (7.51) in L>(Q2 x RY) for the weak-x topology, as size(T) — 0.

PRrROOF of Theorem 7.1

In the case g(z) = 0 for a.e. (for the (d—1)-dimensional Lebesgue measure) x € 912, the proof of Theorem
7.1 is easy. Indeed, Vp(x) = 0 for a.e. z € Q and, for any mesh and time step, px — pr, = 0 for all K,
L € T. Then, u% = u% for all K € T and all n € IN. Therefore, it is easy to prove that the sequence
uT k, converges, as size(7) — 0 (for any k...), to u, defined by u(z,t) = uo(z) for a.e. (z,t) € Q@ x Ry;
note that u is the unique solution to (7.49), (7.51).
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Let us now assume that g is not the null function in L?(09Q).

Let (Tm, km)men be a sequence of space meshes and time steps. For all m € IN, assume that 7, is an
admissible mesh in the sense of Definition 3.5, that d, > asize(T,,) for all ¢ € &y and that k,, > 0
satisfies (7.59) (with k = k,, and T = T,,). Assume also that size(7,,) — 0 as m — oc.

Let w,, be the function wr defined by (7.52)-(7.54) and (7.60)-(7.64), for 7 = T, and k = k. By
Lemma 7.1, the sequence (um)men is bounded in L>°(©2 x IR ). In order to prove that the sequence
(4m)men converges in L>(Q x IR} ) for the weak-x topology to the solution of (7.49), (7.51), using a
classical contradiction argument, it is sufficient to prove that if up, — v in L*°(2 x R%) for the weak-%
topology then the function u is a solution of (7.49), (7.51).

Let us proceed in two steps. In the first step, it is proved that k,, — 0 as m — oo. Then, in the second
step, it is proved that the function u is a solution of (7.49), (7.51).

From now on, the index “m” is omitted.

Step 1 (proof of k - 0 as m — o0)

The proof that k¥ — 0 (as m — co) uses (7.59) and the fact that size(7) — 0.Indeed, define

Ar= Y wm(K|L)px —pl;
K|LEEins

and, for o € &y, define x, from Q x Q to {0,1} by
Xo(z,y) =1, if o N[z,y] # 0,

Xo’(m,y) =0, lfUﬂ[UJ,y] = 0.

Let € R%\ {0} and @ C Q be a compact set such that d(@,Q¢) > 7. Recall that pr is defined by
pr(x) = pk for a.e. x € K and all K € T. For a.e. x € @ one has

lpr@+n) —pr@) < > xol®z+n)lpx —pLl,
0=K|LEE;nt

integrating this inequality over @ yields, using [ x,(x,z + n)dz < |n|m(0),

lpr(- +n) = prllLi(@) < InlAT. (7.76)

Assume A7 — 0 as m — oo. Then, since pr — p in L!(Q), one deduces from (7.76) that Vp = 0 a.e. on
Q) which is impossible (since g is not the null function in L2(8Q)). By the same way, it is also impossible
that A7+ — 0 for a subsequence. Then there exists a > 0 (only depending on the sequence (p7)men,
recall that pr = p7,, since we omit the index m) such that A; > a for all m € IN.

Therefore, since Ay = Z Z m(K|L)(pr, — px)t > a, there exists K € T such that

KeT LEN(K)
m(K
> mEID G - )" > ag),
LEN(K)
Then, since 7k, = m(K|L)/dk | and dg|z < 2h,
i m(K)
Z Tk|L(PL — PK)T 2 2 hm(Q)’

LEN(K)
which yields, using (7.59),

k< (- f)m(ﬂ)sh.

Hence k — 0 as m — oo (since h — 0 as m — o00). This concludes Step 1.
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Step 2 (proof of u solution to (7.51))

Let ¢ € D(QF x Ry). Let T > 0 such that, for allt > T — 1 and all z € Q, p(z,t) = 0. Let m € IN such
that h < 1 and k < 1 (thanks to Step 1, this is true for m large enough). Recall that we denote T = Ty,
h = size(Ty,) and k = ky,. Let Nrj € IN be such that Nr gk < T < (N7 + 1)k. Multiplying equation
(7.62) by p(xk,nk) and summing the result on K € 7 and n € IN yields

Eim+ By =0,

with
Ntk
Eim=5" 3 m(E) i - ul)e(ww,nk)
n=0 KeT
and

Nt

Bom==3kY (Y mrpuicrlon —px) + G uk — Gl uie ) plaxc, nk).
n=0 KecT LEN(K)

It is shown below that

lim By, =T, (7.77)
m—0o0
where
Ti=— [ [ ule e dsdt — [ uo(@)pla,0)ds,
R, JQ Q2
and that
lim E5 ., =T>, (7.78)
m—r0o0
where

T> :/]RJr/Qu(:c,t)Vp(a:) -V<P(a:,t)dacdt—/]RJr /8Q a(z, t)p(z, t)g(z)dy(z)dt.

Then, passing to the limit in Fy ,, + E» ,, = 0 proves that w is the (unique) solution of (7.49), (7.51) and
concludes the proof of Theorem 7.1.

Let us first prove (7.77). Writing E , in the following way:

Nk

El,m — Z Zm(K)SO('Z'Ka(n — I)Z) - SO(mKJnk)U?( _ Zm(K)UOK(P(l'K,O),
n=1 KeT KeT

the assertion (7.77) is easily proved, in the same way as, for instance, in the proof of Theorem 4.2 page
109.

Let us prove now (7.78). To this purpose, we need auxiliary expressions, which make use of the conver-
gence of the approximate pressure to the continuous one. Define Ej3 ,, and Ey ,, by

Nt

Fam = Yk 3 (whe—up) 225 [ R

d
n=0 K|LE€Ewn: K|L

+Zok KZT@;; _an) /6 sl k(@)

and
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(n+1)k
Eym = nezm/"k (/QUT,k(xat)vP(x) - Vo(z, nk)ds — /39 ur k(2 t)p(z, nk)g(z)dy(z))dt.

We have E4 ,,, — T» as m — oo thanks to the convergence of ur ) to v in L®(Q x IR) for the weak-x
topology and to the convergence of 47 to @ in L>®(0QF x R4) for the weak-* topology (the latter
convergence holds also in LP(Q+ x (0,5)) for all 1 < p < oo and all 0 < S < 00). Let us prove that
|E3,m — E4,m| = 0 as m — oo (which gives Es ,, = T» as m — c0).

using the equation satisfied by p leads to

Nr g

Eym = Zk‘ E (u% —ul) /K|L o(z,nk)Vp(z) - ng, dy(z)

n=0 K|LEEn:
Nt

AR k) [ gl b )
n=0 KeT OKNOQ
Therefore,
Ntk

Bam—Eim = 3k Y (uk—up) [ (P52~ Vp(a) - nxn)pa b (o)
n=0 K|LEEm: KL CK|L
Nt

=S kY [ PP O mcele k@)

n=0 KeT  LeN(K) k|1
Using the equation satisfied by the pressure in (7.47) and the pressure scheme (7.53) yields

Nt

Pam=Fim=3 kY ui( 3 [ (P2 Vp(a) i) (ol k) — ple, mh) e )
)

d
n=0 KeT  LeN(K KL

Thanks to the regularity of ¢ and p, there exists Cs > 0, only depending on p, and Cy, only depending
on ¢, such that, for all K|L € &y,

bL — Pk
dk|L

pbL — Pk
-V
| dk|L

and, for all K € T,

1
p@) nx.0)| < - o V@) mRadi(@)] + Coh, Vo € K|

lo(z,nk) — p(zK,nk)| < Ceh, Vz € K, ¥n € IN.

Thus,
Nk
|E3,m — Ea,m| SZ"JZW?A( > lmkpr —px) - Vp(ﬂ?)'nK,LdV(w)l)Ceh
n=0 KeT LEN(K) K|L
Nt i
+Y kY lukl( Y m(K|L)CsCsh),
n=0 KeT LEN(K)

which leads to |Es m — E4,;m| — 0 as m — oo, using (7.56), (7.75) and the Cauchy-Schwarz inequality.
In order to prove that Es,, — T> as m — oo (which concludes the proof of Theorem 7.1), let us show
that |Ey,m — E3,m| = 0 as m — oo.

We get, using (7.58) and (7.63)
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Nr g

Eym = —Zk Z x| (uL — vk)(PL — Px)P(TK, 1K)

n=0 K|LEEmn:

Nz,
—Zkz G(+)<,0(a:K,nk).
n=0 KeT
This yields
N,k
By —Bam= Y k Y 7r(uk —u})(pr — K)ok r+
gy (7.79)
Sk ik —ap)GE o,
n=0 KeT
where
bkr = m /KL o(z,nk)dy(z) — p(zk,nk), VK € T, VL € N(K)
and

ng)qﬁ’}( = / o(z,nk)g(z)dy(z) — ng)go(:c;{,nk).
AKNON

We recall that, for all z € 9Q, ¢(z,nk)gt (z) = ¢(z,nk)g(z), by definition of D(Q* x R ). Therefore,
there exists C7, which only depends on ¢, such that [¢% ;| < Crh and G |¢%| < G Crh, for all
K €T, L e N(K) and all n € IN. Therefore, using Lemma 7.2, we get |E3 , — E2 | < C’7h% which
yields |Es , — E3,m| — 0 and then Es ,, — T> as m — oo. This concludes the proof of Theorem 7.1.

|

Remark 7.11 In the case of source terms, the convergence theorem 7.1 still holds. There are some minor
modifications in the proof The definitions of Fs i, E3 , and Ey ,, change. In the definition of Ey ,,, the

quantity G(Jr G( u'% is replaced by G(+) G( Jyn % + V(+) V( Dy %. In the definition of
E3 , one adds

Ntk

Z k Z (u — s%) /K vt (z)p(z,nk)dz.

n=0 KeT

The quantity FE3,, — F4,, does not change and in order to prove E3 , — E» , — 0 it is sufficient to
remark that there exists Cs, only depending on ¢, such that

|/ o(z, nk)yvt (z)dz — VD (@, nk)| < VP Csh.
K
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