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Abstract
Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global 
climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different 
from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation 
or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent 
heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale 
of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations 
from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This 
link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the 
IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind 
speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east–west 
contrasts.

Keywords  Climate model biases · AMIP simulations · Coupled simulations · Latent heat flux · Sea surface temperature · 
Sensitivity tests

1  Introduction

Most current coupled ocean-atmosphere global general 
circulation models suffer from important biases in the sea 
surface temperature (SST) fields over the tropical oceans, 
as shown in the coupled model inter-comparison project 
(CMIP) (Li and Xie 2012; Reichler and Kim 2008). These 
SST errors, affecting all tropical oceans, are mainly charac-
terized by (1) an overly pronounced equatorial cold tongue 
that is too narrow, resulting in warm biases straddling the 
cold equatorial bias, and penetrates too far westward into the 
Pacific ocean (Mechoso et al. 1995; Szoeke and Xie 2008), 
(2) a warm bias located in the eastern part of the equatorial 

Pacific and Atlantic oceans which, in the case of the Atlan-
tic, leads to a weakening or reversal of the zonal SST gradi-
ent along the equator (Davey et al. 2002; Richter and Xie 
2008) and (3) warm biases over the eastern tropical Pacific 
and Atlantic oceans (Richter 2015; Vanniere et al. 2014). A 
large number of coupled ocean-atmosphere models share 
these systematic SST errors and several studies have high-
lighted their persistence despite steady progress in climate 
modeling, physics and ocean-atmosphere coupling (Reichler 
and Kim 2008; Zheng et al. 2011; Xu et al. 2014a). The 
atmosphere models are very sensitive to the SST errors over 
the tropical oceans, thus limiting the reliability of coupled 
ocean-atmosphere model future projections for climate vari-
ability modes such as the Atlantic Ñino or the West African 
monsoon (Batte and Deque 2011; Roehrig et al. 2013).

Some mechanisms were identified as potential sources 
of the SST errors in coupled models. Focusing on atmos-
pheric causes, several studies have shown wind biases to be a 
driver of the erroneous ocean mean state (Chang et al. 2007; 
Szoeke and Xie 2008; Richter and Xie 2008; Wahl et al. 
2011; Voldoire et al. 2014). Other studies have pointed out 
that atmospheric radiative biases, resulting from the difficul-
ties of atmospheric models to adequately represent the low 
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level atmospheric humidity and the strato-cumulus clouds, 
were the main source of the SST bias along the Atlantic 
African coast (Hu et al. 2011; Lin 2007). In an ocean-ori-
ented view, other authors have emphasized the role of the 
ocean component that fails to correctly represent the coastal 
upwelling, as shown to be the case in the tropical Pacific by 
Zheng et al. (2011).

Recently, Hourdin et  al. (2015) have identified the 
important role of the surface latent heat flux (LH) in forced 
atmospheric simulations, that shows an effect as strong as 
the cloud radiative effect in controlling the intensity of the 
eastern tropical warm bias in the CMIP5 simulations. They 
have found that, relative to the tropical mean, the models 
with the largest warm biases in the eastern tropical oceans 
in coupled mode are associated with the strongest regional 
surface incoming radiation and weakest regional evaporation 
in forced atmosphere mode. In particular, they highlighted a 
key role in the evaporation played by the near-surface rela-
tive humidity.

The aim of the present study is to go one step further in 
the analysis of the relationship between LH in the CMIP5 
stand-alone atmospheric (AMIP) simulations and SST in 
the ocean-atmosphere coupled (CPL) simulations, this time, 
at the scale of the entire intertropical oceans domain. In 
Sect. 2, we analyze the CMIP5 simulations for the historical 
period and find a systematic correlation between the spatial 
patterns of the climatological LH biases in AMIP simula-
tions and the climatological SST biases in CPL simulations. 
To highlight the link between these AMIP and CPL biases, 
we first decompose the LH bias in separate components due 
to biases in the associated state variables (Sect. 3.1) and 
then we complement the CMIP5 analysis with two sets of 
sensitivity experiments with the IPSL-CM5A-LR model, 
designed to focus on (1) how surface wind affects both 
AMIP LH and CPL SST (Sect.  3.2) and (2) how the local 
near-surface relative humidity affects the AMIP LH and in 
turn the CPL SST (Sect. 3.3). We summarize and discuss 
our findings in Sect. 4.

2 � Parallel analysis of the CMIP5 AMIP 
and CPL historical simulations

2.1 � Climatological surface fluxes and sea surface 
temperatures

This first section focuses on the joint analysis of pairs of 
CMIP5 (Taylor et al. 2012) historical coupled simulations 
(CPL) and atmospheric simulations forced with observa-
tional sea surface temperatures and sea ice cover (AMIP) 
(Taylor et al. 2000; Hurrell et al. 2008) performed with the 
same atmospheric general circulation model.

We consider climatologies of AMIP latent heat fluxes 
(LH—defined positive upwards) and CPL sea surface tem-
peratures (SST) for the common period 1979–2005. The 
CMIP5 models for which both simulation outputs are avail-
able are listed in Table 1.

Our analysis focuses on the joint evaluation of the model 
climatological annual mean spatial patterns for these two 
variables over the intertropical oceans (30◦S–30◦ N) against 
observational data. We use an ensemble of several in situ-
based, satellite-based and blended flux products (Găinuşă-
Bogdan et al. 2015) and, after regridding both models and 
observational fields onto a common grid (that of the IPSL-
CM5A-LR model), we calculate the climatological model 
biases with respect to each product for both AMIP LH and 
CPL SST. Since this results in similar large-scale bias fea-
tures, here we show, for each model, the average of these 
different bias estimates.

Differences in model tuning can result in marked differ-
ences between the magnitudes of the variables considered 
here, as well as in differences in the relationship between the 
LH and SST bias magnitudes. As we do not focus on model 
tuning in this paper, we reduce its effect on our analyses by 
removing the mean bias over the study domain from the 
bias fields, thus obtaining what we will refer to as “bias pat-
tern”: (M − O) − (M − O) , where M stands for model field, 
O stands for observational field and the upper bar denotes a 
spatial average over our spatial domain. Removing the mean 
bias also avoids placing excessive confidence on the mean 
observational latent heat flux magnitudes, known to vary 
widely among observational products (WCRP 2000; Bou-
rassa et al. 2008; Smith et al. 2011; Chaudhuri et al. 2013; 
Josey and Berry 2010; Gulev et al. 2010; Tomita et al. 2010; 
Kumar et al. 2012; Găinuşă-Bogdan et al. 2015).

We find that, over wide regions, the SST bias patterns 
in many of the CMIP5 coupled simulations correspond to 
bias patterns of reversed sign in the LH fields of the forced 
atmospheric simulations. In other words, in regions where 
the atmospheric models develop relatively exaggerated sur-
face latent heat fluxes under correct SST conditions, the cou-
pled ocean-atmosphere models develop relatively cold sea 
surface biases and vice versa. This relationship is illustrated 
in Fig. 1, which shows the CMIP5 ensemble means for the 
AMIP LH and CPL SST bias patterns. This relationship, 
which suggests a direct and local influence of latent heat 
fluxes on SSTs is not surprising per se but the robustness of 
the relationship (further described in the following section) 
is indicative of a key process.

2.2 � Characterization of the relationship 
between AMIP LH and CPL SST bias patterns

The relationship between the AMIP LH and CPL 
SST bias patterns differs in strength between models. 
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Figure  2a shows two measures of this relationship strength 
for each model. The top panel shows the interquar-
tile ranges and medians for the ratios of the climato-
logical AMIP LH to CPL SST bias patterns evaluated 
at each grid point (i.e., for the statistical distribution  
o f  [(LH

AMIP
− LH

OBS
) − (LH

AMIP
− LH

OBS
)]∕[(SST

CPL
−

SST
OBS

) − (SST
CPL

− SST
OBS

)] values over the intertropi-
cal oceans domain). The values of these ratios typically 
vary between −30 and 20 W/m 2/◦ C, but their medians are 
negative for all models, representative of the systematically 
inverse relationship between the large-scale AMIP LH and 
the CPL SST bias patterns. The medians of their ratios have 
an average of −7.2 W/m2/◦ C and range from −2.5 W/m2/◦ C 
for IPSL-CM5B-LR to −17.1 W/m2/◦ C for CSIRO-Mk3-6-0.

The bottom panel in Fig. 2a shows the percent of the 
CPL SST bias pattern variance explained by the corre-
sponding AMIP LH bias pattern for each model analyzed. 
This statistic is calculated as the squared norm of the pro-
jection of the CPL SST bias pattern field on the AMIP LH 

bias pattern, divided by the squared norm of the CPL SST 
bias pattern (see “Appendix”), so that a perfect projec-
tion would correspond to 100% explained variance. This 
explained variance ranges from 3% for CESM1-CAM5 to 
59% for FGOALS-s2. Note that: (1) there is no correlation 
between the bias pattern ratios (top panel of Fig. 2a—a 
measure of local magnitude of the relationship) and the 
explained variance (bottom panel of Fig. 2a—measure of 
pattern correspondence); (2) there is also no correlation 
between the median values of the bias pattern ratios (red 
lines on the top panel of Fig. 2a) and their spread (range of 
values spanned by the blue rectangles on the same figure) 
for each model. There is thus a great range of variability 
among the models in the relationship between the AMIP 
LH and the CPL SST bias patterns.

To illustrate the variability in spatial distributions 
among models, in Fig. 2b–d we show the pairs of AMIP 
LH and CPL SST bias patterns for three particular models:

Table 1   List of CMIP5 models included in this study

Models marked with an asterisk are also included in the decomposition analysis in Sect. 3.1

Model Modeling center References

ACCES1-0∗    Commonwealth Scientific and Industrial Research Organization (CSIRO), Bureau of Meteorol-
ogy (BOM)

Bi et al. (2013)

ACCES1-3∗    CSIRO, BOM Bi et al. (2013)
BCC-CSM1-1    Beijing Climate Center, China Meteorological Administration (BCC) Xin et al. (2013)
BCC-CSM1-1-m    BCC Xin et al. (2013)
BNU-ESM∗    College of Global Change and Earth System Science (GCESS), Beijing Normal University Ji et al. (2014)
CCSM4    National Center for Atmospheric Research (NCAR) Gent et al. (2011)
CESM1-CAM5    National Science Foundation (NSF), Department of Energy (DOE), NCAR​ Kay et al. (2015)
CMCC-CM    Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) Scoccimarro et al. (2011)
CNRM-CM5∗    Centre National de Recherches Météorologiques (CNRM), Centre Européen de Recherche et de 

Formation Avancée en Calcul Scientifique (CERFACS)
Voldoire et al. (2013)

CSIRO-Mk3-6-0∗    Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Climate 
Change Centre of Excellence (QCCCE)

Jeffrey et al. (2013)

FGOALS-g2    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid 
Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP), 
Center of Earth System Science, Tsinghua University (CESS)

Li et al. (2013)

FGOALS-s2∗    LASG, IAP Bao et al. (2013)
GFDL-CM3∗    National Oceanic and Atmospheric Administration (NOAA), Geophysical Fluid Dynamics 

Laboratory (GFDL)
Griffies et al. (2011)

INMCM4    Institute for Numerical Mathematics Volodin et al. (2010)
IPSL-CM5A-LR∗    Institute Pierre-Simon Laplace (IPSL) Dufresne et al. (2013)
IPSL-CM5A-MR    IPSL Dufresne et al. (2013)
IPSL-CM5B-LR∗    IPSL Dufresne et al. (2013)
MIROC5∗    Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 

Environmental Studies, Japan Agency for Marine-Earth Science and Technology
Watanabe et al. (2010)

MPI-ESM-LR    Max Planck Institute for Meteorology (MPI-M) Giorgetta et al. (2013)
MPI-ESM-MR    MPI-M Giorgetta et al. (2013)
MRI-CGCM3∗    Meteorological Research Institute (MRI) Yukimoto et al. (2012)
NorESM1-M    Norwegian Climate Centre (NCC) Bentsen et al. (2012)
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•	 IPSL-CM5A-LR—found to have the sixth strongest 
AMIP LH - CPL SST bias relationship among the mod-
els considered (it is used for sensitivity experiments in 
Sects. 3.2 and 3.3);

•	 ACCESS1-3—found to have the sixth weakest relation-
ship

•	 CSIRO-Mk3-6-0—the only one of the analyzed mod-
els to have a markedly different CPL SST bias pattern 
compared to the the CMIP5 composite shown in Fig. 1b; 
ranked 14 out of the 22 models in terms of their SST bias 
variance explained by the AMIP LH bias pattern.

Ignoring the mean biases and focusing solely on their 
patterns reveals very similar structures of opposite signs 
between the tropical AMIP LH and CPL SST biases in all 
three ocean basins in IPSL-CM5A-LR (Fig. 2b). For this 
model, the AMIP LH bias explains 33% of the spatial vari-
ance in the SST bias pattern (Fig. 2a).

Wide-spread correspondence of AMIP and CPL bias pat-
terns is found for all models with higher or similar scores to 
IPSL-CM5A-LR in Fig. 2a. Even down to 23% explained 
variance, a pattern correspondence is apparent over most of 
the intertropical ocean basins, as seen for CSIRO-Mk3-6-0 in 
Fig. 2c. Even though the SST bias in this model bares some 
marked differences from most of the CMIP5 models (e.g., no 
warm bias in the south-east Pacific and Atlantic basins), the 
inverse AMIP LH - CPL SST bias pattern relationship still 
holds for wide areas over the Indian Ocean, the Pacific and the 
tropical South Atlantic. A notable exception, where relatively 
exaggerated atmospheric latent heat fluxes in the CSIRO-
Mk-3-6-0 forced atmospheric model are not consistent with 

the relatively overestimated coupled model SSTs in the present 
optic, is over the tropical North Atlantic (Fig. 2c).

Even for the models in the lower end of the AMIP LH - 
CPL SST bias relationship spectrum in Fig. 2a, the mark of 
this relationship is visible in certain regions. For example, for 
the sixth lowest ranked model, ACCESS1-3 (15% explained 
variance, Fig. 2a), the spatial signature of this relationship is 
virtually absent over most of the Pacific basin, but is visible in 
the tropical south-east Pacific coastal region and partly in the 
Indian and tropical Atlantic oceans (Fig. 2d).

A correspondence of sea surface temperature biases in cou-
pled ocean-atmosphere simulations with the latent heat flux 
bias patterns in forced atmospheric simulations is thus found 
over a wide array of models.

3 � Separating contributions to the latent 
heat flux biases

3.1 � Decomposition of the latent heat flux bias 
into its different atmospheric contributions

In order to identify the possible origins of the latent heat flux 
biases, we apply the decomposition of Hourdin et al. (2015). 
The latent heat flux reads:

where � is the near-surface air density, L is the latent heat of 
vaporization, CE is the bulk transfer coefficient for humid-
ity, |Va| is the near-surface wind velocity, q sat

(
Ts
)
 is the 

saturation humidity at the sea surface temperature, qa is the 

(1)LH = �LCE|Va|
[
�q sat

(
Ts
)
− qa

]

Fig. 1   Bias patterns for the 
CMIP5 composite: a forced 
atmospheric simulations latent 
heat flux; b coupled historical 
simulations sea surface tem-
perature

(a)

(b)
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near-surface specific air humidity and � ≃ 0.98 is introduced 
in some models to take into account the smaller evaporative 
capacity of salty compared to fresh water.

By introducing the relative humidity RH = qa∕q sat

(
Ta
)
 

and linearizing q sat

(
Ts
)
− q sat

(
Ta
)
 as a function of 

�T = Ts − Ta , Eq. 1 for the latent heat flux reads:

with � = �LCE . When using the Clausius–Clapeyron 
equation:

(2)LH = � |Va|
[
�
�q sat

�T (T=Ta)
�T + (� − RH) q sat

(
Ta
)]

(3)
�q sat

�T (T=Ta)
=

Lq sat

(
Ta
)

RvT
2
a

one obtains

where Rv is the gas constant for water vapor. This formula 
is usually applied at each model time step, and Ta and RHa 
correspond to the first model layer. Hourdin et al. (2015) 
show that the fluxes are well approximated by the above 
formula also when considering the climatological annual 
mean at standard observational levels, i.e., at 2 m for tem-
perature and humidity Ta = T2m and RH = RH2m , and at 
10 m for wind |Va| = V10m , if using an effective coefficient 
� = 1.7 × 10−3 × 2.5 × 106 J/m3.

The above formula can be differentiated with respect to 
variables |Va| , Ta , �T  , and RH to obtain the contribution of 

(4)LH = � |Va|q sat

(
Ta
)[
�

L�T

RvT
2
a

+ � − RH

]

Fig. 2   a Statistics describing the relationship between the AMIP LH 
and CPL SST bias patterns for 22 CMIP5 models—top: box plots 
representing the 25th and 75th percentiles (box edges) and medians 
(red marks) of the AMIP LH to CPL SST bias pattern ratios at every 
grid point over the intertropical oceans domain, bottom: percent of 
CPL SST bias pattern variance explained by the AMIP LH bias pat-

tern; examples of maps of AMIP LH and CPL SST bias patterns for: 
b IPSL-CM5A-LR; c CSIRO-Mk3-6-0; d ACCESS1-3. Values above 
upper right corners of maps represent the mean biases over the trop-
ics that were subtracted from the full bias fields in order to obtain the 
patterns presented on the maps
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the biases in these different variables to the latent heat flux 
bias: ΔLHapprox = ΔLH dyn + ΔLH Qsat + ΔLHRH + ΔLH�T , 
with

For variables ΔW10m , ΔT2m and Δ�T2m = Δ(SST − T2m) 
we estimate the model bias as for LH, using the product 
ensemble compiled by Găinuşă-Bogdan et al. (2015) (see 
Sect.  2.1). For RH2m we use the da  Silva et  al. (1994) 
climatology.

Figure 3 presents the comparison between the actual 
AMIP LH bias pattern and the one approximated by the 
above decomposition, as well as the various terms of this 
decomposition for the ensemble mean of a subset of 11 mod-
els for which all necessary variables were available (models 
marked with an asterisk in Table 1). The figure shows both 
the ensemble mean of each term (left) and the ensemble 
standard deviation quantifying the inter-model dispersion 
around this mean (right). Note that the ensemble mean 
AMIP LH bias pattern in Fig. 3a is very similar to the full 
CMIP5 ensemble mean bias pattern in Fig. 1a, so that we 
may consider this sub-ensemble mean as representative of 
the CMIP5 ensemble.

Although not perfect, the decomposition allows to repro-
duce reasonably well the observed latent heat flux bias pat-
tern. The LH bias pattern reconstructed from the decomposi-
tion terms, ΔLHapprox , exaggerates the horizontal gradients 
of the observed multi-model mean bias pattern, ΔLH , and 
the reconstructed inter-model spread of these patterns is 
larger than the one actually found in the subset of CMIP5 
models. The reconstructed pattern also shows some differ-
ences in structure compared to the ΔLH pattern in the central 
part of the tropical South Pacific. For all other regions, how-
ever, the spatial structures of the LH bias pattern are well 
captured in the reconstructed field. The agreement is in fact 

(5)ΔLH dyn = �Δ|Va| q sat

(
Ta
)[
�

L�T

RvT
2
a

+ � − RH

]

(6)

ΔLH Qsat = �|Va|
{

Lq sat

(
Ta
)

RvT
2
a

[
�

L�T

RvT
2
a

+ � − RH

]

−2�
L�T

RvT
3
a

q sat

(
Ta
)}

ΔTa

(7)

≃ �|Va|q sat

(
Ta
) L

RvT
2
a

[
� �T

(
L

RvT
2
a

−
2

Ta

)
+ � − RH

]
ΔTa

(8)ΔLHRH = −�|Va| q sat

(
Ta
)
ΔRH

(9)ΔLH�T = �|Va| × �
Lq sat

(
Ta
)

RvT
2
a

Δ�T

surprising when considering that it is computed on an annual 
basis, with highly uncertain observations and ignoring the 
dependence of the drag coefficient to wind, temperature and 
humidity.

Out of the individual terms, ΔLHdyn and ΔLHRH clearly 
dominate the reconstructed LH bias. In contrast, the Clau-
sius Clapeyron part is very weak because of the imposed 
sea surface temperature. The contribution of the surface—
atmosphere temperature contrast is also small compared to 
the two dominant terms.

As was already discussed by Hourdin et al. (2015), the 
effect of relative humidity dominates the east–west contrasts, 
with a pattern which shares strong similarities with that of 
the mean CMIP5 SST biases. The effect of wind, which was 
not considered in the aforementioned paper, is more impor-
tant on the center of oceanic basins and displays structures 
that are more elongated zonally. Interestingly, the inter-
model dispersion for ΔLHdyn is very weak over the eastern 
side of the tropical oceans. Note that the effects of the wind 
and RH biases on ΔLH can partially compensate each other 
in certain regions, most notably in the south-east tropical 
Pacific and Atlantic basins.

In Fig. 4 we show the same decomposition, this time 
applied on the AMIP LH bias of the IPSL-CM5A-LR model. 
The same comments can be made globally as for the ensem-
ble discussed above. In the following, we use this model to 
demonstrate more directly, with sensitivity experiments, the 
impact of the wind and relative humidity biases on SSTs.

3.2 � Wind‑nudged simulations

In this section we explore the effect of the wind-induced 
latent heat flux biases by nudging the winds of the atmos-
pheric model towards the ERA-Interim reanalysis (Dee et al. 
2011) with a time constant of 3 h (see Coindreau et al. 2007 
for more details). This essentially consists in adding a relax-
ation term towards the reanalysis fields in the model equa-
tions. Although not direct observations, the wind reanalyses 
contain observational information, especially reliable over 
the oceanic surface where wind is constrained by scatterom-
eter observations. Note that, as shown in Găinuşă-Bogdan 
et al. (2015), reanalyses tend to underestimate near-surface 
wind speed magnitudes compared to other observational 
products. However, the wind speed patterns, which are the 
focus of the present analysis, are consistent between rea-
nalyses and other products, so reanalyses can successfully 
be used to correct model wind speed patterns.

The control (CTRL) and wind-nudged (WND) simula-
tions are initialized from December 1979 conditions of 
a pre-existing historical IPSL-CM5A-LR simulation and 
are run for 20 years. They are performed in both coupled 
(CPL) and forced atmospheric (AMIP) model configura-
tions and are compared to test to what extent wind nudging 
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can correct the AMIP LH bias pattern and whether the 
same wind correction leads to an improvement in the CPL 
SST pattern.

Figure 5 shows the effects of the horizontal wind nudg-
ing on the AMIP near-surface wind speed and latent heat 
flux patterns (subfigures b and c), as well as on the CPL 
sea surface temperature pattern (subfigure d). The wind 

nudging results in a partial correction of the AMIP LH 
bias pattern. The bias pattern amplitude, calculated as 
the standard deviation of the intertropical LH biases, 
decreases from 11 W/m2 for the CTRL to 7 W/m2 for the 
WND experiment. This difference is significant at the 99% 
confidence level if we consider the inter-observational 
spread. This AMIP LH pattern correction is consistent 

(a)

(c)

(e)

(g)

(i)

(k)

(b)

(d)

(f)

(h)

(j)

(l)

Fig. 3   a Latent heat flux composite bias pattern for the 11-model 
CMIP5 sub-ensemble in AMIP configuration; b inter-model standard 
deviation of the AMIP LH bias patterns for the same sub-ensemble; 
c–l left column: sub-ensemble composites; right column: sub-ensem-
ble standard deviations for the linear decomposition of the latent heat 

flux bias patterns. c, d Total reconstructed bias pattern; e, f bias pat-
tern associated to the wind speed bias; g, h bias pattern associated to 
the relative humidity bias; i, j bias pattern associated to the sea-air 
temperature contrast bias; k, l bias pattern associated to the saturation 
humidity bias
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Fig. 4   Linear decomposition of 
the latent heat flux bias pattern 
in the IPSL-CM5A-LR AMIP 
simulation: a original bias pat-
tern; b total reconstructed bias 
pattern; c bias pattern associ-
ated to the wind speed bias; d 
bias pattern associated to the 
relative humidity bias; e bias 
pattern associated to the sea-air 
temperature contrast bias; f bias 
pattern associated to the satura-
tion humidity bias

(a)

(b)

(c)

(d)

(e)

(f)
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with the W10m pattern difference between the WND and 
CTRL experiments: areas where the nudging results in 
relatively stronger wind typically show relatively stronger 
latent heat fluxes and vice-versa. The wind pattern change 
(Fig.  5b) explains 59% of the latent heat flux pattern 
change (Fig. 5c). Note that the spatial distribution of this 
AMIP LH pattern correction (Fig. 5c) matches to a great 
extent not just that of ΔLHdyn (Fig. 4c), but that of the full 
LH bias as well (Fig. 2b), once again highlighting the key 

role of the wind speed representation on the latent heat 
flux in this model.

Applying the wind-nudging in the coupled IPSL-CM5A-
LR model results in a modified sea surface temperature pat-
tern compared to the CTRL simulation (Fig. 5c). A part 
of this response is certainly dynamically driven through 
the direct effect of the wind nudging on wind stress and, in 
turn, on the ocean dynamics. Nevertheless, the SST change 
(Fig.  5d) is to a large degree consistent with a response 
to the correction of the AMIP LH pattern (Fig.  5c), as 

Fig. 5   a 10 m-level wind speed 
bias pattern for the AMIP 
CTRL simulation; pattern dif-
ferences between wind-nudged 
and control simulations for: b 
AMIP 10 m-level wind speed; c 
AMIP surface latent heat flux; d 
CPL sea surface temperature

(a)

(b)

(c)

(d)
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discussed above for the CMIP5 ensemble: regions where 
the latent heat fluxes are stronger in WND AMIP mode 
show relatively lower sea surface temperatures in WND CPL 
mode compared to the CTRL experiments (e.g., much of the 
Indian Ocean, subequatorial west Pacific, tropical north-east 
Pacific), and vice-versa (e.g., tropical-subtropical central and 
west Pacific, maximum trade wind regions in the Atlantic 
Ocean). Overall, the AMIP LH pattern correction explains 
30% of the variance in the CPL SST pattern. The CPL SST 
bias is overall reduced in terms of pattern amplitude, from 
a standard deviation of the SST bias pattern of 1.1 ◦ C in 
CTRL to 0.7 ◦ C in the WND experiment (Fig. 6 vs. SST 
bias pattern in Fig. 2b).

3.3 � Relative humidity‑based correction of LH

The second major component of the LH bias is ΔLHRH , 
as shown in Fig. 4c. ΔLHRH explains a large part of the 
east–west ΔLH contrasts. In this subsection, we attempt to 
synthetically correct the RH-related AMIP LH bias pattern 
and asses the impact that this has on the resulting CPL SST 
pattern.

In order to do so, we run a couple of AMIP (forced) and 
CPL (coupled), 20 year-long experiments with the IPSL-
CM5A-LR model (initialized from an existing pre-industrial 
run) where, at each grid point over the tropics, we apply a 
time-independent � factor to the latent heat exchange coef-
ficient used in the LH calculation (we will refer to these 
experiments as PERT). The specification of � is based on 
the following equation:

where LHM is the climatological average value of the simu-
lated latent heat flux, ΔLHRH is the LH bias related to RH 
(Eq. 8; the RH bias is shown in Fig. 7a) and ΔLHRH  repre-
sents the ΔLH averaged over the tropics (between 30◦ S and 
30◦ N and 180◦ E and 180◦W). The � factor can be seen as a 
correction factor (constant in time) applied on the exchange 
coefficient for latent heat flux, calibrated to correct LH from 
the effect of the annual mean bias pattern in relative humid-
ity. For the sake of simplicity and in order to focus on this 
mean effect, we do not consider the seasonality of RH biases 

(10)�LHM = LHM − ΔLHRH + ΔLHRH ,

in the definition of � , this sensitivity experiment aiming at 
demonstrating an effect, rather than at improving a model.

To highlight the effect of � on LH, Fig. 7b shows the 
normalized � field ( � − 1 ), in percent. Its pattern shows a 
significant east–west contrast, with maximum normalized 
� values over the eastern tropical oceans, consistent with 
the ΔLHRH pattern (Fig.  4d). A normalized local � factor of 
about 20% leads to a local change by more than 10 W/m2 in 
the latent heat flux compared to the intertropical average in 
the forced atmospheric simulation, PERT AMIP (Fig. 7c). 
In this experiment, the AMIP LH pattern is strengthened 
both over the northern and southern east tropical oceans, but 
weakened along the equator. Applying this � factor results 
in a strong, systematic reduction of the AMIP RH-related 
LH bias pattern (Fig.  4d), correcting 7 out of its 9 W/m2 
of amplitude.

Once again, the change in the LH pattern between the 
AMIP simulation with the � parameter and the control is 
reflected in the resulting change of SST pattern between the 
corresponding coupled simulations, with 28% of the vari-
ance of the change in CPL SST pattern being explained by 
the change in the AMIP LH pattern. Over the eastern tropi-
cal oceans, this corresponds to a modification of the SST 
pattern on the order of 0.5–1 ◦ C (Fig.  7d).

Note that the actual SST bias is not overall improved 
compared to the control experiment (Fig. 8 vs. Fig. 2b). The 
standard deviation of the PERT CPL SST bias pattern is, 
within the rounding error, the same as that of the control 
experiment (1.1 ◦C). This is partly because the change in 
SST is related to a partial, synthetic correction of not the 
full LH bias, but of a component of it (that associated to 
RH, ΔLHRH ), so that in the end its effect on the CPL SSTs is 
weak. Furthermore, because of the different (and sometimes 
opposed ways) in which the RH bias affects LH compared 
to the wind bias, in some regions a correction of the ΔLHRH 
pattern actually represents a worsening of the full LH bias 
pattern, since it adds to the wind-related bias. So while the 
associated SST pattern is improved in some regions, it is 
worsened in others by the perturbation in the LH calcula-
tion, so that at the scale of the tropics the PERT experiment 
does not result in a net improvement of the SST bias pattern.

Fig. 6   Wind-nudged coupled 
IPSL-CM5A-LR sea surface 
temperature bias pattern
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However, the purpose of these experiments is not to 
correct the SST bias pattern as such, but to test the coher-
ence between the imposed LH pattern change in the AMIP 
experiment and the associated SST pattern response in 
CPL mode, and to highlight the potential specific role 
of the moist bias on the eastern warm biases. As in the 
previous analyses, the changes in CPL SST pattern are 

indeed consistent with and of opposite sign compared to 
those in the AMIP LH pattern, indicating the same type 
of relationship between the latent heat flux in the forced 
atmospheric simulations and the sea surface temperature 
in coupled mode.

Fig. 7   a AMIP CTRL near-
surface relative humidity bias 
pattern; b normalized pattern of 
the � factor synthetically applied 
to the latent heat exchange coef-
ficient in the PERT simulations; 
c pattern of the mean latent heat 
flux differences between the 
forced PERT and CTRL simula-
tions; d pattern of the mean sea 
surface temperature differences 
between the coupled PERT and 
CTRL simulations

(a)

(b)

(c)

(d)
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4 � Discussion

Robust results emerge from the above analyses.
First, the patterns of latent heat flux biases in stand-alone 

atmospheric simulations are systematically and negatively 
correlated with patterns of SST biases in the coupled simu-
lations. This is true both at the individual scale for CMIP5 
models and when considering sensitivity experiments with 
the IPSL-CM5A-LR model. The relationship between fluxes 
and SSTs is on average of the order of −7 W/m2/◦C.

These results could have been expected. In the absence of 
other factors, a regionally-exaggerated/underestimated surface 
latent heat flux leads to excessive regional cooling/warming 
of the ocean surface and thus to an inverse pattern of SST 
bias. With an observationally-imposed SST field, errors in 
the atmospheric model reflect themselves on the distribution 
of other variables, such as the latent heat flux; when the SSTs 
are allowed to develop in the coupled model, the same atmos-
pheric biases can express themselves in the SST field.

Because of the different energetic adjustment in the models, 
it is also not surprising that, even in the hypothetical scenario 
where atmospheric model LH biases were the main cause of 
the SST biases developed in the CPL models, there is not a 
100% correspondence between the AMIP LH bias patterns and 
the CPL SST bias patterns. The correspondence of the large-
scale AMIP and CPL bias structures over most of the domain 
distinguishable in Fig.  2b does not result in more than 33% 
explained variance partly because the localization of the struc-
tures is not exactly the same (shifts of spatial structures are 
expected when transitioning from forced to coupled systems) 
and partly because the magnitudes corresponding to these pat-
terns are not linearly related, as other factors independent of 
the AMIP LH can influence the CPL SST. For individual mod-
els, this explained variance varies typically from 10 to 40%, 
and the mean regression from −5 to −10 W/m2/◦C.

It is worth reminding that comparing directly the LH 
biases in the coupled model with the SST biases would 
lead to a completely different and inextricable picture, the 
LH bias being generally dominated in coupled mode by the 
Clausius Clapeyron contribution ΔLH Qsat , related to the SST 
bias, leading to overestimated evaporation over a too warm 
ocean surface and vice-versa.

Two major contributors are clearly identified to explain 
the latent heat biases.

Biases in relative humidity dominate the zonal gradients 
(east–west contrasts) over tropical oceans, and explain, prob-
ably in part, the classical and systematic warm bias over the 
region of stratocumulus, over the eastern tropical oceanic 
basins. An overestimated relative humidity at the surface 
in these regions reduces the surface evaporation, and thus 
the cooling of the oceanic surface. Based on a multi-model 
analysis, Hourdin et al. (2015) have already identified that 
the contribution to the warm bias of the reduced evaporation 
was as strong on average in the CMIP5 ensemble as the over-
estimation of surface radiation due to a bad representation 
of stratocumulus clouds.

This direct impact of surface humidity biases on LH and 
SSTs which was deduced from an inter-model relationship 
in the CMIP5 ensemble is demonstrated here more directly 
with a sensitivity experiment with the IPSL-CM5A-LR 
model. When applying a correcting factor to the coupling 
coefficient that compensates for the error in the � − RH fac-
tor in the LH decomposition, the expected effect is obtained 
both in AMIP LH and CPL SSTs, highlighting a local effect 
of relative humidity on LH and on SSTs, despite the interac-
tions with the large-scale circulation (wind, water transport 
etc.). Note that there is an idea in the community that such 
an experience should not work because of compensating 
effects: an increased coupling coefficient would increase 
evaporation and then humidity, with a self limiting effect 
on evaporation. It is not the case when considering relative 
humidity, probably because relative humidity is to first order 
controlled by vertical mixing in the boundary layer.

Biases in surface wind also contribute strongly to the LH 
and SST biases. The effect is stronger than that of the RH 
biases on the west side of oceanic basins and is expressed 
in zonal structures rather than east–west contrasts. Here as 
well the multi-model results are confirmed by the sensitiv-
ity experiments with the IPSL-CM5A-LR model. Correct-
ing the winds by nudging towards reanalysis fields directly 
impacts surface latent heat fluxes in forced atmospheric 
simulations and in turn (and in a correlated way) the SSTs 
in coupled mode. It results in our case in a reduction of the 

Fig. 8   Sea surface temperature 
bias pattern of coupled simula-
tion with � perturbation (PERT) 
performed with the IPSL-
CM5A-LR model
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SST biases in most of the tropical oceans, except for the 
eastern warm bias.

For the wind-nudging experiment, modifying the wind 
field acts on SSTs not only through latent heat but also 
through modification of the oceanic circulation. This effect 
could contribute to the correlation between latent heat modi-
fication in imposed-SST simulations and SST biases in cou-
pled mode. However, such effect cannot be invoked for the 
RH experiments which clearly confirm the link between the 
modification of the LH field in forced atmospheric simula-
tions and changes in the SST fields in coupled mode.

The goal of these sensitivity experiments was to demon-
strate and quantify the effects of winds and relative humidity 
on SST biases through modifications of the latent heat flux, 
and show the potential for improvement that could occur 
from a better representation of atmospheric processes. Our 
results indicate that biases in atmospheric physics, and in 
particular in the boundary layer dynamics that strongly con-
trol the surface wind intensity and relative humidity, are of 
significant importance in the control of the air–sea coupling. 
This study suggests that new process studies and param-
eterization developments or improvements may help reduce 
the longstanding SST biases and that flux pattern evaluation 
in forced atmospheric simulations may be a powerful pre-
dictive tool for the SST bias development in fully coupled 
ocean-atmosphere models.
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Appendix: Computation of explained 
variance

In order to calculate the variance of pattern A (e.g., the CPL 
SST bias pattern) explained by pattern B (e.g., the AMIP LH 
bias pattern), we project pattern A on pattern B. We first nor-
malise B so as to obtain a representative unit vector, perform 

the vector projection and then compare the variance repre-
sented by this projection to the total variance of pattern A.

In practice, this consists of considering vectors � and � 
containing the ordered sequences of grid point values cor-
responding to A and B, respectively. We calculate the projec-
tion of � on � , �

�
 , as:

where

We then calculate the associated proportion of explained 
variance as the squared norm of the projection divided by 

the squared norm of � , i.e., 
‖�

�
‖2

‖�‖2
.

This process is mathematically equivalent to calculating 
(� ⋅ �)2

(� ⋅ �)(� ⋅ �)
.
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