ence of an ISSR is a prerequisite for the in situ formation of natural cir- +h
t ntrails and contrail-induced cirrus (Minnis et al., 2004; Kramer -
6; Kircher, 2018). Natural cirrus play an important role in the energy bud-
may form in situ via homogeneous nucleation at temperatures below ~38°C and
exceeding 140 % (Heymsfield et al., 2017; Kanji et al., 2017) or via heterogeneous
ng at temperatures lower than 0°C and RHi above 100 % in the presence of ice nu-
particles (Heymsfield et al., 2017). For a pressure range between 325 and 175 hPa,
ircraft flying using the kerosene as fuel can produce contrails for 1 to 15 % of the flight
time in the tropics and 6 to 20 % of the flight time in the mid and high latitudes regions
(Sanogo et al., 2024). Contrails can persist and grow for several hours in the ISSRs (Kircher,
2018). Over time, such persistent contrail cirrus can evolve into cirrus clouds and me-
teorological conditions such as wind shear and turbij/ince can extend their spatial cov-
‘erage and reduce their ice crystal concentrations <500 2018). Contrails can thus en-
‘hance the coverage of cirrus clouds (Stubenranc & linann, 2(1052_&54-5*&:1‘.6)11—
trails and contrail cirrus, sme referred to as wvi | vloudiness (AIC), whieh-is
associated with a poterffjally significant radiat’ Bouzher et al., 2013; Bock &
Burkhardt, 2016; Lee ef al., 2021), at least ir /

due to aviation. leaecther

Reducing the climate impact of AIC, along with other environmental and climate
Ampacts, is one of the main challenges facing the aerospace industry. In this perspective,
both academia and the private sector are looking into how aircraft trajectories can be
‘optimized to minimise fuel consumption (and the associated CO; emissions) while avoid-

| ing regions favorable to the formation of contrails. This strategy requires accurate fore-
_' .~ casts of ISSRs but also a better understanding of the physical mechanisms involved in
formation and élfq'ip tion of gontrails and induced cirrus (Karcher, 2018).
L

b
"*Gli:_mte_modela ntial for studying contrails and their radiative effects. How-
the formation of 1$SRs and contrails occurs at scales smaller than the grid size of
models, requiring the parameterization of the small scale processes. In the LMDZ
the ISSR formation processes are parameterized using a statistical treatment of
on and condensation based on the total water distribution, as detailed in Sec-
known that parameterizations are a significant source of uncertainty in cli-
_,(Ho‘u‘rdilf et al,, 2017). For instance, a study by Perini et al. (2023) have
t]m _r_adiat__l_va effects of AIC are sensitive to the values of free parameters in
model (e.g., those that control the contrail lifetime), underscoring the fact
of these pam,meteru do not have a unique value. To reduce these uncertain-
‘ lﬂm!ngmathods are more and more used to tune and rigorously select the
f the free un;taFr; for a giylrnn sical process under observational con-
' 2). For example, TYEWAIRN 2015) used a tuning
Y Matching and iterative refocusing (seo .(?.eoexgﬁr.a.nr to explore
Hes aasociated with the global mean tomperature and salinity
_ rnan, Goldstein, & Bower, 2010 et de Willlamson et al, 2013
Proposé par Vernon 2010). Fred que tu cites :pﬂ’ orihiit 0
nlel Willlamson fait vraiment toute la recherc| !
1que cette différdhce ce sente dans ton introduct

ihe CO2 radiative forcing




This manuscript is structured as follows. Section 2 describes LMDZ and its param-
eterizations of ISS and cloud. Section 3 details the experimental setup and our tuning
approach while Section 4 presents our results. Finally, Section 5 summarizes our main

2 LMDZ and its parameterizations of cloud

LMDZ is the atmospheric component of the Institute Pierre-Simon Laplace climate
model known as IPSL-CM which is used for understanding the climate system and its
response to various perturbations. The version used in this study is LMDZ6A, noted LMDZ
in the following for the sake of simplicity, and described in details in Hourdin et al. (2020}, g "
Boucher et al. (2020) and Lurton et al. (2020). Its dynamical core is based on a mixed o
finite difference/finite volume discretization of the primitive equations of meteorology ’A"J"‘ c'r""“,,«

and transport equations and is coupled to » i of pliysical parameterizations (Hourdin

et al., 2013). tCnP"‘“'J" e ' '}’W:A." 1-9"

e parameterization of clouds in LI 37 = ssssq on the representation of
totdl water (g) usmg a probablllt\r density fanction (PDF, ;

m.aouf:t
Yéciw

}
wfthe gridbox total water mm The funct; ion 5(p is used to impose| e

a variation of o as a function of pressure p. The function £(p) increases as pressure de- Mv.ah ‘3
creases to reach an asymptotic value of &390 at 300 hPa and in the upper troposphere. o
This parameter has been used as a tuning coefficient (Madeleine et al 2020). [The gridbadx- & "7% 3p
averaged,total humidity v i

Fhe Tspedipe i

{ e = /—a q P(q)dq @lm?[

ige the cloud fraction oyt

+00

Qcld = / P(q)dq
Quus

where g, is the specific humidity at saturatioy. Js-the case of shallow convection, the

subgrid water distribution is described by H:%nussiﬂn distribution where the t

plumes and their environment correspond to the small and the main modes of t dlis-

| tribution, respectively (Hourdin et al., 2013, 2020; Madeleine et al., 2020). Th param-

- eters required for the computation of this bi-Gaussian distribution are given
mal plume scheme. For a full description of the parameterization of clouds j
=l the reader is referred to Madeleine et al. (2020).

Whick "“'&"VLL

l-\of"t =




ationale for such a memor.y m.that an 1SS fractlon can be. converted into a cIon
t the opposite is not true as the cloud can only sublimate in subsaturate;
ditions. The cloud cover a.a is therefore used as semi-prognostic variable, by consid-
ermg it as an additional tracer amd advected by the dynamical coresalong with t‘.he hu-
mi ty variables, but it does Aot formally follow a prognostic equatioy.

sume, that cirrus &lou GOEENneous Illl(‘lE"LthIlgEl-le £ :
rus:-'cloud formation bv heterogeneous nucleation wnuld imply t!Eta 1 ‘ice nu-
1 hat simply aimg to show the

d tune the parameteriza-

as speclﬁed by Koop et al. {_ ZUUU) and Ron an
supersaturation ratio, vss, is expressed as:

g Y -f—,f'fl? -‘—r
ﬁf‘
. . where T is the temperature (in K) in the guclbu The values of 7 and 7', axg 2.349 and

259 K, respectively (Ren & Mackenzie, 2(!0 ). Hée
and TG in Ta.ble 4, r
:_ d

e t;ota.l wat,er, Qi {kg kg1
1 equatlons apply:

aub 1 Gss 1+ Gold =
idbox.

w feature of this purametrizati







'9.1.3 Sublimation and condensation

In this work, the treatment of sublimation and condensation are not diagnosed from
‘pronostic equations, but from the distribution P(g). Ice clouds sublimate when geid be-
comes smaller than ge.:- The condensed excess moisture is the fraction that exceeds the
nucleation threshold 7. gsat, according to the PDF of P.,. These two processes are com-
put.ed using the semi-prognostic value of @ adv- The variations of ceg due to sublima-
tion, (Aad)sus, and condensation, (Aeaerd)conas are computed first. These tendencies
are added 0 Qid.qade 1O Obtain acla for the current timestep.

2.1.4 Turbulence

Small-scale turbulence may mix the cloudy reg
d ISS regions. The turbulence is
a characteristic length, iyt The vyyrp variable )
d diagnosed Turbulent Kinetic Energy (TKE) and I, 15 a tuning param-
typical value of the order of ten to a hundred metres but we used a default
; 0 m. It is also assumed that cirrus clouds have the shape of a prolate spheroid
e (Fig. 1). This approximation has the advantage of being relevant to model both .
rus and contrails. It is also assumed that all the mass that is .t-ransférred.fmm

yox with the subsat-
waracteristic velocity,

om the centre. It also assumed thaf these two areas are well mixed by turb

loud environment, V,n,, is the sum of the volumes of t




_ i shape of clouds.
o and 6 This- assbistion allows 0 4o Wmm‘i‘;ﬁ:ﬁ”
| »- o th very igh srfac-torvolume rti of contails, but ot the fac
| that the stratified ‘atmosphere at this altituds limits the vertical mnslc:u Ofdt:?:n e
panel: Schematic distribution of the quantities Vi, Vas and Vous in the clou o;dmth: el m :
is the width of the turbulent mixing zone while R is the distance from the centre

the border of the environment around the cloud.
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24 3 Experimental Setup y
s 3.1 History matching and iterative refocusing \'CM?Q)S (,"":i& -
286 The history matching with iterative refocusing is based on the idea of i) running
27 a perturbed physics ensemble (PPE) of simulations with the climdte model in a pre-defined
288 parameter space, ii) using the output to train statistical emul
rics of interest, and then iii) using the emulgtor to rule &7 fegi
for which its predictions are “too far” from Observations D
1 The process is iterative: at the end of each iteratios
= prove the quality of the emulator and refine ihe =
23 figuration, but only in a relevant subspace

N TOULe rigUerpe; out. This introduces the notion of the &8

ar-éviter . he method ; it 2ccount the various sourced

er-tuning /. ; ; ety iz -

- 97 e : om l:_noth the e_rnula.tur and 2 2ations) afnl ﬁjit.r;]erance level in avec cette phrase I

mdmtpar order to avoid over-tuning the climate model. i i snplemented in different steps, as ¢ > iln'ypas que lesem:

ot cannaive ™ ed in the following subsections. demulateurs 3

reurstructurelle et d'observations qu'il

modéle | ce quis 3.1.1 Selection of the targeted metri faut prendre en compt.
mais bien TOUTES les

St en pratigue e ®] A
wais le cas avec mos The first step consists of defining metrics (f), whichrare g

déles de climateiais n quantify thetmirr CET ST, For each metric, we set a Tefer

J._?'iiﬁfé.}ﬁn‘.peyipiqtu 'rf and an@Esociatedn (or.f). The different metrics used are des P
drune intro de gartie Section 3.3 and their reference values are provided in Tables 2 and 3. references,

Cest pas une associated uncertainty, cest une tolérance 3 lerreur > lincertitude quagtifiée (ici e qui peut inclure
Jimagine que cest I'incertitude de jes obs et éventueliement lide ata configurationf. En toute logique 0®3UCOUp de choses
y‘lt}qg _ﬁn&%&ﬁton o} &le free pammglers ce serait mieux quifle sappelie pas sigrnam":;?':
variabllité interne du
7" The free parameters to be tuned must be selected and a range of Acceptable val- Sk éI: la::e:zehnt
ues defined for each of them, as well as their initial input space (I), need to be defined. tes o .

ates forgages etc.
mpatible with the ta 68D In this work, a set Je truug:giizgfﬂ:{\agi
preameiers, presented in Table 4, are selected as CHRTHESES for the tuning. Any de laisser entendre.
omation of these pargmeters is called @ vector and den?,ted A in the following. r:
— e w B (4 Lal cowbthalay
mpris ce que tu voulalddire 8! pourquoi capllidates

hat are  sources d'incertitudes
nce valye @ntre ton setup
gribed in experimental et tes

_ th‘at_:t_he_ various sources of uncentainties®ecuring in the comparison between model output Guant
rderto avoid over-tune the model, (eventu ' ;

ellernent : ) An estimation of th -
nted for in the method. o ofthe uncertainty of the.
= . C./u)—f)&.-CWﬁ-«s‘_gugn-;u




i 'C{aﬂon.
stlafols
1input space
Timplausibilité ac (T : t-
pourrais choisit® SPGOB fﬂr Subsequeu K ves), pmﬂdmg both the expects.t.ion B,

~ autrenonpours  (Var[f(A)]) of the uncelainty associated with the statistical emul

| putspace, ==  metric.

‘ OY_0 par exerdple,

1

nr
s

mme apréstu _

lis NROY_11)? 2 * 8.1.5 History matching

The histo: ma.tchmg aims to 1dent.1fy the subspa.ce of free pa.rameter value /0D

b+1}
s | ; SETal a fipect 01]311) -of metrics
us  For a vector A of pa.ra.met.ers, a measure noted I f(J\} is introd uced to quantlfy its implau- their to
27 sibility: error
m, depuis quelques temps on atendance aregrouper rei— BN
s deux termes en disans que c'est latolérance a I(A\) = Irs I (12)
rreur, et & expliquer quelle est choisi H Var[f(N)]
périeur aux !
k where 77 and o, 7 are the target reference value for the metric f and the associated un-
. -ertitudes quantifiées
. piquement certainty (whose distribution is assumed to be Gaussian), vupertwelr, Var[f(X)] is the
. Jcertitude de I¥Bs) variance of the uncertainty associated with the siij=i oot somulator prediction and gy ¢
stementparcegue 1S the structural error (also assumed to follow a (e stribution) of the climate model
rreur structuredie for the metric f (D. Williamson et al., 2015). Tl = error can be dlﬂ:‘lcult to < )
i modéle n'est pas esnmate a:nd D. Williamson et al. (2015) suggest ulia! & l | be interpreted GsTATEO D"t".‘ s P 2
! Jantifiable "en sois'  GEANGEIGIEREAEWe have considered a tolerance to error of 0.1 (i.e., 10 % for the RHi faltence SIE
| astpeut-étre passiblemethe mgh-Tevel cloud metrics. A tolerance to error of 10 % is considered for the IWP  oeree e
- navoirune idgg) cette "structural
metncs (i.e., 10 % of the value of each metric) given the large uncertainties associated model error” et
: ayith them. Eg;cseaiieoz: ;Eupi‘lia on sait pas sices valeurs Inclues l'incertitude les autres incertitudes
The NROY space is defined from the implausibility in a multi-metric framework gl quandﬁef
as follows: = celle de l'obs ici
5 (mais pas celle de
NROY = ﬂ {’\ | Ir(A) < T} (13) 1a prédiction de
! I'e mulatuer)

whereT a threshold to be defined. Here it is set to 3 according to the rule of Pukelsheim
(1994) which indicates that 95% of any unimodal Gaussian distribution lies within +3
standard deviations around its mean value. This choice implies that there is a 5% risk
of discarding a plausible value from th ; '
. S nean value from the GREENIBSPace. g quq e fde NROYF space?
o '3.1.6 Iterative Refocusing A J rkﬁ" BP'-

Y - -, L Ll LY y H :
| The implausibility I;(A) for a vector (A) of pa.ra.metexskml be smher becauge !RIorM
ssimulated “__:_'9"“‘-' is close to. its reference, or beca.use the emulator unoertmnt.y at )‘

¢ the wave n the NROY issued from tHie wave 11 (NR‘
1e NROY space is stable i

urs le cas. Tu peux ne plus diminuer ton NROY au cours de.s itémfens _‘
ardent une Incertitudes des prédictions de Iémulateur du méme ordre
ur (voir des folis heauco%ﬁ plus grande). Je ne sals pas ce que. t;a

.de 3.1.5 que |'objectif de I'history mathing clest de tro
toute _méthode le pense: aue cette phrase devrattgaonara&re uve




e and I&wm&m (Fig. 2), which can impact the fre-
Ra.since homogeneous nucleation is controlled by temp T —)
s 2 and 2.1)? This cold bias is observed both with the pre-existing and the

LMDZ turns out to h

_ ation, which means it is a likely a model structural deficiency :bat rs in- AV
dep “the Nm;m:ihtion of ISSRs. As our objective is to show the Femibihty of B les ¥, \
A0 tuning the ISS parameterization, reducing this longstanding temperature bias by new :

Yy 4

model developments would involve complex research beyond the scope of this study, in-
stead we reduce using temperature nudging. To this effect, we first performed a nudged
simulation, whereby the LMDZ meridional (u) and zonal (v) wind and the temperature _
(T) fields are relaxed toward those of the fifth generation of the European Centre for Medium-
Range Weather Forecasts atmospheric reanalysis (ERA5) as formalized in the following

;i::"rd-q\:_ v sech . : e anecli.  H~ oy Ii‘

| wue ;GN}XG-‘C: f}-h—e 2 & i ~ 2 |

St A CIk St A@ tf\.‘“t-'s e L) pancice 0 3

K ! 6 wdh 4 - w4

J@, Founyy nj 5 5\& ) ,'f .

where F is the operator describing the dynas i roresses that determine f

the unconstrained evolution of X, X is the (-}, ] 2eids from ERAS, in- f
terpolated to the model grid and model timestep, =0 « - . ~olaxation time constant o
(Coindreau et al., 2007; Krinper et al., 2020), set to | day in this study. %m‘ging ’

et in the atmospheric boundary Tayen The nud ged simulation 15 carnist Sut

o) years and the error terms (X® — X)/7 are archived. The 10-year (i.e., climato-
logical) monthly-averages of (X°—X)/7 are then computed and used to correct the model
online in all the remaining simulations of this study. More details on this bias correc-

tion method, their benefits and their limitations can be found in Krinner et al. (2020).
We tested the bias correction method using the averaged relaxation terms of u, v and

T and u and v only. The former approach is retained for this study because it allows a
better correction of the LMDZ bias in temperature in the UTLS. Fig. 2 illustrates the
remaining error for the North atlantic and Europe At 250 and 200 hPa. The error that
persists is greater at 200 hPa in Europe.

RN R B ISy

Single Column Model (SCM or 1D) simulations are performed for four ohueriﬂml
«case studies for which Large Eddy Simulations (LES) have been developed. The first case
8 an almost cloud-free convective boundary layer case observed on June L4, 2002 over
the Bouthern Great Plain during the International Hy0 Project (IHOP) campaigu (Couvroux
et al,, The second case deals with the diurnal eycle of shallow convection over land
i June 21, 1997, with fairly well-developed cumulus at the Atmospheric Ra-
rement site in Oklahoma (Brown et ul., 2002), The third case i about a

over the ocean (VanZanten et al., 2011). Tho fourth caso bs o
case of stratocumulus to cumulus clonds, as describid by Sandu and Stovens el
eae case studies are named THOP/REF, ARMCU/REF, RICO and SANDU, ki

different BCM simulations carvied out are not nudgwd and are de
ose: of the associated LES in Couvieux ot al. (2021) and umw ._
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3.9.2 Metrics of radiative fluzes and precipitation

The radiative metrics considered in this work are those used in Hourdin et al. (2021), *°
They include metrics of global net radiation (i.e. the imbalance between shortwave (SW)
and longwave (LW) and global top-of-atmosphere (TOA) SW upward radiation). As the
SW downward radiation is imposed on the model, the global outgoing LW radiation will
be constrained automatically by the constraints on the SW and total radiation (Hourdin
et al., 2021). Metrics also consider regional averages of the TOA outgoing LW and SW
radiation, distinguishing convective, subsidence and intermediate regimes in the trop-
ics and a contrast in latitude between the roaring forties and tropical oceans targeting
a circum-Antarctic warm bias in coupled ocean-atmosphere simulations, A specific met-

ric is dedicated to the SW contrast between Eastern Tropical Oceans and the rest of the

tropics following (Hourdin et al.. 2015). The CERES-EBAF L3b observational dataset

(Loeb et al., 2009) is used as reference. The locations where these metrics are computed
are indicated in Hourdin et al, (2021) and their values and associated uncertainties are
presented in Table 2.

The rainfall metrics used are the global mean rainfall of daily rainfall larger than ?\II
50 mm (PR>50), the mean annual rainfall over a | ox over Western Africa used for the é. s —_
African Monsoon Multi-disciplinary Analysis (AMM anipaign, and finally an esti- e |
mate of the intra-seasonal variability over the ocern i region of the Madden-Julian u Sw epcc
Oscillation (MJO), computed from the daily rainfajl . :

tandard deviation of the 20- <5 |
day running average minus the 120-day running averare g the Global Precipitation &9_ 'I] e |
Climatology Project (GPCP, Huffran et al.. 2001) daily
The values of these metrics and the

I

precipitation data as reference. |
associaled uncertainties are rovided in Table 2. I
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In addition to the metrics used in Hourdin et

al. (2021), we selected”a range of mé&- et
rics that relate more specifically to our 1SS parameterization. /g—j

2.3.8 RHi metrics

These metrics include the Speca
80 (P1) and 95" (P2) percentiles of the RHi distributions at 250 and 200 hPa above re
the North Atlantic (NA hereafter) and Europe (EU hereafter) (see Table 3). Data used
as reference are from the Measurement of OZone and water vapour on Alrbus airCraft

In-service (MOZAIC) programme (Marenco et al., 1998) over the period 1995-2014 and
from the In-service Aircraft for a Global Observing System (IAGOS) programme (Petzold
et al., 2015) over the period 2011-2023. For the s

sake of simplicity, we refer to these two
databases as IAGOS in the following, These data are measured every four seconds with
uncertainties ranging from 2% to 8% (5% on average) at the cruising altitude (Smit et

~al, 2014; Petzold et al,, 2020). Due to the inhomogeneous sampling in time (e.g., more
- measurements in summer) and space (¢.g., more measurement at 250 hPa than 200 hPa
the North Atlantic) by the IAGOS and MOZAIC aircraft, some atmospheric condi-
ns are potentially oversampled and this may lead to biases in the long-term RHi dis-
tion at the regional scale (Sanogo ot al,, 2024). This temporal and spatial sampling
ity is difficult to characterize (Sanogo et al., 2024). To partly take this into ac-
11, L, we consider a total uncertuinty of 8%, A moving average of 17 minutes (corre-
0 g to ~255 km at cruising speed) is also applied to these RHj observations to make
comparable o the gridbox average of RHi in LMDZ. It should be noted that TA




