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Résumé

Cette thése vise a améliorer la représentation des poussiéres désertiques dans
les Modeles de Circulation Générale (GCM), utilisés pour la compréhension
du climat et l'anticipation des changements climatiques. Nous proposons
une paramétrisation des rafales de vent pour représenter, dans les GCM, les
émissions de poussiéres liées a ’étalement des poches froides créées sous les
orages par I'évaporation des précipitations, encore absentes de la plupart de
ces modeéles. Pour cela, nous mobilisons deux approches récemment adoptés
par la communauté pour améliorer la fiabilité des simulations climatiques :
les LES (Large Eddy Simulations), qui permettent de développer des para-
métrisations physiques plus réalistes, et 1'outil de calibration automatique
HighTune Explorer, qui ajuste les paramétres libres tout en tenant compte
du réalisme physique du modéle. Nous avons commencé par une évaluation
détaillée du schéma des poches existant dans le modéle climatique LMDZ,
développé au Laboratoire de Météorologie Dynamique, et avec lequel notre
schéma de rafales doit étre couplé. Cette évaluation, basée sur un échantillon-
nage des variables internes du schéma des poches dans les LES, a permis de
valider les hypothéses de base du schéma et les propriétés des poches qu’il
simule. Des biais ont cependant été identifiés puis corrigés grace a des mo-
difications substantielles du schéma et un réajustement de parameétres libres
utilisant 'outil HighTune Explorer. Les biais restants pourraient étre cor-
rigés par une représentation plus physique du nombre de poches, jusque-la
imposée. La paramétrisation des rafales des poches, développée dans cette
these, utilise une approche Monte Carlo pour calculer les distributions de
vent dans les poches, sans recourir a des formules analytiques de la densité
de probabilité, comme ca se fait classiquement. Comme elle ne fournit que
le vent & 'intérieur des poches, elle est combinée au schéma de rafales dé-
veloppée en paralléle par Adriana Sima, décrivant le vent a l'extérieur des
poches, afin d’obtenir une distribution compléte dans la maille. L’approche
Monte Carlo facilite & nouveau cette combinaison en évitant les calculs com-
plexes. Elle constitue ainsi un atout majeur pour les modélisateurs, per-
mettant de contourner les calculs mathématiques complexes et se concentrer
sur 'aspect physique. Intégré dans LMDZ, le schéma des rafales permet a
ce modeéle de climat de reproduire désormais les émissions liées aux poches.
Il reproduit aussi bien les poussiéres en saison séche, mais les surestime en
saison des pluies, en raison notamment de 1’absence de processus limitants
liés a I’humidité du sol et a la végétation. Leur intégration améliorerait les
résultats. Une paramétrisation développée par Jean-Yves Grandpeix, pour
calculer le nombre de poches, a été évaluée face aux LES. Les résultats sont
prometteurs, bien que des améliorations seraient encore nécessaires sur la
physique du modéle. Les schémas des rafales, ainsi que les améliorations ap-
portées sur le schéma des poches, seront intégrés a la version 3D de LMDZ,
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dans le cadre des simulations climatiques du prochain rapport du Groupe
d’Expert Intergouvernemental sur I’Evolution du Climat.

Mots clés: paramétrisations, poussiéres désertiques, poches froides, ther-
miques, rafales de vent
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Abstract

This thesis aims to improve the representation of desert dust in General
Circulation Models (GCMs), which are essential tools for understanding cli-
mate and anticipating climate change. We propose a gust parametrization
to represent, within GCMs, the dust emissions associated with the spreading
of cold pools generated beneath thunderstorms by precipitation evapora-
tion—processes that remain absent from most of these models. To achieve
this, we rely on two approaches recently adopted by the scientific community
to enhance the reliability of climate simulations: Large Eddy Simulations
(LES), which enable the development of more realistic physical parametriza-
tions, and the automatic calibration tool HighTune Explorer, which adjusts
free parameters while preserving the physical consistency of the model. We
began with a detailed evaluation of the existing cold pool scheme in the
LMDZ climate model, developed at the Laboratoire de Météorologie Dy-
namique, which our gust scheme is designed to complement. This evalua-
tion, based on sampling internal variables of the cold pool scheme from LES,
confirmed the validity of its underlying assumptions and the properties of
the simulated cold pools. However, biases were identified and subsequently
corrected through substantial modifications to the scheme and parameter
adjustments using HighTune Explorer. Remaining biases could be resolved
by implementing a more physical representation of the number of cold pools,
which has so far been prescribed. The gust parametrization developed in this
thesis employs a Monte Carlo approach to calculate wind distributions within
cold pools, avoiding the use of analytical probability density functions as is
traditionally done. Since it provides only the winds inside cold pools, it is
combined with the gust scheme developed in parallel by Adriana Sima, which
describes winds outside cold pools, in order to obtain a complete distribution
within the grid cell. The Monte Carlo approach once again facilitates this
combination by avoiding complex analytical calculations. This represents a
significant advantage for modelers, allowing them to focus on physical pro-
cesses rather than mathematical complexity. Implemented in LMDZ, the
gust scheme enables the climate model to simulate cold pool-driven dust
emissions. It reproduces dust emissions realistically in the dry season, but
tends to overestimate them during the wet season, mainly due to the absence
of limiting processes related to soil moisture and vegetation. Incorporating
these processes would improve the results. A parametrization developed by
Jean-Yves Grandpeix to calculate the number of cold pools was also evalua-
ted against LES. The results are promising, although further improvements
to the model physics are still needed. The gust schemes, together with the
improvements made to the cold pool scheme, will be integrated into the 3D
version of LMDZ as part of climate simulations for the next report of the
Intergovernmental Panel on Climate Change (IPCC).
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0°N et 28°N) et reliefs supérieurs & 925 hPa (contour gris) pour les
mois janvier (a), juin (b) et juillet. Les données sont issues des réana-
lyses ERA-40 du Centre européen pour les prévisions météorologiques
a moyen terme (ECMWF), moyennées sur la période 1979-2001. (La-
vaysse et al.; 2009). . . ...
Processus conduisant au déclenchement de la convection profonde
(Rio, 2023 communication orale) . . . . . . ... ...
Schéma d’une ligne de grain (Lafore et Poulain, 2009). . . . . . . ..
Schéma conceptuel de la structure verticale d’une cellule convective
associée a un front de rafale (Goff, 1976) . . . . . ... ... ... ..
Séries temporelles de la vitesse du vent (courbe noire) et de sa di-
rection (courbe grise) (a), la température (courbe noire) et I'humi-
dité relative (courbe grise) (b), le 10 juillet 2006 & l'aéroport de
Niamey. Dans (b), 'anomalie de pression est ajoutée dans un pe-
tit sous-diagramme complémentaire de 15h00 & 21h00 UTC (courbe
noire fine). Les lignes verticales en pointillés indiquent le passage
des systémes convectifs Sy, Cy et Cy. C) et Cy sont générées par les
poches froides issus de Sy. La ligne verticale pleine indique la signature
d’une rafale associée au courant de densité, et correspond également
a '’heure exacte du radiosondage lancé & 17h30 UTC. Cette heure est

indiquée par une fleche en haut (marquée « RS ») (Lothon et al., 2011). 18

Moyenne mensuelle sur la période 1980-1992 de I'Indice d’Aérosols
(IA) de TOMS (x10) illustrant les principales zones sources de I’ Afrique
du Nord : (A) Bodelé; (B) Afrique de I’'Ouest ; (C) désert Nubien et
(D) désert Libyen (Engelstaedter et al., 2006) . . . .. .. ... ...
Moyenne mensuelle de 'activation des zones sources de poussiéres en
Afrique de I'Ouest, dérivées d’images composites infrarouges (IR) du
satellite Meteosat Second Generation (MSG) pour le mois de juillet
2006. (Schepanski et al., 2007) . . . . . . . ...
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2.9 Régions des sources de poussiéres les plus actives pendant les cam-
pagnes SALTRACE (contours rouges), SAMUM-1 (contours verts)
et SAMUM-2 (contours bleus). Les zones grisées indiquent toutes
les régions sources actives pendant SALTRACE, indépendamment de
leur intensité d’émission et de leur fréquence d’activation. Les courbes
de niveau pleines représentent I'orographie avec les altitudes (m au-
dessus du niveau de la mer) indiquées (Weinzierl et al., 2017).

2.10 Photo d’un événement de haboobs prise au Mali en Aout 2004 par
Francoise GUICHARD et Laurent KERGOAT. . ... .. ... ...

2.11 Vu du monument de la renaissance & partir du toit du LPAO-SF
lors d'une journée sans poussiére (droite) et d’une journée avec un
événement de poussiéres (gauche). . . . . . ..o

3.1 Schéma physique illustrant le modéle de panache thermique et la vi-
tesse verticale correspondante w : turbulence diffusive dans la couche
de surface et structures cohérentes dans la couche mélangée. Le flux
de masse f dépend de l'entrainement d’air dans le panache depuis la
couche de surface (a), de 'entrainement au-dessus (e), ainsi que du
détrainement depuis le panache (d). Le panache se développe jusqu’a
atteindre son niveau de flottabilité nulle, puis il dépasse ce niveau
jusqu’a ce que son énergie cinétique s’annule, ce qui définit deux hau-
teurs : la hauteur de flottabilité nulle (zmix) et la hauteur maximale
atteinte par le panache en dépassement (zmax) (Rio and Hourdin,
2008). ..

3.2 Schéma de principe de la paramétrisation d’Emanuel (1991) de la
convection profonde. . . . . .. ... L

3.3 Schéma du principe d’émission des poussiéres désertiques. Les fléches
horizontales (bleues) représentent le vent de surface, la fléche jaune
représente le mouvement horizontal des grains de sables (saltation) et

la fléche verticale bleue représente le mouvement vertical (sandblasting). 43

3.4 Cycle diurne du vent (m.s™') a 10 m, moyenné sur la période jan-
vier-mars (JFM), comparé entre les observations, les réanalyses ERA-
Interim et plusieurs configurations du modele LMDZ, sur les stations
Cinzana, Mali (& gauche) et Banizoumbou, Niger (& droite). La ver-
sion SP correspond a la "Physique Standard" sans modéle des ther-
miques ni distribution de Weibull. Les configurations avec la "Nou-
velle Physique" (NP3 et NP48) intégrent le schéma des thermiques
ainsi qu’une distribution de Weibull pour représenter la variabilité du
vent de surface, avec des résolutions horizontales respectives 1.25° et
2.5° (Hourdin et al., 2015). . . . . . . . . . ... ...

3.5 Localisation des trois stations composant le transect de poussiéres
sahéliennes sur le Sahel (Marticorena et al., 2017) . . . . . .. .. ..

3.6 Cartographie du réseau mondial des stations AERONET . . ... ..

4.1 Schéma conceptuel d’un courant de densité (Grandpeix and Lafore,
2010). . . .
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4.2

4.3

4.4

4.5

4.6

4.7

4.8

Moyenne glissante (avec une boite 3.25 kmx3.25 km) de la divergence

—
du vent & 10 m (div <V10m>) (en 103 s71). Avec cette unité, une valeur

de 1 correspond & un changement d’intensité du vent de 1 m.s™! sur

1 km. Les panneaux a et b correspondent a deux états différents du
cas étudié avec le modéle LES SAM réalisé sur la RCE océanique. Des
contours des anomalies de température a 10 m, & -0.4 K (en vert), -
0.2 K (en rouge) et 0 K (en noir), sont superposés sur le champ de
divergence lissé. . . . . . . . .
Meéme chose que la Fig. 4.2, pour deux instants successifs, 17h30 (a)
et 19h30 (b), de la LES MESONH réalisée sur le cas AMMA. Les
contours superposés correspondent a des anomalies de température a
10 m de -1 K (en vert), -0.5 K (en rouge) et 0 K (en noir). . . . . ..
Profils verticaux de 1’écart de température (67, en K) entre 'intérieur
et I'extérieur des poches froides calculés sur un instant des LES (SAM
et MesoNH) du cas RCE et a 'instant 19h30 de la LES MesoNH du
cas AMMA. . . . . .
Profils verticaux de I'eau condensée (g.kg™') moyennée horizontale-
ment sur un instant des LES en RCE océanique réalisée avec les mo-
déles SAM et MesoNH et sur I'instant 19h30 de la LES du cas AMMA
réalisée avec le modéle MesoNH. . . . . . .. . ... ... ...
Cartes d’anomalie de température a 10 m (71g,,, en K), lissées hori-
zontalement sur 2.5 km x 2.5 km, représentées sur un instant de la
LES SAM du cas RCE (a) et sur l'instant 1930h de la LES du cas
AMMA. Les contours noirs indiquent les seuils d’anomalie de Tig,, :
-0.2 K pour le cas RCE et -1 K pour le cas AMMA. La couleur rouge
représente les ascendances présentes sur les fronts de rafales, identi-
fiees a partir des vitesses verticales & la base des nuages (wj) dans le
masque des fronts de rafales. Ce masque est défini & partir d’un seuil
appliqué a la moyenne glissante de wj. Pour le cas RCE, la moyenne
est effectuée avec une boite de 1.25 km x 1.25 km et les valeurs w,
>0.6 m/s sont retenues (respectivement 2 km x 2 km @, >2 m/s pour
le cas AMMA). Les points verts représentent les thermiques, définis
comme les zones ol wy est positif en dehors du masque des fronts de
rafales. . . . . .. L
Profils verticaux de 6T (K), dq (g.kg™!) et dw (m.s™!) calculés dans
les LES (trait gris épais) et simulés dans LMDZ contrdle (trait noir,
LMDZ CTRL) sur le cas RCE (a, b, c) et sur le cas AMMA (d, e, f).
Profils verticaux de 6T (K), dq (g.kg™!) et dw (m.s™!) calculés dans
les LES et simulées dans LMDZ controle (LMDZ CTRL), LMDZ avec
I'ajustement du coefficient k & 0.66 (LMDZ V1), LMDZ avec la baisse
de T'altitude (h,,) a laquelle la subsidence des masses d’air dans la
poche s’annule (LMDZ V2) et LMDZ avec I'activation des thermiques
dans tout le domaine (LMDZ V3) sur le cas RCE (a, b, ¢) et sur le
cas AMMA (d, e, f). . . ...
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4.9

4.10

4.11

5.1

0.2

2.3

0.4

2.9

Profils verticaux de la température potentielle (6, en K) et de ’humi-
dité spécifique (g, en kg.kg™!) calculés dans les LES et simulés dans
LMDZ contrdle (LMDZ CTRL), LMDZ avec 'ajustement du coeffi-
cient k 4 0.66 (LMDZ V1), LMDZ avec la baisse de 'altitude (h,,) a
laquelle la subsidence des masses d’air dans la poche s’annule (LMDZ
V2) et LMDZ avec 'activation des thermiques dans tout le domaine
(LMDZ V3) sur le cas RCE (a, b, ¢) et sur le cas AMMA (d, e, f). . .
Comme Fig. 4.8, mais incluant les 12 meilleures simulations issues du
tuning (TUNE, en noir) ainsi que la meilleure d’entre elles (TUNE
BEST, envert) . . ... ... . ...
Comme Fig. 4.9, mais incluant les 12 meilleures simulations issues du
tuning (TUNE, en noir) ainsi que la meilleure d’entre elles (TUNE
BEST, envert) . . . .. ..

Distributions de la vitesse du vent a 10 m & l'intérieur des poches
froides calculées dans la LES SAM (courbe noire) et obtenues dans
le modeéle (courbe verte). Panneau (a) : composante zonale uyq,, (en
m - s_l). La distribution de uiq,, dans le modéle est décomposée en :
distribution dans le front de rafales des poches G;(@y,0,,) (courbe
rouge), distribution dans la partie restante G(Ts, 0y,) (courbe bleue),
et somme des distributions G; + Gy (courbe verte). Panneau (b) :
composante méridienne v1g,, (en m - s7!). Les parameétres du modeéle
sont calculés a partir de la LES (Eq. 5.2.4) avec a = 0.35. . . . . . . .
Module du vent (m.s™') & 10 m lissé, sur une grille de 2.5 km x 2.5
km, & un instant de la LES océanique en RCE réalisée avec le modéle
SAM. Les contours noirs représentent les anomalies de température a
10 m égales a 0.2 K, utilisées pour identifier les poches froides. . . . .
Module du module du vent (m.s™!) a 10 m, lissé sur une grille de 2.5
km x 2.5 km, & I'instant 18h de la LES continentale AMMA réalisée
avec le modeéle MesoNH. Les contours noirs représentent les anomalies
de température & 10 m égales a —1 K, utilisées pour identifier les
poches froides. . . . . . . ..o
Schéma conceptuel du modéle de distribution du vent & 10 m a l'inté-
rieur des poches, distinguant le front de rafales (zone 1) et le reste de
la poche (zone 2), séparés par une ligne droite (en rouge). C, (m.s™!)
représente la vitesse du vent radial, qui prend naissance au centre de
la poche et est responsable de son étalement, au niveau des bords ou
elle atteint son maximum. § (rad) correspond a l’angle formé entre le
centre de la poche et le point d’intersection du cercle avec le segment
matérialisant le front de rafales. . . . . . .. ... o000
Détermination des valeurs optimales de C, (m.s™!) et 8 (rad), garan-
tissant les meilleures distributions des composantes du vent uq,, (a)
et v, (b) dans le modéle, en comparaison avec la LES SAM, selon
le critére du test de 2. . . . . . . . ...
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2.6

2.7

2.8

5.9
5.10

5.11

5.12

Comparaison des distributions des composantes zonale (u10,,, & gauche)
et méridionales (v1gy,), & droite) du vent & 10 m calculées dans la LES
SAM et celles fournies par le modéle (en vert) de distribution du vent
a1l0 mdanslespoches. . . . . . . ... ... L
Schéma conceptuel du modéle de distribution du vent a 10 m a l'in-
térieur d’une poche froide, illustrant le front de rafales (zone 1) et le
reste de la poche (zone 2), séparés par un iso-module de vent en arc
de cercle (en rouge). C, (m.s™!) représente la vitesse du vent radial
(Ur), qui prend naissance au centre de la poche et est responsable de
son étalement, au niveau des bords ot elle atteint son maximum. R
(m) représente le rayon de la poche. o et oy représentent ’écart-type
de la variance du vent sur les régions (1) et (2), respectivement. 6

(rad) représente I'angle formé entre le centre de la poche et le rayon R.101

Métrique s7 (fraction de surface de la poche froide ou le vent dépasse
7 m/s) en fonction des parameétres T,y (ubar), T, (vbar) et le coef-
ficient kyx (coef) du modeéle de distribution du vent dans les poches
pour la vagues 1 du cas RCE. Chaque sous-figure présente 90 simula-
tions. Les lignes rouges pointillées indiquent la valeur de la métrique
issue de la LES (cible), tandis que les lignes rouges continues repré-
sentent l'intervalle de confiance (deux fois la tolérance). Les points
noirs indiquent les estimations de la cible donné par I’émulateur sta-
tistique (processus gaussien), avec leurs barres d’erreur associées. Les
points verts correspondent aux simulations jugées satisfaisantes par
rapport aux estimations de I’émulateur, tandis que les points rouges
correspondent aux simulations non satisfaisantes. . . . . . ... ...
Comme Fig 5.8 mais pour la vague 5 ducas RCE . . . ... ... ..
Comparaison des distributions du module du vent & 10 m (m.s™!, a)
et des composantes uyg,, (m.s™!, b) et vig, (m.s7!, c) a Uintérieur
des poches, obtenues a partir de la LES (noire) et du modéle, avec la
premiére (rouge) et la cinquiéme (vert) vague du tuning pour le cas
RCE. Chaque vague comprend 90 simulations. La LES correspond a
une moyenne réalisée sur 24 instants. . . . . . .. ...
Métrique s9 (fraction de surface de la poche froide ou le vent dépasse
9 m/s) en fonction des paramétres U,y (ubar), T, (vbar) et le coef-
ficient kyr (coef) du modéle de distribution du vent dans les poches
pour la vagues 1 du cas RCE. Chaque sous-figure présente 90 simula-
tions. Les lignes rouges pointillées indiquent la valeur de la métrique
issue de la LES (cible), tandis que les lignes rouges continues repré-
sentent l'intervalle de confiance (deux fois la tolérance). Les points
noirs indiquent les estimations de la cible donné par ’émulateur sta-
tistique (processus gaussien), avec leurs barres d’erreur associées. Les
points verts correspondent aux simulations jugées satisfaisantes par
rapport aux estimations de I’émulateur, tandis que les points rouges
correspondent aux simulations non satisfaisantes. . . . . . . ... ..
Comme Fig 5.11 mais pour la vague 3 du cas AMMA . . .. ... ..
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5.14

5.15
5.16

5.17
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Comme Fig. 5.10 mais pour le cas AMMA, avec la LES correspondant
alinstant 18h. . . . . . . ...
Meétrique s7 (fraction de surface de la maille ot le vent dépasse 7 m/s)
en fonction des paramétres du coefficient kyp (ktwk), Typ (ubwk) et
o, (sigma) du modéle combiné pour la vague 1 du cas RCE. Chaque
sous-figure présente 90 simulations. Les lignes rouges pointillées in-
diquent la valeur de la métrique issue de la LES (cible), tandis que
les lignes rouges continues représentent 'intervalle de confiance (deux
fois la tolérance). Les points noirs indiquent les estimations de la
cible donné par I’émulateur statistique (processus gaussien), avec leurs
barres d’erreur associées. Les points verts correspondent aux simula-
tions jugées satisfaisantes par rapport aux estimations de I’émulateur,
tandis que les points rouges correspondent aux simulations non satis-
faisantes. . . . . . ..
Comme Fig 5.14 mais pour la vague 5ducas RCE. . . . . .. .. ..
Comparaison des distributions du module du vent & 10 m (m.s™!, a)
et des composantes 1o, (m.s™1, b) et vig, (m.s71, ¢) dans la maille,
obtenues a partir de la LES (noire) et du modéle combing, avec la
premiére (rouge) et la cinquiéme (vert) vague du tuning pour le cas
RCE. Chaque vague comprend 90 simulations. La LES correspond a
une moyenne réalisée sur 24 instants. . . . . . .. ..
Métrique s10 (fraction de surface de la maille ou le vent dépasse
10 m/s) en fonction des paramétres du coefficient Ky (ktwk), Ty
(ubwk) et oy, (sigma) du modéle combiné pour la vague 1 du cas
AMMA. Chaque sous-figure présente 90 simulations. Les lignes rouges
pointillées indiquent la valeur de la métrique issue de la LES (cible),

tandis que les lignes rouges continues représentent I'intervalle de confiance

(deux fois la tolérance). Les points noirs indiquent les estimations de
la cible donné par I’émulateur statistique (processus gaussien), avec
leurs barres d’erreur associées. Les points verts correspondent aux si-
mulations jugées satisfaisantes par rapport aux estimations de I’ému-
lateur, tandis que les points rouges correspondent aux simulations non
satisfaisantes. . . . . . . . . ..
Comme Fig 5.17 mais pour la vague 5 du cas AMMA . . . ... ...
Comme Fig 5.16 mais pour le cas AMMA, avec la LES correspondant
alinstant de 18h. . . . . . . . . . . ..
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0.21

0.22

0.23

6.1

6.2

6.3

Distributions du vent & 10 m (m.s™!) issues des LES et obtenues avec
le modele de vent dans les poches (WIND K1 et WIND WK) pour
les cas RCE (panneaux supérieurs) et AMMA (panneaux inférieurs) :
(a) module du vent & 10 m, (b) composante uq,, et (c) composante
v1om- Dans WIND K1, %, et v, sont fixés a la valeur moyenne du
vent dans la maille calculée dans les LES. Pour le cas RCE : %, =
-3.5m.s et Uyr = 0 m.s™t. Pour le cas AMMA : Ty, = 0.34 m.s ! et
Uwi = 0.01 m.s~!. Dans WIND WK, ils sont fixés a la valeur moyenne
du vent dans les poches calculée dans les LES (Uyr = Tg, ; Upr =
U, ). Pour le cas RCE : W, = -5 m.s™! et Ty, = 0 m.s™'. Pour le cas
AMMA : w, = 0.5 m.s™! et 7, = 0.06 m.s™!. Dans WIND K1 et
WIND WK, C, est fixée a la valeur calculée dans les LES. Elle vaut
2.2 m.s~! pour le cas RCE et 5 m.s™! pour le cas AMMA. ky,,, est
fixé a 0.5 pour le cas RCE et 0.8 pour le cas AMMA. . .. ... ...
Comme la Fig. 5.20, mais appliquée au modéle combiné, avec ky,, fixé
ici & 0.5 pour les cas RCE et AMMA. Le parameétre oy, spécifique au
modeéle combiné, est fixé & 1.8 pour les deux cas. . . . . . . ... ...
Comparaison des distributions du module du vent (m.s™!) a4 10 m
a l'intérieur des poches, obtenues a partir des LES et simulées par
le modéle LMDZ utilisant le schéma des rafales basé sur une ap-
proche Monte Carlo (LMDZ-MC), avec le coefficient & (reliant la vi-
tesse d’étalement C, en m.s™! & 'énergie d’affaissement WAPE en
J.kg! fixé a 0.33 et 0.66 sur les cas RCE (a) et AMMA (b). Dans
le cas AMMA, les distributions sont calculées sur une moyenne entre
les instants 17h et 18h. Pour le cas RCE, elles sont moyennées sur les
jours 41, 42 et 43. . . . .. L
Comparaison des distributions du module du vent (m.s™!) & 10 m
dans la maille, issues des LES et simulées par la version standard de
LMDZ utilisant une loi de Weibull (LMDZ-WEIB) ainsi que par la
version intégrant le schéma de rafales basé sur une approche Monte
Carlo (LMDZ-MC), pour les cas RCE (a) et AMMA (b). Dans le cas
AMMA, les distributions sont calculées sur une moyenne entre les
instants 17h et 18h. Pour le cas RCE, elles sont moyennées sur les
jours 41,42 et 43. . . . ..o

Représentation de la grille de LMDZ avec la partie zoomée en rec-
tangle bleu (Escribano et al., 2016). . . . . . ... ... ... ...
Distribution spatiale de I’énergie d’affaissement, WAPE, (J/Kg) des
poches (a) et des émissions de poussiéres (g.m~2.jr~!) simulées le
11 juillet 2006 par les versions du modéle LMDZ sans interaction
poussiéres-rayonnement : WEIB, basé sur une distribution de Wei-
bull (b), et MC, utilisant un schéma de rafales avec approche Monte
Carlo (c). Le panneau (d) montre I’écart des émissions de poussiéres
entre MCet WEIB. . . . . . .. ... ...
Comme Fi. 6.2 mais pour la journée du ler juillet 2006. . . . . . . . .
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6.4

6.5

6.6

6.7

6.8

6.9

Résultats des simulations de LMDZ avec les configurations WEIBNO
et MCNO pour la date du 21 juillet 2006. Le panneau (a) repré-
sente les précipitations (mm.jr~!) simulées dans les deux configura-
tions. Le panneau (b) présente les différences d’émissions de poussiéres

(gm~2jr~!) entre MCNO et WEIBNO (MCNO - WEIBNO). Le pan-

neau (c) montre la WAPE (J.kg™!) simulée dans les deux configurations.137

Distribution verticale des précipitations (mm jr~!) simulées par la
configuration de LMDZ avec MCNO pour le 21 juillet 2006. La courbe
rouge correspond au profil situé a 0° de longitude et 16°N de latitude,
au centre de la zone d’émission de poussiére au Mali. La courbe verte
représente le profil au point 15°W, 15°N, au centre de la zone d’émis-
sion du nord du Sénégal. . . . . . .. ..o
Moyennes saisonniéres de I’épaisseur optique des aérosols (AOT) pour
I’année 2006, simulées par le modéle LMDZ selon deux configurations
sans interaction poussiéres-rayonnement (NO) : I'une basée sur une
distribution de Weibull pour le vent de surface (WEIBNO), l'autre
sur le schéma des rafales avec une approche Monte Carlo (MCNO). La
saison séche (panneaux du haut) correspond & la moyenne des mois
de janvier a avril (JFMA) et la saison des pluies (panneaux du bas)
couvre la période de juin & septembre (JJAS) . .. ...
Distribution verticale des concentrations de poussiéres (mg.kg™!) si-
mulées par la configuration MCNO pour les journées du 11 juillet (a)
et du ler juillet (b) 2006. La coupe verticale du 11 juillet est effectuée
le long de la latitude 15°N, au centre d’un événement de poussiéres
associé a des poches froides. Celle du ler juillet est réalisée selon la
latitude 23°N, traversant une zone d’émission de poussiéres non liée
a des poches froides. . . . . . .. ...
Distribution verticale des concentrations de poussiéres (mg.kg™!) si-
mulées par le modéle LMDZ-MC NOINTER pour la journée du 3
février 2006. La coupe verticale est effectuée le long de la latitude
17°N, au centre d’un événement de poussiéres. . . . . . . . . .. ...
Moyenne mensuelle de I’épaisseur optique des aérosols (AOT) en mars
2006, simulée avec le modele LMDZ dans quatre configurations : l'une
utilisant une distribution de Weibull (WEIB) pour la représentation
du vent de surface, 'autre sur le modéle de bourrasques de vent avec
approche Monté Carlo (MC), chacune avec (INT) et sans (NO) in-
teraction entre poussiéres et rayonnement. Les panneaux du haut in-
diquent les simulations avec WEIBNO (a), WEIBINT (b) et WEI-
BINT - WEIBNO (c). Les panneaux du bas représentent les simula-
tions avec MCNO (d), MCINT (e) et MCINT - MCNO (f) . ... ..

6.10 Comme Fig 6.9 mais pour le mois de juillet 2006. . . . . .. ... ..
6.11 Méme chose que Fig. 6.9 mais pour la moyenne des précipitations

(mm.jr~!) sur le mois de juillet 2006 . . . . . .. .. ... L.
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6.12

6.13

6.14

6.15

6.16
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B.1

Différences des moyennes des composantes zonale (UI0M en m.s™ !,

panneaux du haut) et méridionale (V10M en m.s™!, panneaux du bas)
du vent entre les simulations avec rétroactions poussiéres-rayonnement

(INT) et sans rétroactions (NO), pour les configurations WEIB et MC.151

Comparaison entre ’épaisseur optique des aérosols (AOT) observée
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1.1 Contexte

La région sahélo-saharienne représente la premiére source mondiale d’émission
de poussiéres minérales. Plus de la moitié des aérosols désertiques présents dans I’at-
mosphére provient de cette zone (Washington and Todd, 2005; Ginoux et al., 2004).
La production de poussiéres dans cette région est influencée par des facteurs météo-
rologiques (vents forts et faibles précipitations) ainsi que par les caractéristiques de
surface telles que la rugosité, 'humidité et la végétation. Ces poussiéres désertiques
sont générées par l'action mécanique du vent, une fois le seuil d’érosion atteint.
Lorsque la vitesse du vent dépasse la force de friction nécessaire & la mise en mouve-
ment des grains de sable, ceux-ci commencent par se déplacer horizontalement, puis
les particules les plus fines sont entrainées en suspension dans I’atmosphére, formant
ainsi des "aérosols désertiques". Une fois émises, ces particules suivent le mouve-
ment des masses d’air dans l'atmospheére et peuvent parcourir de longues distances,
sur des périodes allant de quelques heures a plusieurs jours selon les conditions mé-
téorologiques (Tegen and Lacis, 1996; Mahowald et al., 1999). Le transport de ces
aérosols impacte la qualité de I'air (De Longueville et al., 2010). 11 affecte également
la météorologie (Rodwell and Jung, 2008) et le climat (Carslaw et al., 2010). Les
poussiéres influencent significativement le climat en modifiant le bilan radiatif de la
Terre par diffusion, absorption et émission des radiations solaires et infrarouges ter-
restres (Sokolik et al., 2001; Tegen, 2003; Konare et al., 2008; Camara et al., 2010).

Cette modification du rayonnement module la circulation jusqu’a 1’échelle globale.

Compte tenu de leur role majeur, les poussiéres désertiques sont désormais intégrées
dans la plupart des Modéles Climatiques Globaux (GCM : Global Climate Model)
(Marsham et al., 2011), utilisés pour les études de changements climatiques. Leur
modélisation reste cependant complexe. D’une part, les émissions de poussiéres ne
suivent pas une relation linéaire avec le vent, dont I'intensité et la distribution sont in-
fluencées par plusieurs facteurs météorologiques ; d’autre part, différents mécanismes
atmosphériques gouvernent leur transport, leur transformation et leur dépot. Cha-
cun de ces processus doit étre représenté dans les GCM afin d’estimer précisément
les charges de poussiéres dans l'atmospheére et, par conséquent, leur impact sur le
climat.

Depuis plusieurs années, un travail de développement de modéles intégrant les inter-
actions entre aérosols désertiques et climat est mené en partenariat entre le LMD et
le LPAO-SF. Ce travail a été construit autour de plusieurs théses, notamment celles
de Moussa Gueye, Habib Senghor et Bineta Diallo. L’introduction des émissions de

poussiéeres désertiques dans le modéle climatique LMDZ, développé au LMD, a été
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réalisée durant la these de Moussa Gueye. Le flux d’émission existant dans le modele
a été par la suite ajusté par Escribano et al. (2016) en couplant LMDZ avec un mo-
dele simplifié d’aérosols (SPLA pour SimPLified Aerosol en anglais) décrit en détail
dans Huneeus et al. (2009). Ce dernier a été développé avec pour objectif d’optimiser
les émissions globales d’aérosols par assimilation de données. Ces efforts ont permis
d’obtenir de bonnes simulations de poussiéres en saison séche dans LMDZ (Hour-
din et al., 2015). Cela a conduit également a une meilleure représentation des flux
radiatifs de surface (These de B. Diallo). Cette thése a pour contexte plus spécifi-
quement la représentation du soulévement des poussiéres au Sahel pendant la saison
des pluies, au cours de tempétes de poussiéres associées aux systémes convectifs,

connues sous le nom de "haboobs".

Les haboobs sont de grandes tempétes de sable qui surviennent pendant la saison
des pluies au Sahel, souvent en amont des systémes orageux. Ils sont générés par un
phénoméne météorologique appelé poche froide. Les poches froides se forment par
I’évaporation des précipitations sous les cumulonimbus, créant des masses d’air froid.
Plus denses que l'air environnant, ces masses s’effondrent et s’étalent horizontale-
ment comme un courant de densité. En s’étalant, les poches froides soulévent ’air
environnant, ce qui peut entrainer la formation de nouvelles colonnes convectives et
jouer un réle crucial dans le maintien des orages. Les vents trés forts générés dans
le "front de rafales" qui se forment & I’avant de ces courants de densité sont respon-
sables du soulévement de poussiéres. Ce processus constitue le principal mécanisme
de soulévement de poussiéres au Sahel durant la saison des pluies (Allen et al., 2015;
Caton Harrison et al., 2019). Cependant, la plupart des GCM n’intégrent pas ces
émissions de poussiéres liées aux poches froides en raison de I’absence de paramétri-
sation pour ces poches et les rafales de vent associées (Roberts et al., 2018; Knippertz
and Todd, 2012; Marsham et al., 2011). Ils sous-estiment ainsi les émissions durant
les journées convectives (Marsham et al., 2011), ce qui peut entrainer une mauvaise
estimation de la charge de poussiéres atmosphérique. Cela peut biaiser les projec-
tions de changement climatique ainsi que les évaluations de la sensibilité climatique

(Kok et al., 2023).

Ces derniéres années, plusieurs paramétrisations ont été développées pour intégrer
les rafales de vent liées a la convection profonde dans les modéles climatiques. Par
exemple, Jabouille et al. (1996) ont proposé d’estimer l'intensité des rafales a partir
des paramétres caractérisant la convection, telles que les précipitations et les flux de

masse convectifs. De leur coté, Redelsperger et al. (2000) ont établi une approche
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similaire, fondée sur le taux de précipitations et les flux masses convectifs ascen-
dant et descendant. Cakmur et al. (2004) ont, quant & eux, développé un modéle
de distribution de probabilité du vent sous-maille basée sur le flux de masse associé
aux courants descendants. D’autres études ont élaboré un modéle de rafales de vent
utilisant le flux de masse des schémas convectifs qui se répartissent dans une poche
(Pantillon et al., 2015). Toutes ces paramétrisations reposent sur le flux de masse
convectif issu du GCM, ou la convection est elle-méme paramétrée. La représenta-
tion des haboobs va donc dépendre de la capacité de ces paramétrisations a bien

reproduire la convection.

Dans le modéle LMDZ, un effort a été réalisé pour améliorer la représentation de
la convection, notamment grace & la paramétrisation des poches froides développée
par Grandpeix and Lafore (2010). Ce schéma a permis une nette amélioration de la
convection dans LMDZ, en particulier la représentation du cycle diurne des préci-
pitations sur continent (Rio et al., 2009). Le modéle repose sur une population de
poches froides, supposées circulaires et identiques, qui se refroidissent sous 'effet de
I’évaporation des précipitations dans les courants descendants convectifs. Dans la
version du modéle disponible au début de cette thése, le nombre de poches présentes
dans une maille est fixé arbitrairement, tandis que leur fraction surfacique évolue
dans la maille en fonction de leur vitesse d’étalement. Cette paramétrisation ne pre-
nait pas en compte jusqu’a présent les rafales de vent engendrées par I’étalement de

ces poches froides.

1.2 Objectifs de la thése

Si on veut que les projections climatiques soient utilisées de fagon pertinente pour
éclairer les réponses a apporter aux conséquences régionales du réchauffement global,
il est important de prioriser le développement et 'amélioration des modéles. Cette
thése porte sur la modélisation des poches froides et du soulévement de poussiéres
associé a leur propagation, et s’inscrit dans cet objectif général. Elle vise princi-
palement a améliorer la représentation des poussiéres désertiques dans les modéles
climatiques. Pour atteindre cet objectif, nous mobilisons des outils et des approches
récemment adoptés par la communauté pour accélérer le développement des modéles
climatiques, face a 'intensification des effets du changement climatique.

L’un des freins au développement des paramétrisations réside dans un manque de
compréhension fine de certains processus atmosphériques. L’utilisation croissante

des LES (Large Eddy Simulations) contribue a la réduction progressive de ce déficit,
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en permettant une représentation explicite de la turbulence dans la couche limite at-
mosphérique et en fournissant des données tridimensionnelles propices & une analyse
détaillée des mécanismes en jeu. Bien qu’elles comportent des limitations, les LES
constituent aujourd’hui un complément essentiel aux observations, souvent rares et
ne fournissant pas d’information tridimensionnelle, ce qui ne permet pas une ana-
lyse fine des mécanismes atmosphériques. Par le passé, les paramétrisations étaient
souvent développées a partir de 'intuition du modélisateur ou basées sur des formu-
lations empiriques, ce qui, bien que parfois pertinent, ne garantissait pas le réalisme
des simulations. Aujourd’hui, les LES permettent au modélisateur de se faire une
image physique plus réaliste des processus, ouvrant la voie au développement de
nouvelles paramétrisations originales, sans dépendre de schémas préexistants. Ces
paramétrisations introduisent cependant des parameétres libres, issus des simplifica-
tions nécessaires face a la complexité des processus atmosphériques. L’ajustement de
ces paramétres permet de maintenir la cohérence des modéles avec les observations,
mais il s’agit d’une étape sensible, car, corriger un biais peut en engendrer un autre,
parfois plus fondamental. Longtemps considéré comme pénible et peu scientifique, ce
travail de réglage reste presque manuel, reposant sur des choix guidés par la théorie
ou des estimations approximatives, souvent sans prise en compte des biais potentiel-
lement induits ailleurs dans le modéle. Une telle pratique peut soulever des questions
sur la confiance & accorder aux projections climatiques. Comme le souligne Hourdin
et al. (2017), 'une des raisons pour lesquelles ce travail est rarement documenté
tient au fait qu’il est per¢qu comme du « bricolage », ce qui pourrait alimenter les
arguments des climato-sceptiques. Le tuning demeure bien-stir indispensable, mais
il doit aller de pair avec une amélioration du réalisme physique des modéles. C’est
précisément pour ces raisons qu’a été développé 'outil High-Tune Explorer : une
solution de calibration automatique des parameétres visant non seulement a libérer
le modélisateur des longues phases d’ajustement manuel, mais aussi, plus fonda-
mentalement, & limiter 'introduction de biais cachés et a renforcer la fiabilité des
simulations climatiques. Cette thése s’appuie sur ces outils innovants pour atteindre
un objectif général divisé en trois parties spécifiques. La premiére partie consiste a
évaluer le schéma des poches froides dans le modéle LMDZ en s’appuyant, pour la
premiére fois, sur des LES afin d’en fournir une évaluation détaillée, tant sur son
aspect physique que sur les propriétés des poches qu’il simule. Dans la deuxiéme
partie, nous développons une nouvelle paramétrisation des rafales de vent associées
aux poches froides, s’appuyant principalement sur les LES et sans recours a des
schémas préexistants. Dans ces deux premieres parties, l'outil Hig-Tune Explorer

est utilisé pour ajuster les paramétres libres des modéles. Enfin, la troisieme partie
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est consacrée & des simulations de poussiéres permettant d’évaluer les performances
de cette nouvelle paramétrisation des rafales pour simuler les émissions de poussiéres
désertiques. Les LES sont également utilisée pour évaluer une paramétrisation dé-
veloppée par Jean-Yves Grandpeix, actuellement en phase de test, visant a calculer
de maniére plus physique la densité surfacique des poches (nombre de poches par
unité de surface), jusque-1a imposée dans LMDZ. Cette derniére étude est présentée

€11 annexe.

1.3 Organisation de la thése

Apreés le chapitre introductif, le chapitre 2 expose les grands facteurs qui ré-
gissent le soulévement et le transport des poussiéres pendant la saison des pluies au
Sahel. Dans la premiére section, nous proposons une revue générale de la dynamique
atmosphérique en été au Sahel, afin d’illustrer les différents phénoménes qui inter-
agissent pour créer des conditions propices a la convection profonde. Les sections
suivantes discutent plus en détails les phénoménes de convection profonde et des
poches froides. Ce chapitre propose une revue bibliographique sur le soulévement
des poussiéres, en abordant les principales zones sources et les facteurs météorolo-
giques susceptibles de les activer, avec un accent particulier sur le role des poches

froides dans ce processus.

Le chapitre 3 est dédié a la présentation des outils utilisés dans le cadre des tra-
vaux de cette thése. Nous débutons par une description du modéle climatique LMDZ,
suivi d’'une discussion sur les simulations de référence, les LES, qui ont servi de base
pour I’évaluation du modéle de poches et le développement de la paramétrisation
des rafales. Nous présentons également "HighTune Explorer (htexplo)", un outil de
calibration semi-automatiques des parameétres libres des modéles. Ensuite, nous pré-
sentons le modéle LMDZ-SPLA et profitons de cette section pour faire un état de
I’art sur la modélisation du soulévement des poussiéres. Enfin, nous décrirons les
données d’observation employées dans cette thése pour évaluer nos simulations de

poussiéres.

Dans le chapitre 4, nous présentons plus en détail le modele de poches froides
intégré dans LMDZ. Un échantillonnage est réalisé¢ afin de calculer I’ensemble des
variables internes du schéma dans les LES. Le modéle est ensuite évalué par rapport
aux LES pour identifier ses limites. Des améliorations sont ensuite proposées pour

corriger les défauts constatés, et 'outil htexplo est utilisé pour calibrer certains de
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ses paramétres libres.

Dans le chapitre 5, nous développons une paramétrisation des rafales de vent as-
sociées a I’étalement des poches froides. Ce modéle, qui décrit uniquement la distri-
bution du vent de surface a l'intérieur des poches, est ensuite combiné & un autre
modeéle représentant la distribution du vent en dehors des poches, développé par
Adriana Sima, tenant compte des rafales générées par les thermiques. L’ensemble
fournit une distribution compléte du vent de surface dans la maille et est testé et
validé dans la version uni-colonne de LMDZ. A nouveau, 'outil htexplo est utilisé

pour la calibration des parameétres de ce nouveau modéle.

Dans le chapitre 6, nous présentons nos simulations de poussiéres visant a éva-
luer 'impact du modéle des rafales sur le soulévement des poussiéres dans LMDZ.
Aprés une description des simulations, ’analyse se concentre sur la saison des pluies
afin d’examiner 'effet du schéma de rafales sur les émissions de poussiéres durant les
périodes convectives. Le lien entre les poussiéres soulevées par les poches et les préci-
pitations a l'origine de leur formation est également étudié. Nous explorons ensuite
le cycle saisonnier des poussiéres, en discutant notamment l'influence du schéma
de rafales thermiques sur les émissions de poussiéres. La distribution verticale des
poussiéres est ensuite analysée en saisons séche et humide, avec un focus particulier
sur le role des poches dans leur transport vertical. Enfin, la rétroaction poussiéres-
rayonnement est examinée, avant de valider les simulations a l'aide d’observations

issues de trois stations sahéliennes.

Le chapitre 7 présente enfin les conclusions générales et les perspectives de ce

travail.

En Annexe, nous présentons la paramétrisation de la dynamique des populations
de poches froides. Nous discutons également, ici, les résultats des tests effectués avec

la version unicolonne du modele LMDZ, ainsi que les validations réalisées a partir

des LES.
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2.1 Introduction

Dans ce chapitre, nous discutons du soulévement des poussiéres au Sahel durant
la saison des pluies. La premiére section présente un apercu général de la dynamique
atmosphérique au Sahel pendant cette période. La section suivante traite plus en
détail les phénomeénes de convection profonde et des poches froides. Une revue gé-
nérale du soulévement des poussiéres au Sahel est ensuite proposé, avant d’analyser
le role spécifique des poches froides dans ce phénoméne au cours de la saison des

pluies.

2.2 La dynamique atmosphérique au Sahel en saison

des pluies

La dynamique atmosphérique au Sahel en été résulte de plusieurs systémes de
circulation (Fig. 2.1). Dans les basses couches, on observe les flux d’harmattan et de
mousson, ainsi que leur zone de convergence, appelée Front Intertropical (FIT). Dans
les couches moyennes et hautes de la troposphére, les principaux jets présents sont le
Jet d’Est Africain (JEA ou AEJ : African Easterly Jet), le Jet d’Est Tropical (JET
ou TEJ : Tropical Easterly Jet), et le Jet d’Ouest Sub-Tropical (JOST). On observe
aussi des zones de convection humide (ZCIT : Zone de Convergence Intertropicale)

et séches (la dépression thermique saharienne ou Heat Low).

2.2.1 Le flux d’harmattan

L’harmattan est un vent chaud et sec qui souffle du nord-est vers le sud-ouest,
transportant ’air saharien vers le golfe de Guinée. Ce vent est généralement plus
intense en hiver, avec des vitesses avoisinant 8 m/s, et nettement plus faible en
été, autour de 5 m/s. Bien qu’il soit présent presque toute ’année sur le continent,
son influence est nettement plus marquée en hiver qu’en été, et son épaisseur peut
atteindre jusqu’a 5 km. Ce vent est également connu pour étre chargé en poussiéres

désertiques.

2.2.2 Le flux de mousson

Le flux de mousson, en provenance du golfe de Guinée, traverse ’équateur et
change de direction pour s’orienter au Sud-Ouest sous l'influence de la force de

Coriolis. Initialement constitué d’alizés de Sud-Est, ce flux s’enrichit en humidité
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FIGURE 2.1 — Schéma conceptuel de la MAQO selon une coupe moyenne zonale et
profils méridiens de température potentielle et température potentielle équivalente
et dans la couche limite (Peyrille, 2006)

lors de son passage au-dessus des régions maritimes, sous l'effet des hautes pres-
sions exercées par 'anticyclone de Sainte-Héléne. Ce courant humide progresse vers
le Nord et atteint son intensité maximale pendant 1’été boréal, lorsque le gradient
thermique entre les eaux du golfe de Guinée et les terres sahariennes devient parti-
culiérement marqué. D’aprés Sultan and Janicot (2000), les précipitations au Sahel

sont controlées par 'advection de I’humidité provenant du Golf de Guinée.

2.2.3 Le Front Intertropical (FIT)

Le Front Intertropical correspond & la zone de convergence en basses couches
entre le flux de mousson, intense et chargé d’humidité, et le flux d’harmattan, plus
sec et moins puissant. En été, il se situe généralement entre les latitudes 10° et 20°N,
tandis qu’en hiver, sa position se déplace entre 0° et 10°N (Stuut et al., 2005). Cette
zone est caractérisée par un fort cisaillement horizontal et vertical entre les deux
flux (Bou Karam et al., 2008).

2.2.4 Jet d’Est Africain (JEA)

Le JEA, observé pendant 1’été boréal dans la moyenne troposphére, entre 500 et

700 hPa, a son coeur situé autour de 15°N. Il s’étend du Tchad jusqu’au Cap-Vert,

10
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avec des vitesses maximales atteignant environ 15 m/s. Sa formation résulte du fort
gradient thermique dans les basses couches entre le Sahara et le golfe de Guinée, ainsi
que de l'inversion de ce gradient méridien en altitude. Le JEA joue un role crucial
dans la convection au Sahel. Cadet and Nnoli (1987) ont démontré que le JEA
transporte 'humidité au-dessus des régions sahéliennes, contribue a 1’organisation
nocturne de la convection profonde et & la formation des lignes de grains (Houze Jr
and Betts, 1981; Lafore and Moncrieff, 1989).

2.2.5 Jet d’Ouest Sub-Tropical (JOST)

Le JOST constitue la composante zonale d’ouest de la branche divergente de
la cellule de Hadley. Situé¢ dans les couches supérieures de la troposphére, il peut
atteindre des vitesses de 30 a 40 m/s et se positionne autour de 30°N de latitude
durant la période de mousson. Son intensité est directement liée & celle de la cellule de
Hadley qui le soutient. Par conséquent, le JOST est plus puissant dans I’hémisphére

hivernal que dans I'hémisphére estival.

2.2.6 Jet d’Est Tropical (JET)

Le JET s’étend de 1’Asie a I’Atlantique et trouve son origine dans les contrastes
thermiques marqués en Asie du Sud-Est, entre les massifs montagneux du Tibet et
les zones océaniques plus fraiches proches de I’équateur. En Afrique de ’Ouest, il est
localisé entre 100 et 200 hPa, autour de 10°N, avec une vitesse maximale atteignant

environ 20 m/s.

2.2.7 Zone de Convergence Intertropicale (ZCIT)

L’installation de la ZCIT au-dessus du Sahel, dés le mois de juin, marque le
début de la saison des pluies dans cette région (Sultan and Janicot, 2000; Le Barbé
et al., 2002). Dans cette zone, on observe des maxima de rayonnement infrarouge, de
conduction thermique et d’évaporation. L’atmosphére située au-dessus de la ZCIT
présente une instabilité conditionnelle, permettant a l'air humide en provenance
du Sud de s’élever verticalement jusqu’a atteindre son niveau de condensation. Ce
processus entraine ’apparition de la convection profonde, caractérisée par des nuages
trés épais, un phénomeéne que nous discuterons plus en détail dans un paragraphe

ultérieur.
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FIGURE 2.2 — Fréquence d’occurrence de la dépression thermique (couleur), vent
a 925 hPa (contour bleu), Front Intertropical (ligne noire pointillée, correspondant
a la position minimum du géopotentiel & 925 hPa entre 0°N et 28°N) et reliefs
supérieurs a 925 hPa (contour gris) pour les mois janvier (a), juin (b) et juillet. Les
données sont issues des réanalyses ERA-40 du Centre européen pour les prévisions
météorologiques & moyen terme (ECMWF), moyennées sur la période 1979-2001.
(Lavaysse et al., 2009).

2.2.8 La dépression thermique saharienne

En été, au nord du FIT, la région saharienne subit un réchauffement constant
qui se transmet a l'air en surface par le biais de la turbulence. Cet air chaud, en
s’élevant, génére dans la basse tropospheére une zone de basse pression bien marquée,
connue sous le nom de dépression thermique (Heat Low). Au début de I'été, elle est
localisée au sud du Hoggar, avant de se déplacer rapidement vers 1'ouest en juillet,
s’étendant entre 1’Atlas et le Hoggar, comme le montre la figure 2.2 (Lavaysse et al.,
2009). En hiver, cette dépression thermique se positionne au-dessus de la République
centrafricaine (Fig. 2.2). Ce phénoméne peut provoquer des émissions de poussiéres
au Sahel (Kocha et al., 2012).

2.3 La convection profonde

La convection profonde se caractérise par la formation de cumulonimbus, dont
I’extension verticale peut atteindre 14 & 16 km sous les tropiques. Ce phénomeéne
météorologique, particuliérement violent, s’accompagne fréquemment de tonnerre,

de gréle, d’éclairs et de précipitations intenses. Il se produit principalement pendant
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FIGURE 2.3 — Processus conduisant au déclenchement de la convection profonde
(Rio, 2023 communication orale)

la saison de la mousson, en raison de l'instabilité de I’atmosphére et de I’abondante
humidité présente. En effet, 'humidité transportée dans les basses couches par le flux
de mousson, combinée au chauffage solaire, génére des courants ascendants chauds et
saturés en vapeur d’eau. Ces masses d’air ascendant disposent souvent d’une énergie
suffisante pour dépasser la barriére énergétique appelée inhibition convective (CIN :
Convective Inhibition ). Une fois cette barriére franchie, elles atteignent le niveau de
convection libre (LFC : Level of Free Convection), a partir duquel elles peuvent s’éle-
ver librement dans I'atmosphére. Durant leur ascension, ces particules libérent une
énergie potentielle, connue sous le nom de CAPE (Convective Available Potential
Energy). Cette énergie détermine le potentiel orageux dans 'atmosphére. La figure

2.3 illustre le processus conduisant au déclenchement de la convection profonde.

Au Sahel, la convection profonde ne se manifeste pas en continu durant la saison
de mousson (Janicot et al., 2008), mais chaque événement engendre des précipita-
tions trés abondantes. Parmi ces événements, on distingue les systémes convectifs de
méso-échelle (MCS : Mesoscale Convective System), composés de groupes de cumu-
lonimbus connectés par une zone stratiforme commune. Les MCS, qui contribuent
jusqu’a 90% des précipitations au Sahel (D’amato and Lebel, 1998; Mohr, 2004), ap-
paraissent généralement sous forme de lignes de grains (Mathon and Laurent, 2001).

Ces structures, typiques des régions tropicales, peuvent s’étendre sur plusieurs cen-
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FIGURE 2.4 — Schéma d’une ligne de grain (Lafore et Poulain, 2009).

taines de kilomeétres, avec une durée de vie moyenne de 12 & 36 heures. Elles se
déplacent souvent plus vite que le flux moyen, a des vitesses de 10 & 20 m.s~! (Lilly,
1979). La figure 2.4 schématise la structure d’une ligne de grain dont les caractéris-

tiques principales sont les suivantes :

Une partie convective : les particules issues de la couche limite sous-nuageuse
montent rapidement, générant des courants ascendants puissants pouvant atteindre
environ 10 m.s~!. Plusieurs structures de ce type se forment, contribuant a établir
un flux principal ascendant, qui transporte les particules de la couche limite sous

convective vers la région stratiforme.

Une partie stratiforme : Cette région, située a 'arriére des nuages, est égale-
ment appelée "enclume" en raison de sa forme caractéristique. Elle se distingue par
une structure plus uniforme et une extension horizontale bien plus importante que
celle du coeur convectif. Les précipitations qu’elle génére sont moins intenses (in-
férieures & 10 mm.h™!), mais elles durent plus longtemps et couvrent une surface
nettement plus vaste. Bien que I’enclume et le noyau convectif d’'un MCS produisent
des précipitations de nature trés différente, ils peuvent contribuer de maniére équi-

valente a la quantité totale de précipitations générée par le systéme (Houze Jr, 2004).
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Des courant de densité ou poches froides : Les poches froides, également
appelées courants de densité, se forment dans les basses couches en raison de 1’ef-
fondrement des masses d’air froid générées sous les nuages par 1’évaporation des
précipitations. Ces poches jouent un role essentiel sur la convection et contribuent

au soulévement des poussiéres au Sahel.

La convection profonde contribue également a la redistribution et & 1’élimination
des poussiéres émises dans ’atmosphére. Cet aspect sera discuté plus en détail dans

les sections suivantes.

2.4 Les poches froides

2.4.1 Processus de formation des poches

Le processus de formation des poches froides a été détaillé dans plusieurs études
(Parker, 1996; Grandpeix and Lafore, 2010; Lothon et al., 2011). Comme on ’a vu
plus haut, les poches froides apparaissent en lien avec des événements de convec-
tion profonde (Zuidema et al., 2017). Elles se forment sous les cumulonimbus par
I’évaporation des précipitations. Ce processus fonctionne comme suit : lorsque la
convection se développe, des précipitations se forment. Si I'air sous les nuages n’est
pas saturé en vapeur d’eau, une partie des gouttes s’évapore avant de toucher le sol.
Cette évaporation, qui convertit le liquide en vapeur, absorbe de ’énergie et refroi-
dit ’air environnant, créant ainsi des poches d’air froid sous les nuages. Ces masses
d’air froid, moins flottantes que 'air plus chaud environnant, subissent une pous-
sée d’Archiméde descendante qui les fait s’effondrer. Une fois au sol, elles s’étalent
horizontalement sous la forme de courants de densité. Ces masses d’air froid appa-
raissant prés de la surface lors des épisodes convectifs sont appelées poches froides
ou courants de densité. La figure 2.5 présente un schéma conceptuel d’un courant de
densité associé & un systéme convectif isolé. La propagation des poches froides au
sol crée un front de rafales & 'avant des systémes convectifs, généralement situé au
bord d’attaque du courant de densité. Méme en ’absence de soulévement de pous-
siéres, ce front emporte souvent des débris et des insectes, et il est détectable par
radar Doppler (Wakimoto, 1982). La partie la plus épaisse constitue la « téte » du
courant de densité, séparée de l'air chaud et sec par une enveloppe, sous laquelle
des mouvements turbulents se produisent. La forme de I’étalement d’un courant de
densité dépend de l'intensité du cisaillement du vent : en présence d’un fort cisaille-

ment vertical, le courant prend une forme dissymétrique (elliptique), tandis qu’en
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FIGURE 2.5 — Schéma conceptuel de la structure verticale d'une cellule convective
associée a un front de rafale (Goff, 1976)

I'absence de cisaillement, il conserve une forme symétrique (circulaire). Les fronts
de rafales se déplacent a des vitesses allant de 5 & 20 m/s. La hauteur du courant
de densité correspond généralement a peu prés a I'altitude de la base du nuage. La
température dans la poche froide est inférieure a celle de ’environnement, avec des
écarts de -1 & -3 K au-dessus de 'océan et de -5 a -10 K au-dessus des terres, selon

I'intensité de la convection.

Des poches froides peuvent souvent se former en ’absence de précipitations au sol, en
raison de I’évaporation compléte de la pluie avant qu’elle n’y parvienne. Ce phéno-
meéne, connu sous le nom de virga, est fréquent dans les régions arides et semi-arides,
ol la base des nuages est souvent située a des altitudes élevées, augmentant ainsi la
probabilité d’évaporation totale des gouttes de pluie avant qu’elles n’atteignent le sol
(Raich et al., 2018). McCarthy et al. (1982) ont établi un lien entre des microrafales
et des épisodes de virga, a partir d’'une analyse tridimensionnelle de la structure
de ces rafales. De méme, Wilson et al. (1984) ont mis en évidence des microrafales
séches survenant lors d’épisodes de virga. Ces microrafales seraient provoquées par
I'effondrement de masses d’air froid créées par I’évaporation des gouttes de pluie au
cours de ces événements, en I’absence de pluie au sol (Karle et al., 2023). Ces au-
teurs ont également montré des cas de virga n’ayant produit aucune précipitation au
sol, mais marqués par une hausse de 'humidité atmosphérique et une accélération

soudaine du vent, signes caractéristiques du passage d’une poche froide.
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2.4.2 Caractérisations et détections des poches

Les caractéristiques des poches froides ont été étudiées a la fois par observation et
par modélisation. La Figure 2.6, tirée de I’étude de Lothon et al. (2011) portant sur
un épisode de convection profonde observé le 10 juillet 2006 au Niger dans le cadre
de la campagne AMMA illustre clairement le passage d’une poche froide. Celle-ci
se traduit par une diminution brutale de la température d’environ 5 °C, une hausse
rapide de I'humidité relative d’environ 20%, une accélération du vent d’environ 6
m/s ainsi qu'un changement marqué de sa direction. Sur la base de 38 cas observés
au Niger, Provod et al. (2016) ont montré que I’apparition des poches froides est
associée a des baisses de température de 2 & 14°C, une augmentation de pression de
0 & 8 hPa et des rafales de vent de 3 a 22 m/s. D’autres travaux, tels que ceux de
(Knippertz et al., 2007; Miller et al., 2008; McDonald and Weiss, 2021), aboutissent
a des résultats similaires : le passage d’une poche froide est associé & une chute ra-
pide de température, une hausse de pression, des vents intenses et un changement de
direction. La figure 2.6 met en évidence que ces variations de température, d’humi-
dité relative et de vent se produisent sur une échelle de temps de seulement quelques

secondes.

Il n’existe pas de cadre commun pour identifier objectivement les poches froides dans
les observations et les modéles numériques. Ces derniéres années, plusieurs études
ont exploré le développement de méthodes pour identifier et suivre les poches froides.
Par exemple, Young et al. (1995) ont proposé une méthode basée sur le taux de pré-
cipitations, définissant le début d’une poche froide par un taux de pluie d’au moins 2
mm /h, et la fin lorsque la température de surface retrouve son niveau initial. Ce seuil
a été inspiré d’une étude antérieure de Barnes and Garstang (1982), qui montrait
que seuls les taux de précipitations supérieurs & 2 mm/h étaient liés aux courants
de densité provoqués par la pluie. Drager and van den Heever (2017) ont également
proposé une méthode de détection fondée sur le taux de précipitations en surface et
les gradients radiaux de température potentielle. Feng et al. (2015) ont développé
une approche automatisée et objective pour identifier les poches individuelles, en
définissant la poche froide selon un seuil de flottabilité de -0.003 m/s2, puis en sépa-
rant les régions contigués avec une technique de bassin versant, permettant ainsi de
distinguer les poches connectées. Dans des études observationnelles récentes, comme
celles de Provod et al. (2016); Zuidema et al. (2017); Vogel et al. (2021); Rochetin
et al. (2021); Touzé-Peiffer et al. (2022), la détection des poches froides s’approche
davantage d’une détection de courants de densité, en tenant compte des variations

de température, de pression et de vent. A partir de la théorie, des observations et de
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FIGURE 2.6 — Séries temporelles de la vitesse du vent (courbe noire) et de sa direc-
tion (courbe grise) (a), la température (courbe noire) et ’humidité relative (courbe
grise) (b), le 10 juillet 2006 a 'aéroport de Niamey. Dans (b), I'anomalie de pres-
sion est ajoutée dans un petit sous-diagramme complémentaire de 15h00 & 21h00
UTC (courbe noire fine). Les lignes verticales en pointillés indiquent le passage des
systémes convectifs Sy, C et Cy. C et Cy sont générées par les poches froides issus
de Sy. La ligne verticale pleine indique la signature d’une rafale associée au courant
de densité, et correspond également & I'heure exacte du radiosondage lancé & 17h30
UTC. Cette heure est indiquée par une fléche en haut (marquée « RS ») (Lothon
et al., 2011).
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la modélisation, Rochetin et al. (2021) définissent un courant de densité comme une
structure 3D dotée d’un noyau anormalement froid, de rafales de vent adjacentes et
d’une structure verticale composée de deux couches : une couche bien mélangée preés
de la surface et une couche stratifiée au-dessus. Cette méthode permet de déterminer
des indicateurs tels que le nombre de poches, la couverture spatiale, le rayon moyen
et la vitesse moyenne des courants de densité, permettant une analyse approfon-
die de leur role dans le cycle de vie et 'organisation de la convection. Les auteurs
soulignent que cette méthode est adaptée pour détecter des poches froides, qu’elles

soient océaniques ou continentales.

2.4.3 Role des poches sur la convection

Les poches froides jouent un roéle clé dans la convection profonde en organisant
la couche sous-nuageuse et en déclenchant les cellules convectives. Deux mécanismes
principaux expliquent leur réle : un mécanisme dynamique, lié au soulévement forcé
d’air chaud le long des fronts de rafales (Weaver and Nelson, 1982), et un mécanisme
thermodynamique, ot 'accumulation d’humidité sur ces fronts fournit la flottabi-
lité nécessaire pour initier la convection (Tompkins, 2001; Zuidema et al., 2017) ont
montré que les poches froides déclenchent plus efficacement la convection lorsque
la basse troposphére est humide et les couches supérieures sont séches. Les colli-
sions entre poches froides jouent un role clé dans la formation de nouvelles cellules
convectives. Par exemple, Weaver and Nelson (1982) ont été parmi les premiers a
observer que les zones de collision entre les poches froides correspondent & celles ou
de nouvelles cellules convectives émergent. Cette observation a été confirmée par les
travaux de Droegemeier and Wilhelmson (1985), qui ont démontré que les collisions
des poches engendrent des anomalies de pression positive dans les tétes des poches
froides, favorisant la création de gradients de pression verticaux capables d’accélé-
rer les particules jusqu’a leur niveau de convection libre. Plus récemment, Haerter
and Schlemmer (2018); Torri and Kuang (2019) ont réaffirmé que la collision entre
poches froides constitue le principal mécanisme déclenchant la formation de nou-

velles cellules convectives.

Les poches froides jouent également un roéle clé dans la transition de la convection
peu profonde a profonde (Khairoutdinov and Randall, 2006; Zhang and Klein, 2010)
et dans le cycle de vie des lignes de grains et autres systémes convectifs a mésoéchelle
(MCS) (Rotunno et al., 1988; Schlemmer and Hohenegger, 2014). Dans les systémes
organisés comme les lignes de grains, elles générent continuellement de nouvelles

colonnes convectives & 'avant du systéme pendant que les anciennes se dissipent a
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l'arriére (Rotunno et al., 1988; Weisman and Rotunno, 2004). Maurer et al. (2017)
ont montré, grace a un suivi des MCS au Sahel, que la convergence causée par les
fronts de rafales des poches froides & ’avant du systéme est & 1'origine de nombreuses
initiations convectives, soulignant leur role crucial dans le maintien et la propagation
des systémes convectifs. Les poches froides participent également a I'organisation de
la convection profonde. Par exemple, en s’appuyant sur une approche numeérique,
Tang et al. (2024) ont analysé I'influence des poches froides sur 'organisation de la
convection au cours de 1’Oscillation Madden-Julian (MJO : Madden-Julian Oscilla-
tion). Leurs résultats indiquent que les poches froides tendent a étre plus étendus et
a persister plus longtemps durant les phases matures de la MJO, probablement en
raison de flux de chaleur latente de surface environnementaux réduits et de courants
descendants plus intenses. Les poches froides entrainent la formation d’anneaux
humides sur les bords des poches froides, favorisant ’émergence de noyaux plus

convectifs et renforcant ainsi le degré d’organisation convective.

2.5 Le soulévement de poussiéres

Les poussiéres désertiques, également appelées dust en anglais, appartiennent a
la catégorie des aérosols primaires, car elles sont directement émises sous forme de
particules dans ’atmosphére. Leur taille s’étend de quelques dixiémes a plusieurs di-
zaines de micrométres (d’Almeida and Schiitz, 1983). Les poussiéres sont émises dans
I’atmosphére a partir des zones arides et semi-arides (Bagnold, 1941; Pye and Tsoar,
1987), sous l'action des vents de surface (Marticorena and Bergametti, 1995; Shao

and Lu, 2000), eux-mémes souvent influencés par des phénoménes météorologiques.

2.5.1 Les zones sources de poussiéres

Les principales régions émettrices de poussiéres désertiques incluent 1’Asie, no-
tamment les déserts de Taklimakan, de Gurbantonnggut et de Gobi (Wang and
Zhang, 2021; Ma et al., 2020), le Sud de ’Amérique (Tanaka and Chiba, 2006),
I'’Australie (Aragnou et al., 2021) et I’Afrique du Nord (le désert du Sahara et le
Sahel). Toutefois, I’ Afrique du Nord est le plus grand contributeur au bilan global de
poussiére (Ginoux et al., 2004), avec environ plus de 50 % des émissions mondiales
totales de poussiére (Tanaka and Chiba, 2006; Kok et al., 2023).

L’Afrique du Nord présente des paysages contrastés : aux vastes étendues de dunes

de sable s’ajoutent des zones composées de terrains pierreux (regs), d’immenses
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TOMS Al (x10)

FIGURE 2.7 — Moyenne mensuelle sur la période 1980-1992 de I'Indice d’Aérosols
(IA) de TOMS (x10) illustrant les principales zones sources de I’Afrique du Nord :
(A) Bodelé; (B) Afrique de I'Ouest; (C) désert Nubien et (D) désert Libyen (En-
gelstaedter et al., 2006)

hauts plateaux, ainsi que des montagnes imposantes telles que I’Adrar mauritanien,
I'Air (2 022 m), le Hoggar (2 918 m) et le Tibesti (3 415 m). La topographie et
la puissance du vent dans cette région sont responsable de ’émission de grandes
quantités de poussiéres dans I'atmospheére. Les observations satellitaires montrent
que ces émissions ne se font pas d’une maniére homogéne au sein de cette région,
mais proviennent de zones trés localisées et particuliérement actives (Herman and
Celarier, 1997). En se basant sur I'Indice d’Aérosols (IA) mesuré par TOMS, En-
gelstaedter et al. (2006) ont identifié quatre principales zones sources de poussiéres
en Afrique du Nord : (A) la dépression de Bodélé, située au nord du Tchad, (B)
I’ Afrique de I’Ouest, englobant de vastes régions de la Mauritanie, du Mali et du sud
de I’Algérie, (C) le désert Nubien et (D) le désert Libyen (Fig. 2.7). Ces observations
sont en accord avec les résultats obtenus par Brooks and Legrand (2000) ainsi que
par Legrand et al. (2001), qui ont localisé les principales zones sources de poussiéres
en Afrique du Nord a l'aide de 'Infrared Difference Dust Index (IDDI) calculé a
partir des données de I'imageur infrarouge METEOSAT. Par la suite, Schepanski
et al. (2007) ont mis en évidence d’autres zones sources de poussiéres particuliére-
ment actives en Afrique de I'Ouest pendant la saison estivale, situées a 1’ouest du

Niger, au nord du Mali et au sud de I’Algérie (Fig. 2.8). D’autres études menées sur
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FIGURE 2.8 — Moyenne mensuelle de I'activation des zones sources de poussiéres
en Afrique de 1'Ouest, dérivées d’images composites infrarouges (IR) du satellite
Meteosat Second Generation (MSG) pour le mois de juillet 2006. (Schepanski et al.,
2007)

cette thématique montrent que les principales sources d’émission de poussiéres sont
localisées au Sahel et au Sud du Sahara (Marticorena et al., 2010), principalement &
proximité des régions montagneuses (Evan et al., 2016). Des campagnes menées en
Afrique de I’Ouest et au-dessus de 1’Atlantique tropical ont montré que les sources
de poussiéres les plus actives se situent entre 15 et 25°N (Fig. 2.9), particuliérement
dans les les régions de montagne Adrar-Hoggar-Air ainsi que la région de Bodélé
(Weinzierl et al., 2017). Selon ces auteurs, ces sources restent actives presque toute

l'année.

2.5.2 Les facteurs influencant le soulévement de poussiéres

Les émissions de poussiéres désertiques au Sahel peuvent étre influencées par des

phénomeénes a grandes échelles ou locaux.
Les phénoménes a grande échelle

a) L’oscillation Nord Atlantique (NAO) : la NAO est un phénomeéne tou-

chant le systéme climatique au nord de I'océan atlantique. Son indice, particuliére-
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e / SAMUM-1: 18 May-7 Jun 2006
| SAMUM-2: 19 Jan-4 Feb 2008

20°W

FIGURE 2.9 — Régions des sources de poussiéres les plus actives pendant les cam-
pagnes SALTRACE (contours rouges), SAMUM-1 (contours verts) et SAMUM-2
(contours bleus). Les zones grisées indiquent toutes les régions sources actives pen-
dant SALTRACE, indépendamment de leur intensité d’émission et de leur fréquence
d’activation. Les courbes de niveau pleines représentent 1'orographie avec les alti-
tudes (m au-dessus du niveau de la mer) indiquées (Weinzierl et al., 2017).
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ment marqué en hiver, est calculé & partir de la différence de pression entre I’an-
ticyclone des Acgores et la dépression d’Islande. De nombreuses études ont mon-
tré I'impact de la NAO sur les émissions de poussiéres en Afrique de I’Ouest. Par
exemple, Hurrell (1995) indiquent que les phases de la NAO influencent la variabilité
des émissions de poussiéres sahariennes, avec des émissions plus importantes durant
la phase positive (Moulin et al., 1997; Chiapello and Moulin, 2002; Ginoux et al.,
2004). Certaines recherches suggérent que la production de poussiéres hivernales en
Afrique de I’Ouest serait liée a I'intensité et a la position de 'anticyclone des Acores,
un élément clé de la NAO (Chiapello and Moulin, 2002). Jenkins and Gueye (2018)
ont récemment étudié les tendances décennales des concentrations de poussiéres en
Afrique de I’Ouest, couvrant la période allant du milieu du XX siécle au début du
XXT siécle. Ils ont constaté que les concentrations annuelles étaient plus faibles avant
1970 et apres 2000, mais plus élevées entre ces deux périodes. Ces variations sont en
parties attribuées aux phases positive et négative de la NAO. Selon eux, la phase
positive de la NAQ, caractérisée par un anticyclone des Agores renforcé, est associée
a un renforcement du vent de surface en Afrique du Nord, ce qui pourrait activer

les sources de poussiéres.

b) L’harmattan : le Sahel est influencé par le régime de ’harmattan tout au
long de I'année, mais son impact est particulierement marqué en hiver par rapport
a 1’été, comme mentionné précédemment, en raison de son intensification durant
cette période. Cette accélération hivernale est associée a des émissions significatives
de poussiéres en Afrique de 1’Ouest. Par exemple, Léon et al. (2009) montrent que
les premiers grands événements de poussiéres en surface en Afrique de I’Ouest se
produisent en janvier, en phase avec l'accélération de ’harmattan. Fiedler et al.
(2015) ont étudié 'importance des poussées d’harmattan dans I’émission d’aérosols
de poussiéres nord-africaines. Leur résultat estiment qu’environ un tiers de la masse

totale des émissions est associée a I’harmattan en saison séches.
Les phénoménes locaux

a) Les Jets de basses couches (Low Level Jet ou LLJs ) : les jets de basses
couches (LLJs) se forment par un phénomeéne appelé oscillation d’inertie (Blacka-
dar, 1957). Apres le coucher du soleil, par temps clair et calme, le sol se refroidit
rapidement, ce qui crée une couche d’inversion nocturne. Cette couche découpe la
couche de surface des masses d’air situées au-dessus, éliminant l'effet de la friction

de la surface sur ces derniéres. Dés lors, les masses d’air ne sont influencées que
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par le gradient de pression et la force de Coriolis, ce qui provoque un déséquilibre.
Ce déséquilibre entraine des oscillations du vent autour du vent géostrophique, for-
mant ainsi les LLJs au sommet de la couche d’inversion (Blackadar, 1957; Hoxit,
1975). Les vitesses de vents associées aux LLJs sont de l'ordre 20 m/s (Banta et al.,
2006). Au lever du soleil, le réchauffement du sol supprime la couche d’inversion,
et le mélange turbulent dans la couche limite fait descendre les vents forts du jet
vers la surface. Cela provoque une augmentation soudaine de la vitesse du vent au
sol, favorisant ainsi le soulévement de poussiéres durant les premiéres heures de la
matinée (Todd et al., 2007; Hourdin et al., 2015). Washington and Todd (2005) ont
montré que 'intensification des émissions de poussiéres au niveau de la dépression
de Bodélé en hiver est principalement liée & la forte fréquence des jets de basses
couches (LLJs) au-dessus de cette région durant cette période. En effet, bien que les
LLJs soient présents toute ’année au-dessus du continent africain, leur fréquence
est plus élevée en hiver qu’en été, atteignant jusqu’a 80% au-dessus de la dépression
de Bodélé (Bou Karam et al., 2008). Ce phénomeéne est responsable d’environ 65%
des soulévements de poussiéres en Afrique de I'ouest pendant la saison séche (Sche-
panski et al., 2007) et d’environ 40% durant la saison des pluies (Heinold et al., 2013).

b) Les poches froides ou courant de densité : Ce mécanisme de soulévement,
qui constitue le cceur de cette étude, est décrit plus en détail dans les sections

suivantes.

2.6 Role de la convection sur les poussiéres

Aprés leur émission, les particules de grande taille se déposent rapidement a
proximité de la source, tandis que les plus petites restent en suspension dans I’atmo-
sphére (Shao, 2001). Ces particules fines sont transportées par la convection séche
et se concentrent principalement dans la couche limite convective (Gamo, 1996).
L’épaisseur de cette couche, généralement comprise entre 1 et 3 km en saison séche
(Tsamalis et al., 2013; Senghor et al., 2017), peut s’étendre jusqu’a 6 km durant 1’été
(Tsamalis et al., 2013; Senghor et al., 2017), traduisant ainsi un transport vertical
plus élevé en saison humide. Une fois confinées dans cette couche, les poussiéres
peuvent étre advectées horizontalement sur de longues distances par les vents sy-
noptiques, tels que les alizés ou les jets (Mahowald et al., 1999). Les poussiéres en
suspension peuvent ensuite étre éliminées de I’atmosphére par lessivage ou par dépot

sec.
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La convection profonde joue un role important dans la redistribution verticale et
I’élimination des poussiéres dans l’atmosphére. Par leurs courants ascendants, les
systémes convectifs peuvent extraire les poussiéres confinées dans la couche limite et
les injecter jusqu’aux hautes altitudes de la troposphére. Alors que Herbener et al.
(2016) estimaient que cette injection restait faible, des études plus récentes indiquent
que les courants ascendants transportent effectivement d’importantes quantités de
poussiéres vers ces altitudes, mais qu’'une grande partie est rapidement éliminée par
la condensation a grande échelle, ne laissant que de faibles concentrations dans la
troposphére libre (Senghor et al., 2024). Les précipitations convectives et les courants
descendants associés a la convection profonde participent également & I’élimination
des poussiéres. D’une part, les courants descendants issus de la ré-évaporation des
pluies peuvent réutiliser certaines particules comme noyaux de condensation pour
former de nouvelles gouttelettes, un mécanisme considéré comme 'un des plus ef-
ficaces pour le lessivage des aérosols (Tulet et al., 2010). D’autre part, les précipi-
tations redéposent une partie des particules au sol par dépot humide. Les précipi-
tations également, en traversant également la couche limite convective, caractérisée
par un air chaud et sec, peuvent voir certaines gouttelettes s’évaporer compléte-
ment. Ce processus libére dans la couche limite les particules ayant servi de noyaux
de condensation a ces gouttelettes évaporées, ce qui contribue ainsi & réaugmenter
la concentration en poussiéres en suspension (Senghor et al., 2024).

D’autres processus contribuent & 1’élimination des poussiéres. Par exemple, certaines
particules retombent au sol par sédimentation gravitationnelle (Zhang and Shao,
2014), tandis que d’autres sont ramenées vers la surface par la turbulence dans la

couche limite (Farmer et al., 2021). Ces mécanismes constituent le dépot sec.

2.7 Role des poches sur le soulévement de pous-
siéres
2.7.1 Les haboobs

Comme on I’a dit plus haut, les poches, plus froides et denses que leur envi-
ronnement, s’effondrent en accélérant pres de la surface, ce qui génére un front de
rafales a ’avant du systeéme. Ce front, généralement situé au niveau du bord d’at-
taque de la poche, s’accompagne de vents puissants responsables des impressionnants
murs de sable souvent observés au Sahel avant I'arrivée des orages. Ces émissions
de poussiéres lices a l'effondrement des poches froides sont appelées haboobs. La

figure 2.10 illustre un événement de haboobs qui s’est déroulé au Mali en été 2004.
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Les haboobs peuvent se manifester & diverses échelles spatiales et temporelles : des
systémes convectifs de méso-échelle peuvent produire des haboobs de longue durée
(Roberts and Knippertz, 2014), tandis que de petits courants descendants intenses,
appelés microrafales (Fujita, 1990), générent des haboobs de courte durée (Miller
et al., 2008). Il est également possible que des haboobs se produisent lors d’épisodes
de virga, expliqué plus haut, sans qu’aucune précipitation ne soit enregistrée au sol.
Par exemple, Karle et al. (2023) ont analysé 'impact des virga sur les concentra-
tions de particules en surface. Ils ont constaté qu’a l'occasion de certains épisodes
de virga, les niveaux de particules fines (PM) augmentaient brusquement, indiquant
une injection de poussiéres dans ’atmosphére, a la suite de I’évaporation des préci-
pitations. Ces auteurs attribuent cette hausse soudaine des concentrations de PM a
un front de rafales associée a une subsidence de masses d’air froid au cours de ces
épisodes de virga. Bergametti et al. (2022) ont également constaté une élévation des
niveaux de PM au Sahel, liées au passage d’'un MCS, sans précipitation mesurée au
sol.

La hauteur des haboobs varie de 0.5 km a l'arriére de la téte jusqu’a environ 2 km
le long du front d’attaque (Solomos et al., 2012; Evan et al., 2022). Solomos et al.
(2012) notent que les haboobs peuvent s’étendre horizontalement sur des centaines
de kilométres, avec une durée de vie allant de 2 a 12 heures selon leur taille. Leur
front de propagation prend en général une forme arquée, liée a la forme cyclique des

poches froides.

Des haboobs ont été observés dans toutes les principales zones émettrices de pous-
siéres minérales du monde (Knippertz and Stuut, 2014), notamment dans les déserts
du Taklamakan et de Gobi en Chine (Takemi, 1999), en Australie (Strong et al., 2011)
et dans le sud des Etats-Unis (Chen and Fryrear, 2002). Au Sahara, Knippertz et al.
(2007) ainsi q’Emmel et al. (2010) ont étudié ces phénomenes dans le nord, tandis
que Bou Karam et al. (2008) et Knippertz and Todd (2010) ont couvert la région
sud, Marsham et al. (2008) la partie occidentale, et Marsham et al. (2013) et Allen
et al. (2013) le Sahara central. Au Sahel, les haboobs sont liés aux passages des lignes
de grains dans la région (Sutton, 1925) et se produisent principalement entre la fin
d’aprés-midi et I’aube, en raison du cycle diurne de la convection profonde (Emmel
et al., 2010). Ils représentent probablement plus de 50 % des émissions de poussiéres
au Sahel durant la saison des pluies (Heinold et al., 2008; Allen et al., 2013). Se-
lon l'intensité et la durée de ces événements, les poussiéres soulevées peuvent étre
transportées de 1’ Afrique vers I’'Europe (Dhital et al., 2021; Orza et al., 2020) ou vers
I'océan Atlantique tropical (Dhital et al., 2020). Les haboobs parcourent souvent des
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FIGURE 2.10 — Photo d’un événement de haboobs prise au Mali en Aout 2004 par
Francoise GUICHARD et Laurent KERGOAT.

distances de plus de 300 km, avec une préférence de propagation vers le nord-ouest
(Caton Harrison et al., 2021). Des études de modélisation indiquent une fréquence
accrue des haboobs au sud du Sahara, autour de 18 degrés de latitude, 1a ou le flux
de mousson apporte le maximum d’humidité pour déclencher la convection (Pan-
tillon et al., 2015). En se basant sur des observations, Caton Harrison et al. (2021)
montrent également une fréquence élevée de haboobs au nord du Mali, a l'est de
la Mauritanie, & la frontieére algérienne et dans la région des frontiéres du Mali, du

Niger et de I’Algérie.

2.7.2 Impacts des haboobs

Les « haboobs » sont des phénoménes violents et dangereux ayant des impacts
majeurs sur les conditions météorologiques et les activités humaines. Ils peuvent en-
trainer une chute brutale de la visibilité (Chen and Fryrear, 2002; Leys et al., 2011),
dégrader la qualité de 'air et contribuer de maniére significative aux bilans régio-
naux de poussiéres et de rayonnement (Bukowski and van den Heever, 2021). Song
et al. (2007) ont mis en évidence que les grandes quantités de poussiére transpor-
tées réduisent la visibilité & moins de 1 km, augmentant ainsi le risque d’accidents
routiers. La figure 2.11 illustre un événement de poussiére a Dakar en 2020, qui a

provoqué une visibilité trés réduite dans toute la région. Des études ont confirmé
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FIGURE 2.11 — Vu du monument de la renaissance & partir du toit du LPAO-SF
lors d’une journée sans poussiére (droite) et d’une journée avec un événement de
poussiéres (gauche).

que les tempétes de poussiére, qui surviennent principalement durant la saison de
mousson au Sahara occidental, peuvent entrainer des accidents de transport pour les
civils et militaires (Taheri et al., 2020). Lors d’un haboob en juin 2018 en Afrique de
I’Ouest, des dégats importants ont été observés au Sénégal, notamment des pertes
de bétail et des dommages matériels dans le nord du pays ainsi qu’a 1’Aéroport In-
ternational Blaise Diagne (AIBD). Senghor et al. (2021) ont également montré que
les émissions de poussiére et la forte intensité des vents associés a ce haboob ont
causé des dommages considérables aux avions de la compagnie Transair a ’aéroport
de Dakar. Dans une analyse approfondie de cet événement, Senghor et al. (2023)
ont noté que les fortes concentrations de poussiéres soulevées ont eu un impact si-
gnificatif sur la température de surface. Ces résultats sont cohérents avec ceux de
Bukowski and van den Heever (2021), qui montrent que la poussiére soulevée lors
d’un haboob peut réduire la température dans les poches froides en diffusant le
rayonnement solaire & ondes courtes. Bukowski and van den Heever (2021) ont uti-
lisé le modele WRF-Chem pour explorer les rétroactions entre les propriétés des
poches froides et les particules de poussiére en suspension a différents moments de
la journée : en journée (ondes courtes), au crépuscule (ondes courtes basses) et la
nuit (ondes longues). Leurs résultats révélent que la diffusion par la poussiére du

rayonnement a ondes courtes durant la journée rend les poches plus froides, plus
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poussiéreuses et plus rapides. Au crépuscule, 'effet du rayonnement solaire diminue
tandis que I'absorption par la poussiére du rayonnement infrarouge thermique gé-
nére des courants de densité plus chauds et plus lents. La nuit, I’absorption de la
poussiére réchauffe la poche, mais les rafales s’intensifient dans les couches de sur-
face plus stables, augmentant les émissions de poussiére. Cependant, en raison de la
difficulté des satellites & détecter ces systémes sous les nuages convectifs et des défis
liés & la distinction de ces événements, la contribution des haboobs aux émissions

globales de poussiére reste largement débattue.

30



Chapitre 3

Moyens de I’étude

31



Chapitre 3. Moyens de I’étude

3.1 Introduction

Ce chapitre présente les outils utilisés pour la réalisation de ces travaux de thése.
Nous commengons par décrire le modeéle climatique LMDZ, sa version uni-colonne,
ainsi que ses paramétrisations, en mettant particulierement 1’accent sur celles liées
a la convection (peu profonde et profonde). La section suivante est consacrée aux
simulations de grands tourbillons (LES), suivie de la présentation de l'outil de cali-
bration HighTune Explorer. Nous poursuivons avec la description de LMDZ-SPLA
et en profitons pour faire un rappel sur la modélisation du soulévement de poussiéres.
Enfin, nous terminons ce chapitre par une présentation des données d’observation

utilisées pour valider les simulations de poussiéeres.

3.2 Le modéle de climat LMDZ

3.2.1 Présentation du modéle

LMDZ est le GCM utilisé dans ce travail. Développé dans les années 1970 au
Laboratoire de Météorologie Dynamique (Sadourny, 1984; Hourdin et al., 2006), le
"Z" dans LMDZ fait référence a la capacité du modeéle a raffiner sa grille horizontale
sur une région spécifique. Ce modéle climatique repose sur une version simplifiée des
équations de Navier-Stokes pour la mécanique des fluides, ainsi que sur les équations
de transport. Il s’agit de la deuxiéme génération (Hourdin et al., 2013) d’un modéle
climatique initialement décrit par Sadourny (1984). LMDZ est la composante atmo-
sphérique du modeéle couplé de 'IPSL (Institut Pierre Siméon Laplace). Ce dernier
fait partie d’'une vingtaine de modéles couplés qui participent aux grands exercices
internationaux d’inter-comparaison de modéles, comme ceux du CMIP (Coupled
Model Intercomparison Project), dont les résultats sont notamment utilisés pour les
rapports du GIEC (Groupe d’experts Intergouvernemental sur I’Evolution du Cli-
mat).

Le modele LMDZ est composé de deux grandes parties d'un point de vue physique,
mathématique et informatique. La premiére, appelée "dynamique", concerne la ré-
solution numérique des équations de la circulation générale atmosphérique. Cette
partie gére les échanges horizontaux entre les mailles du modéle ainsi que le trans-
port vertical dit "grande échelle" pour une vitesse verticale qui ferme le bilan conver-
gence de masse horizontale dans la colonne. La deuxiéme partie, appelée "physique",
calcule 'impact du rayonnement, des processus a petite échelle (sous-maille) et des
changements de phase de ’eau sur les variables dynamiques via des "paramétrisa-

tions physiques". Cette partie "physique" est constituée de colonnes atmosphériques
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juxtaposées, qui n’interagissent pas entre elles. A I'intérieur de chaque colonne, les

variables sont supposées homogeénes statistiquement sur le plan horizontal.

3.2.2 Les paramétrisations physiques

Le modéle LMDZ intégre plusieurs paramétrisations physiques. Parmi celles-ci,
on retrouve le schéma de transfert radiatif de Fouquart (1980) pour le rayonnement
solaire, ainsi que celui de Morcrette and Fouquart (1985) pour le rayonnement ter-
restre. Il intégre également trois paramétrisations des ondes de gravité : les ondes
orographiques selon le schéma de Lott and Miller (1997), celles générées par la
convection (Lott and Guez, 2013), et enfin celles associées aux fronts et aux jets
(De la Camara and Lott, 2015). Ces paramétrisations ont permis d’améliorer la re-
présentation de la circulation dans la troposphére et I’atmosphére moyenne.

Les flux de surface en eau (évapotranspiration), en énergie (flux de chaleur latente
et sensible) et en quantité de mouvement dans LMDZ sont simulés via un modéle
de surface continentale ORCHIDEE (Polcher et al., 1998). Un schéma de turbulence
basé sur l'énergie cinétique turbulente (TKE), développé par Mellor and Yamada
(1974), est ensuite utilisé pour représenter les échanges verticaux de chaleur, d’hu-
midité et de moment entre la surface et le premier niveau du modeéle. En plus de
ce schéma censé représenter une turbulence a petite échelle aléatoire, LMDZ com-
prend 3 schémas dédiés a la représentation des mouvements sous maille associées a
la convection : un schéma pour la convection peu profonde ou le modéle des ther-
miques (Rio and Hourdin, 2008), un autre pour la convection profonde (Emanuel,
1991), et un troisiéme dédié aux poches froides (Grandpeix and Lafore, 2010). Les
schémas relatifs aux thermiques et & la convection profonde seront abordés dans les
sections suivantes, tandis qu'une présentation détaillée du modéle des poches froides
sera proposée au chapitre 4. Concernant la représentation des nuages, LMDZ uti-
lise un schéma basé sur une distribution bimodale de I’eau sous-maille (Jam et al.,
2013). Cette approche permet de calculer la couverture nuageuse sur une fraction
seulement de la maille, en fonction de la probabilité de saturation issue de cette
distribution. Le couplage de ce schéma avec le modéle des thermiques, qui fournit
une représentation plus réaliste de la turbulence dans la couche limite, a permis
d’améliorer significativement la représentation de la couverture nuageuse ainsi que
la quantité d’eau condensée dans LMDZ.

Le modéle LMDZ inclut une paramétrisation, qui décrit le transport et le lessivage
des traceurs par la convection profonde et la condensation & grande échelle (Pilon
et al., 2015). Cette paramétrisation permet d’analyser séparément 'effet des diffé-

rents mécanismes convectifs sur les concentrations de traceurs attachés aux aérosols,
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notamment le transport par les courants ascendants et descendants, le lessivage dans
les courants d’air saturés, ainsi que leur redistribution via l’évaporation des préci-
pitations, et leur élimination par les précipitations. Testée sur des traceurs tels que
le "Be et 219Pb, cette paramétrisation s’est révélée performante, en améliorant nota-
blement la représentation des concentrations annuelles moyennes de ces traceurs en
surface (Pilon et al., 2015).

Le modéle des thermiques

Le modeéle des thermiques, développé par Rio and Hourdin (2008), permet de
représenter les structures organisées de la convection (rouleaux et cellules), ainsi que
le transport vertical de chaleur, d’humidité et de moment associé a la turbulence
de petite échelle entre la premiére couche du modéle jusqu’au sommet de la couche
limite convective. Il repose sur une approche combinant une diffusion classique et un
schéma de flux de masse. Dans ce modéle, chaque maille est divisée en deux parties :
un panache thermique ascendant, caractérisé par un flux de masse f = —apw, (ol
a représente la fraction de surface couverte par le panache, p la masse volumique
de l'air et w, la vitesse verticale), et une subsidence compensatoire dans ’environ-
nement, avec un flux de masse opposé f. La variation verticale du flux de masse
(f) dépend du taux d’entrainement (e) au sein du panache et du détrainement (d),

selon la relation suivante.

of

La Fig. 3.1 illustre le schéma conceptuel correspondant a cette paramétrisation.

Le modéle des thermiques représente un ensemble de thermiques secs et nuageux
par une thermique unique, dont les propriétés sont égales aux moyennes des carac-

téristiques thermiques sur la maille.

Le schéma de convection profonde

Le modéle des thermiques est couplé & un schéma de convection profonde. Dans
LMDZ, ce schéma repose sur une version modifice du modéle d’Emanuel (1991)
(Grandpeix et al., 2004). Les principes fondamentaux du schéma sont conservés,
avec la représentation d’une colonne convective constituée de courants ascendants
saturés, de type flux de masse, associés a des courants descendants insaturés.

Dans la colonne convective, I’air chaud et humide s’éléve rapidement de fagon adiaba-
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overshoot

FIGURE 3.1 — Schéma physique illustrant le modéle de panache thermique et la vi-
tesse verticale correspondante w : turbulence diffusive dans la couche de surface et
structures cohérentes dans la couche mélangée. Le flux de masse f dépend de I'en-
trainement d’air dans le panache depuis la couche de surface (a), de I'entrainement
au-dessus (e), ainsi que du détrainement depuis le panache (d). Le panache se dé-
veloppe jusqu’a atteindre son niveau de flottabilité nulle, puis il dépasse ce niveau
jusqu’a ce que son énergie cinétique s’annule, ce qui définit deux hauteurs : la hau-
teur de flottabilité nulle (zmix) et la hauteur maximale atteinte par le panache en
dépassement (zmax) (Rio and Hourdin, 2008).
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FIGURE 3.2 — Schéma de principe de la paramétrisation d’Emanuel (1991) de la
convection profonde.

tique, tout en échangeant avec son environnement par entrainement (incorporation
d’air sec) et détraitement (rejet d’air de la colonne vers I'environnement). Dans les
régions latérales de la colonne convective, la ou les précipitations tombent dans un
environnement sec, se produit les courants descendant insaturée. La Figure 3.2 pré-

sente un schéma conceptuel de cette paramétrisation.

Les principales modifications apportées par Grandpeix et al. (2004) concernent les
conditions de déclenchement de la convection profonde ainsi que le controle de son
intensité, définie par la fermeture. Dans cette version modifiée, le déclenchement se
produit lorsque I'énergie de soulévement disponible (ALFE, Available Lifting Energy)

dépasse I'inhibition convective (CIN). Il est défini par la relation suivante.

ALE > |CIN)| (3.2.2)

Ce dépassement peut étre provoqué soit par 1’énergie de soulévement issue de la

couche limite convective (ALEy, fournie par le modéle des thermiques), soit par
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celle générée par les poches froides (ALE,y), issue du modeéle des poches froides.
Ainsi, I’énergie ALE comparée a I'inhibition convective (CIN) est définie par :
ALE = maa:(ALEbl, ALEwk>

Ici, nous présentons le déclenchement de la convection profonde par les thermiques,
tandis que celui associé aux poches froides sera discuté au chapitre 4.

Concernant le déclenchement par les thermiques, une amélioration notable a été ap-
portée par Rochetin et al. (2014), avec I'introduction d’une représentation statistique
de la distribution de taille de la base des thermiques nuageux. Le déclenchement de
la convection profonde par les thermiques se produit lorsqu’au moins un cumulus
dans une maille dépasse une taille donnée, spécifiée par Sy, (un parameétre ajus-
table). Pour cela, une probabilité de non-déclenchement est estimée, basée sur les
caractéristiques du spectre des thermiques de type 2 (Ng, S) issues du modeéle ther-

mique original (Rio and Hourdin, 2008) et sur Sy, selon la relation proposée par

Rochetin et al. (2014).

Par= (1 - exp<%j"g>]%ﬁ (3.2.3)

Ot At est le pas de temps du modele ; 7 est le temps de décorrélation entre les scénes
nuageuses.
S2, représentant la section efficace moyenne des courants thermiques a la base des

nuages, est déterminée par la relation suivante :

S2 = a(Ziop — Zit) + bZ1al? (3.2.4)

oll Z,, est la profondeur moyenne des nuages ; Z;; est 'altitude moyenne de la base
des nuages; a et b sont des paramétres libres.
N2 est la population de thermique correspondante dans la maille et est calculée a

partir de la relation suivante :

Ny = (1=)aworSa (3.2.5)
So

ol (i est la surface couverte par les thermiques; Sy est la surface du domaine.

Dans ce cadre, la convection profonde est déclenchée par les thermiques chaque
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fois qu'un nombre aléatoire uniforme R, compris entre 0 et 1, dépasse la probabilité

de non-déclenchement.

R> Pa, (3.2.6)

L’intensité de la convection profonde est déterminée par le flux de masse (M) tra-
versant la base des nuages. Ce flux dépend de la puissance de soulévement disponible
(ALP, Available Lifting Power), elle-méme fournie par les thermiques (ALPy;) et les
poches froides (ALP,y). Cette relation s’exprime par :

ALPy + ALP,
2wj + |CIN|

M, =k (3.2.7)

ou k et wy (vitesse verticale au niveau de la convection libre) sont des paramétres

libres

3.2.3 LMDZ1D

LMDZ dispose d'une version uni-colonne (1D ou SCM : Single Column Model).
Le modeéle 1D est construit en extrayant une colonne atmosphérique du GCM, in-
tégrant toutes les paramétrisations sous-maille, et exécuté dans un environnement
contraint a grande échelle. Cette approche est devenue centrale dans le développe-
ment et I'ajustement des paramétrisations de la convection et des nuages associés
au sein de plusieurs groupes de modélisation du climat (Zhang et al., 2016; Gettel-
man et al., 2019). Les paramétrisations de la convection sont souvent développées
et évaluées aujourd’hui dans ce cadre uni-colonne en les comparant a des LES de la
méme colonne atmosphérique. L’approche 1D /LES a notamment été promue par le
programme GCSS (GEWEX Cloud Systems Study), visant & améliorer la paramétri-
sation des systémes nuageux dans les modéles climatiques (Krueger et al., 2016). Un
avantage majeur en configuration 1D est son faible cotit de calcul, ce qui permet de
réaliser un grand nombre de simulations, méme sur un ordinateur portable. Cela le
rend particuliérement utile lors de la phase de développement de paramétrisations,

ol de nombreux tests sont nécessaires.

38



Chapitre 3. Moyens de I’étude

3.3 Les simulations de grands tourbillons (LES)

3.3.1 Utilité des LES

Les simulations de grands tourbillons (ou Large Eddy Simulations, LES) per-
mettent de simuler les phénomeénes atmosphériques avec une résolution horizontale
de quelques dizaines a plusieurs centaines de meétres. Elles sont particuliérement bien
adaptées a I'étude de la structure thermodynamique de la couche limite, car elles
résolvent une partie des tourbillons qui s’y forment (les plus grandes). Elles offrent
une représentation explicite et détaillée des mouvements turbulents et convectifs
au sein de la couche limite et des nuages associés (Brown et al., 2002; Siebesma
et al., 2003). En présence de changement de phase de 1'eau, ces simulations peuvent
cependant devenir trés dépendantes des schémas microphysiques utilisés. L'un des
atouts majeurs des LES réside dans leur capacité a fournir des informations tridi-
mensionnelles qui ne sont pas disponibles dans les observations, faisant ainsi d’elles
un complément indispensable & ces derniéres pour comprendre les processus. De
plus, les LES permettent de valider les variables internes des paramétrisations, ce
qui permet d’évaluer leur réalisme physique. Elles ont été largement utilisées pour
évaluer les paramétrisations de la couche limite et de la convection (Rio et al., 2010;
Dorrestijn et al., 2013; Strauss et al., 2019; Legay et al., 2025). Ces derniéres années,
elles sont de plus en plus utilisées pour étudier les poches froides (Feng et al., 2015;
Meyer and Haerter, 2020; Lochbihler et al., 2021) et guider leur paramétrisation
(Kurowski et al., 2018).

Dans cette thése, nous utilisons les sorties de deux LES atmosphérique sur océan (si-
mulations réalisées par Caroline Muller et Catherine Rio) et deux LES sur continent

(simulations réalisées par Fleur Couvreux).

3.3.2 Les LES de cas océaniques

Les deux LES de cas océaniques ont été réalisées en mode d’équilibre radiatif-
convectif (ou Radiative-Convective Equilibrium, RCE). Le RCE est un concept dans
lequel un équilibre est atteint entre le chauffage convectif et le refroidissement radiatif
de 'atmosphére. Une description détaillée des protocoles de simulation en RCE est
fournie dans Daleu et al. (2015). Dans les simulations en RCE utilisées ici, les flux
radiatifs sont remplacés par un refroidissement constant de -1.5 K par jour alors que
la température de la surface est imposée. La déstabilisation entraine I’apparition de
convection. Le taux de chauffage associé, correspondant pour une grande partie au

dégagement de chaleur latente, vient compenser le refroidissement une fois atteint
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un quasi équilibre. Pour les deux LES du cas océanique en RCE utilisées ici, I'une
est effectuée avec le modele SAM (Khairoutdinov and Randall, 2003) et I'autre avec
MésoNH (Lac et al., 2018). Les deux simulations couvrent un domaine océanique de
200 km x 200 km avec une résolution horizontale de 250 m, et les conditions aux
limites latérales sont cycliques pour les deux modéles. La température de surface
de la mer fixée & 300 K. Ces deux simulations RCE ont été effectuées sur 44 jours,
un régime quasi stationnaire étant atteint aprés environ 40 jours. La fréquence des
sorties pour la LES SAM est fixée a toutes les 3 heures, tandis que celle de la LES

MesoNH est définie sur toutes les 24 heures.

3.3.3 La LES de cas continental

Les deux LES du cas continental est basée sur le cas AMMA (African Monsoon
Multidisciplinary Analysis). Ce cas est issu des observations effectuées le 10 juillet
2006 lors de la campagne de terrain AMMA (Redelsperger et al., 2006), durant
laquelle un systéme convectif relativement petit et de courte durée s’est formé au-
dessus de Niamey (Lothon et al., 2011). Ce systéme, d’une durée de vie d’environ
6 heures, a été observé par divers instruments (radar et sondages atmosphériques),
complétés par des données satellitaires. Cette étude de cas représente un exemple
typique de convection profonde dans les régions du Sahel (Couvreux et al., 2012).
Pour ce cas continental, deux simulations LES ont été réalisées avec le modéle Me-
soNH : I'une sur un domaine de 00 km x 100 km et 'autre sur 200 km x 200 km,
toutes deux avec une résolution horizontale de 200 m. Les conditions aux limites
latérales sont cycliques et les flux de surface imposés. Les sorties sont enregistrées
toutes les 10 minutes pour la simulation & 100 km x 100 km, et toutes les 30 minutes
pour celle & 200 km x 200 km.

Au début de cette thése, seule la simulation a 100 km x 100 km était utilisée. Cette
simulation s’arrétait cependant a 18h, & un stade précoce de la formation des poches
froides, avant qu’elles ne soient pleinement développées. Trés récemment, une nou-
velle simulation sur méme cas a été réalisée sur un domaine plus large (200 km
x 200 km) et sur une période plus longue (jusqu’a 22h), permettant d’obtenir des
poches bien plus développées. Etant donné que Iobjectif de la premiére partie de
cette thése est d’évaluer en détail la paramétrisation des poches froides, il a été jugé
nécessaire de refaire les validations sur le cas AMMA avec cette nouvelle simulation.
Pour la deuxiéme partie, qui vise principalement a analyser le fonctionnement de
la distribution du vent au sein des poches, la premiére simulation (100 km x 100
km) demeure suffisante car elle fournit déja une représentation satisfaisante de ces

mécanismes. Ainsi, dans la suite de ce travail, nous utilisons la simulation 200 km
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x 200 km pour le chapitre 4, et la simulation 100 km x 100 km pour le chapitre 5.

3.4 High-Tune Explorer

Les GCM reposent sur une séparation entre d’un coté le noyau dynamique, basé
sur des équations et un traitement numérique relativement bien, et de I'autre sur des
paramétrisations physiques visant a représenter I'impact d’'un ensemble de processus
complexes et multiples. L’amélioration des paramétrisations a lentement progressé
ces derniéres décennies, non seulement en raison des difficultés & intégrer ces proces-
sus dans les paramétrisations, mais aussi a cause du réglage complexe des nombreux
paramétres libres impliqués dans leur formulation, comme expliqué au chapitre 1.
C’est dans ce contexte qu’a été développé l'outil High-Tune Explorer (htexplo).
htexplo est développé en collaboration entre le LMD (Paris), le Centre National de
Recherche Météorologiques (CNRM /Météo-France) et I’'Université d’Exeter (Royaume-
Uni). 11 s’agit d’un outil de calibration automatique des paramétres libres, reposant
sur des techniques d’apprentissage de machine issues de la communauté de la quan-
tification des incertitudes (Williamson et al., 2013). Cette approche propose un nou-
veau paradigme de calibration : au lieu d’optimiser les valeurs des paramétres, elle
vise & identifier le sous-ensemble de paramétres qui permet au modéle de reproduire
certaines observables & une certaine précision. Les principales étapes d’utilisation de
I'outil, ainsi que ses fondements mathématiques, sont bien décrits dans Couvreux
et al. (2021). L’outil htexplo a été utilisé pour la premiére fois dans une comparaison
1D/LES sur plusieurs cas de couche limite du modéle LMDZ, afin de caractériser le
sous-espace de valeurs des parameétres libres pour lesquels les simulations 1D sont
cohérentes avec les LES pour certaines métriques et une tolérance donnée (Couvreux
et al., 2021). Les auteurs montrent également que HTExplo permet d’identifier les
parameétres qui limitent les performances du modéle, quelle que soit leur valeur. Cela
suggére que ces paramétres ne peuvent pas étre maintenus constants, leur influence
variant selon les conditions environnementales, et qu’ils devraient étre remplacés par
une paramétrisation plus physique. Par la suite, Hourdin et al. (2021) ont exploité
les résultats de Couvreux et al. (2021) afin de calibrer la configuration 3D. Ces au-
teurs ont démontré comment la réduction de ’espace des paramétres grace a cette
méthode permet d’économiser significativement des ressources informatiques et de
réduire la longue phase de réglage manuel du modéle. Ils ont également souligné
que cette approche alléege la charge du modélisateur, lui offrant la possibilité de se
concentrer davantage sur la compréhension et le développement des paramétrisations

physiques.
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3.5 LMDZ avec poussiéres

3.5.1 Rappel sur la modélisation du soulévement de pous-
siéres

Plusieurs modéles d’émission de poussiéres ont été développés (Marticorena and
Bergametti, 1995; Alfaro and Gomes, 2001; Shao, 2001) afin d’intégrer les poussiéres
dans les modéles climatiques et de chimie de transport. Ces modéles s’appuient prin-
cipalement sur la compréhension des processus physiques impliqués dans le souléve-
ment des poussiéres.
Les émissions de poussiéres dépendent de maniére trés non linéaire du vent de sur-
face, rendant leur modélisation particuliérement complexe. En effet, les poussiéres
ne sont émises que lorsque la vitesse de friction du vent exercée sur les grains de
sable dépasse les forces qui les maintiennent au sol. Cette force de rétention, qui
représente la résistance du sol au mouvement des particules, dépend de plusieurs
facteurs : la taille des grains de sable, I'humidité du sol et la rugosité de la surface.
Une fois les particules soulevées, les processus de saltation et de sandblasting entrent
en jeu. La saltation correspond au mouvement horizontal des grains de sable lorsque
la vitesse du vent dépasse le seuil d’érosion. Ces particules soulevées retombent au
sol a quelques centimétres de leur point d’origine. Lorsqu’elles percutent le sol, ces
particules peuvent désagréger d’autres grains plus petits, libérant ainsi des parti-
cules fines qui peuvent étre mises en suspension dans l'air : c¢’est le phénoméne de
sandblasting. La modélisation du soulévement de poussiéres repose principalement
sur la paramétrisation de ces processus : la vitesse de friction du vent, la vitesse
seuil d’érosion, la saltation et le sandblasting. La figure 3.3 illustre ces différents

processus.

Paramétrisation de la vitesse de friction

La vitesse de friction (U*) est paramétrée en fonction de la vitesse du vent a une

hauteur z et de la hauteur de rugosité (z), selon la relation suivante :

(3.5.1)

D’aprés Owen (1964), le mouvement des grains de sable dans les premiéres couches
au-dessus de la surface, lors de la saltation, entraine une augmentation de la hauteur
de rugosité zy. Pour tenir compte de cet effet, il introduit une nouvelle hauteur

de rugosité, appelée hauteur de rugosité de saltation (zps), définie par la relation
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Vent de surface

Flux vertical F
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FIGURE 3.3 — Schéma du principe d’émission des poussiéres désertiques. Les fleches
horizontales (bleues) représentent le vent de surface, la fleche jaune représente le
mouvement horizontal des grains de sables (saltation) et la fleche verticale bleue
représente le mouvement vertical (sandblasting).

suivante :

U*2
29

(3.5.2)

<0s = Co

c0=0.02 et g est ’accélération de la pesanteur

Paramétrisation de la vitesse seuil d’érosion

La vitesse seuil d’érosion, également appelé vitesse de friction seuil (U*T"), fait
également 1'objet d’une paramétrisation. Dans 'approche de Shao and Lu (2000),
cette vitesse dépend du diameétre des particules D. Elle est définie par ’équation

suivante :

D ol
UT(DY = [, (P92 1 3.5.3
(D) \/ (2 ) (353

D’aprés Marticorena and Bergametti (1995), I’évaluation de cette vitesse seuil doit
se fonder sur la répartition de I'énergie éolienne (f.ss) entre la surface érodable et
les éléments de rugosité. Ces auteurs proposent ainsi une paramétrisation de f.r; en

fonction de la hauteur de rugosité (zq;) de la surface lisse et de la hauteur de rugosité
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totale (zp), selon la relation suivante :

In[2]

fers(z0,20) = 1 = —ln[o'%(z(ﬁ_o)oﬁ] (3.5.4)
20l

Cette distribution de I'énergie permet de définir les vitesses seuils d’érosion (U*1h)
dans les régions arides, quelle que soit leur rugosité. U*™" s’exprime alors de la

maniére suivante :

U*Th(D)

(]>|<Th(D7 20, ZOl) = —f ff(zo ZOZ)

(3.5.5)

Parameétrisation du flux horizontal de saltation

Bagnold (1941) et White (1979) ont proposé des paramétrisations du flux hori-
zontal de saltation. Cependant, seule celle de White (1979), exprimée par la relation
ci-dessous, prend en compte l'influence de la vitesse de friction seuil sur le flux

horizontal (F},).
Kpa 5 U*Th U*ThZ
F,=——=U"(1 1-
= T - T
2

avec K=1, p, = 1.227 kgm =3 est la masse volumique de lair et g = 9.81ms2.

(3.5.6)

Par la suite, Marticorena and Bergametti (1995) proposent une paramétrisation
du flux de saltation prenant en compte le type de sol (s), le diamétre des particules
(D,), la vitesse de friction seuil (u;) ainsi qu'une vitesse de frottement spécifique au
type de sol (u¥). Cette approche est décrite par la relation suivante :

B Kan(s)*3Sel(Dp, s)

(D
Fh(Dp,S) — Ut( va)

U'(Dp. 8)\y
; 1+ =500 - =5 (3.5.7)

Parameétrisation du flux vertical de sablasting

Divers schémas décrivant le flux vertical de sandblasting ont été proposés (Mar-
ticorena and Bergametti, 1995; Alfaro et al., 1997, 1998; Alfaro and Gomes, 2001).
Dans le modeéle d’Alfaro et al. (1998), fondé sur des observations expérimentales,
le processus de sandblasting est supposé générer une distribution granulométrique
typique des poussiéres, structurée en trois modes log-normaux. Les proportions rela-
tives de ces modes varient en fonction de la vitesse de friction du vent (U*), tout en
étant considérées comme indépendantes du type de sol. Dans le modeéle proposé par
Alfaro and Gomes (2001), le flux vertical (F,) pour chaque mode i est proportionnel

au flux horizontal de saltation Fj,(D,,s). Son expression est donnée par la relation
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suivante :

Fv,i(Dpa 8) = _5pp

s P(D,,s
5 %Fh(Dp, s) (3.5.8)

ou 3 est une constante; p, est la densité particulaire; d; est le diamétre médian
massique pour le mode 7 ; e; est I’énergie de liaison pour le mode 7 ; P; est la fraction

d’énergie cinétique pour I’énergie de liaison e;.

Le flux total de sandblasting, est ensuite obtenu en faisant la somme du flux F;, ; sur

Fi=Y_ / F,.dD, (3.5.9)

les 3 modes d’aérosol :

3.5.2 LMDZ-SPLA

Le modéle climatique LMDZ est couplé au modéle simplifié d’aérosols SPLA (Hu-
neeus et al., 2009). SPLA simule plusieurs types de traceurs : les précurseurs gazeux
d’aérosols, le sel marin en mode grossier (diamétre compris entre 1 et 40 um), les
aérosols en mode fin, ainsi que les poussiéres divisées en trois classes : supergrossiéres
(6 2 30 um), grossiéres (1 & 6 um) et fines (inférieures a 1 um) (Huneeus et al., 2009;
Escribano et al., 2016). Il est & noter que les poussiéres en mode fin sont intégrées
au traceur "mode fin" une fois les émissions effectuées.

Le Module de Production de Poussiéres (DPP) utilisé dans SPLA est issu du mo-
dele de qualité de 'air CHIMERE-DUST (Escribano et al., 2016). Son intégration
dans SPLA repose sur une adaptation du DPP décrit par Hourdin et al. (2015),
qui calcule les émissions de poussiéres principalement sur les régions désertiques du
Sahara et de la péninsule Arabique. Le DPP combine un schéma de flux de saltation
développé par Marticorena and Bergametti (1995) (Eq. 3.5.7) avec un modéle de
sablage proposé par Alfaro and Gomes (2001) (Eq. 3.5.9). Les vitesses de frottement

seuil sont déterminées selon la formulation de Marticorena et al. (2010) (Eq. 3.5.5).

Les émissions de poussiéres sont localisées dans les zones ou la vitesse du vent dépasse
le seuil nécessaire au soulévement des particules. Pour en tenir compte, LMDZ-SPLA
utilise une distribution du vent de surface au lieu de se baser sur la valeur moyenne
du vent dans la maille. La variabilité du vent de surface y est représentée a I’aide
d’une distribution de Weibull, utilisée dans la plupart des modéles de climat (Pavia
and O’Brien, 1986; Zender et al., 2003; Cakmur et al., 2004). Cette distribution est
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définie par la fonction de densité de probabilité (PDF) suivante :

_k

P(U(ky,)) = (L)

A<A

)' eap[—(—2)"] (3.5.10)

ou

- k est un paramétre sans dimension (k = 3) décrivant la forme de la distribution ;
- ky, est le nombre de bin dans la distribution (k,, = 12);

- A est la vitesse moyenne du vent & 10 m issue du GCM

- U(ky,) est la vitesse du vent a 10 m dans le bin k,,.

Dans LMDZ, le vent maximum de cette distribution est fixé arbitrairement a deux

fois de la vitesse moyenne du vent & 10 m du GCM.

En utilisant le modéle LMDZ-SPLA ainsi complété, Hourdin et al. (2015) ont montré
que l'introduction du modéle des thermiques dans LMDZ améliore significativement
la représentation du cycle diurne du vent de surface, ainsi que celle des émissions
de poussiéres en hiver. La figure 3.4, tirée de Hourdin et al. (2015), illustre bien ces
résultats. Elle présente une comparaison du cycle diurne du vent & 10 m, moyenné
sur les mois de janvier & mars 2006, sur les stations Cinzana et Banizoumbou, entre
les observations, les réanalyses ERA-Interim, et différentes configurations de LMDZ.
La version de LMDZ avec "Physique Standard" (SP) ne comprend pas le schéma
des thermiques et utilise le vent moyen de maille pour calculer les émissions de pous-
sieres. Les versions dites "Nouvelle Physique" (NP), incluant NP3 et NP48, intégrent
le modéle des thermiques ainsi qu'une distribution de Weibull pour représenter la
variabilité du vent de surface. La différence entre NP3 et NP48 réside dans leur
résolution horizontale : NP3 utilise une grille plus fine (environ 1.25°), contre une
grille plus grossiére pour NP48 (environ 2.5°%). Les simulations NP reproduisent bien
la phase et I'amplitude du cycle diurne du vent & 10 m, et avec méme une meilleure
performance que les réanalyses. Les bons résultats obtenus avec NP3 et NP48 sont
étroitement liés a D'effet du modéle des thermiques. Comme expliqué plus haut, ce
schéma permet le transport vertical de la quantité de mouvement horizontale. Dés
le lever du soleil, les panaches thermiques se développent. Lorsqu’ils atteignent le jet
de basse couche, formé souvent durant la nuit a quelques métres au-dessus du sol,
ils raménent vers la surface les vents fort du jet, renforcant ainsi significativement le
vent de surface dans les premiéres heures de la matinée. Cette dynamique, bien cap-
turée par le modeéle grace au schéma des thermiques, a permis d’obtenir une bonne

simulation des émissions de poussiéres en saison séche.
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FIGURE 3.4 — Cycle diurne du vent (m.s™!) a 10 m, moyenné sur la période jan-
vier-mars (JEM), comparé entre les observations, les réanalyses ERA-Interim et plu-
sieurs configurations du modeéle LMDZ, sur les stations Cinzana, Mali (a gauche) et
Banizoumbou, Niger (& droite). La version SP correspond a la "Physique Standard"
sans modéle des thermiques ni distribution de Weibull. Les configurations avec la
"Nouvelle Physique" (NP3 et NP48) intégrent le schéma des thermiques ainsi qu'une
distribution de Weibull pour représenter la variabilité du vent de surface, avec des
résolutions horizontales respectives 1.25° et 2.5° (Hourdin et al., 2015).

Dans LMDZ-SPLA, les émissions de poussiéres sont couplées au schéma de couche
limite turbulente de Mellor and Yamada (1974). Leur transport vertical a travers
toute 'épaisseur de la couche limite est ensuite pris en charge par le schéma des
thermiques de Rio and Hourdin (2008). Le flux de dépot sec en surface est calculé
comme le produit de la concentration d’aérosols dans la couche inférieure du modéle
et d’une vitesse de dépot prescrite, fixée a 0.1 cm.s~! pour les poussiéres fines et
a 1.2 cm.s™! pour les poussicéres grossiéres (Huneeus et al., 2009). Le lessivage des
poussiéres est représenté a I'aide du schéma de lessivage des traceurs de Pilon et al.
(2015), décrit plus haut. L’application de ce schéma de lessivage dans LMDZ-SPLA
a permis d’améliorer significativement de la représentation de 'AOT ainsi que de la

distribution verticale des poussiéres sur I’Afrique de I’Ouest (Senghor et al., 2024).
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3.6 Les observations

Les données d’observations d’aérosols utilisées dans le cadre de thése pour va-
lider nos simulations de poussiéres sont celles de 1’épaisseur optique des aérosols
(AOT, pour Aerosol Optical Thickness), issue du réseau AERONET ainsi que des
données de concentrations de P Mg, a savoir particules de diamétres inférieures a

10 micrométres.

3.6.1 Concentrations de PM;,

Les données de concentrations de PM;j, exploitées ici sont mesurées au Sahel
dans le cadre du programme AMMA. Ce programme a mis en place un transect de
trois stations terrestres, connu sous le nom de « Sahelian Dust Transect » (SDT),
afin de fournir des données quantitatives sur la charge en poussiéres minérales et
sa variabilité dans la région sahélienne (Marticorena et al., 2010). Les stations sont
situées & Mbour, au Sénégal (14.39°N, 16.96°W), a IER-Cinzana, au Mali (13.27°N,
5.93°W), et & Banizoumbou, au Niger (13.54°N, 2.66°E). La figure 3.5 présente leur
localisation sur le Sahel (Marticorena et al., 2017). Ces stations sont installées le
long de la principale trajectoire est-ouest empruntée par les poussiéres sahariennes
et sahéliennes en direction de I'océan Atlantique. Les données sont collectées entre
janvier 2005 et décembre 2012, avec des mesures effectuées toutes les cinq minutes.
En raison de leur taille, les P M, sont considérées comme respirables et ces données
sont couramment utilisées pour évaluer I'impact des poussiéres sur la qualité de 'air
et la santé humaine (Diokhane et al., 2016; Toure et al., 2019; Gueye and Jenkins,
2019).

3.6.2 AERONET

AERONET est un réseau mondial d’observation des aérosols par télédétection
passive depuis le sol, mis en place grace a une collaboration internationale entre la
NASA (EOS), le CNES et la NASDA (Holben et al., 1998). Il repose sur des radio-
métres solaires et célestes, déployés sur environ 180 sites a travers le monde (Fig.
3.6), qui effectuent réguliérement des mesures du rayonnement direct et diffus. Gréce
a une large couverture spectrale et angulaire, I’algorithme d’inversion ’AERONET
permet d’estimer de nombreux parameétres d’aérosols, tels que la distribution gra-
nulométrique, 'indice de réfraction complexe et 'albédo de simple diffusion (SSA),
tout en faisant moins d’hypothéses que les méthodes satellitaires (Dubovik et al.,

2000). Les photomeétres Cimel utilisés dans le réseau fournissent des mesures toutes
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FIGURE 3.5 — Localisation des trois stations composant le transect de poussiéres
sahéliennes sur le Sahel (Marticorena et al., 2017)

les 15 minutes aux longueurs d’onde de 440, 670, 870 et 1020 nm, avec une précision

de plus ou moins 0.01 (Dubovik et al., 2000; Holben et al., 1998)
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FIGURE 3.6 — Cartographie du réseau mondial des stations AERONET
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Chapitre 4. Evaluation et amélioration de la paramétrisation
des poches froides

4.1 Introduction

Dans ce premier chapitre des résultats, nous proposons une évaluation détaillée
du modele des poches froides développé par Grandpeix and Lafore (2010), désigné ici
sous le nom de modeéele GL10, jamais réalisée jusque-la. Le chapitre débute par une
présentation détaillée du modele GL10, ainsi que de son couplage avec le schéma de
convection profonde. Un échantillonnage est ensuite réalisé afin de calculer certaines
des variables internes du modéle dans les LES de cas de convection profonde sur
océan et sur continent. Dans une premiére phase, nous évaluons certaines relations
a la base de la paramétrisation en calculant les différents termes directement dans
les LES. Dans une seconde phase, plus exigeante pour la paramétrisation, nous
comparons avec la LES, les résultats d’une simulation réalisée avec LMDZ en mode
uni-colonne. Enfin, des améliorations sont proposées pour corriger les biais identifiés,

avant de conclure ce chapitre.

4.2 Le modéle des poches froides

Le modeéle des poches froides représente une population de poches circulaires et
identiques (appelées wakes) sur un plan infini contenant la maille du modéle. Tous
les wakes ont la méme hauteur, le méme rayon, et les mémes profils verticaux des
variables thermodynamiques. Leurs centres sont répartis statistiquement avec une
densité uniforme notée D,,.. Les poches froides divisent 1’espace en deux parties :
(1) intérieur des poches (w), ot se trouvent les courants descendants convectifs pré-
cipitants. Dans ces courants descendants, la réévaporation des précipitations génére
un fort refroidissement et une forte flottabilité négative; (ii) 'extérieur des poches
(x), qui contient I'air chaud alimentant les courants convectifs saturés (Fig. 4.1).
Le sommet de la poche (h,y) est défini comme Daltitude & laquelle la différence de
température entre (w) et (x) devient nulle. En dessous de ce niveau, les poches sont
plus froides que leur environnement : elles s’effondrent et s’étalent horizontalement
car elles sont plus denses que 'air environnant. La frontiére entre la poche froide et
I’environnement est considérée comme infiniment mince, et en chaque point de cette
frontiére, la poche s’étale a une vitesse C'. Cette vitesse C' est considérée comme une
variable aléatoire dont la moyenne C, détermine la vitesse moyenne d’étalement de
la poche froide. Dans le modéle GL10, C, est proportionnelle & la racine carrée de
I’énergie potentielle disponible dans la poche, c¢’est-a-dire I’énergie d’effondrement de

la poche froide, appelée WAPE (Wake Available Potential Energy), définie comme
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Grid cell

FIGURE 4.1 — Schéma conceptuel d'un courant de densité (Grandpeix and Lafore,
2010).

suit :

huwk
WAPE = g/@ = —g/ @dz, (4.2.1)
p 0 ev

de sorte que :

C, = kV2WAPE (4.2.2)

ol p est la densité de l'air; 6, est la température potentielle virtuelle.
0X représente la différence de la variable X entre l'intérieur (w) et l'extérieur
(x) de la poche (6X = §X,, — dX,) et X désigne la moyenne de cette variable sur

I’ensemble du domaine.

Le coefficient k£ de I'équation 4.2.2, généralement compris entre 0 et 1, dépend de la
structure des poches froides. A partir de simulations CRM (Cloud Resolving Models)
3D, Lafore (2000) (communication orale) a estimé ce coefficient a 0.33 dans le cas
d’une structure linéaire telle que les lignes de grain. C’est la valeur utilisée dans le
modéle GL10.

Le taux d’étalement des poches froides est donné par C, a partir de la relation

sulvante :

010w = 21rCL Dy = 20/ 7D 10w (4.2.3)

ol Oui = Dypmr? est la fraction de surface couverte par les poches froides.
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En raison du cycle de vie complexe des poches (incluant leur naissance, leur mort,
collisions et fusions), le calcul de leur évolution nécessite un autre travail de para-
métrisation. Dans ce chapitre, leur densité est imposée. La paramétrisation de la
densité des poches est abordée en Annexe B. Dans la configuration 6A de LMDZ,
cette densité est imposée a 10.1071° soit 10 poches sur 100 kmx100 km sur océan
tandis que sur continent, elle est imposée & 8.10712 soit 8 poches sur 1000 km x 1000
km. Dans le modele GL10, les poches apparaissent initialement avec une fraction sur-
facique de 2 % et évoluent au fil du temps selon ’équation 4.2.3. L’évolution de o,

est arbitrairement limitée a un maximum de 40 % de la taille de la maille (o, < 0.4).

Il est supposé que sous le sommet de la poche (h,y), le profil de vitesse verticale
associé a l'affaissement de la poche résulte uniquement de I’étalement de la poche &
la surface sans entrainement (e,,) ni détrainement (d,,) latéral entre la poche et son
environnement. Au-dessus de ce niveau, la subsidence est alimentée a la fois par la
nécessité de maintenir la subsidence dans la poche froide (via 1’équation de conti-
nuité de la masse d’air) et par la réévaporation supplémentaire des précipitations
sous les nuages stratiformes. Le profil vertical de la différence de vitesse verticale,
notée dw(P), est défini comme une fonction linéaire par morceaux de la pression :
dw augmente linéairement & partir de zéro a la surface jusqu’a une valeur maximale
a la hauteur h,, puis décroit linéairement entre h,; et une hauteur maximale h,,, &
laquelle elle s’annule. La subsidence verticale, qui s’intensifie donc vers le bas entre
R €t hyg, est alimentée par un entrainement latéral (e,,>0) sans détrainement. Cet
entrainement latéral représente la composante horizontale de la circulation méso-
échelle, connue pour faire pénétrer de I’air provenant de la basse ou de la moyenne
troposphére dans la poche froide. A h,,, sommet du modéle de la poche froide, §.X
s’annule pour toutes les variables d’état de la poche froide.

Dans le modele GL10, il existait une différence de vitesse verticale non nulle (6w®)
a hy,, ce qui explique la différence des flux de masse convectifs entre (w) et (x). Dans
la version utilisée dans cette thése, cette différence est désormais nulle (dw® = 0)

au-dessus de ce niveau.

L’évolution de I’écart de température potentielle (d6) entre (w) et (x) est controlée
par le chauffage différentiel (§Q5", JQ¥*) due & la convection profonde et aux poches,
ainsi que par 'amortissement dii aux ondes de gravité (7,,,). L’écart d’humidité (dq)
suit une évolution similaire, mais sans l'effet d’amortissement des ondes de gravité.
Les sources de chaleur y sont remplacées par des sources d’humidité (6Q5" pour la

convection et Q%" pour les poches).
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080 = —w,00 + XU Ko sp
(4.2.4)

0,6q = ~w0,0q + "ETHE"

ou

Tgw = \/\/?N_Z (1_D;k\/m> (4.2.5)

est estimé comme le temps nécessaire & une onde de vitesse Nz pour parcourir une
distance égale a la moyenne géométrique de la taille de la poche froide et de I'in-
tervalle entre les poches froides. C), représente la capacité thermique de I'air sec, N
désigne la fréquence de Brunt-Viisélé, et z correspond a l'altitude. K, est l'effica-

cité des ondes de gravité. Enfin, L, désigne la chaleur latente de vaporisation de ’eau.

SQVF (respectivement §Q%*) dépendent de l'entrainement (e,) d’air sec, de 1’ad-

vection différentielle de § (respectivement §) et de 56 (respectivement dq).

5%? = L2060 — 6wyl — (1 — 200 )5wD,00

6@2%k _ %5q — 6w0yq — (1 — 207)dwd,0q

(4.2.6)

De méme, 0Q7" (respectivement 6Q)5”) sont influencées par les tendances de chauf-

1,unsat 2,unsat
cv , ou cv

fage associées aux courants insaturés ( pour 'humidité) et aux

courants saturés (QL5, ou Q%5 pour 'humidité).

1,unsat 1,sat
5Q = Q™™ Qw
1=

Owk 1—0oywk

(4.2.7)
5Q§U - szunsat o szsat

- Owk 1—owk

zunsat of, %5t (32 = 1,2) sont donnés par le schéma de convection profonde tel

que présenté dans Emanuel (1991).

L’entrainement est déterminé a partir du gradient vertical de dw et du taux d’étale-

ment de la poche, selon la relation suivante :

ew = Owk(1 — Owr)Opodw + Or0uk (4.2.8)
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L’équation 4.2.4, via les variables 0Q{" et 0Q)$", décrit 'impact de la convection pro-
fonde sur les poches froides qui se traduit par leur refroidissement dii aux descentes

précipitantes, comme discuté plus haut.

Le modéle des poches froides est maintenant décrit au complet. Il comporte :
— trois variables pronostiques, issues directement des équations du modéle : les
profils de 660 et dq et oy.
— deux variables diagnostiques, calculées a partir du profil de 66 : h,y, C, et
WAPE

— trois parametres libres : le coefficient £, la densité D, et 74,.

4.3 Prise en compte de I’effet des poches froides sur

la convection

Pour prendre en compte l'effet des poches froides sur la convection, notamment
I'ascendance au niveau de leurs fronts de rafales, Grandpeix et al. (2010) introduisent
deux nouvelles variables : 1'énergie de soulévement (ALE, pour Available Lifting
Energy en anglais), intervenant dans le déclenchement de la convection, et une puis-
sance de soulévement (ALP, pour Available Lifting Power en anglais), déterminant

I'intensité de la convection.

Pour calculer ALE,, le modéle suppose que la plus grande vitesse (Cl,q,) sur le
contour de la poche va donner le déclenchement de la convection. Il est supposé étre
proportionnelle & la racine carrée de la WAPE, avec un coefficient de proportion-

nalité estimé arbitrairement & 1, ce qui conduit a la relation suivante :

Craz = K'V2WAPE (4.3.1)

oun k' =1

L’énergie de soulévement associée aux poches est ainsi exprimée par la relation
suivante :

ALE,, = Lo (4.3.2)

2 max
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La combinaison des équations (4.3.2) et (4.3.1) donne lexpression de ALE,; ci

dessous :

ALE,, = K*WAPE (4.3.3)

Avec k' = 1, cette équation dit que, dans le modéle des poches froides, I’énergie de

soulévement des masses d’air due aux poches est égale a I'énergie d’affaissement.

ALP,;. est calculée en supposant que la poche exerce une puissance horizontale
sur lair environnant pendant son étalement. Cette puissance horizontale est ensuite
convertie en puissance verticale. Lors de cette conversion, le modéle suppose qu’une
grande partie de la puissance horizontale se dissipe, et que seulement 25 % contri-
buent & renforcer 'intensité de la convection.

Chaque poche engendre sa propre puissance de soulévement, en fonction de sa vi-
tesse d’étalement (C.), de sa hauteur (h,y) et de la longueur (L,) de son front de
rafales. La puissance totale (ALP,y) des poches froides est le produit de la puissance

fournie par chaque poche par la densité de nombre de poches (D).

1
ALPwk = EipCEhWkLngk (434)

ol € = 0.25 est 'efficacité de soulévement

L, = 2mr (4.3.5)
Owk = Dwkﬂ-TQ (436)

Ensuite, la puissance de soulévement ALP,,; s’écrit :

ALP,. = epC2hyi\/ Twi Dok (4.3.7)
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4.4 Evaluation des équations internes du modéle des

poches a partir des LES

Dans cette partie de résultats, on s’attache a analyser le fonctionnement des
poches froides a partir des LES et a vérifier certaines des équations internes a la

paramétrisation.

4.4.1 Distinction des régions de poches froides de leur envi-

ronnement

Afin d’utiliser les LES pour I’étude et la modélisation des poches froides, le pre-
mier défi est la séparation des poches et de leur environnement. En effet, il n’existe
pas un cadre établi & priori pour identifier objectivement les poches froides dans
les observations et dans les modéles numeériques (Rochetin et al., 2021) et les choix
peuvent dépendre en partie de 'image physique qu’on se fait des poches, et égale-
ment pour 'usage qui est en fait ici, de 'image sous jacente a la paramétrisation.
La premiére méthode d’identification des poches froides proposée par Young et al.
(1995) est basée sur le taux de précipitations en surface. Dans les études plus ré-
centes comme celles de Provod et al. (2016); Zuidema et al. (2017); Vogel et al.
(2021); Rochetin et al. (2021); Touzé-Peiffer et al. (2022), la détection des poches
froides est plus proche d’une détection orientée courant de densité, dans laquelle les
variations de température, de pression et de vent sont prises en compte.

Dans la présente étude, 'objectif n’est pas d’isoler des objets individuels “poches
froides", mais simplement de déterminer si une maille du modéle se situe a l'inté-
rieur ou a 'extérieur d’une poche froide. Par ailleurs, les conditions aux limites sont
idéalisées afin de respecter I'’hypothése d’homogénéité statistique qui sous-tend la
décomposition de Reynolds entre le coeur dynamique et les paramétrisations phy-
siques. Dans ce cas idéalisé avec une température de surface uniforme, les poches
froides peuvent étre identifiées de maniére relativement immédiate en appliquant un
seuil & 'anomalie (écart par rapport a la moyenne du domaine) de la température

a 10 meétres au-dessus de la surface (T, ), ¢’est-a-dire au premier niveau du modéle.

Fig. 4.2 et Fig. 4.3 présentent une moyenne glissante horizontale, avec une boite de
3.25 kmx3.25 km, de la divergence du vent a 10 m (M) au-dessus de la surface. A
partir de ces cartes, les centres et les fronts de rafales des poches froides peuvent étre
facilement identifiés, correspondant respectivement aux maxima et minima de diver-

gence. Les maxima de divergence du vent de surface indiquent le centre des poches
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froides, 1a ou les masses d’air froid s’effondrent. Les précipitations sont générale-
ment co-localisées avec ces maxima de divergence (non montrées). La convergence
des vents assez forte observée autour des centres des poches froides correspond a la
forte ascendance des masses d’air créée en amont du front de rafales a la périphérie
de la poche froide.

Les deux LES du cas RCE et la LES du cas AMMA montrent des regroupements de
poches froides (ou des centres de poches froides trés proches) formant un front de
rafales commun. Cela peut s’expliquer par le fait que, lors de leur propagation, les
poches froides peuvent fusionner pour créer une seule poche froide plus étendue. On
peut également observer que la convergence des vents est généralement plus intense
entre les centres des poches froides regroupées, indiquant que les ascendances des
masses d’air associées aux fronts de rafales sont plus marquées lorsque ces poches
froides se rencontrent. Ce résultat rejoint certaines études qui indiquent que l'initia-
tion de convection sur les fronts de rafales est plus efficace lorsque deux ou plusieurs
poches froides entrent en collision (Torri and Kuang, 2019; Haerter and Schlemmer,
2018; Feng et al., 2015).

Nous superposons a cette carte les contours d’anomalie de Tig,, avec différentes
valeurs afin de déterminer un seuil optimal pour cette anomalie. Dans le cas RCE,
I’anomalie Tiq,, & 0 K inclut parfois des régions sans centres de poches froides, ou la
divergence des vents de surface est faible (Fig 4.2a et 4.2b), tandis que les contours
d’anomalie a -0.2 K et -0.4 K entourent assez bien les centres des poches froides.
Dans le cas AMMA, la figure 4.3a montre clairement que le seuil de 0 K est trop
élevé pour identifier les poches froides. La Fig. 4.3b montre aussi que, méme si les
seuils de -0.5 K et -1 K suivent tous deux assez bien les fronts de rafales, celui de
-1 K encadre mieux les centres des poches. Sur la base de ces analyses, nous rete-
nons les seuils d’anomalie Ty, & -0.2 K et -1 K pour identifier les poches froides
respectivement dans les cas RCE et AMMA.

4.4.2 Echantillonnages des profils verticaux des écarts de poches

Une fois la valeur seuil fixée pour ’anomalie de T}g,,, nous séparons l’ensemble
du domaine tridimensionnel LES entre la région de la poche froide (w) et le reste
du domaine (x). A partir de cette séparation, nous pouvons calculer les moyennes
horizontales sur chaque sous-domaine, Xy, a l'intérieur des poches froides et Xx a
Iextérieur, puis en déduire I’écart associée 0.X = Xy — Xyx. Ce procédé d’échan-
tillonnage permet de calculer les profils verticaux des écarts entre (w) et (x) pour la

température (07'), 'humidité (dq) et la vitesse verticale (dw). Des exemples d’ano-
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o

160

FIGURE 4.2 — Moyenne glissante (avec une boite 3.25 kmx3.25 km) de la divergence

—
du vent a 10 m (div <V10m>) (en 10° s7!). Avec cette unité, une valeur de 1 cor-

respond & un changement d’intensité du vent de 1 m.s™! sur 1 km. Les panneaux a

et b correspondent a deux états différents du cas étudié avec le modele LES SAM
réalisé sur la RCE océanique. Des contours des anomalies de température a 10 m, a
-0.4 K (en vert), -0.2 K (en rouge) et 0 K (en noir), sont superposés sur le champ
de divergence lissé. 60
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FIGURE 4.3 — Méme chose que la Fig. 4.2, pour deux instants successifs, 17h30 (a) et
19h30 (b), de la LES MESONH réalisée sur le cas AMMA. Les contours superposés
correspondent a des anomalies de température & 10 m de -1 K (en vert), -0.5 K (en
rouge) et 0 K (en noir).
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malies de température sont illustrés a la Fig. 4.4.

A noter que nous appliquons le méme masque de surface a toute la colonne verticale
pour déterminer les profils verticaux. Cette représentation simplifiée sous forme de
cylindres verticaux est adoptée afin de correspondre a I'approche conceptuelle sur
laquelle repose la paramétrisation, mais cela peut étre remis en question en présence

d’une convection intense et inclinée.

4.4.3 Calcul de la vitesse d’étalement, C,, & partir de ’échan-

tillonnage de la divergence du vent

Il est supposé dans la paramétrisation que les poches sont des disques identiques
de méme rayon (r). Cette hypothése permet de déterminer facilement C, par le théo-

réme de la divergence.

/ / div (me}) dSur = C.L, (4.4.1)

o div (@) Swk

(4.4.2)

ol Sy est la surface de la poche

S = T2 (4.4.3)

Les équations 4.3.5, 4.3.6 et 4.4.3 permettent d’exprimer C, en fonction de la diver-
gence moyenne du vent a 10 m, de la fraction surfacique (o,) et de la densité (D)

des poches par la relation :

1 — Owk
C, = 5div (Viom) i (4.4.4)

Pour appliquer ce calcul de C, dans les LES, nous prenons la moyenne horizontale de
la divergence du vent & 10 m dans (w). o, calculée dans les LES est 0.17 (moyenne
sur les instants disponibles entre 17h00 et 22h00) sur le cas AMMA et 0.25 sur le
cas RCE (moyenne sur les 24 instants avec le modéle SAM). Pour déterminer D,
nous avons manuellement compté les centres des poches visibles sur les cartes de

divergence du vent & 10 m (Fig. 4.2 et 4.3), car nous n’avons pas utilisé dans cette
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FIGURE 4.4 — Profils verticaux de ’écart de température (07", en K) entre 'intérieur

et 'extérieur des poches froides calculés sur un instant des LES (SAM et MesoNH)
du cas RCE et a I'instant 19h30 de la LES MesoNH du cas AMMA.

étude les méthodes de détection des poches qui pourraient générer automatiquement
leur nombre. Nous trouvons environ une densité, D, égale & 5 poches sur 100

kmx100 km sur le cas RCE, et d’environ 2.5 poches sur le méme domaine pour le
cas AMMA.

4.4.4 Calcul de I’énergie d’affaissement, WAPE, & partir de

I’anomalie de température virtuelle

Nous calculons finalement ’énergie d’affaissement (W APE) de la poche dans les
LES en utilisant la formule (4.2.1) proposée par Grandpeix and Lafore (2010). Le
travail consiste & déterminer 6, ainsi que les profils de 66, et h, dans les LES. Pour
ce faire, nous avons d’abord calculé 6, dans les LES, puis déduit 6, et le profil de
06,,. Concernant la détermination de h,, comme suggéré par Grandpeix and Lafore
(2010), nous prenons cette hauteur a l'altitude ou le profil de 6T s’annule. Cette
altitude se situe autour de 950 hPa (environ 600 m) dans le cas RCE océanique et
au dessus de 800 hPa (environ 2 km) dans le cas AMMA (Fig. 4.4).
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4.4.5 Calcul des vitesses verticales du front de rafale selon
les formulations ALP et ALE.

Ici, nous calculons les variables liées a 1'énergie (ALE,y) et a la puissance (ALP,)
de soulévement associées aux poches froides dans les LES. Pour ce faire, nous déter-
minons d’abord une hauteur moyenne de la base des nuages a laquelle nous extrayons
les vitesses verticales wy(z, y). Cette hauteur correspond a l'altitude a laquelle le pro-
fil moyen de 1’eau condensée atteint sa premiére valeur non nulle. Elle est estimée a
environ 950 hPa sur les deux LES du cas océanique (SAM et MesoNH) et & environ
750 hPa sur le LES du cas AMMA (MESONH), comme le montre la Fig. 4.5, qui
présente le profil vertical de I’eau condensée moyennée horizontalement pour les deux
cas. Nous constatons cependant que la base des nuages se situe approximativement
a l'altitude ou les profils de 07" s’annulent sur les cas AMMA et RCE (Fig. 4.4). Cela
vient valider 'hypothése de Grandpeix and Lafore (2010) selon laquelle le sommet
des poches, situé juste en dessous de la base des nuages, correspond a 'altitude ou
0T devient nul.

Ensuite, nous séparons les courants ascendants sur fronts de rafales de ceux associés
aux panaches thermiques. Les courants ascendants sur fronts de rafales étant a la
fois plus forts et plus cohérents horizontalement que les thermiques observés dans
I’environnement des poches froides, nous avons défini un masque basé sur un seuil
de wy lissé horizontalement sur 1.25 kmx1.25 km (RCE) et 2 kmx2 km (AMMA).
Les valeurs de wy lissées sont notées wy(x,y) dans la suite du texte. Aprés plusieurs
analyses, nous avons retenu des seuils de wy(z,y) de 0.6 m/s pour le cas RCE et de

2 m/s pour le cas AMMA pour identifier les fronts de rafales.

La figure 4.6 présente les cartes d’anomalie de T}g,,, lissées horizontalement sur une
grille de 2.5 kmx 2.5 km, pour les cas RCE et AMMA. Sur ces cartes, nous avons
superposé les contours des anomalies de T}, utilisées pour identifier les poches (-
0.2 K pour RCE et -1 K pour AMMA), ainsi que les ascendances sur les fronts de
rafales (en rouge) et les thermiques (en vert). On voit a 'ceil que les fronts de rafales
calculés avec les seuils de w,(x,y) 4 0.6 m/s (RCE) et 4 2 m/s (AMMA) coincident
bien avec les contours des poches identifiées avec ces seuils d’anomalie de Tig,,. 1l
apparait également que la majorité des thermiques se situe dans l’environnement
des poches froides aussi bien pour le cas RCE que le cas AMMA (Fig. 4.6). Cela
vient valider & posteriori, un choix qui avait été fait dans la version 6A du modéle

en ne calculant 'effet des thermiques qu’a 'extérieur des poches.
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Enfin, pour déterminer ALF,, nous prenons le maximum de I’énergie cinétique
dans le domaine en ne considérant que les wy(z,y) dans le masque des fronts de ra-
fales (wpgust(z,y)), car c’est le maximum de vitesse verticale sur le front de rafale qui
déclenche la convection. Quant & ALP,, qui représente la moyenne des puissances
de soulévement fournies par I’ensemble des poches dans le domaine, elle est calculée
a partir de la moyenne horizontale du cube de weygys, pondérée par la fraction de
surface (04ust) couverte par les fronts de rafales. Le masque appliqué sur les fronts
de rafales a permis de calculer o, qui vaut 0.017 sur le cas RCE et 0.058 sur le

cas AMMA pour les instants présentés dans la figure 4.6.

1

ALE,; = mam(iwggust) (4.4.5)
1 —

ALP,;, = Ogust 5P Whgust (4.4.6)

4.4.6 Validation des lois phénoménologiques

Les paramétrisations physiques sont définies par des ensembles d’équations ma-
thématiques destinées a représenter les processus sous mailles au sein d’une colonne
du modeéle. La formulation de ces équations repose & la fois sur une compréhension
phénoménologique des processus concernés et sur des principes fondamentaux de la
physique. On peut valider ces paramétrisations en bloc, ou par morceaux, en isolant
certaines équations ou relations entre variables internes, ou entre variables internes
et variables d’état du GCM. Les LES offrent la possibilité d’effectuer une validation

et un ajustement a priori de ces lois.

Dans le modéle GL10, les variables ALE,,,, ALP,; et C, sont déterminées & partir
de I'énergie d’affaissement, WAPE (voir les équations 4.2.2, 4.3.3 et 4.3.7). Nous
comparons dans le Tableau 4.4.1 les valeurs obtenues, utilisant les formulations de la
paramétrisation (valeur paramétrée P), basées sur la WAPE déduit de 66, échan-
tillonné dans la LES, avec celles obtenues directement & partir du vent résolu dans
la méme LES (valeur échantillonnée E) : la vitesse verticale a la base du nuage (wy)
pour ALE,; et ALP,. et la divergence moyenne du vent & 10 m dans les poches
pour C,. Ces analyses sont réalisées en moyennant sur les instants disponibles : 24
instants pour SAM et 7 instants pour MesoNH dans le cas RCE, et entre 17h00 et
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FIGURE 4.5 — Profils verticaux de 1’eau condensée (g.kg™!) moyennée horizontale-
ment sur un instant des LES en RCE océanique réalisée avec les modéles SAM et
MesoNH et sur 'instant 19h30 de la LES du cas AMMA réalisée avec le modéle
MesoNH.
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FIGURE 4.6 — Cartes d’anomalie de température a 10 m (7}q,,, en K), lissées hori-
zontalement sur 2.5 km x 2.5 km, représentées sur un instant de la LES SAM du
cas RCE (a) et sur l'instant 1930h de la LES du cas AMMA. Les contours noirs
indiquent les seuils d’anomalie de Tig,, : -0.2 K pour le cas RCE et -1 K pour le
cas AMMA. La couleur rouge représente les ascendances présentes sur les fronts de
rafales, identifiées a partir des vitesses verticales a la base des nuages (w;) dans le
masque des fronts de rafales. Ce masque est défini a partir d’un seuil appliqué a la
moyenne glissante de wy. Pour le cas RCE, la moyenne est effectuée avec une boite de
1.25 km x 1.25 km et les valeurs @, >0.6 m/s sont retenues (respectivement 2 km x
2 km @, >2 m/s pour le cas AMMA). Les points verts représentent les thermiques,
définis comme les zones ot wy est positif(gq dehors du masque des fronts de rafales.
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22h00 pour le cas AMMA.

Les valeurs de ALFE,, calculées selon les deux méthodes sont trés proches. La plus
grande erreur correspond & une sous-estimation d’environ 30% de ALE,, calculée
a partir de WAPFE comparée a I'estimation a partir de wy. Ces résultats pour les
trois LES sont compatibles avec I’hypothése d’égalité entre ALE,,, et W APE, telle

qu’estimée par la paramétrisation.

TABLEAU 4.1 — Comparaison des variables WAPE, ALE,;, C, et ALP,; obtenues
directement & partir du vent résolu dans les LES (valeurs échantillonnées E), avec
celles calculées a partir des formulations de la paramétrisation (valeurs paramétrées
P). Les valeurs E sont dérivées de la vitesse verticale a la base du nuage (w,) pour
ALFE,;, et ALP,;, et la divergence moyenne du vent & 10 m dans les poches pour C,,
échantillonnées directement dans les LES. Les valeurs P sont calculées a partir de la
W APFE déduite de 6, lui-méme échantillonnée dans les mémes LES, en considérant
les coefficients k = 0.33 et k = 0.66. Les analyses portent sur la moyenne des instants
disponibles : 24 instants pour la LES réalisée avec SAM et 7 instants avec MesoNH
dans le cas océanique RCE, et entre 17h00 et 22h00 pour la LES du cas AMMA.

WAPE | ALE,,; | C, C, C, ALP,. | ALP,; | ALP,;
(J/Ke) | (I/kg) | (m/s) | (m/s) | (m/s) | (J/ke) | (J/ke) | (I/ke)
® |® |® |® |® |[® @
k=0.33 k=0.66 | k=0.33 k—0.66

RCE 7.962 10.460 | 1.315 2.228 2.630 0.008 0.054 0.071
SAM
RCE 7.912 6.965 1.313 2.264 2.625 0.008 0.020 0.071
MESO
AMMA | 45.870 | 59.760 | 3.133 5.362 6.265 0.279 1.733 2.239
MESO

Le Tableau 4.4.1 montre que, les valeurs de C, obtenues a partir de la W APFE sont
systématiquement inférieures & celles obtenues a partir de la divergence moyenne
du vent & 10 m dans les poches. Cette différence pourrait étre due a une sous-
estimation du coefficient k, fixé ici a 0.33. En fixant k & 0.66, les calculs de C, basés
sur la WAPE deviennent comparables & celles obtenues a partir de la divergence
moyenne du vent & 10 m dans les poches, notamment pour les cas RCE et AMMA
(tableau 4.1). Comme discuté plus haut, la valeur de 0.33 a été retenue suite a une
communication orale de Lafore (2000). Mais d’autres études proposent des valeurs
différentes : Lafore and Moncrieff (1989) estiment & & 0.68 sur la base de simulations
CRM de lignes de grains en 2D, tandis que Bryan (2005) 'évaluent a 0.5 & par-
tir d’observations de poches froides lors de I'expérience BAMEX dans les Grandes

Plaines américaines. Ces résultats sont donc compatibles avec I’hypothése du mo-
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deéle qui postule que I'énergie cinétique de la poche résulte de la transformation de
la W APE en énergie cinétique avec un coefficient k£ compatible avec des estimations

publiées.

Le Tableau 4.1 montre également que, pour les trois LES, les valeurs de ALP,
calculées avec C'x obtenue & partir de WAPE sont au moins trois fois inférieures
a celles obtenues avec wy. Deux coefficients interviennent dans le calcul de ALP,
avec la formule de paramétrisation : le coefficient k et D'efficacité de soulévement e,
imposés respectivement a 0.33 et 0.25. Utiliser £=0.66 dans le calcul de C, et conser-
ver € a sa valeur nominale de 0.25 permet de concilier les différentes estimations.
Ceci est compatible avec I’hypotheése de la paramétrisation selon laquelle 25 % de la
puissance horizontale fournie par les poches froides lors de leur propagation servirait

a renforcer l'intensité de la convection, tandis qu'une grande partie se dissipe.

4.5 Evaluation dans la configuration uni-colonne de
LMDZ

Dans cette section, nous évaluons la paramétrisation des poches dans la confi-
guration 1D de LMDZ (LMDZ CTRL). La comparaison est ici plus exigeante, car
toutes les paramétrisations interagissent entre elles, et 1’état de I’atmosphére au mo-
ment de I'évaluation dépend de l'interaction de l’ensemble de ces paramétrisations
au cours des heures précédentes (cas AMMA) ou des jours précédents (cas RCE).
Les simulations LMDZ CTRL sont réalisées avec exactement les mémes conditions
initiales et aux limites que les LES correspondantes pour les deux cas. Pour le cas
RCE, nous présentons les diagnostics une fois qu'un état quasi-stationnaire a été
atteint, en moyennant les résultats entre les jours 40 et 44. Pour le cas AMMA, les
simulations LMDZ CTRL sont réalisées sur la journée du 10 juillet 2006, de 6h00 a
minuit.

Dans le cas AMMA, les poches apparaissent ’aprés-midi, vers 17h00 dans la LES,
alors que dans LMDZ CTRL elles se forment plus tot, des 13h30. Cette apparition
précoce dans le modéle met en évidence une limite qui mériterait d’étre corrigée,
mais cela dépasse le cadre de cette étude. Nous remarquons cependant qu’un ajus-
tement du parameétre Sy, pourrait retarder de quelques heures le déclenchement de
la convection dans le modéle, mais une approche plus physique resterait nécessaire.
Face a ce décalage temporel entre LES et LMDZ CTRL, plusieurs stratégies de vali-
dation sont possibles : comparer les simulations a des instants fixes aprés I’apparition

des poches (par exemple 2h plus tard), ou bien aux instants ou celles-ci sont les plus
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développées dans chaque simulation. Nous retenons cette seconde option, car elle
permettrait une comparaison plus pertinente, les propriétés des poches étant mieux
représentées durant cette phase de leur développement. L’analyse intermédiaire des

0T dans la premiére couche met en évidence des poches plus froides et donc plus

développées a 19h30 dans la LES et a 14h30 dans LMDZ CTRL.

Afin de faciliter les comparaisons entre LMDZ et LES, nous imposons également,
dans les simulations LMDZ CTRL, la densité des poches estimée dans la LES. Nous
fixons ainsi une densité de 5 poches par 100 kmx100 km dans le cas RCE et de 2.5
poches par 100 kmx100 km dans le cas AMMA. Pour représenter les profils de 67,
0q et dw dans LMDZ CTRL pour le cas RCE, nous effectuons une moyenne tempo-
relle entre le 41°¢ et le 43¢ jour de simulation, afin de pouvoir comparer avec la LES
sur la méme période. Pour le cas AMMA, 'analyse est réalisée & 19h30 dans la LES
et a 14h30 dans LMDZ CTRL, comme précisé plus haut. La méme procédure est
appliquée pour comparer les variables WAPFE, ALE et ALP entre LMDZ CTRL et

LES dans les deux cas.

4.5.1 Les profils de 67T, dq et dw

L’analyse des profils de 67 dans les LES confirment que les poches sont plus
froides a la surface avec des températures qui augmentent vers le sommet aussi bien
sur le cas RCE (Fig. 4.7a) que sur le cas AMMA (Fig. 4.7d). Les poches froides
sont environ trois fois plus profondes dans le cas AMMA (Fig. 4.7a) que pour le
cas RCE (Fig. 4.7d). Dans les LES, on observe que les températures des poches
froides pour le cas AMMA (autour de —4 K) sont plus faibles de celles du cas RCE
(autour de —1.2 K), ce qui reste cohérent avec les observations, bien que celles-ci
indiquent généralement des poches beaucoup plus froides au-dessus du continent
qu’au-dessus de 'océan. Pour le cas AMMA, les observations révéelent une chute de
température d’environ -5 K lors du passage de la poche froide (Lothon et al., 2011),
valeur assez proche de celle simulée par la LES. Il convient cependant de noter que
le cas AMMA correspond & un épisode de convection continentale particuliérement
faible et atypique. Les profils d¢ indiquent qu’en surface, les poches froides sont
plus humides que leur environnement dans le cas RCE et dans le cas AMMA (Fig.
4.7b et Fig. 4.7¢). Dans les deux cas, 'humidité au sein des poches froides diminue
avec l'altitude jusqu’a leur sommet, ou elles sont asséchées par la subsidence des
masses d’air sec dans la poche froide (Fig. 4.7c et Fig. 4.7f). Dans le cas RCE,
cette subsidence disparait en dessous de 800 hPa (Fig. 4.7¢), tandis que pour le cas
AMMA, elle disparait & un niveau plus élevé, autour de 600 hPa (Fig. 4.7f).
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Nous passons maintenant aux comparaisons des profils de 07T, dg et dw simulés
par LMDZ CTRL a ceux calculés dans les LES. Les profils 07" simulés avec LMDZ
CTRL sont qualitativement cohérents avec les LES, avec un sommet des poches
(ot T s’annule) & peu prés a la bonne altitude. Les poches froides simulées avec
LMDZ CTRL sont cependant plus chaudes que les LES pour le cas RCE (Fig.
4.7a), et plus froides en surface que la LES pour le cas AMMA (Fig. 4.7d). En
cohérence avec les LES, les poches froides sont également plus humides en surface
et plus séches prés de leur sommet (Fig. 4.7b et Fig. 4.7¢e). Cependant, les variations
de dq sont beaucoup plus importantes dans LMDZ CTRL que dans les LES. En
particulier, les poches froides sont beaucoup trop séches a leur sommet dans LMDZ.
Dans les deux cas, les poches sont associées a une subsidence. La hauteur a laquelle
commence la subsidence des masses d’air dans les poches froides, fixée a 600 hPa dans
LMDZ CTRL, est trop élevée par rapport & LES pour le cas RCE Fig. 4.7e). Nous
remarquons également que, dans le cas RCE, les poches présentent une humidité de
surface nettement plus élevée dans LMDZ CTRL. Pour le cas AMMA, 'humidité a

la surface des poches est globalement bien représentée par rapport aux LES.

4.5.2 WAPE, ALE et ALP

Cette section présente les comparaisons des variables WAPE, ALFE,, C, et
ALP,; calculées dans les LES avec celles simulées par LMDZ CTRL pour les cas
RCE et AMMA.

Le Tableau 4.2 montre que, pour le cas RCE, la variable W APFE simulée par LMDZ
CTRL est nettement inférieure & celles des LES SAM et MesoNH, avec un écart d’au
moins un facteur 2. Ces faibles valeurs de WAPE dans LMDZ CTRL entrainent
également des ALE,,, faibles par rapport aux LES (Tableau 4.2). A I'inverse, pour
le cas AMMA, la WAPE simulée par le modéle, et par conséquent ALFE,,, sont
légérement plus élevées des valeurs déduites de la LES (Tableau 4.2). En revanche,
la valeur de C simulée par LMDZ CTRL est au moins trois fois plus petite que celles
des LES dans le cas RCE et légérement plus faible pour le cas AMMA (Tableau 4.2).
ALP, est au moins vingt fois plus faible dans LMDZ CTRL que dans les LES pour

tous les cas.

Plusieurs divergences ont été identifiées entre les propriétés des poches froides para-
métrées et celles échantillonnées dans les LES. En particulier, elles sont trop séches

a leur sommet et trop humides prés de la surface pour le cas RCE. Les variables
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FIGURE 4.7 — Profils verticaux de 0T (K), dq (gkg™!) et dw (m.s™!) calculés dans
les LES (trait gris épais) et simulés dans LMDZ controle (trait noir, LMDZ CTRL)
sur le cas RCE (a, b, ¢) et sur le cas AMMA (d, e, f).
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TABLEAU 4.2 — Comparaison des variables WAPE, ALFE,, C, et ALP,; échan-
tillonnées dans les LES et simulées dans LMDZ controle (LMDZ CTRL) sur le cas
océanique en RCE et le cas continental AMMA

WAPE ALE,, (J/kg) | C. (m/s) ALP,: (J/kg)
(J/Kg)
RCE
LES SAM 7.962 10.460 2.228 0.054
LES MESONH | 7.912 6.965 2.264 0.020
LMDZ CTRL | 2.957 2.957 0.802 0.001
AMMA

LES MESONH | 62.110 66.960 1762 2.304
LMDZ CTRL | 71.300 75.170 3.941 0.103

telles que WAPE, ALE,, C, et ALP,,;. sont globalement mal reproduites. Diverses
modifications de la paramétrisation des poches froides sont explorées dans la section

suivante afin d’améliorer le comportement du modéle.

4.6 Les améliorations du modeéle des poches froides

Ici, nous commencons par corriger les écarts identifiés entre la LES et le modele
concernant la valeur du coefficient k et 'altitude h,,, afin d’évaluer leur impact sur

les poches, avant d’explorer d’autres pistes.

4.6.1 Coefficient k

Nous présentons ici I'impact de I'augmentation du coefficient k£ de 0.33 a 0.66
(simulation LMDZ V1) sur les profils de 67", dq, dw ainsi que sur les variables C,
WAPE, ALP, et ALE .

Dans le cas RCE, cette modification améliore nettement le profil de dw sous h,y
(Fig. 4.8¢). Elle permet également de mieux reproduire les profils de dw sous hyy
dans le cas AMMA. Ces améliorations sont directement liées & 'augmentation de C,
sur les deux cas (Tableau 4.4), car le profil de dw sous h,y dépend de I’étalement
des poches froides. L’augmentation de C, pourrait étre associée a une subsidence
plus forte de la masse d’air dans la poche froide, ce qui contribuerait a un léger
asséchement prés de la surface sur les deux cas (Fig. 4.8b et Fig. 4.8¢). Pour le cas
AMMA, cet asséchement entraine des poches légérement plus séches a la surface dans
LMDZ V1 que dans les LES, mais reste globalement comparables avec ces derniéres.
L’augmentation de C, dans les deux cas, RCE et AMMA, conduit également a

une meilleure représentation de ALP,; (augmentation au moins d’un facteur de 5
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pour les deux cas), méme si cette variable reste sous-estimée (Tableau 4.4). Nous
constatons aussi un effet de réchauffement de cette modification aussi bien sur le cas
RCE que sur le cas AMMA. L’impact sur les profils de 67" dans les cas AMMA et
RCE est a 'origine de la diminution des valeurs de WAPFE et ALFE,,; pour ces deux
cas (Tableau 4.4).

Malgré cette modification de k, les poches froides restent trop séches & leur sommet et
plus humides en surface dans le cas RCE (Fig. 4.8b,e). Dans le cas RCE, elles restent
également moins froides dans LMDZ V1 que dans les LES (Fig. 4.8a). Pour le cas
AMMA, on observe un léger aplatissement du profil de 7', rapprochant davantage
de la LES (Fig. 4.8d), mais les poches restent toujours plus froides a la surface.
Ce biais dans la représentation de la température explique pourquoi C, demeure
sous-estimé dans le cas RCE et 1égérement surestimé dans le cas AMMA, malgré la
fixation de k a 0.66.

4.6.2 Altitude h,,

Dans les sections précédentes, nous avons constaté que laltitude (h,,) a laquelle
Iécart de la vitesse verticale (dw) s’annule est observée dans les LES en dessous de
800 hPa pour le cas RCE et en dessous de 600 hPa pour le cas AMMA. Comme
évoqué plus haut, cette altitude h,, était fixée arbitrairement & 600 hPa dans le
modeéle GL10. Dans la version V2, outre le changement de la valeur de k& de 0.33 &
0.66, nous calculons h,, comme ah,,; avec o« = 3 (« est considéré comme un nouveau
paramétre libre dans la section suivante). Un léger ajustement de h,; a également
été réalisé grace au nouveau schéma numeérique proposé pour son calcul, dont les
détails sont discutés en annexe. Cet ajustement n’a toutefois pas d’impact sur les

profils verticaux de dq et 67

Les comparaisons entre LMDZ V2 et LES montrent une meilleure représentation
des profils ¢ au sommet des poches froides dans les cas RCE et AMMA (Fig. 4.8b
et Fig. 4.8e). Ces résultats montrent que le biais sec au sommet des poches dans
la version originale était d a l'advection d’air sec provenant d’une altitude trop
élevée. Le fait que le modéle soit capable de reproduire de maniére cohérente le pro-
fil d’humidité au sommet des poches lors de I'ajustement de h,, valide la physique
implémentée dans ce schéma des poches froides. Cela réveéle qu'une limitation de ce
schéma réside dans le choix de la valeur d’'un paramétre (la hauteur au-dessus de
600 hPa) plutot que dans la formulation elle-méme. Cette modification modifie éga-
lement légérement '’humidité a la surface des poches dans les cas RCE et AMMA.

Nous observons cependant que les poches restent toujours plus humides en surface
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dans LMDZ V2 que dans la LES sur le cas RCE. A D'inverse, pour le cas AMMA,
elles s’avérent légérement plus séches. Concernant les profils 07", Fig. 4.8a et Fig.
4.8d indiquent que cette modification a un impact trés limité dans les cas AMMA

et RCE. Le Tableau 4.4 montre aussi que la modification de h,, affecte faiblement

les variables WAPE, C,, ALE,;. et ALP,, pour ces deux cas.

4.6.3 Activation des thermiques dans tout le domaine

Pour comprendre l'origine du biais humide en surface des poches dans LMDZ
sur le cas RCE, nous testons le fait d’activer les thermiques dans tout le domaine.
Dans la configuration standard de LMDZ, les thermiques n’interagissent qu’avec les
profils de température et d’humidité en dehors des poches. Ce choix avait été fait a
I'origine pour tenir compte du fait que ’atmosphére est plus stable a l'intérieur des
poches, ce qui inhiberait la convection dans ces régions. La version V3 est identique
a la version V2, a la différence prés que les thermiques sont considérées comme inter-
agissant avec les profils moyens de la maille, sans effet des thermiques sur les écarts
de température et d’humidité des poches. Pour le cas RCE, les simulations LMDZ
V3 montrent une nette diminution de I’humidité en surface des poches, se rappro-
chant mieux des LES (Fig. 4.8b). Dans le cas AMMA, D'effet est également présent
bien que moins marqué (Fig. 4.8e). Ces résultats sont attendus car le transport ver-
tical par les thermiques asséche systématiquement la surface (Diallo et al., 2017).
Ils résultats suggérent un role clé des thermiques dans la régulation de I’humidité en
surface, via le mélange de I'air humide avec 'air sec au-dessus. Pour représenter cet
effet dans le modéle, on pourrait intégrer des thermiques peu profonds, non nuageux,
assurant simplement ce mélange. Un effet d’assechement au sommet des poches par

les thermiques est également constatés dans les deux cas.

Des tests intermédiaires ont permis d’évaluer 'impact du flux d’évaporation en sur-
face sur 'humidité des poches, en activant le splitting, qui différencie ce flux entre
(w) et (x). Dans la configuration standard, ce flux est traité uniformément pour les
deux régions. Les tests ont montré un effet limité de ce flux sur I’humidité des poches
pour pour le cas RCE. Ce test n’a pas été réalisé pour le cas AMMA, car LMDZ ne

le permet pas encore sur le continent. Il serait cependant pertinent de I’explorer.

On constate également un refroidissement des poches induit par les thermiques
dans les cas RCE et AMMA (Fig. 4.8a et Fig. 4.8d). Dans le cas RCE, les poches
demeurent toutefois moins froides que dans la LES malgré cet effet. Dans le cas

AMMA, ce refroidissement accentue la surestimation de I'anomalie froide. Dans les
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FIGURE 4.8 — Profils verticaux

de 6T (K), dq (gkeg™!) et dw (m.s™!) calculés dans

les LES et simulées dans LMDZ controle (LMDZ CTRL), LMDZ avec ’ajustement
du coefficient k & 0.66 (LMDZ V1), LMDZ avec la baisse de l'altitude (h,,) a laquelle
la subsidence des masses d’air dans la poche s’annule (LMDZ V2) et LMDZ avec
l'activation des thermiques dans tout le domaine (LMDZ V3) sur le cas RCE (a, b,

c) et sur le cas AMMA (d, e, f).
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deux cas, ce refroidissement entraine une augmentation des variables WAPE, C,,

ALE,\ et ALP, (Tableau 4.4).

TABLEAU 4.3 — Description des simulations effectuées avec LMDZ dans la configu-
ration standard et avec diverses modifications

Simulations Protocoles

LMDZ CTRL simulation de LMDZ avec la configuration standard en imposant
Dy 4510710

LMDZ V1 LMDZ CTRL + le changement de k a 0.66

LMDZ V2 LMDZ V1 + la baisse de h,,

LMDZ V3 LMDZ V2 + activation des thermiques dans tout le domaine

TABLEAU 4.4 — Comparaison des variables WAPE, ALE,,., C, et ALP,,; échan-
tillonnées dans les LES, avec celles simulées dans la simulation de controle (LMDZ
CTRL), LMDZ avec I'ajustement du coefficient £ & 0.66 (V1), LMDZ avec la baisse
d’altitude (h,,) a laquelle la subsidence des masses d’air dans les poches est nulles
(V2) et LMDZ avec I'activation des thermiques dans tout le domaine (V3) sur le cas

RCE et sur le cas AMMA.

WAPE ALE,, (J/kg) | C. (m/s) ALPyy
(J/Keg) (W/m?)
RCE
LES SAM 7.962 10.460 2.228 0.054
LES MESONH | 7.912 6.965 2.264 0.020
LMDZ CTRL | 2.957 2.957 0.802 0.001
LMDZ V1 2.528 2.528 1.484 0.006
LMDZ V2 2.465 2.465 1.465 0.006
LMDZ V3 3.408 3.408 1.723 0.009
AMMA

LES MESONH [ 62.110 66.960 1762 2.304
LMDZ CTRL | 71.300 75.170 3.941 0.103
LMDZ V1 51.550 51.100 6.701 0.538
LMDZ V2 54.940 53.550 6.918 0.732
LMDZ V3 55.450 53.260 6.951 0.756

4.7 Effet des modifications sur les variables de la

grande échelle

Bien que les modifications présentées ci-dessus aient amélioré la représentation
des poches froides dans le modéle, il est également essentiel d’examiner leur impact
sur les variables & grande échelle. Dans cette section, nous analysons l'effet de ces

modifications sur des variables telles que les profils de température potentielle (6)
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et d’humidité spécifique (quv). Pour cela, les mémes profils sont recalculés dans les
LES pour les cas RCE et AMMA, puis comparés a ceux obtenus dans chaque version
modifiée de LMDZ. Les profils de 6 et gv dans les LES sont calculés par une moyenne
horizontale de ces variables sur le domaine.

Fig. 4.9 et Fig. 4.9c montrent que les modifications introduites dans les versions
V1, V2 et V3 ont un faible impact sur les profils 6 dans les cas RCE et AMMA.
Globalement, toutes les versions de LMDZ (CTRL, V1, V2 et V3) parviennent a
bien reproduire les profils # sur les deux cas, bien qu'un léger biais chaud soit ob-
servé autour de 200 hPa dans le cas RCE. Dans le cas RCE, les versions V2 et V3
provoquent un asséchement de la moyenne troposphére (Fig. 4.9b), tandis que dans
le cas AMMA les versions V1, V2 et V3 ont peu d’effet sur les profils d’humidité
(Fig. 4.9d). Dans le cas RCE, un biais sec est observé dans la couche limite, ainsi
qu’entre 800 et 400 hPa, pour LMDZ CTRL, V1, V2 et V3 (Fig. 4.9b). Pour le cas
AMMA, un biais humide est observé dans la couche limite, tandis qu’un biais sec
est présent entre environ 700 et 500 hPa (Fig. 4.9d).

4.8 Tuning des parameétres libres

Les tests présentés ci-dessus montrent des pistes possibles pour améliorer la pa-
ramétrisation des poches froides. On voit cependant que les modifications ne jouent
pas suffisamment sur les profils moyens pour réduire ces biais de fagon significative.
Tous les tests sous-estiment (pou le cas RCE) ou surestiment (pour le cas AMMA)
I’anomalie froide de température & l'intérieur des poches, ainsi que WAPE, ALE,;,
C, et ALP,;. On voit également des erreurs systématiques sur les profils moyens,
avec notamment des profils beaucoup trop sec pour le cas RCE.

Dans le GCM, ces variables ne sont pas sensibles qu’aux paramétres ou a la formu-
lation du modeéle de poches. Elles sont influencées par toutes les autres paramétrisa-
tions et en particulier celle de la convection & laquelle celle des poches est fortement
couplée. Afin de tenter de voir comment des modifications d’autres paramétrisations
pourraient contribuer a réduire ces biais, nous avons réalisé des simulations de cali-
bration automatique avec ’outil htexplo.

En pratique, on décide de partir d’un tuning réalisé pour la couche limite convective
par Hourdin et al. (2021), pour une configuration a 95 niveaux plutdt que 79 et des
versions plus récentes des codes que celles utilisées dans le reste du chapitre. C’est
en effet la version qui sert de base a la préparation de la futur version du modéle de
climat pour la partie FastTrac du projet CMIP7 dont les simulations doivent étre

ne machine début 2026. On suppose que les paramétres de la couche limite ont déja
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FIGURE 4.9 — Profils verticaux de la température potentielle (6, en K) et de 'hu-
midité spécifique (g,, en kg.kg™') calculés dans les LES et simulés dans LMDZ
controle (LMDZ CTRL), LMDZ avec l'ajustement du coeflicient k a 0.66 (LMDZ
V1), LMDZ avec la baisse de l'altitude (h,,) a laquelle la subsidence des masses d’air
dans la poche s’annule (LMDZ V2) et LMDZ avec l'activation des thermiques dans
tout le domaine (LMDZ V3) sur le cas RCE (a, b, ¢) et sur le cas AMMA (d, e, f).
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métrique ‘ unité ‘ cible ‘ tolérance
Cas RCE, moyenne jour 41 a 43

WAPE m?s2 |8 2

C. ms ! |22 0.2

(590_50 m K -0.83 | 0.045

690—600 m K -0.48 | 0.063

qU0-500 m | 8/ke 14.1 | 0.45

5.6 km | &/ke 2.55 |0.33

qUg_10 km | &/ke 0.289 | 0.063

90_500 m K 296.5 | 1.47

01-3 km K 301.0 | 1.

05_6 km K 3174 | 1.

0310 km | K 328.8 | 3.

Cas AMMA, moyenne heure 10 a 17
WAPE m? s72 | 20 3

TABLEAU 4.5 — Métriques (cibles et tolérances 1-0) utilisées pour le tuning. Pour
le cas RCE, elles concernent les moyennes entre les jours 41 et 43 de la WAPE et
la vitesse d’étalement des poches C\ ainsi que les profils verticaux de 46, qu et 0
moyennés sur des tranches d’altitudes précisées dans la colonne de droite. Pour le
cas AMMA seule la WAPE moyenne entre les heures 10 et 17 de la simulation est
utilisée.

été optimisé pour bien représenter la couche limite convective et les nuages associés,

cumulus et stratocumulus.

On cible des métriques préférentiellement sur le cas RCE. En effet, on souhaite évi-
ter d’étre trop tributaire d’erreurs sur le phasage du cycle diurne de la convection
profonde. Pour le cas RCE, on cible la phase de quasi équilibre en considérant des
moyennes entre les jours 41 et 43. Les métriques retenues pour ces exercices de ca-
libration sont les profils de 07", ¢, et 0, évalués a partir de moyennes verticales &
différents niveaux et de moyennes temporelles entre les jours 41 et 43 comme indi-

quée dans le Tableau 4.5.

Concernant les modifications du modeéle des poches, celles affectant le coefficient &
et h,, ont été prises en compte, comme dans la configuration V2. Les ajustements

liés aux thermiques (V3) ne sont pas pris en compte ici parce qu'ils posent autant de
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Paramétre unités ‘ [min,max| prior ‘ exploration ‘ [ min , max | aprés
Modeéle de poches

¢ (équation 4.3.4) | - [025,05] | lincar [0.26, 0.46 |

hom, - [3.5,5] linear [3.6,4.1]

k (équation 4.2.2) | - [0.33,0.66 | | linear [ 0.56 , 0.57 |

Tint - [0.75,0.99 ] | linear [ 0.96 , 0.987 |
Modéle de convection

Wb, ¢ m/s [0.5,1.2] linear [ 0.55,0.98 |

wbmax m/s [2.8,6 | linear [2.8,3.5]

O desc. . [0.015, 0.05 | | linear [0.042 , 0.048 |

1-E Piax ; 10.05,01] | log [.93,.95]

kALP,BL - [ 0.2 y 0.5 ] linear [ 0.33 5 0.47 ]

TABLEAU 4.6 — Paramétres libres impliqués dans 1’exercice de tuning.

questions qu’ils n’en résolvent. Les paramétres ajustables retenus pour le modéle de
poches sont : k. h,,, 0;n et €. On y adjoint également les parameétres suivants pour la
convection profonde : des vitesse minimum wbg,¢ et maximum wbmax de la vitesse
verticale a la base de la colonne convective ; la fraction de la surface de la maille dans
laquelle ont lieu les descentes précipitantes ; 'efficacité de précipitation maximum
du schéma d’Emmanuel (FPmax). Cette efficacité est une efficacité maximum en
haut des colonnes convectives. L’écart 1-E Pmpax contrdle combien d’eau condensée

sort des nuages convectifs, et donc la source d’humidité dans la haute atmospheére.

Le résultat de ce tuning est le fruit de beaucoup d’essais/erreurs sur les choix des
parameétres, de leurs bornes, des métriques a ajuster et des tolérances associées. Nous
présentons ici les 12 meilleures simulations issues de 13 vagues de tuning. Parmi elles,
la simulation considérée comme la plus performante (TUNE BEST) est également
identifiée.

L’analyse des résultats pour le cas RCE révele que les simulations améliorent la
représentation des variables qui étaient ciblées, et notamment les profils moyens
d’humidité et 'amplitude des écarts de température potentielle 46. Ces écarts sont
davantage négatifs en accord avec une WAPE et un coefficient C, plus forts. De plus,
les profils de dq au sommet des poches ainsi que ceux de dw restent bien représentés
dans I’ensemble des 12 simulations.

En appliquant aux simulations du cas AMMA les paramétres issus du tuning réalisé
sur le cas RCE, on constate une réduction significative du biais froid a la surface des
poches (Fig. 4.10d), ainsi qu'une amélioration des profils moyens d’humidité dans
I’ensemble des 12 simulations. Seuls les résultats de la simulation BEST TUNE re-

produisent des profils de dgq et dw cohérents avec les LES, les autres ayant tendance
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a générer des poches trop séches au sommet en raison de profils de dw légérement
surestimés (Fig. 4.10e et Fig. 4.10f). On observe également une amélioration des
variables C,. Néanmoins, un biais humide et un biais froid persistent dans la couche
limite, tandis que les variables WAPE, ALE,, et ALP,; demeurent légérement

sous-estimeées.

TABLEAU 4.7 — Méme chose que le Tableau 4.4, mais incluant les 12 meilleures
simulations du tuning.

WAPE ALE,, (J/kg) | C. (m/s) ALPyy
(J/Kg) (W/m?)
RCE
LES SAM 7.962 10.460 2.228 0.054
LES MESONH | 7.912 6.965 2.264 0.020
LMDZ CTRL | 2.957 2.957 0.802 0.001
LMDZ V1 2.528 2.528 1.484 0.006
LMDZ V2 2.465 2.465 1.465 0.006
LMDZ V3 3.408 3.408 1.723 0.009
12 bests [6.1,5.3] [5.1,5.3] [1.79,1.83] [0.013,0.025]
AMMA
LES MESONH [ 62.110 66.960 1762 2.304
LMDZ CTRL | 71.300 71.300 3.941 0.103
LMDZ V1 51.550 51.100 6.701 0.538
LMDZ V2 54.940 54.940 6.918 0.732
LMDZ V3 55.450 55.450 6.951 0.756
12 bests [40,60] [40,60] [4.5,51] [0.5,1.52]

4.9 Conclusions

Dans ce chapitre, nous avons réalisé une évaluation détaillée du modéle des poches
froides dans LMDZ, en nous appuyant sur des LES pour la premiére fois. Nous avons
évalué la physique sous-jacente du modéle, ses variables internes ainsi que celles utili-
sées dans le couplage avec le schéma de convection profonde. Les analyses basées sur
les LES confirment la pertinence des hypothéses a la base de cette paramétrisation.
Nous montrons également que la version initiale du modéle représente bien, au pre-
mier ordre, les caractéristiques des poches froides, bien que certains biais aient été
identifiés. Ces biais ont été en partie corrigés grace a des modifications substantielles
apportées sur le schéma des poches froides et & un réajustement de certains para-
métres libres. On suspecte que les défauts persistant sur les poches froides peuvent
étre corrigés en introduisant un mélange vertical par les thermiques au sein des
poches froides et en prenant en compte I’évolution de leur densité de maniére plus

physique. Ce dernier aspect est traité dans I’Annexe B.
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FIGURE 4.10 — Comme Fig. 4.8, mais incluant les 12 meilleures simulations issues
du tuning (TUNE, en noir) ainsi que la meilleure d’entre elles (TUNE BEST, en
vert)
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FIGURE 4.11 — Comme Fig. 4.9, mais incluant les 12 meilleures simulations issues
du tuning (TUNE, en noir) ainsi que la meilleure d’entre elles (TUNE BEST, en

vert)
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Chapitre 5. Paramétrisation des rafales de vents générées
par les poches froides

5.1 Introduction

Le contenu physique du modéle LMDZ connait une amélioration continue, no-
tamment grace au développement de nouvelles paramétrisations. L’'intégration des
processus sous-nuageux via les paramétrisations des thermiques (Rio and Hourdin,
2008), qui modélisent la convection peu profonde, et des poches froides (Grandpeix
and Lafore, 2010), représentant les courants de densité issus des descentes d’air non
saturé générées par la convection profonde ont permis, par exemple, une amélio-
ration de la représentation de la convection dans le modeéle. Ces travaux ont servi
de base au développement d’une "Nouvelle Physique" qui ne cesse d’étre améliorée
depuis. On s’attache ici a la prise en compte des rafales de vent induites par les
poches froides et de celles générées par les thermiques. Comme on 'a expliqué a la
section 3.5.2, dans la configuration LMDZ6A, la représentation du vent de surface
dans une maille pour le soulévement des poussiéres reste trés simplifiée. Elle repose
sur une distribution de Weibull, dont la vitesse maximale est arbitrairement fixée
a deux fois la vitesse moyenne du vent & grande échelle. Ce chapitre propose un
modéle de distribution du vent de surface au sein des poches froides, con¢u pour
intégrer les effets des rafales associées. Ce modéle est ensuite couplé a un modéle
complémentaire, développé en paralléle par Adriana Sima, qui décrit la distribution
du vent a l'extérieur des poches en intégrant les rafales liées aux thermiques, afin
d’obtenir une représentation compléte du vent de surface dans la maille. L’ensemble
est testé et validé dans la version 1D de LMDZ en comparaison avec les LES. L’outil

HTEXPLO est également utilisé ici pour calibrer les paramétres libres du modéle.

5.2 Dérivation du modéle de vent

Le développement des paramétrisations physiques est un travail exigeant, qui
nécessite une compréhension des phénoménes physiques a représenter. Aujourd hui,
cette compréhension peut s’appuyer sur une analyse approfondie des LES. Ce travail
inclut ensuite la conceptualisation de ces phénomeénes, leur traduction en équations
mathématiques continues puis discrétisées, ainsi que le réglage des paramétres libres
découlant de cette paramétrisation avant son intégration dans le modéle climatique
global. Ici, nous développons une paramétrisation des rafales de vent liées a I’étale-
ment des poches froides, en nous inspirant des LES. Au lieu de présenter directement
la version finale du modéle, comme cela se fait souvent, nous exposons chaque étape
du processus de conception de la nouvelle paramétrisation. Cela permet non seule-

ment d’expliquer notre démarche de modélisation, mais aussi d’illustrer ’énorme
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travail réalisé dans le développement des modéles. Nous détaillons ici les différentes
tentatives de paramétrisation explorées avant d’aboutir a une version finale, présen-
tée dans une autre section. Chaque tentative a représenté une avancée significative,
permettant d’affiner notre compréhension des distributions du vent dans les poches

et d’évoluer vers un modéle plus physique et plus pertinent.

5.2.1 Un premier modéle statistique

Nous avons commencé par utiliser les LES pour étudier le comportement du vent
a l'intérieur des poches froides. Comme décrit dans le chapitre 3, les LES sont large-
ment utilisées pour orienter le développement des paramétrisations des poches, car
elles représentent bien les processus en jeu. Notre analyse s’est d’abord focalisée sur
les distributions du vent zonal & 10 m (u1¢,,) et du vent méridional & 10 m (vyg,,) &
I'intérieur des poches froides, pour chaque instant de la LES du cas océanique réali-
sée avec le modéle SAM. Ces analyses montrent que la distribution de vy, présente
I’allure d’une distribution normale centrée sur zéro, tandis que la distribution de
U10m Présente une forme d’asymétrie du coté des valeurs négatives. Il s’agit d’une
asymétrie du vent dans la direction du vent a grande échelle imposée dans la LES
(u=-5m.s et v=0ms1t). Cette asymétrie dans la distribution de uyq,, suggere
la présence de deux sous-distributions aux moyennes, variances et poids distincts.
Ainsi, nous avons envisagé un premier modeéle de distribution du vent au sein des

poches, en supposant que la distribution de u1q,, est la somme de deux lois gaus-
2

siennes, tandis que celle de vy, suit une loi normale centrée sur 0 et de variance o;.
Dans ce modeéle, les deux distributions gaussiennes (G et Gs) qui forment le vent
zonal sont caractérisées respectivement par les moyennes u; et uy et des variances

o2 et 032. Nous faisons I’hypothése que la distribution gaussienne dont les vitesses

uy

de vent zonales ont les valeurs absolues les plus élevées, notée ici G1(uy, 0y1), corres-
pond au front de rafale. Nous lui associons un poids « correspondant & la fraction
de la poche couverte par les fronts de rafales (o« < 1). La fonction de densité de
probabilité (PDF pour Probability Density Function en anglais) de la somme de ces
deux distributions gaussiennes (Gy(uy,0y,) et Ga(tus, 0y,)) est alors donnée par la

relation suivante.

P(ul()m) = O_/Gl(ﬂl, O'ul) + (1 - Oé)GQ(ﬂQ, ng) (521)

La densité de probabilité de la distribution de vy, est, quant a elle, donnée par la
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FIGURE 5.1 — Distributions de la vitesse du vent a 10 m & l'intérieur des poches
froides calculées dans la LES SAM (courbe noire) et obtenues dans le modéle (courbe
verte). Panneau (a) : composante zonale uyg,, (en m - s7!). La distribution de ujo,
dans le modéle est décomposée en : distribution dans le front de rafales des poches
G4 (Uy, 04,) (courbe rouge), distribution dans la partie restante Go(us, 0y,) (courbe
bleue), et somme des distributions G1+ G2 (courbe verte). Panneau (b) : composante

méridienne v1g,, (en m - s71). Les paramétres du modéle sont calculés & partir de la
LES (Eq. 5.2.4) avec o = 0.35.
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relation suivante :

P(UIOm) = G(O, O'U) (522)

Nous arrivons ainsi a un modele comportant six parameétres : Uy, Us, 0y, , Oy,, @ €t
Oyp-

Une facon de contraindre ces paramétres est de s’appuyer sur différents moments de
la distribution. Ici, on privilégie la moyenne (Tyy), la variance (o7 ;) et le coeffi-
cient d’asymétrie (ms ) de la distribution globale de u dans les poches, ainsi que

2

+.wr) de la distribution de v (de moyenne nulle et symétrique).

la variance (o

Si I'on note (u, v®) une réalisation aléatoire des variables u et v, en pratique

les valeurs de u et v en un point tiré uniformément dans la poche, on a :

(5.2.3)

3.0 = S (1 — T P ()

En partant du systéme d’équations 5.2.3, et aprés quelques étapes de calcul, nous

obtenons les expressions de Uy, Uz, 04, , 0y, €t a & travers les relations suivantes :

.
U1 = Uy —ad

Uy = Tyr + (1 — @)
< (5.2.4)

2 _ 2 m3 wk (a—1)(a+1)62
Ouy = Ouwk T 3ag T 3

2 _ 2 _ M3k a(a—2)62
[ Tus = Ouwk ~ 3(1=a)s = 3

ou2—0y2

N OS2
ou 0% = a(l—a)

2
u,wk?

le seul paramétre inconnu est «. Dans le cadre de tests intermédiaires, nous avons

Puisque g, o ag,wk et ms i, peuvent étre directement calculés dans les LES,
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exploré plusieurs valeurs de o comprises entre 0 et 1, afin d’identifier celles permet-
tant d’obtenir les meilleures distributions de wu1g,, et v1p, par rapport a celles de la
LES. Les résultats montrent que le modéle reproduit bien les distributions des LES
lorsque «v est fixé a 0.35, aussi bien pour ujg, que pour vig, (Fig. 5.1). L’analyse
des distributions de u;q,, montre que la sous-distribution (G1 (@, 1)), qui donne les
vents les plus forts selon la direction u, présente une largeur plus importante et un

poids plus faible.

Bien que ces résultats soient satisfaisants, car le modéle reproduit bien les distri-
butions de u1g,, et vio,, calculées dans la LES, nous relevons deux limites majeures
liée entre elles. D’une part, ce modeéle repose uniquement sur des bases statistiques,
sans fondement physique qui guide les modéles climatiques. D’autre part, aucun de
ses parameétres n’est fourni directement par le modéle de poches. Cette contrainte
nous a conduits a travailler sur un autre modeéle fondé sur des principes physiques

et dont certains parameétres seront directement issus du modéle de poches froides.

5.2.2 Deuxiéme modéle : introduction d’un vent radial

Nous analysons les cartes du module du vent & 10 m a un instant donné dans la
LES du cas océanique réalisée avec SAM ainsi que pour le cas continental AMMA.
Sur ces cartes, nous superposons les contours des anomalies de température de sur-
face a -0.2 K et -1 K afin d’identifier respectivement les poches dans les cas RCE
et AMMA, comme vu dans le chapitre 4. Cette analyse révéle la présence de vents
forts a ’avant de la poche, correspondant au front de rafales, et de vents plus faibles
a larriére, aussi bien pour le cas RCE (Fig. 5.2) que pour le cas AMMA (Fig. 5.3).
Dans le cas RCE, le vent dominant est uniforme verticalement, et orienté vers I'Est,
dirigeant ainsi le front de rafales dans cette direction. Dans le cas AMMA, le vent do-
minant est trés cisaillé et orienté vers le Nord, ce qui oriente sans doute la poche dans
cette direction. La variation du vent & l'intérieur des poches peut-étre vue comme la
superposition de I’étalement avec le vent moyen dans la poche (U, Typr). A 'avant
de la poche, I'étalement augmente son intensité, tandis qu’en arriére, cet étalement
réduit la vitesse du vent. A noter que les LES montrent que le vent moyen au sein
de la poche différe sensiblement du vent a grande échelle. Ceci est cohérent avec les
travaux de Pantillon et al. (2015), qui supposent que la vitesse du vent dirigeant
la poche est proportionnelle & celle du vent environnemental, mesurée a ’altitude
d’origine du flux descendant qui ’alimente, avec un coefficient de proportionnalité
estimé & 0.65. Le fait que le vent moyen dans la poche soit plus faible que le vent &

grande échelle suggére ainsi que la poche se déplace & une vitesse inférieure a celle
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N N~ g o N1 o0 o O

FIGURE 5.2 — Module du vent (m.s™!) & 10 m liss¢, sur une grille de 2.5 km x 2.5
km, & un instant de la LES océanique en RCE réalisée avec le modele SAM. Les
contours noirs représentent les anomalies de température & 10 m égales a 0.2 K,
utilisées pour identifier les poches froides.
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FIGURE 5.3 — Module du module du vent (m.s™') & 10 m, lissé sur une grille de
2.5 km x 2.5 km, a l'instant 18h de la LES continentale AMMA réalisée avec le
modeéle MesoNH. Les contours noirs représentent les anomalies de température a 10
m égales a —1 K, utilisées pour identifier les poches froides.
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du vent environnemental.

Pour construire un modéle mathématique de cette distribution du vent, nous sup-
posons que la poche est circulaire et que le vent responsable de son étalement est
radial, avec une divergence horizontale uniforme. Il en résulte un vent radial crois-
sant linéairement, atteignant sa vitesse maximale (C,) aux bords de la poche. A ce
vent divergent vient s’ajouter une fluctuation de petite échelle, supposé de moyenne
nulle et de distribution normale. La variance de la distribution associée a ces fluc-
tuations turbulentes est différente et les analyses réalisées lors de la construction
du modéle statistique montrent qu’elle est plus élevée dans le front de rafale que
dans le reste de la poche (Fig. 5.1). On note respectivement les écarts-types asso-
ciés o1 et 0y. Le vent total dans la poche est donc la somme du vent moyen dans

la poche, d’un vent radial et de deux perturbations gaussiennes de variances o7 et 3.

Selon la direction du front de rafales, le modéle divise la poche en deux zones dis-
tinctes, séparées par une ligne droite représentant les zones de vent fort (1) et de
vent faible (2). Pour fixer les idées, on va supposer un vent dominant d’Est, le long
de u, comme dans le cas RCE. Cela suppose un vent moyen nul dans les poches
(Twr = 0) dans la direction perpendiculaire & u, comme dans la section précédente.
Dans la direction perpendiculaire, la poche est également scindée en deux parties
égales, chaque partie incluant une section des zones (1) et (2), ce qui segmente la
poche en quatre sous-parties. La figure 5.4 illustre ce modéle de vent : la poche
est subdivisée en deux zones principales (1) et (2) en fonction de la direction u du
front de rafales, puis en deux moitiés égales (nord (n) et sud (s)), chacune de ces
moitiés étant ensuite divisée en deux sous-parties (ny, ns, s1 et s9) dans la direction
perpendiculaire & u. Dans la direction du front de rafales, la distribution du vent
est calculée comme la somme de deux distributions gaussiennes, chacune associée
& une zone spécifique. La moyenne de chaque distribution gaussienne correspond a
la somme du vent moyen () dans la poche et du vent radial moyen (w,) calculé
dans la zone considérée. On retrouve, comme précédemment, une distribution de u
calculée comme la somme pondérée de deux distributions gaussiennes G(uy;07) et
G(ug; 09).

uy et Uy sont calculées par les relations suivantes :

a1 = ﬂ’wk + ﬂTl

(5.2.5)

Uy = Uk + Up,
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C‘#

FIGURE 5.4 — Schéma conceptuel du modéle de distribution du vent & 10 m a
I'intérieur des poches, distinguant le front de rafales (zone 1) et le reste de la poche
(zone 2), séparés par une ligne droite (en rouge). C, (m.s™') représente la vitesse
du vent radial, qui prend naissance au centre de la poche et est responsable de son
étalement, au niveau des bords on elle atteint son maximum. § (rad) correspond a
I’angle formé entre le centre de la poche et le point d’intersection du cercle avec le
segment matérialisant le front de rafales.
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ou u,, et u,, représentent les vents radiaux moyens calculés respectivement dans
les zones 1 et 2 selon la direction du vent zonal (u). Avec un peu de calculs tri-
gonométriques, on peut montrer que ces vent radiaux moyens sont donnés par les

expressions suivantes, proportionnelles a C,.

- 4sin 3(B)
Ury = _3(27r—2ﬁ+sin(26))0*
(5.2.6)
—  _ 4sin¥(p)
Ur, = 355—sm(25)) C*

ou 3 est 'angle reliant le centre de la poche & l'intersection entre le cercle et le

segment déterminant le front de rafales.

A noter que u; et Uy de ce modéle sont formellement identiques & ceux définis dans
I’équation 5.2.1 du modéle statistique, a savoir la somme du vent moyen dans la
poche et d’un terme supplémentaire. La différence réside toutefois dans le fait que,

ici, ce terme est physique, ce que n’était pas le cas dans le modéle statistique.

La PDF (P(uy0m)) de la distribution du vent a 10 m a l'intérieur des poches dans

la direction u est donnée par la relation suivante :
P(U10m> = OéG(ﬂl; 0'1) + (1 — a)G(ﬂz; 0'2) (527)

ou «, comme dans le modéle statistique, est la fraction surfacique couverte par la

zone (1). Sa valeur est donnée en fonction de 5 par la relation suivante.

o 23 —sin(2p)

o (5.2.8)

Dans la direction perpendiculaire a u, la distribution du vent & 10 m résulte dans
ce modele de la somme de quatre distributions gaussiennes. La moyenne de chaque
distributions est directement donnée par le vent radial moyen calculé dans la sous-
partie considérée, puisque le vent moyen dans la poche est supposé nul dans dans
la direction v. Les vents radiaux moyens, calculés dans ces quatre sous-parties, sont

également proportionnels & C', et sont définis par les relations suivantes.
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(

Tpny, = z(ligisfg)g)ii?&gés)gﬁ))o*
T = USROG,
(5.2.9)
Ursy = —Upmy
| Urss = —Urny

La densité de probabilité (P(vigy,)) de la distribution du vent & 10 m & 'intérieur

des poches dans la direction v est donnée par la relation suivante :

P(v10m) = 0.5[aG (T, ;01)+(1—=a)G(Tpny; 02)]+0.5[aG (Tys,; 01)+ (1 — ) G(Ursy; 02)]
(5.2.10)

Le modéle ainsi défini dépend de cinq parameétres libres : U, Cy, 01, 09 et (.

Ce modéle présente plusieurs avancées par rapport au modéle statistique. Les diffé-
rents parameétres sont reliés a des caractéristiques physique de la poche et certains
parameétres peuvent étre fournis par le modéle de poche, et en particulier la vitesse
d’étalement C,. De plus, on observe que ce modéle repose désormais principalement

sur des bases physiques.

Nous ajustons maintenant les parameétres du modéle en fonction des distributions
des vents uyg,, et vig, calculés dans la LES SAM. Plus précisément, nous ajustons

les paramétres C, et 3 en utilisant le test du y?, défini par la relation suivante.

LES — MODELE)?
i = 2. VODELE ) (5.2.11)

Afin de vérifier la pertinence du modéle, nous testons plusieurs valeurs de 3 et C.,
pour déterminer celles qui permettent au modéle de mieux correspondre a la LES.
Dans ces tests, u, est fixé a la valeur calculée dans la LES. Quant aux paramétres
o1 et 09, nous avons retenu les valeurs obtenues dans la section 5.2.1.

Les résultats du test de x? permettent d’identifier les valeurs de C, et 3 (situées dans
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FIGURE 5.5 — Détermination des valeurs optimales de C, (m.s™!) et 8 (rad), ga-
rantissant les meilleures distributions des composantes du vent g, (a) et vig, (b)
dans le modéle, en comparaison avec la LES SAM, selon le critére du test de 2.
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FIGURE 5.6 — Comparaison des distributions des composantes zonale (ujg,, a
gauche) et méridionales (viom), & droite) du vent a 10 m calculées dans la LES
SAM et celles fournies par le modeéle (en vert) de distribution du vent a 10 m dans
les poches.

la région bleu foncé de la Figure 5.5) correspondant aux meilleures performances du
test, conduisent aux distributions de uyg,, et vig,, les plus proches des LES. En sé-
lectionnant C, = 1.2 m/s et § = 1.8 rad (équivalent d’une fraction du front de rafale
a = 0.35) dans cette bande, nous obtenons des distributions de wujg,, €t vig, qui
reproduisent bien celles des LES (Fig. 5.6). Ces résultats sont en accord avec ceux
du modéele statistique, ot les zones de vents forts étaient également associées & une

fraction surfacique plus faible, estimée a 35%.

Deux limitations persistent cependant. La premiére est que oy, 09 et u, ne sont
toujours pas couplés au modéle de poches. On fait des propositions sur ce point dans
les sections suivantes. La seconde limitation est plus fondamentale : le modéle ne
fournit pas la PDF du module du vent. En effet, le modéle proposé ne fournit que

les distributions de uqg,, €t v1g,,. Nous avons tenté d’en déduire la distribution du
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module du vent & 10 m, mais cela a conduit a des calculs extrémement complexes,
laissant entrevoir également un cotit numérique important. Face a la difficulté d’ob-
tenir une expression analytique de la PDF du module du vent & 10 m, nous avons
envisagé d’utiliser les techniques de Monte-Carlo. Avec cette méthode, on peut tirer
aléatoirement des valeurs de wuqg,, et v1gm, puis calculer leur module pour en déduire
sa distribution. Finalement, la simplicité de cette méthode nous a amené a travailler
sur une autre version du modeéle, ou il n’est plus nécessaire d’avoir les expressions

analytique des distributions du vent w;q,, €t v, et du module.

La méthode de Monte Carlo est en effet largement reconnue pour sa capacité a four-
nir des solutions approchées a certains problémes déterministes a partir d’un grand
nombre de simulations. Si les domaines d’application peuvent varier, son principe
reste le méme : effectuer un grand nombre de simulations basées sur des tirages aléa-
toires afin d’obtenir une approximation numérique de calculs trop complexes pour
étre résolus analytiquement. Cette méthode statistique converge vers la solution
exacte quand on augmente le nombre de tirage. Cette approche est utilisée dans de
nombreux champs scientifiques (biologie, physique, finance, mathématique) ou les
méthodes classiques se confrontent & des limites. Comme déja évoqué, on adapte
cette technique afin de contourner la complexité de certains calculs mathématiques,
bien qu’il s’agit d’'une premiére tentative d’intégration de cette approche dans un

modéle climatique.

5.2.3 Troisiéme modéle : introduction d’une approche Monte-
Carlo

Ce modéle reprend la physique du modéle précédent, ot la poche est supposée
circulaire et ou le vent total est défini par la somme d’un vent moyen (W €t Tyy)
dans la poche, d'un vent radial (u,, v.), et de deux perturbations gaussiennes de
moyennes nulles et de variances respectives 0% et o5 selon qu’on est dans la zone du
front de rafales (1) ou dans le reste de la poche (2). Cependant, une modification
a été apportée a 'identification des zones (1) et (2). Dans cette version, le front de
rafales et le reste de la poche ne sont plus séparés par une droite, mais par des iso-
modules du vent non perturbé en forme d’arcs de cercle. Cette approche est plutot
plus cohérente avec les LES comme on peut le voir dans les figures 5.2 et 5.3. Elle
permet entre autre d’avoir un front de rafale circulaire autour du centre de la poche
en cas de vent moyen nul. Avec ce choix, les zones (1) et (2) sont désormais définies

en fonction d’un seuil du module du vent (w;) non perturbé, qui correspond a la
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somme du vent radial et du vent moyen, sans inclure les fluctuations gaussiennes.
La figure 5.7 représente un schéma conceptuel de cette nouvelle version du modéele

de distribution du vent & 10 m a l'intérieur d’une poche froide.

Comme mentionné plus haut, nous utilisons la méthode de Monte-Carlo pour obtenir
les distributions approchées de w19, v10m €t du module du vent a 10 m a l'intérieur
des poches sans avoir a dériver les formulations. Ce calcul s’effectue en plusieurs
étapes, détaillées ci-dessous :

Calcul du vent non perturbé : la premiére étape consiste a sélectionner un point
m(x,y) de fagon uniforme dans la poche. Pour cela, on effectue un tirage aléatoire
uniforme en R? (plutot que sur R directement), afin d’obtenir une distribution uni-
forme sur la surface du disque. On tire également un angle # uniformément entre
0 et 27w, pour éviter de privilégier aucune direction. A chaque réalisation, on tire
donc uniformément deux nombres aléatoires n; et m;, entre 0 et 1. Ces tirages sont
déterminés par les relations suivantes..

r? =n;R?

. =

(5.2.12)

91- = m1‘271'

Pour chaque tirage, les coordonnées cartésiennes du point m(x,y) dans la poche sont
alors données par :
T = +/T2c05(0;)
(5.2.13)

Ym = \/175i0(6;)

On calcule ensuite le vent total non perturbé au point m(x,y) tiré, donné par la
somme du vent moyen dans la poche (T, Uwr) €t d'un vent radial (xm%, ym%),

sachant que 7, est supposé nul :

’
— 77 C
Um,z = Uwk + Ty, R*

Uy = Y (5.2.14)

— /a2 2
\U}m - um,z + Um,r
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FIGURE 5.7 — Schéma conceptuel du modéle de distribution du vent & 10 m a
I'intérieur d’une poche froide, illustrant le front de rafales (zone 1) et le reste de la
poche (zone 2), séparés par un iso-module de vent en arc de cercle (en rouge). C,
(m.s™!) représente la vitesse du vent radial (Ur), qui prend naissance au centre de
la poche et est responsable de son étalement, au niveau des bords ou elle atteint son
maximum. R (m) représente le rayon de la poche. oy et o9 représentent I’écart-type
de la variance du vent sur les régions (1) et (2), respectivement. 6 (rad) représente
I’angle formé entre le centre de la poche et le rayon R.
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. Calcul du vent turbulent : nous déterminons ensuite le vent turbulent au point
m(x, y) sélectionné. Pour cela, nous commengons par identifier si ce point appartient
a la région des fronts de rafales (1) ou au reste de la poche (2), vu que la variance
du vent est différente dans ces deux régions. Cette distinction est faite en comparant
le module (w,,) du vent non perturbé calculé en m(x,y) avec le seuil w;. Si w,, >
ws, alors le point se situe dans la zone (1); dans le cas contraire (w,, < ws ), il
appartient a la zone (2).

On effectue alors un second tirage pour calculer le vent turbulent gaussien (b,
Vturby) Selon les axes x et y. Ce calcul repose sur la transformation de Box-Muller,
qui permet de produire des variables aléatoires suivant une distribution normale
centrée réduite (moyenne 0, variance 1) a partir de variables aléatoires uniformes.
La méthode utilise deux variables indépendantes (U et Us), uniformément distri-
buées entre 0 et 1, pour obtenir deux nouvelles variables indépendantes (Z, et Z,)
suivant toutes les deux une loi normale centrée réduite (Z,, Z, N (0,1)), selon

les relations suivantes.

Zy =+/—2InU, cos (2rUs)
(5.2.15)

Zy, =+/—2InU sin (27Us)

Le vent turbulent (wyby, Vwurby) au point m(x,y), selon qu’on est dans les régions
(1) ou (2), est défini par :
Utyrbe = JRZx

(5.2.16)
Vturby = URZy
ouR =1ou?2
Calcul du vent total : enfin, nous additionnons les composantes du vent (. et

Um,y) dans la poche avec les composantes du vent turbulent (wyrpe €t Vtyrpy) pour

obtenir le vent total au point m(x,y) sur chaque axe, puis nous calculons le module
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du vent total en ce point.

p
Umt,z = Um,z + Uturbe

Umt,y = Um,y + Vturby (5217)

\wmt = \/(umt,x)Q + (Umt,y)2

Le modéle ainsi défini dépend de six paramétres qui sont : U, Cy, ws, 01, 02 €t R

Des tests intermédiaires ont montré que le modéle reproduit bien les distributions de
U10m, V1iom €t du module du vent & 10 m par rapport aux LES, lorsque I'on impose
o1, 0o (calculées dans la section 5.1), ainsi que Uy, C. (estimés a partir des LES)
et une valeur donnée de w, et R. Ces résultats représentent une avancée majeure,
car le modeéle parvient désormais a donner les distributions de w1¢,,, V10, €t aussi du
module du vent & 10 m dans les poches. Le paramétre C, correspondra a la vitesse
d’étalement de la poche, calculée par le modeéle des poches froides. R sera fixé a une
valeur, car nos tests ont montré que sa variation n’affecte pas les distributions du

vent. Il reste maintenant a déterminer wy, o1, 09 €t Uyy.

5.2.4 Le modéle retenu

Une derniére sophistication est proposée pour le modéle décrit ci-dessus, rendue
praticable facilement pour I'approche Monté-Carlo qui permet d’éviter d’avoir &
dériver les distributions analytiquement. Plutot que de spécifier deux écarts-types
différents, oy et o9, I'un dans le fronts de rafales et 'autre dans le reste de la poche,
nous supposons ici que la variance du vent dépend du module (w,,) du vent non
perturbé calculé dans la poche au point m(x,y). Cette dépendance est décrite de
fagon assez classique par :

0 = Kk Wi, (5.2.18)

Ce choix s’inspire des travaux de Panofsky et al. (1977), qui ont établi une relation
entre o et la vitesse de friction (u*) dans des conditions de stabilité neutre, selon la
formule suivante :

o = 2.69u" (5.2.19)
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En appliquant la loi du profil logarithmique du vent sous conditions de stabilité

neutre, u* peut étre exprimé en fonction du module de la vitesse du vent w :

ut = w (5.2.20)

ou k=04

La combinaison des équations 5.2.19 et 5.2.20 donne alors une expression de o en

fonction de w sous la forme o = k,w, ce qui correspond a I’équation 5.2.18, ou k, =
2.29k

K= n(2)"
Ce coefficient dépend donc de la rugosité de surface, ce qui implique qu’il peut

varier selon le type de sol ou de couverture de la zone considérée.

Avec ce calcul, la variance du vent varie en chaque point de la poche, alors que
dans le modéle précédent, elle était considérée comme uniforme au sein des zones
(1) et (2). Cette approche reste cohérente avec I'image physique selon laquelle la va-
riance du vent est plus élevée dans le front de rafales que dans le reste de la poche,
puisque le vent non perturbé augmente avec le rayon de la poche en direction du
front de rafales. Nous précisons également qu’avec cette version du modéle, il n’est
plus nécessaire de comparer w,, au seuil de vent w, pour déterminer si I’on se trouve
en zone (1) ou en zone (2). Désormais, les vents turbulents sont directement donnés

par les relations suivantes, valables aussi bien pour la zone (1) que pour la zone (2).

Uturbe = UZ:):

(5.2.21)

Vturby = OZy

ou Z, et Z, sont deux variables indépendantes suivant toutes les deux une loi nor-

male centrée réduite N'(0, 1), comme détaillé a la section 5.2.3
Le calcul des distributions de w19, V10, €t du module du vent & 10 m a l'intérieur

des poches, pour chaque tirage Monte-Carlo au point m(x, y) dans cette derniére

version du modéle, est résumé ci-dessous.
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1. calcul du vent non perturbé dans la poche
On tire uniformément un point m(x,y) dans la poche (la procédure de tirage
uniforme étant décrite dans la section précédente), puis on y calcule le vent
comme la somme du vent moyen dans la poche et d'un vent radial, selon les

expressions suivantes :

( — C
Um,z = Uwk + sz

Vmy = Y S (5.2.22)
\wm - u%n,x + /UTQR T

2. calcul de la variance du vent

0 = ktwkWm (5.2.23)

oll Kupr est un réel

3. calcul du vent turbulent

On tire une réalisation de wsypz €6 Viurpy €n suivant une loi normale.

Uturbe = UZaz

(5.2.24)

Vturby = UZy

.ou Zx et Z, sont deux variables aléatoire indépendantes, suivant chacune

une loi normale N(0,1)

4. calcul du vent total dans la poche

Le vent total au point m(x,y) est obtenu en additionnant le vent non perturbé

105



Chapitre 5. Paramétrisation des rafales de vents générées
par les poches froides

au vent turbulent.

(
Umt,z = Um,z + Upurbe

Umty = Um,y + Vturby (5225)

\wmt = \/(umt,x)2 + (Umt,y)2

Cette derniére version du modéle repose sur trois parameétres : ., Cy et le coeffi-

cient k.

Le vent moyen dans les poches (T et Tyy), différent du vent moyen & 1’échelle
de la maille comme mentionné précédemment, nécessite une paramétrisation. Nous
avons cherché a établir cette paramétrisation a partir des analyses des LES. Dans
ces analyses, nous remarquons que le vent dans les poches est influencé par le vent
a grande échelle présent dans les couches situées au-dessus du sommet des poches
(non illustré ici), ce qui est cohérent avec I’approche de Pantillon et al. (2015). Nous
estimons cependant qu’une analyse plus approfondie serait nécessaire pour mieux
comprendre 'influence de ces vents supérieurs sur ceux a I'intérieur de la poche. Ce
travail est donc reporté aux perspectives.

Cette derniére version du modéle, présentée ci-dessus, est finalement celle retenue
pour intégrer les rafales associées aux poches dans LMDZ. Dans le GCM, les valeurs
de W,k et Uy, correspondront, a ce stade, au vent moyen du GCM sur la premiére
couche du modéle (U = ug, ; Ty = Uk, ). Nous vérifierons cependant la pertinence
de ce choix dans les sections suivantes, avant de 'appliquer dans le GCM. Le para-
métre C, sera directement fourni par le modéle de poches froides, tandis que Ky

restera un paramétre libre.
La prochaine étape consiste a identifier les valeurs optimales de ky,, permettant

au modele de vent dans les poches de bien reproduire les distributions de u19m, Viom

et du module de vent & 10 m par rapport aux LES.
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5.3 Tuning

5.3.1 Tuning du modéle de vent dans les poches

Dans cette section, nous utilisons ’outil de calibration automatique htexplo pour
ajuster les paramétres du modeéle de distribution du vent a 10 m a l'intérieur des
poches froides. Cet outil est généralement utilisé pour ajuster les parameétres libres
des paramétrisations déja intégrées dans le GCM, aussi bien en mode 1D (Couvreux
et al., 2021) qu’en mode 3D (Hourdin et al., 2021). Cet ajustement repose sur la
comparaison décrite plus haut et utilisée au chapitre précédent pour calibrer le mo-

deéle de poches.

Ici, 'ajustement est réalisé avant I'implémentation du modéle de vent dans le GCM.
Il s’agit d’ajuster les relations utilisées dans la paramétrisation directement sur la
LES. Nous précisons que, méme si 'utilisation du vent moyen dans la maille est
prévue dans le GCM, les relations de la paramétrisation considérent bien le vent
moyen dans les poches. Pour ce tuning, nous travaillons donc avec ,,; et U, plutot
qu’avec les valeurs moyennes du vent dans la maille (T, et Ty;), afin de valider
d’abord notre modele. Au lieu de fixer %, et U, & leurs valeurs issues des LES,
nous pouvons cependant les inclure parmi les paramétres a calibrer. Cela permet, en
parallele, d’évaluer la pertinence du choix d’utiliser le vent & grande échelle dans le
GCM, en vérifiant si les intervalles de valeurs de ;. et T, acceptables recouvrent
les valeurs de uy, et Uy;. C. est, pour sa part, imposée a sa valeur calculée dans la
LES.

Dans la LES, les distributions du vent & 10 m dans les poches sont obtenues en
moyennant les résultats sur 24 instants pour le cas RCE. Pour le cas AMMA, elles
sont calculées a I'instant de 18 h, lorsque les poches sont bien développées et que le
front de rafales est plus marqué. Nous calibrons indépendamment sur ces deux cas,

car Uy et Uy dépendent du cas considéré.

Nous avons choisi des métriques basées sur la fraction de la surface de la poche
ou le vent dépasse un certain seuil de vitesse, afin de mettre ’accent sur la bonne
représentation des vents forts, essentielle pour le soulévement de poussiéres. Pour le
cas RCE, les seuils fixés sont de 3, 5, 7, 9, 10, 11 et 12 m/s. Dans le cas AMMA, ou
les vents sont plus forts, nous avons retenu les seuils de 3, 5, 7,9, 11, 13, 14 et 15 m/s.
Nous avons également inclus la moyenne et la variance des distributions des w1qy,
et v, dans les métriques. La tolérance & l'erreur fixée est de 0.01 pour toutes les

métriques. Pour le paramétre k., nous avons défini une plage de valeurs comprise
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entre 0 et 1, aussi bien pour RCE que pour AMMA. Concernant les paramétres .,
et Ty, : pour RCE, les plages de valeurs sont fixées a [-6, 1] m/s pour Ty et [-3, 3|
m/s pour U,y. Pour AMMA, nous avons fixé une plage de [-2, 2] m/s pour ces deux
paramétres. Enfin, C, a été imposé a la valeur estimée dans les LES : 2.2 m/s pour

RCE et 5 m/s pour AMMA.

Les Figures 5.8 et 5.9 présentent les résultats de 'ajustement des parameétres kg,
Uk €t Uyp, obtenus & partir des neuf métriques définies pour le cas RCE. Elles
montrent une seule des métriques : s7 correspondant a la fraction de la surface de la
poche ot le vent dépasse 7 m/s. On observe une évolution entre la vague 1 (Fig. 5.8),
ou les valeurs des paramétres choisis sont réparties sur ’ensemble de leur intervalle
initial, et la vague 5 (Fig. 5.8), ou elles se concentrent sur un espace plus restreint.
Pour le coefficient ki, les valeurs sont contraintes entre 0.3 et 0.7 & la vague 5,
suggérant que l'optimum se situe dans cet intervalle. De méme, ., est contraint
entre -3.5 et -2.5 m/s. Par contre, T,y ne figure plus parmi les parameétres retenus a
la vague 5, parce qu’on a déja réduit I'intervalle aux vagues précédentes. Nous avons
pratiquement les mémes résultats avec les autres métriques.

Les figures 5.10a, b et ¢ montrent que, avec les plages de valeurs des paramétres
fournies par la vague 5, le modéle reproduit bien les distributions du module du

vent & 10 m, de uyg,, et vig,, par rapport aux LES dans le cas RCE, respectivement.

Le tuning sur le cas AMMA, basé sur les onze métriques définies plus haut, dont
89, correspondant a la fraction de surface de la poche ou le vent dépassant 9 m/s
(Fig. 5.11 et Fig. 5.12), atteint la convergence numérique un peu plus tét que dans
le cas RCE. Pour le cas AMMA, cette convergence est obtenue deés la vague 3. Le
passage de la vague 1 a la vague 3 indique que les valeurs optimales de k;,. se si-
tuent entre 0.8 et 0.9 (Fig. 5.11 et Fig. 5.12). Pour Uy et Uy, les valeurs optimales
sont estimées respectivement dans les intervalles [0.5,1] m/s ((Fig. 5.12) et [-1, 0.5]
m/s (Fig. 5.12). Les tendances observées pour les autres métriques sont globalement
similaires.

On observe que, avec les plages de valeurs fournies par la vague 3 pour les parameétres
Ktwks Wwk €6 Uy, le modele parvient a bien reproduire la queue de la distribution du
module du vent, correspondant aux vents forts (Fig. 5.13a). Par contre, il ne repré-
sente pas bien les vents faibles (Fig. 5.13a). Les figures 5.13b et ¢ révelent également
que les distributions de uqq,, et v10,, ne sont pas aussi bien reproduites par le modéle.
Ces limitations pourraient s’expliquer par I'absence de statistiques représentatives
sur le cas AMMA. A linstant choisi (18 h) dans la LES, seules trois poches sont
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FIGURE 5.8 — Métrique s7 (fraction de surface de la poche froide ou le vent dépasse
7 m/s) en fonction des parameétres %,y (ubar), T, (vbar) et le coefficient ki, (coef)
du modéle de distribution du vent dans les poches pour la vagues 1 du cas RCE.
Chaque sous-figure présente 90 simulations. Les lignes rouges pointillées indiquent
la valeur de la métrique issue de la LES (cible), tandis que les lignes rouges conti-
nues représentent l'intervalle de confiance (deux fois la tolérance). Les points noirs
indiquent les estimations de la cible donné par I’émulateur statistique (processus
gaussien), avec leurs barres d’erreur associées. Les points verts correspondent aux
simulations jugées satisfaisantes par rapport aux estimations de I’émulateur, tandis
que les points rouges correspondent aux simulations non satisfaisantes.
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FIGURE 5.9 — Comme Fig 5.8 mais pour la vague 5 du cas RCE
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FIGURE 5.10 — Comparaison des distributions du module du vent & 10 m (m.s™',

a) et des composantes o, (m.s7!, b) et vig, (m.s™', ¢) a Pintérieur des poches,
obtenues a partir de la LES (noire) et du modéle, avec la premiére (rouge) et la
cinquiéme (vert) vague du tuning pour le cas RCE. Chaque vague comprend 90
simulations. La LES correspond a une moyenne réalisée sur 24 instants.
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FIGURE 5.11 — Métrique s9 (fraction de surface de la poche froide ou le vent dépasse
9 m/s) en fonction des parameétres %,y (ubar), T, (vbar) et le coefficient ki, (coef)
du modéle de distribution du vent dans les poches pour la vagues 1 du cas RCE.
Chaque sous-figure présente 90 simulations. Les lignes rouges pointillées indiquent
la valeur de la métrique issue de la LES (cible), tandis que les lignes rouges conti-
nues représentent l'intervalle de confiance (deux fois la tolérance). Les points noirs
indiquent les estimations de la cible donné par I’émulateur statistique (processus
gaussien), avec leurs barres d’erreur associées. Les points verts correspondent aux
simulations jugées satisfaisantes par rapport aux estimations de I’émulateur, tandis
que les points rouges correspondent aux simulations non satisfaisantes.

présentes, ce qui n’offre pas une base statistique robuste.
La capacité du modele a bien représenter la queue de la distribution du module du
vent demeure un résultat notable, puisque, comme évoqué précédemment, ce sont

les vents forts qui jouent un role important dans le soulévement des poussiéres.

Dans les résultats du tuning pour le cas RCE, nous constatons que la plage optimale
de valeurs de Ty ([-3.5; -2.5]), qui permet une bonne représentation du vent dans
les poches par rapport aux LES, ne recouvre pas la valeur du vent moyen dans la
maille (ug, = -5 m.s™!). La variation de v, n’a pas d’effet notable sur les distribu-
tions du vent pour ce cas. Pour le cas AMMA, on observe également que la valeur

de g, (0.34 m.s™!) ne se situe pas dans la plage optimale de U, ([0.5; 1]). Sur la
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FIGURE 5.12 — Comme Fig 5.11 mais pour la vague 3 du cas AMMA
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FIGURE 5.13 — Comme Fig. 5.10 mais pour le cas AMMA, avec la LES correspondant
a l'instant 18h.
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composante v, la plage optimale [-1; 0.5] inclut la valeur moyenne obtenue (v, =
0.01 m.s™'). On présente plus loin une analyse des erreurs faites sur les distributions
en supposant que la poche se déplace a la vitesse du vent moyen dans la premiére

couche.

5.3.2 Tuning du modéle de vent combiné

Le modéle de distribution du vent sous-maille présenté ci-dessus ne fournit que
les distributions du vent a l'intérieur des poches. Or, dans le GCM, il faut fournir
une distribution du vent sur ’ensemble de la maille. Pour y parvenir, nous avons
combiné ce modéle avec un second modeéle de distribution du vent sous-maille, ap-
plicable en dehors des poches froides et destiné a représenter les rafales générées par
la turbulence de la petite échelle (comme dans la poche) et par les structures orga-
nisées de la couche limite convective : les thermiques. Comme discuté au chapitre 4,
les thermiques sont généralement présentes en dehors des poches froides.

Un travail a été réalisé par Adriana Sima, en paralléle de ce travail de thése, pour
représenter les rafales de vent pour les couches limites convectives. Dans ce modéle,
le vent est représenté comme la somme du vent moyen dans la maille et d’un vent
turbulent gaussien (que nous ne détaillerons pas ici). La variance (%) du vent tur-
bulent y est reliée a la vitesse de friction (u,) et & une vitesse de convection (w,)

selon la relation suivante :

o, = kunt? + kpnw? (5.3.1)

w, est, quant a elle, reliée avec 1'énergie (ALEy,) de soulévement due aux thermiques

selon ’équation suivante.
Wy = \/ 2ALE(,1 (532)

L’approche Monté Carlo permet a nouveau de combiner les deux modéles sans avoir
a dériver analytiquement la PDF. La combinaison des deux modéles de distribution
du vent s’effectue de la maniére suivante : un nombre aléatoire p; est tiré unifor-
mément entre 0 et 1. Ce nombre est ensuite comparé a la fraction de surface (o4,
fournie par le modeéle de poches froides) couverte par les poches froides. Si p; < oy,
le modéle de distribution du vent a l'intérieur des poches est appliqué. Dans le cas
contraire, c’est le modéle de distribution du vent en dehors des poches froides qui

est utilisé.
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Le modeéle combiné comporte trois parameétres libres : les coefficients ki, kin et
k.1, puisque u, et ALEy sont des variables du GCM. U, Ui correspondront aussi

au vent sur la premiére couche du GCM, comme expliqué plus haut.

Nous procédons ici & un tuning du modéle combiné afin d’optimiser les distribu-
tions de wu1gm, Viom €t du module du vent & 10 m dans le domaine données par le
modéle par rapport a celles calculées dans les LES. Pour cela, nous utilisons les
mémes métriques que précédemment : la fraction de surface de la maille ou le vent
dépasse un seuil de vitesse pour le module et la moyenne et la variance des distri-
butions de uiq,, et vig,. Concernant le choix des paramétres, nous avons pris ki,
Othy Uy €t Uyr. Le choix de oy, plutot que d’imposer directement u, et ALEy et
de calibrer ensuite sur kyy, et k., s’explique par le fait que nous ne disposions pas
des valeurs de u, dans la LES. Au lieu donc de fixer seulement ALFEy;, nous avons
choisi de calibrer directement o;;,. Une fois implémenté dans le GCM, nous pourrons
alors sélectionner des valeurs de kg, et k.;, permettant de rester dans la bonne plage
de valeur de oy, obtenue. L’inclusion de %, et v, dans les paramétres a ajuster
répond a la méme logique que précédemment : vérifier si, dans le modéle combiné,
leurs valeurs optimales coincident avec uy, et Uy, .

Dans le tuning, nous avons défini les plages de valeurs suivantes pour chacun des
parametres : kg, entre 0 et 3; Ty, entre -6 et 1 m/s; T, entre -2 et 2 m/s; oy, entre
1 et 6. Comme précédemment, ’ajustement des paramétres du modéle combiné est
réalisé indépendamment sur les cas RCE et AMMA. La valeur de o, issue des LES
est comparée ici au nombre aléatoire n; tiré dans [0,1], afin de vérifier si le point
m(x, y), obtenu par Monte Carlo, se trouve dans une poche froide ou non. o, vaut
0.22 pour la LES du cas RCE (comme présenté au chapitre 4) et 0.12 la LES du cas
AMMA utilisée dans ce chapitre.

Pour le cas RCE, avec la métrique s7, I’évolution entre la vague 1 et la vague 5
montre que les valeurs optimales de ky, se situent entre 0.3 et 0.6 (Fig 5.14 et Fig
5.15). Concernant ,y, les valeurs les plus adaptées sont comprises entre -4.5 et -2
m/s. Uy, est cependant faiblement contraint. Enfin, pour oy, les valeurs optimales

se situent aux alentours de 1.3 a 2.
Pour le cas AMMA | 'analyse avec la métrique s10 indique que les valeurs optimales

du coefficient ky, se situent entre 0.4 et 0.9 (Fig. 5.17 et Fig 5.18). Concernant w,,,

le tuning révéle que les valeurs les plus adaptées se situent entre -3 et 0 m/s, tandis
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FIGURE 5.14 — Métrique s7 (fraction de surface de la maille ot le vent dépasse 7 m/s)
en fonction des parameétres du coefficient k. (ktwk), @,y (ubwk) et oy, (sigma) du
modéle combiné pour la vague 1 du cas RCE. Chaque sous-figure présente 90 simula-
tions. Les lignes rouges pointillées indiquent la valeur de la métrique issue de la LES
(cible), tandis que les lignes rouges continues représentent 'intervalle de confiance
(deux fois la tolérance). Les points noirs indiquent les estimations de la cible donné
par ’émulateur statistique (processus gaussien), avec leurs barres d’erreur associées.
Les points verts correspondent aux simulations jugées satisfaisantes par rapport aux
estimations de ’émulateur, tandis que les points rouges correspondent aux simula-
tions non satisfaisantes.
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FIGURE 5.15 — Comme Fig 5.14 mais pour la vague 5 du cas RCE

que pour oy, elles varient entre 1.4 et 2. Comme dans le cas RCE, 7, est presque

sans influence sur les distributions.

Les résultats montrent que le modéle reproduit bien les distributions du vent a 10 m,
tant pour le module que pour les composantes g, et vigm, lorsque les parameétres
sont fixés dans la plage de valeurs déterminée par la vague 5 aussi bien pour AMMA
(Fig. 5.19) que pour RCE (Fig. 5.16). On observe également que, dans le cas AMMA,
les plages optimales de valeurs de Ty, ([0.5; 1]) et Ty ([-1; 0.5]) permettant de bien
reproduire la distribution du vent dans la maille incluent les valeurs de wy, et Uy,
qui valent respectivement 0.50 et 0.06 m.s~!. Dans le cas RCE, la valeur moyenne du
vent (-5 m.s™!) n’est pas incluse dans 'intervalle optimal de %,y : [-4.5; -2|, mais les
valeurs restent trés proches. Ces résultats suggérent ainsi qu’avec le modéle combiné,
'utilisation du vent moyen pourrait fournir des distributions de vent dans la maille
relativement proches de celles obtenues avec les LES. Cette hypothése est vérifiée

dans la section suivante.
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FIGURE 5.16 — Comparaison des distributions du module du vent & 10 m (m.s™,

a) et des composantes g, (m.s™', b) et vyg, (m.s™', ¢) dans la maille, obtenues
a partir de la LES (noire) et du modeéle combiné, avec la premiére (rouge) et la
cinquiéme (vert) vague du tuning pour le cas RCE. Chaque vague comprend 90
simulations. La LES correspond a une moyenne réalisée sur 24 instants.
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FIGURE 5.17 — Métrique s10 (fraction de surface de la maille o le vent dépasse
10 m/s) en fonction des paramétres du coefficient k. (ktwk), @, (ubwk) et oy,
(sigma) du modeéle combiné pour la vague 1 du cas AMMA. Chaque sous-figure
présente 90 simulations. Les lignes rouges pointillées indiquent la valeur de la mé-
trique issue de la LES (cible), tandis que les lignes rouges continues représentent
'intervalle de confiance (deux fois la tolérance). Les points noirs indiquent les esti-
mations de la cible donné par I’émulateur statistique (processus gaussien), avec leurs
barres d’erreur associées. Les points verts correspondent aux simulations jugées sa-
tisfaisantes par rapport aux estimations de I’émulateur, tandis que les points rouges
correspondent aux simulations non satisfaisantes.
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FIGURE 5.18 — Comme Fig 5.17 mais pour la vague 5 du cas AMMA
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FIGURE 5.19 — Comme Fig 5.16 mais pour le cas AMMA avec la LES correspondant
a l'instant de 18h.
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5.4 Vérification du choix d’utiliser le vent moyen de

la maille

Ici, on vérifie, dans la LES, la pertinence du modéle de vent a l'intérieur des
poches, ainsi que celle du modéle combiné, lorsque 'on considére la moyenne du
vent (Ty,, Tg,) dans la maille plutét que la moyenne du vent (W, Tyr) dans les

poches, comme prévue dans le GCM.

5.4.1 Vérification sur le modéle de vent dans les poches

Nous commencons cette vérification sur le modéle de vent dans les poches. Méme
si, dans le GCM, c’est le modeéle combiné qui sera utilisé, cette étape vise a ana-
lyser le comportement du modéle de vent dans les poches lorsque nous considérons
Uy, , Uy, . Pour cette analyse, deux simulations sont effectuées avec le modéle de vent
dans les poches : WIND K1 qui utilise u, et vy, calculés dans les LES ; WIND WK
utilisant W,y et Uy calculés dans les LES. Dans le cas RCE : Wy, = -5 m.s™!, vy, =
0 m.s™, Uy = -3.5 m.s™! et Ty = 0 m.s™. Dans le cas AMMA : %, = 0.50 m.s™!,
U, = 0.06 m.s™%, Uy, = 0.34 m.s™t et Ty, = 0.01 m.s™!. Dans les deux simulations,
le parameétre ki, est fixé & une valeur dans l'intervalle optimal issu du tuning pour
les cas RCE [0.3; 0.7] et AMMA [0.8; 0.9], soit 0.5 pour RCE et 0.8 pour AMMA.
Pour le parameétre C,, les valeurs estimées & partir des LES sont imposées pour les

deux cas (voir section 5.3.1).

La Fig. 5.20a, b et ¢ montrent que, pour le cas RCE, I'utilisation de @y, et vy,
ne permet pas bien reproduire les distributions de vent & l'intérieur des poches,
conformément a ce que suggéraient les résultats du tuning. En revanche, les simula-
tions utilisant %, donnent de bonnes distributions de vent dans les poches pour ce
cas RCE, avec k. = 0.5, cohérent avec les résultats du tuning. Pour le cas AMMA,
on constate que le fait de considérer le vent moyen dans la maille plutét que @, et
Twk ne change quasiment rien (Fig. 5.20d,e,f). Cela s’explique par la faible différence
entre le vent moyen dans les poches et celui dans la maille pour ce cas. Dans les deux
simulations, sur ce cas AMMA, le modéle ne parvient & reproduire que la queue de
la distribution du module du vent issu des LES, pour les raisons déja évoquées plus
haut. Comme déja mentionné aussi, ce cas de convection profonde AMMA est trés

localisé et sporadique.
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FIGURE 5.20 — Distributions du vent & 10 m (m.s™!) issues des LES et obtenues
avec le modéle de vent dans les poches (WIND K1 et WIND WK) pour les cas RCE
(panneaux supérieurs) et AMMA (panneaux inférieurs) : (a) module du vent a 10
m, (b) composante ug,, et (¢) composante vyg,,. Dans WIND K1, %, et Ty sont
fixés a la valeur moyenne du vent dans la maille calculée dans les LES. Pour le cas
RCE : Uy = -3.5 m.s ! et U, = 0 m.s~!. Pour le cas AMMA : T, = 0.34 m.s~! et
Twie = 0.01 m.s~!. Dans WIND WK, ils sont fixés a la valeur moyenne du vent dans
les poches calculée dans les LES (W = Tk, ; Uk = Uk, ). Pour le cas RCE : @y, = -5
m.s~! et T, = 0 m.s™L. Pour le cas AMMA : g, = 0.5 m.s™! et 7, = 0.06 m.s™1.
Dans WIND K1 et WIND WK, C, est fixée a la valeur calculée dans les LES. Elle
vaut 2.2 m.s~! pour le cas RCE et 5 m.s™! pour le cas AMMA. kyp,, est fixé a 0.5
pour le cas RCE et 0.8 pour le cas AMMA.
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5.4.2 Veérification sur le modéle de vent combiné

Les vérifications sont effectuées de la méme maniére que la section précédente,
mais cette fois appliquées au modéle combiné. Le paramétre kg, est fixé & la méme
valeur que pour les cas RCE et AMMA (ki = 0.5). Cette valeur se situe dans les
intervalles optimaux déterminés lors du tuning du modéle combiné par rapport aux
LES : [0.3; 0.6] pour le cas RCE et [0.4; 0.9] pour AMMA. Le choix d’une valeur
unique de k. est important ici, car le modéle combiné est celui qui sera utilisé
dans le GCM. Dans ce cadre, une seule valeur de ky,; doit étre appliqué sur I'océan
et sur le continent. Nous avons pu obtenue une valeur adaptée a ces deux régions.
Le paramétre oy, spécifique au modéle combiné, est quant & lui fixé a 1.8 pour les
cas AMMA et RCE, étant donné que les intervalles optimaux issus du tuning sont
respectivement [1.3; 2] pour RCE et [1.4; 2] pour AMMA.

Les analyses montrent qu’avec le modéle combiné, malgré les décalages encore pré-
sents dans le cas RCE entre les distributions de vent de WIND K1 et celles des LES
(Fig. 5.21a,b,c), l'utilisation du vent moyen dans la maille reste acceptable. Pour
le cas AMMA, WINK K1 reproduit des distributions relativement proches de celles
observées dans les LES (Fig. 5.21d,e,f).

En attendant de paramétrer le vent moyen dans les poches, c’est ce modéle qui
sera utilisé. L'intégration dans LMDZ est réalisée dans la section suivante et testée

d’abord en configuration 1D, avant de passer aux simulations de poussiéres.

5.5 Test et validation dans la version uni-colonne de
LMDZ

Jusque 14, I’évaluation par rapport a la LES du modéle de distribution du vent a
10 m dans les poches, ainsi que de sa version combinée avec la distribution du vent
sous maille & I'extérieur des poches, est réalisée en dehors du GCM. Dans cette sec-
tion, nous avons intégré ce modéle au sein du GCM et réalisé des tests sur la version
1D de LMDZ afin de le valider dans les cas RCE et AMMA, avant d’entamer les si-
mulations de poussiéres. L’utilisation du 1D est particulierement efficace pour tester
et valider de nouvelles paramétrisations physiques, grace a son faible cotit de calcul
qui permet d’effectuer de nombreux tests, comme déja expliqué au chapitre 3. Les
comparaisons sont ici plus exigeantes, car plusieurs paramétrisations interagissent

et influencent les résultats. Nous procédons a la validation aussi bien du modéle de
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FIGURE 5.21 — Comme la Fig. 5.20, mais appliquée au modéle combiné, avec ki
fixé ici a 0.5 pour les cas RCE et AMMA. Le paramétre oy, spécifique au modéle
combiné, est fixé a 1.8 pour les deux cas.
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distribution du vent dans les poches que de sa version combinée, bien que l'objectif
final soit d’utiliser cette derniére. Cela permet de vérifier, a part, la pertinence du

modéle de distribution du vent dans les poches une fois intégré au GCM.

5.5.1 Validation du modéle de vent dans les poches

Nous effectuons une simulation avec LMDZ1D pour les cas AMMA et RCE, en

appliquant le modéle de distribution du vent dans les poches a I’ensemble de la
maille. Pour ce faire, au lieu d’utiliser la valeur de o, issue du GCM, nous fixons
Owk & 1 (0ur = 1). La valeur p;, tirée aléatoirement entre 0 et 1, reste donc toujours
inférieure & o,, ce qui permet d’utiliser exclusivement le modéle de vent dans les
poches. Ce principe, consistant a choisir entre le modele de vent dans les poches ou
celui a I'extérieur en comparant p; et o, est déja décrit dans la section 5.3.2. Dans
ces simulations LMDZ1D, C, est directement fournis par le le modéle des poches
froides. Wy et Uy, correspondent au vent moyen sur la premiére couche du GCM.
Pour le coefficient k., nous avons imposé les valeurs valeurs 0.5 pour RCE et 0.8
pour AMMA. Comme mentionné dans la section 5.4.1, nous utilisons ici deux valeurs
distinctes k. puisqu’il s’agit de simplement test de vérification. C’est plutét dans
le modéle combiné, qui sera utilisé par le GCM, ou il faudrait fixé une seule valeur
de kg, pour tous les cas.
La comparaison entre LMDZ et LES dans le cas RCE repose sur 'analyse de la
moyenne des instants apres 1’équilibre, c’est-a-dire entre les jours 41 et 43 de simula-
tion. Pour le cas AMMA la comparaison est effectuée sur une moyenne des instants
entre 17h et 18h.

Les distributions du module du vent & 10 m dans les poches simulées par LMDZ
présentent des écarts assez important par rapport aux LES, aussi bien pour le cas
RCE (Fig 5.22a) que pour le cas AMMA (Fig 5.22b), ce qui cohérent avec la Figure
5.20. Ces écarts seraient liés a 'utilisation du vent a grande échelle, ce qui, comme
déja signalé a la section 5.4.1, ne permet pas une représentation optimale du vent
dans les poches. L'implémentation d’une paramétrisation du vent moyen dans les
poches pourrait corriger ces biais.

Dans le cas AMMA, fixer le coefficient k (qui relie la vitesse d’étalement des poches
C, a leur énergie d’affaissement WAPE) a 0.66 améliore significativement la repré-
sentation des vents forts dans le modeéle. Ce résultat confirme une nouvelle fois les
conclusions du chapitre 4, ot nous suggérions d’adopter une valeur de 0.66 plutot
que 0.33. Nous constatons aussi que 'augmentation de k£ de 0.33 & 0.66 a peu d’im-

pact sur les distributions du vent dans le cas RCE. Cela pourrait s’expliquer par le
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FIGURE 5.22 — Comparaison des distributions du module du vent (m.s™!) a 10 m a
I'intérieur des poches, obtenues & partir des LES et simulées par le modéle LMDZ
utilisant le schéma des rafales basé sur une approche Monte Carlo (LMDZ-MC), avec
le coefficient k (reliant la vitesse d’étalement C, en m.s~! & I'énergie d’affaissement
WAPE en J.kg! fixé a 0.33 et 0.66 sur les cas RCE (a) et AMMA (b). Dans le cas
AMMA, les distributions sont calculées sur une moyenne entre les instants 17h et
18h. Pour le cas RCE, elles sont moyennées sur les jours 41, 42 et 43.

fait que la variation de C, entre ces deux valeurs de k est de l'ordre de 1 m/s, ce qui

semble insuffisant pour affecter significativement les distributions du vent.

Dans ’ensemble, ces résultats montrent que le modéle de rafales de vent associées
aux poches fournit des résultats satisfaisants, bien qu’il reste des améliorations a

apporter pour mieux représenter les vents faibles.

5.5.2 Validation du modéle combiné

Nous validons ici le modéle combiné de distribution du vent a 10 m, qui prend

en compte a la fois les vents dans les poches et ceux a 'extérieur, dans LMDZ1D
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sur les cas RCE et AMMA. Ici, nous réalisons deux simulations avec LMDZ : une
premiére avec la version standard ou la distribution du vent a 10 m dans la maille
suit une distribution de Weibull (LMDZ WEIB). Une seconde simulation ou le mo-
deéle combiné est activé (LMDZ MC). Dans ces simulations, les variables Ty, = ug,,
Uk = Vky, Ck, Ux, ALEy et o,y sont fournies par le GCM. Pour le parameétre libre
1wk, nous avons fixé une valeur commune de 0.5 pour les cas RCE et AMMA, comme
dans précédemment. Nous avons également fixé k,;;, et ki, respectivement a 1 et 2
pour les deux cas. Ces valeurs sont choisies de maniéres a ce que oy, (défini par
O = \/ktthuz + kon(vV2ALEy)? ) reste dans Uintervalle [1.3; 2]. Aussi, nous avons

directement fixé le coefficient k de C, & 0.66 dans ces simulations. Les comparaisons

entre LMDZ et LES sont effectuées sur les mémes périodes que précédemment : en

moyenne sur les jours 41, 42 et 43 pour RCE, et sur une moyenne entre les instants
17h et 18h pour AMMA.

L’analyse des résultats révele que, pour le cas AMMA, LMDZ WEIB surestime
fortement les vents faibles et ne parvient pas a reproduire les vents forts, tandis que
LMDZ MC offre une bonne correspondance avec la distribution du vent simulée par
la LES (Fig. 5.23b). Sur le cas RCE, on observe également de meilleure résultats avec
LMDZ MC (Fig. 5.23a). On retrouve ainsi une meilleure comparaison avec le cas
AMMA, comme dans la section 5.4.2 ou la validation du modéle combiné utilisant
de uy, était effectuée en dehors en du GCM. Ces tests dans la version 1D de LMDZ
a nouveau l'idée d’utiliser le vent moyen dans le GCM dans nos simulations de pous-
siéres, en attendant de développer une paramétrisation spécifique de la vitesse de

déplacement des poches.

5.6 Conclusions

Dans ce chapitre, nous avons présenté un modele de distribution du vent sous-
maille qui intégre les rafales générées a la fois par les poches froides et par les
thermiques. Le schéma des rafales associées aux poches, développé au cours de cette
theése & partir des LES, utilise une approche Monte Carlo pour calculer les distribu-
tions de vent & l'intérieur des poches froides. Cette méthode a été privilégiée face
a la complexité des calculs analytiques requis pour déterminer la PDF du module
de vent. Le schéma des rafales des thermiques, quant a lui, a été développé paral-
lelement par Adriana Sima, et s’applique spécifiquement a l’extérieur des poches
froides. Ces deux schémas sont ainsi combinés pour obtenir une distribution du vent

compléte au sein de la maille. La combinaison des deux schémas est également &
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FIGURE 5.23 — Comparaison des distributions du module du vent (m.s7!) a 10 m
dans la maille, issues des LES et simulées par la version standard de LMDZ utilisant
une loi de Weibull (LMDZ-WEIB) ainsi que par la version intégrant le schéma de
rafales basé sur une approche Monte Carlo (LMDZ-MC), pour les cas RCE (a) et
AMMA (b). Dans le cas AMMA, les distributions sont calculées sur une moyenne
entre les instants 17h et 18h. Pour le cas RCE, elles sont moyennées sur les jours 41,

42 et 43.
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nouveau rendu facile grace a I’approche Monte Carlo, qui évite les formules analy-
tiques complexes. Ce travail montre la pertinence de cette méthode, qui contribue
a alléger le travail des modélisateurs. Elle évite les difficultés des calculs mathé-
matiques complexes et long, permettant de recentrer les efforts sur la physique du
modéle. Le calibrage des parameétres libres du modéle de rafales combiné a été réalisé
a 'aide de 'outil HTExplo. Le modéle des rafales ainsi développé a été implémenté
dans LMDZ et couplé avec les schémas des poches froides et des thermiques. Les
tests de cette paramétrisation, effectués dans la version uni-colonne de LMDZ sur
les cas RCE et AMMA, montrent une meilleure représentation de la distribution
du vent de surface par rapport aux LES, en comparaison avec la version standard
de LMDZ qui utilise une distribution de Weibull, dans laquelle le vent maximal est
arbitrairement défini deux fois du vent a grande échelle. Cette nouvelle paramétri-
sation permet donc de reproduire une distribution du vent de surface plus réaliste.
Contrairement a ’ancienne distribution, exclusivement utilisée pour le soulévement
des poussiéres, ce nouveau schéma pourrait également étre appliqué a d’autres phé-
nomenes, tels que le soulévement des vagues en milieu océanique, une perspective
particulierement intéressante pour les études de couplage océan-atmosphére. Dans
le cadre de cette thése, nous nous concentrerons uniquement sur son application au

souléevement des poussiéres, présentée dans la section suivante.
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Chapitre 6. Les simulations de poussiéres

6.1 Introduction

Ce chapitre est consacré a I’évaluation de la performance du modéle de rafales de
vent présenté dans le chapitre précédent, dans sa capacité a représenter les émissions
de poussiéres. Nous commencons par une description des simulations de poussiéres
réalisées. L’analyse se concentre d’abord sur la saison des pluies, afin d’examiner
Ieffet des rafales des poches et des thermiques sur les émissions. Le lien entre ces
émissions d’origine convective et les précipitations sont ensuite analysé. L’attention
se porte ensuite sur le cycle saisonnier des poussiéres, en profitant de cette partie
pour discuter de l'effet des rafales liées aux thermiques en saison séche. Nous étu-
dions également la distribution verticale des poussiéres en saisons séche et humide,
avant d’évaluer I'impact des rétroactions entre poussiéres et rayonnement, tant sur
leur distribution que sur les précipitations. Enfin, une comparaison des simulations
est effectuée a partir des données d’épaisseur optique des aérosols (AOT) et des
concentrations en PM;y mesurées sur trois stations situées au Sahel. Le chapitre se

termine par une conclusion et des perspectives pour la suite.

6.2 Description des simulations de poussiéres

Dans un premier temps, nous avons réalisé deux simulations de poussiéres avec
LMDZ sans interaction poussiéres—rayonnement : la premiére utilise une distribution
de Weibull (WEIB) pour représenter le vent sous-maille de surface, tandis que la
seconde repose sur le modéle de rafales de vent avec approche Monte Carlo (MC).
Ce choix de désactiver le couplage entre les poussiéres et le rayonnement permet de
conserver la méme météorologie dans les deux configurations, de fagon a s’assurer
que les différences simulées en termes de poussiéres proviennent uniquement au cal-
cul distinct du vent de surface, évitant d’avoir en plus 'impact d’un changement de
circulation. Dans la suite, ces simulations sans interaction poussiéres—rayonnement
seront désignées respectivement par WEIBNO et MCNO. Dans un second temps,
nous avons activé l'interaction poussiéres-rayonnement, offrant la possibilité d’étu-
dier l'effet radiatif des poussiéres sur le climat. Dans ce cadre, deux simulations
supplémentaires ont ainsi été réalisées : WEIBINT et MCINT. Elles permettent
d’analyser dans quelle mesure les poussiéres, en modifiant la circulation globale, in-

fluencent leur propre distribution ainsi que la convection.

Les simulations sont réalisées avec un zoom régional englobant I’Afrique de I’Ouest
et une partie de 'océan Atlantique, défini par la zone [T0°W-70°E; 0-40°N] (Fig.
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FIGURE 6.1 — Représentation de la grille de LMDZ avec la partie zoomée en rectangle
bleu (Escribano et al., 2016).

6.1). Ce zoom est centré sur la position [5°W, 19°N]. Nous avons effectués 3 ans de
spin-up pour ORCHEDEE suivi de 2 années, dont la premiére, 2005, sert de spin-up
pour les poussiéres. Les simulations ainsi étudiées dans ce travail couvrent seulement
I’année 2006. Le spin-up correspond a la période nécessaire au modéle, qui démarre
généralement d’un état artificiel ou simplifié, pour atteindre une situation plus réa-
liste et stable.

Les simulations de poussiéres sont guidées par les vents issus des réanalyses ERA-
Interim. Cette technique de guidage, appelée nudging en anglais, consiste a contraindre
les champs météorologiques simulés a rester proches de ceux des réanalyses. Il repose
sur I’équation suivante :

0X X*—X

— =FX)+ —— 6.2.1
ou X désigne le vecteur contenant les composantes u et v du vent en chaque point
de la grille du modéle. X® correspond aux composantes u et v du vent issues des

réanalyses, interpolées sur la grille du modéle. F représente 1'opérateur décrivant
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I’ensemble des processus physiques et dynamiques du modeéle qui régissent 1’évolu-
tion de X, et 7 est la constante de temps associée au guidage. Dans les simulations
présentées ici, 7 vaut 48 heures a l'intérieur du zoom et 3 heures en dehors, comme
dans Hourdin et al. (2015).

Les simulations sont réalisées avec une configuration comportant 79 niveaux verti-
caux et une grille horizontale composée de 88 points en latitude et 128 en longitude
(Escribano et al., 2016). Le schéma de transport et de lessivage des aérosols par
la convection profonde (Pilon et al., 2015) ainsi que celui lié a la condensation a
grande échelle (Pilon et al., 2015) sont activé dans nos simulations de poussiéres.
Dans ces simulations, nous avons également intégré les modifications du schéma des
poches froides présentées au chapitre 4, notamment la baisse de hy, (h,, = ahy avec
a = 3.5), Pajustement du coefficient & a 0.66, ainsi que le nouveau schéma numé-
rique de h,. En revanche, nous avons conservé la valeur par défaut pour la densité
des poches, correspondant & une estimation de 8 poches sur un domaine continental
de 1000 kmx1000 km.

Pour le choix du nombre de tirages (n;) Monte Carlo, nous avons d’abord réalisé
plusieurs tests avec différentes valeurs de n; afin d’évaluer son impact sur le temps de
calcul. Les analyses menées sur une machine locale montrent que l'augmentation de
n; entraine une variation trés faible, de 'ordre de quelques secondes par jour entre
deux valeurs successives de n;. Le temps de calcul peut devenir cependant significatif
en local lorsque n; est élevé. Par exemple, pour n; = 12 et n; = 25, les simulations de
poussiéres nécessitaient respectivement 420 et 480 minutes de calcul par mois. Nous
observons également que le choix de n; n’influence que trés faiblement les résultats
des simulations de poussiéres.

Pour les simulations de poussiéres présentées ici, nous avons fixé n; a 100. Celles-
ci étant réalisées sur un serveur, le coiit en temps de calcul y est beaucoup moins

contraignant. Le temps de calcul, ici, vaut environ 50 minutes par mois.

6.3 Effet du schéma des rafales sur les émissions en

salson humide

Ici, on s’attache & examiner la pertinence du schéma des rafales liées aux poches
froides et de celle des rafales des thermiques dans la représentation des émissions
de poussiéres en saison des pluies. L'effet du schéma des rafales sur les émissions en

saison seéche sera discuté dans les sections suivantes. L’évaluation de la pertinence
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du schéma des rafales liées aux poches est réalisée dans un contexte convectif, mar-
qué par la formation de poches froides au-dessus des zones sources de poussiéres.
L’évaluation de la pertinence du schéma des rafales thermiques en saison humide est
conduite dans un contexte non convectif, ot aucune poche ne se développe au-dessus
des zones d’émission. Dans ce cas, les émissions peuvent étre attribuées aux rafales
thermiques, la contribution des rafales liées a la turbulence mécanique restant secon-
daire. Les analyses sont effectuées ici avec les configurations WEIBNO et MCNO.
Le recours aux configurations sans interaction poussiéres-rayonnement (WEIBNO et
MCNO) permet, comme indiqué dans la section précédente, d’éviter d’avoir I'impact

d’un changement de circulation.

6.3.1 Effet des rafales des poches

L’analyse est effectuée sur la journée convective du 11 juillet 2006. Cette date,
choisie arbitrairement, correspond par coincidence au lendemain du cas AMMA, au
cours duquel un systéme convectif s’était développé au-dessus du Niger. Comme
discuté au chapitre 4, I’épisode de convection profonde du cas AMMA relevait d’un

phénoméne local, sans preuve évidente de sa propagation le jour suivant.

La Figure 6.2 illustre les émissions et la WAPE simulées par les configurations
WEIBNO et MCNO. Comme expliqué au chapitre 4, la WAPE représente 1’énergie
d’affaissement des poches froides et permet d’identifier leur présence et leur inten-
sité dans le modeéle. La différence des émissions simulées avec les deux versions du
modeéle est également présentée pour mieux observer les écarts.

La WAPE est identique dans les deux configurations du fait de ’absence de rétroac-
tion des poussiéres sur le rayonnement. Dans WEIBNO, des émissions apparaissent
au sud de I’Algérie et dans le Sahara occidental (Fig. 6.2b). La configuration MCNO
présente des émissions dans les mémes régions que WEIBNO, mais également dans
d’autres zones, notamment a ’est de la Mauritanie, dans le désert Nubien et au nord
de la Libye (Fig. 6.2c). Ces écarts sont plus visibles dans la Figure 6.2d, qui montre
la différence des émissions entre MCNO et WEIBNO. On constate que les émissions
supplémentaires dans MCNO coincident précisément avec les régions ol sont pré-
sentes les poches froides (Fig. 6.2a). Cela suggére que, dans la configuration MCNO,
les rafales générées par ces poches créent un vent suffisant pour soulever les pous-
siéres, un mécanisme absent de la configuration WEIBNO. Ces résultats confirment
ainsi la pertinence du schéma des rafales & simuler les émissions associées aux poches

froides.
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(a) WEIBNO/MCNO (b) WEIBNO
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FIGURE 6.2 — Distribution spatiale de I’énergie d’affaissement, WAPE, (J/Kg) des
poches (a) et des émissions de poussiéres (g.m~2.jr~!) simulées le 11 juillet 2006
par les versions du modeéle LMDZ sans interaction poussiéres-rayonnement : WEIB,
basé sur une distribution de Weibull (b), et MC, utilisant un schéma de rafales avec
approche Monte Carlo (c). Le panneau (d) montre I'écart des émissions de poussiéres
entre MC et WEIB.
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6.3.2 Effet des rafales des thermiques

La figure 6.3 présente les mémes variables que la Figure 6.2, mais pour la journée
du ler juillet 2006, caractérisée par une absence de convections et de formation de

poches froides sur le Sahel.

La distribution spatiale de la WAPE ne montre pratiquement aucune présence de
poches froides au Sahel, notamment au dessus des zones sources de poussiéres, dans
WEIBNO et MCNO (Fig. 6.3a). Dans ce contexte, les différences d’émissions notées
entre MCNO et WEIBNO sur le Sahel peuvent étre attribuées globalement a 'effet
des rafales thermiques. On note des écarts d’émissions en Mauritanie, au Mali et
en Algérie (Fig. 6.3d), mais ceux-ci restent nettement moins marqués que dans les
situations ot des poches froides se développent au-dessus de ces régions. Dans le
désert Nubien, on y observe des différences d’émissions trés marqués entre les deux
versions du modéle (Fig. 6.3d), mais coincident avec la présence de poches froides
dans cette région (Fig. 6.3a).

Les rafales thermiques induisent donc une augmentation des émissions de poussiéres
en saison des pluies, mais leur impact demeure nettement moins marqué que celui

des rafales associées aux poches froides.

6.3.3 Relations entre pluies, poches et émissions

Dans cette section, nous analysons I'influence des précipitations sur les émissions
de poussiéres associées aux poches froides, elles-mémes générées par ’évaporation
des précipitations. Nous faisons I’analyse sur la journée du 21 juillet choisi arbitrai-
rement, en représentant le précipitations, les différences d’émissions entre MCNO et
WEIBNO ainsi la WAPE.

Les simulations WEIBNO et MCNO affichent des précipitations et une WAPE iden-
tiques, car elles ne prennent pas en compte la rétroaction entre les poussiéres et
le rayonnement (Fig. 6.4a et ¢). La Fig. 6.4b, qui montre ’écart d’émissions entre
MCO et WEIBNO (MCNO - WEIBNO), révéle de fortes émissions de poussiéres
se produisant spécifiquement dans la simulation MCNO. Ces émissions, localisées
au nord du Sénégal, a l'est de la Mauritanie, au centre du Mali, a ’est du Niger et
dans le désert Nubien, sont attribuables aux poches froides présentes au dessus de
ces zones ( Fig. 6.4c). Cependant, dans les zones d’émission du Mali, du Niger et
méme celle a l'est de la Mauritanie, les précipitations au sol sont quasi nulles (Fig.

6.4a). Or, les poches froides, responsable de ces émissions, sont censées étre créées
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(a) WEIBNO[MCNO (b) WEIBNO
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FIGURE 6.3 — Comme Fi. 6.2 mais pour la journée du ler juillet 2006.
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FIGURE 6.4 — Résultats des simulations de LMDZ avec les configurations WEIBNO
et MCNO pour la date du 21 juillet 2006. Le panneau (a) représente les précipita-
tions (mm.jr~!) simulées dans les deux configurations. Le panneau (b) présente les
différences d’émissions de poussiéres (g.m~2.jr~!) entre MCNO et WEIBNO (MCNO
- WEIBNO). Le panneau (c) montre la WAPE (J.kg™!) simulée dans les deux confi-
gurations.

par la pluie. Dans les autres régions émettrices, notamment au nord du Sénégal et
le désert Nubien, on observe de fortes précipitations au sol (Fig. 6.4a), comme on
pourrait s’y attendre.

Pour mieux comprendre les cas ol des émissions surviennent presque sans pluie au
sol, nous analysons le profil vertical des précipitations en un point de ces situations,
situé a 0° de longitude et 16°N de latitude, au centre de la zone d’émission du Mali.
Ce profil montre bien la présence de précipitations dans I’atmosphére, avec un maxi-
mum d’environ 2 mm/jour. Cette quantité de pluie diminue progressivement vers
la surface, indiquant une évaporation des gouttes au cours de leur chute. Ainsi, la
pluie qui atteint le sol est presque inexistante (< 0.5 mm/jour). Cette évaporation
quasi compléte génére alors des poches froides suffisamment intenses pour soulever
la poussiére, bien qu’aucune précipitation significative ne soit enregistrée en surface.
Ces résultats sont cohérent avec ceux de Bergametti et al. (2022) qui ont également
constaté une augmentation des concentrations de poussiéres dans des stations sahé-
liennes lors du passage d’'un MCS, sans précipitation enregistrée au sol.

Un second profil a été examiné au point (15°W, 15°N), dans la zone d’émission du
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nord du Sénégal. Celui-ci montre également une évaporation partielle des précipita-
tions durant leur chute, responsable de la formation de poches au dessus de cette
zone. Une forte quantité de pluie (> 20 mm/jour) atteint cependant le sol, malgré
cette évaporation, en raison de ’abondance initiale de précipitations dans I'atmo-
sphére (maximum > 23 mm/jour). Dans ce cas, on pourrait s’attendre naturellement
a ce que la pluie qui arrive au sol humidifie le sol et limite le soulévement mais cet
effet n’est pas encore prise en compte dans le modéle. Bien qu'une paramétrisation
de cet effet d’humidité existe déja dans LMDZ, elle n’a pas encore pu étre testée par

faute de temps.

Les analyses, effectuées ici, montreraient que 1’évaporation compléte des précipi-
tations avant leur arrivée au sol survient lorsque les quantités présentes dans I’at-
mospheére sont relativement faibles, facilitant leur disparition totale au cours de la
chute. Malgré ces faibles quantité, cette évaporation est cependant capable de géné-
rer des poches froides produisant des rafales suffisamment intenses pour déclencher

des émissions de poussiéres.

6.4 Cycle saisonnier des poussiéres

Dans cette section, nous étudions le cycle saisonnier des poussiéres en analysant
la saison séche (moyenne de janvier a avril) et la saison des pluies (moyenne de juin
a septembre). L’objectif est, d'une part, d’évaluer l'effet des rafales thermiques sur
les émissions et leur contribution au bilan saisonnier des poussiéres en saison séche,
et d’autre part, d’analyser la contribution des poches froides au bilan saisonnier
pendant la saison des pluies. Les analyses sont réalisées avec les configurations sans
interaction rayonnement—poussiéres (WEIBNO et MCNO), pour les mémes raisons
que celles exposées précédemment. Elles s’appuient ici sur ’'AOT, qui fournit une

mesure intégrée des aérosols sur ’ensemble de la colonne atmosphérique.

Les analyses indiquent qu’en saison séche, les valeurs d’AOT sont globalement plus
faibles dans MCNO que dans WEIBNO (Fig. 6.6a et Fig. 6.6b). Cette différence
apparait plus clairement dans la Fig. 6.6¢c, qui illustre I’écart entre les deux confi-
gurations. Cette réduction suggére des vents de surface moins intenses dans MCNO
par rapport WEIBNO en saison séche. Cela pourrait s’expliquer par le fait que la
distribution du vent dans le schéma des rafales thermiques présenterait une largeur
plus étroite que celle du schéma de Weibull, ce qui diminue la probabilité d’obtenir

des vents fort dans MCNO. De plus, en saison séche, les thermiques favorisent le
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FIGURE 6.5 — Distribution verticale des précipitations (mm jr=!) simulées par la
configuration de LMDZ avec MCNO pour le 21 juillet 2006. La courbe rouge cor-
respond au profil situé a 0° de longitude et 16°N de latitude, au centre de la zone
d’émission de poussiére au Mali. La courbe verte représente le profil au point 15°W,
15°N, au centre de la zone d’émission du nord du Sénégal.
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rabattement des jets nocturnes vers la surface, renforcant ainsi le vent moyen et
augmentant la fréquence des vents forts dans WEIBNO.

Nous constatons cependant qu’a la différence de la saison des pluies, ou les ther-
miques, plus profonds, favorisent une légére augmentation des poussiéres, ceux-ci

exercent en saison séche un effet inverse en contribuant a leur réduction.

En saison des pluies, les valeurs d’AOT sont systématiquement plus importantes
dans MCNO que dans WEIBNO (Fig. 6.6d et Fig. 6.6¢). Ce résultat est attendu car
il y’a la contribution des émissions par les poches dans MCNO. On voit que 'aug-
mentation des AOT dans MCNO est plus marquée dans le centre du Mali, a I’est de
la Mauritanie, a I'ouest du Niger et dans le désert Nubien (Fig. 6.6f). Cela suggeére
une contribution importante des poches sur les émissions dans ces régions. Les résul-
tats obtenus sur les sources sahéliennes sont en accord avec ceux de Caton Harrison
et al. (2019) et Pantillon et al. (2015) qui soulignent également une forte fréquence
des haboobs a l'est de la Mauritanie et au Mali. Selon Pantillon et al. (2015), la
fréquence élevée des haboobs dans ces régions est liée aux flux de mousson, qui ap-
portent 'humidité nécessaire au déclenchement de la convection. Les fortes valeurs
d’AOT constatés a l'est du Tchad (Fig. 6.6f) proviendraient du désert Nubien.

Ces analyses révéelent 'importante contribution des poches aux émissions de pous-
sieres durant la saison des pluies. Bien que les thermiques interviennent également au
cours de cette saison, les analyses présentées plus haut montrent que leur influence

sur les émissions reste nettement plus faible que celles poches.

6.5 Distribution verticale des poussiéres

Nous nous attachons ici a analyser I'influence de la convection profonde sur la
distribution verticale des poussiéres. Pour ce faire, nous comparons deux cas d’émis-
sion en saison des pluies : un cas ot les émissions sont associées a des poches froides,
indicateur de la convection profonde et un cas sans lien avec les poches froides, donc
sans convection profonde. Etant donné que la production des poussiéres dans LMDZ
est intégrée au sein du schéma de la couche limite turbulente (Mellor and Yamada,
1974) et que leur transport vertical est géré par le schéma des thermiques Rio and
Hourdin (2008), cette analyse permet également, en quelques sortes, d’évaluer la pro-
fondeur de la couche limite représentée par le modeéle. La couche limite convective
est en effet représentée dans LMDZ par la combinaison de ces deux schémas, comme
déja expliqué au chapitre 3. L’analyse du transport vertical est ensuite étendue a un

cas de saison séche, permettant une comparaison de la profondeur de la couche limite
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FIGURE 6.6 — Moyennes saisonniéres de ’épaisseur optique des aérosols (AOT) pour
I’année 2006, simulées par le modéle LMDZ selon deux configurations sans interac-
tion poussiéres-rayonnement (NO) : I'une basée sur une distribution de Weibull pour
le vent de surface (WEIBNO), lautre sur le schéma des rafales avec une approche
Monte Carlo (MCNO). La saison séche (panneaux du haut) correspond & la moyenne
des mois de janvier a avril (JEMA) et la saison des pluies (panneaux du bas) couvre
la période de juin a septembre (JJAS)
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entre les deux saisons. Dans ces analyses, nous utilisons la configuration MCNO, ou
les émissions liées aux poches sont prise en compte. Nous utilisons les concentrations
de poussiéres (regroupant les particules fines, grossiéres et supergrossiéres), dont les

valeurs sont disponibles & tous les niveaux verticaux du modéle.

6.5.1 Saison humide

Les deux cas analysés sont ceux présentés dans la section 6.3. Pour les émissions
associées & une poche froide, nous avons étudié celui du 11 juillet 2006, situé a 1’est
de la Mauritanie, a partir d’'une coupe verticale a la latitude 15°N, passant au centre
de I’événement. En ce qui concerne I’émission non liée & une poche froide, nous avons
choisi celui du ler juillet 2006, au nord de la Mauritanie, avec une coupe verticale
effectuée a 23°N.

A Dest de la Mauritanie, ou I'on a des émissions associées a des poches, les concen-
trations de poussiéres atteignent des altitudes correspondant a 100 hPa (environ 16
km), notamment aux alentours de la zone d’émissions située entre 20°W et 5°W (Fig.
6.7a). Des concentrations de poussiéres situées a des altitudes élevées sont également
observées entre 20°E et 30°E (Fig. 6.7a), correspondant a une partie du désert Nu-
bien, ot des émissions liées a des poches froides ont été identifiés le 11 juillet. Pour
I’émission non associée & une poche froide, les poussiéres atteignent une altitude
maximale d’environ 600 hPa, soit entre 5 et 6 km (Fig. 6.7b). Cette altitude maxi-
male correspond a la profondeur de la couche limite convective en saison des pluies
dans le modele, ce qui est cohérent avec certaines études qui l’estiment également a

environ 6 km pendant cette saison (Tsamalis et al., 2013; Senghor et al., 2017).

Dans les cas ol les émissions sont associées a des poches froides, les poussiéres sont
transportées vers la haute troposphére par les courants ascendants de la convection
profonde. Les concentrations mesurées a ces altitudes restent cependant faibles (<
0.12 mg.kg™!). Cela s’explique par le fait qu'une grande partie des poussiéres trans-
portées est ensuite éliminée par lessivage a grande échelle. Ce résultat est cohérent
avec les travaux de Senghor et al. (2024), qui ont montré que les ascendances convec-
tives injectent effectivement d’importantes quantités de poussiére en haute altitude,
mais elles sont suivies d’un processus de nettoyage qui élimine une grande partie ces
poussiéres dans ’atmosphére.

Lors de I’événement non associés aux poches, les poussiéres restent confinées dans
la couche limite, en ’absence de courants ascendants suffisamment intenses pour

les élever vers les hautes altitudes. On constate par ailleurs que les concentrations
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FIGURE 6.7 — Distribution verticale des concentrations de poussiéres (mg.kg™!)
simulées par la configuration MCNO pour les journées du 11 juillet (a) et du ler
juillet (b) 2006. La coupe verticale du 11 juillet est effectuée le long de la latitude
15°N, au centre d’un événement de poussiéres associé a des poches froides. Celle
du ler juillet est réalisée selon la latitude 23°N, traversant une zone d’émission de
poussiéres non liée a des poches froides.
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de poussiéres dans la couche limite sont plus élevées dans les cas liés aux poches.
Ce renforcement s’explique a la fois par 'injection supplémentaire de poussiéres par
les poches et par la libération d’aérosols engendrée par la convection profonde. En
effet, les particules ayant servi de noyaux de condensation & grande échelle sont ré-
introduites dans la couche limite lors de ’évaporation des gouttes de pluie qui les
contiennent (Senghor et al., 2024), ce qui contribue a accroitre la charge en aérosols

dans ce cas d’émission associée a la convection profonde.

6.5.2 Saison séche

L’analyse de la distribution verticale des poussiéres durant la saison séche est
effectuée a partir d'un épisode de poussiéres du 3 Février 2006, identifié & travers
des analyses intermédiaires. Une coupe verticale est réalisée le long de la latitude

17°N, traversant le centre de la zone émettrice.

La Figure 6.8 montre que, lors de cet événement, les poussiéres ont été transportées
jusqu’a une altitude correspondant a environ 700 hPa, soit prés de 3 km, montrant
une profondeur de la couche limite convective a cette hauteur en saison séche. Ces
résultats sont cohérents avec ceux de Senghor et al. (2017), qui, & partir de données
Lidar, ont également mis en évidence un transport vertical compris entre 1 et 3 km
en hiver, correspondant a la hauteur de la couche limite pendant cette saison. De
méme, Tsamalis et al. (2013) estiment ’épaisseur de la couche limite a environ 3 km
en saison seche.

Nos analyses révélent ainsi que le modéle parvient a reproduire la différence de hau-
teur de la couche limite entre la saison des pluies et la saison séche, plus faible en

saison séche.

6.6 Rétroaction entre poussiéres et rayonnement

Dans cette section, nous examinons 'impact de la rétroaction entre les poussiéres
et le rayonnement sur la distribution des poussiéres elles-mémes et sur les précipita-
tions. Nous analysons les différences entre les simulations avec (INT) et sans (NO)

interaction poussiéres-rayonnement, dans les configurations WEIB et MC.

6.6.1 Effet sur la distribution des poussiéres

Ici, Panalyse est réalisée pour la saison séche (représentée en moyenne par le mois

de mars) et pour la saison des pluies (représentée en moyenne par le mois de juillet),

144



Chapitre 6. Les simulations de poussiéres

1 1 1 1 1 L 1 1 ! L g/ kg
20000 — — R |
_ N [EA
0.82

40000 — =
0.72
0.62

Pa

60000 — o .
_ | F—0.42
0.32

80000 — —
0.22
0.12
100000 — 0.02

30°W 20°W 10°W 0° 10°E 20°E 30°E

Longitude

FIGURE 6.8 — Distribution verticale des concentrations de poussiéres (mg.kg™')
simulées par le modéele LMDZ-MC NOINTER pour la journée du 3 février 2006. La
coupe verticale est effectuée le long de la latitude 17°N, au centre d’un événement
de poussiéres.
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a partir de I’étude des AOT.

Les Fig. 6.9 et Fig. 6.10 présentent la distribution horizontale de I’AOT simulée
par WEIBNO, WEIBINT, MCNO et MCINT, respectivement en moyenne sur les
mois de mars et juillet 2006.

En mars, la comparaison des simulations NO et INT révéle que la rétroaction des
poussiéres tend a réduire ’AOT globalement (Fig. 6.9) dans les configurations WEIB
et MC. Dans MC, ou les rafales des thermiques sont incluses, la diminution des va-
leurs d’AOT notée en mars dans INT par rapport & NO peut étre attribuée a 'effet
stabilisant de I'atmosphére par les poussiéres, durant la saison séche, via leur absorp-
tion radiative. Ce réchauffement des couches atmosphériques induit une stabilisation
de la colonne d’air, limitant la convection et réduisant la turbulence verticale. Cette
baisse de I'instabilité atmosphérique limite la formation des rafales des thermiques
dans MCINT, entrainant ainsi une diminution des émissions par rapport & MCNO,
ou cet effet radiatif est absent. Dans les versions WEIB, ou les émissions sont di-
rectement liées au vent moyen du GCM, la diminution des poussiéres dans INT par
rapport & NO pourrait s’expliquer par les modifications de la dynamique, liées au
réchauffement radiatif des poussiéres. En effet, le vent moyen dans les GCM, est
calculé par la dynamique du modéle, et donc sensible aux changements induits par

la présence des poussiéres.

En juillet, leffet principal de la rétroaction des poussiéres est une augmentation si-
gnificative de ’AOT, particuliérement prononcée sur les régions Mauritanie et Mali
dans les configurations WEIB et MC (Fig. 6.10c et Fig. 6.10f). Cette augmenta-
tion de la charge en poussiéres dans ces régions pourrait s’expliquer par 'effet de
réchauffement atmosphérique par les poussiéres qui renforcerait la convergence des
vents au sein de la ZCIT. Ce renforcement de la convergence accélére la circulation
et augmente 'intensité des vents de surface, ce qui, en retour, augmente les émis-
sions de poussiéres dans WEIBINT et MCINT (Fig. 6.10b et Fig. 6.10e). On note
cependant que 'augmentation des émissions est plus marquée dans la configuration
WEIBINT que dans MCINT (Fig. 6.10c et Fig. 6.10f). Cela s’explique par le fait
que le schéma d’émission WEIB est plus sensible a la vitesse du vent moyen. Ainsi,
le renforcement du vent moyen génére plus de vents forts dans WEIB que dans MC.
Cela entraine donc une plus forte augmentation des émissions dans WEIBINT que
dans MCINT.

Une diminution des poussiéres au-dessus de I’Atlantique Est est également notée

lorsque les rétroactions radiatives des poussiéres sont activées. Cette réduction pour-
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FIGURE 6.9 — Moyenne mensuelle de I’épaisseur optique des aérosols (AOT) en mars
2006, simulée avec le modéle LMDZ dans quatre configurations : I'une utilisant une
distribution de Weibull (WEIB) pour la représentation du vent de surface, 'autre
sur le modéle de bourrasques de vent avec approche Monté Carlo (MC), chacune
avec (INT) et sans (NO) interaction entre poussiéres et rayonnement. Les panneaux
du haut indiquent les simulations avec WEIBNO (a), WEIBINT (b) et WEIBINT
- WEIBNO (c). Les panneaux du bas représentent les simulations avec MCNO (d),
MCINT (e) et MCINT - MCNO (f)
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FIGURE 6.10 — Comme Fig 6.9 mais pour le mois de juillet 2006.
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rait s’expliquer par une modification de la circulation a grande échelle induite par
Ieffet radiatif des aérosols qui limiteraient le transport des poussiéres vers I'océan

Atlantique.

Nous soulignons que les explications avancées concernant les différences entre INT
et NO en saisons séche et humide reflétent notre compréhension actuelle, mais elles
pourraient étre vérifies dans le modeéle. Faute de temps, nous n’avons pas pu ap-

profondir davantage ces analyses, qui nécessitent toutefois un examen plus détaillé.

6.6.2 Effet sur les précipitations

La figure 6.11 présente une comparaison des précipitations moyennes simulées
pour le mois de juillet 2006 entre les différentes configurations du modeéle : WEIBNO,
WEIBINT, MCINT et MCINT.

Les différences de précipitations entre les configurations INT et NO (WEIBINT -
WEIBNO et MCINT - MCNO) mettent en évidence un déplacement des pluies vers
le nord lorsque la rétroaction des poussiéres est activée. On observe notamment une
augmentation des précipitations au-delad de 10°N, en particulier sur la Mauritanie,
le Mali, I’Algérie, le Niger et le Tchad. Comme l'illustre la Figure 6.11, ces régions
correspondent également & des zones ou la charge en poussiéres s’accroit lorsque les
interactions radiatives sont prises en compte. L’augmentation des pluies pourrait
ainsi s’expliquer par le fait que les poussiéres, en réchauffant ’atmosphére et en
accentuant le contraste thermique, renforcent le flux de mousson et donc l'apport
d’humidité dans ces régions. En effet, les différences des vents zonaux moyens entre
INT et NO mettent en évidence un renforcement du vent dans les basses couches,
correspondant au flux de mousson, précisément dans les zones ot les précipitations
augmentent dans les simulations INT pour WEIB et MC (Fig. 6.12a et b).

Une augmentation des précipitations est également constatée au-dessus de 1’Atlan-
tique, en particulier dans la région du golfe de Guinée. Ces résultats peuvent étre
expliqués par l'effet radiatif des poussiéres, qui tend & accroitre la nébulosité au sein
de la ZCIT dans I’Atlantique Est et renforcer les précipitations dans cette région,

comme le suggérent Lau et al. (2009).
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FIGURE 6.11 — Méme chose que Fig. 6.9 mais pour la moyenne des précipitations
(mm.jr~!) sur le mois de juillet 2006
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(a) ULOM : WEIBINT - WEIBO (b) ULOM : MCINT - MCNO
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FIGURE 6.12 — Différences des moyennes des composantes zonale (U10M en m.s™,

panneaux du haut) et méridionale (V10M en m.s~!, panneaux du bas) du vent entre
les simulations avec rétroactions poussiéres-rayonnement (INT) et sans rétroactions
(NO), pour les configurations WEIB et MC.
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6.7 Comparaisons par rapport aux observations

Ici, nous procédons a la validation des simulations de poussiéres a l'aide des
observations d’AOT et de PM;q sur quelques sites sahéliens. L’intérét de considérer
ces deux variables réside dans le fait qu’elles renseignent sur des aspects distincts
du cycle des poussiéres. L’AOT fournit une estimation de la charge totale d’aérosols
intégrée sur la colonne atmosphérique, tandis que les P Mg représentent uniquement
ce qui est transporté a la surface. Chacun de ses deux composantes doit ainsi étre

bien représenté dans le modéle.

6.7.1 Comparaison des AOT

Les figure 6.13 et 6.14 présentent les comparaisons entre les AOT journaliéres ob-
servées et simulées par les configurations MCNO, WEIBNO, MCINT et WEIBINT,
respectivement sur la saison séche (janiver-mai) et la saison humide (juin-octobre)
de 2006. Ces comparaisons sont effectuées sur trois stations du réseau AERONET,

situées a Dakar (Sénégal), Cinzana (Mali) et Banizoumbou (Niger).

On observe globalement une bonne représentation de la charge de poussiéres du-
rant les mois de saison séche dans ’ensemble des configurations de LMDZ, malgré
une surestimation des AOT a Dakar (Fig. 6.13). La simulation MCNO montre que
la réduction des émissions de poussieéres durant la saison séche, grace a la prise
en compte des rafales thermiques, améliore le modéle. L’activation du couplage
poussiéres-rayonnement permet, quant a elle, d’améliorer encore davantage la si-
mulation des AOT pendant cette période. En saison des pluies, toutes les différentes
configurations de LMDZ surestiment les AOT sur les trois stations, en particulier au
cceur de la saison, entre mi-juillet et fin septembre (Fig. 6.14). Cette surestimation
pourrait s’expliquer par le fait que, durant cette période de la saison des pluies, le
sol est généralement humide et recouvert de végétation. Ces conditions limitent les
émissions en saison humide, un effet qui n’est actuellement pas représenté dans le

modeéle. Il faudrait cependant représenter ce mécanisme dans le modéle.

6.7.2 Comparaison avec les PM

Les comparaisons entre le modeéle et les données de P M, sont réalisées sur les
stations de Mbour (Sénégal), Cinzana et Banizoumbou. Dans le modeéle, les P M

ne sont pas directement disponibles. Nous avons cependant considéré la somme des
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FIGURE 6.13 — Comparaison entre I’épaisseur optique des aérosols (AOT) observée
et celle simulée par le modéle LMDZ selon quatre configurations : une utilisant une
distribution de Weibull (WEIB) pour le vent de surface, l'autre basée sur le mo-
déle de bourrasques de vent avec approche Monte Carlo (MC), chacune avec (INT)
et sans (NO) interaction entre les poussiéres et le rayonnement. Les comparaisons
sont effectuées sur les stations de Dakar (Sénégal), Cinzana (Mali) et Banizoumbou
(Niger) pour la saison séche (Janvier & Mai) de 2006.
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FIGURE 6.14 — Comme Fig. 6.13 mais pour la saison des pluies (Juin a Octobre) de
2006
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fractions FINE (particules de diamétre < 1 pm) et CODU (particules de diameétre
compris entre 1 et 6 pum) dans la premiére couche du modéle, de fagon a obtenir
une variable approchante du PM;q mesuré au sol. Comme rappelé au chapitre 3, le
modeéle distingue trois classes granulométriques pour les poussieres : FINE, CODU

et SCDU (particules de diamétre compris entre 6 et 30 um).

Les résultats obtenus sont similaire a ceux de la comparaison avec les AOT. En saison
séche, I’ensemble des simulations de LMDZ reproduit globalement bien les concen-
trations de poussiéres de surface, bien qu'une surestimation marquée soit observée
sur la station de & Mbour (Fig. 6.15). L’intégration des rafales des thermiques amé-
liore la représentation des concentrations des particules de surface en saison séche,
avec un effet encore plus marquée lorsque ce le couplage entre poussiéres et rayon-
nement est activé. Une surestimation des poussiéres de surface apparait aussi dans
toutes les simulations de LMDZ en saison la saison des pluies (Fig. 6.15). Comme
expliqué dans la section précédente, cette surestimation est probablement liée a I’ab-
sence, dans le modéle, de la prise en compte des effets d’humidification du sol et de

la couverture végétale, qui limitent les émissions en saison des pluies.

Ces analyses mettent en évidence la capacité du modeéle & reproduire les concen-
trations de poussiéres en surface durant la saison séche, ce qui en fait un outil
pertinent pour les études d’'impact sur la qualité de 'air et la santé humaine. Ce
sont en effet les poussiéres présentes en surface qui sont importantes pour les études
sur la qualité de I'air et la santé, car ce sont elles qui sont directement inhalées par

les populations.

6.8 Conclusions

Dans ce chapitre, nous avons évalué 'efficacité du schéma de bourrasques dans
la représentation des émissions de poussiéres dans LMDZ. A cette fin, des simula-
tions ont été effectuées pour I'année 2006, en comparant la configuration de LMDZ
intégrant le schéma des rafales a celle utilisant une distribution de Weibull. Les ana-
lyses des émissions de poussiéres réalisées sur des cas convectifs montrent qu’avec ce
schéma, les poches dans LMDZ générent des vents suffisamment intenses pour pro-
duire des émissions lorsqu’elles se situent au-dessus des zones sources, ce qui confirme
la pertinence du modéle. Le schéma des bourrasques de poches conduit ainsi & une
augmentation des émissions de poussiéres en saison humide, renforcée en configura-

tion interactive, probablement en raison d’une intensification de la convergence des
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FIGURE 6.15 — Comparaison entre les concentration (ug.m=3) de PMq observées
et celle simulées par le modéle LMDZ selon quatre configurations : une utilisant une
distribution de Weibull (WEIB) pour le vent de surface, l'autre basée sur le mo-
déle de bourrasques de vent avec approche Monte Carlo (MC), chacune avec (INT)
et sans (NO) interaction entre les poussiéres et le rayonnement. Les comparaisons
sont effectuées sur les stations de Dakar (Sénégal), Cinzana (Mali) et Banizoumbou
(Niger) pour la saison séche (Janvier & Mai) de 2006.
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FIGURE 6.16 — Comme Fig. 6.15 mais pour la saison des pluies (Juin a Octobre) de
2006
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vents et de la convection dans la région de I'I'TCZ. Cependant, cette hausse des pous-
siéres constitue une dégradation du modéle, accentuant un biais déja présent, a savoir
une surestimation des émissions en saison humide, méme sans les rafales des poches.
Nous attribuons ce défaut a I'absence de prise en compte des effets de I’humidité
du sol et de la végétation qui limitent normalement les émissions. Leur intégration
pourrait contribuer a corriger ce biais. En saison séche, le schéma des bourrasques
émet moins de poussiéres, car la distribution paramétrisée avec les thermiques est
davantage centrée autour de la moyenne du vent que celle de Weibull, générant moins
d’événements de vents forts. Ce phénomeéne est encore accentué par la rétroaction,
du fait de la stabilisation de la couche limite par le chauffage atmosphérique. Cela
rapproche le modéle des observations, avec une trés bonne simulation, sauf a Dakar

sans doute a cause d’une surestimation des émissions a la cote.
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7.1 Conclusions générales

Dans cette thése, nous avons cherché & améliorer la représentation du souléve-
ment de poussiéres dans les modéles climatiques globaux (GCM). Notre contribution
consiste a proposer une paramétrisation des rafales de vent permettant d’intégrer les
émissions de poussiéres liées a I’étalement des poches froides, créées sous les nuages
par évaporation des précipitations, dans les GCM ot ces émissions sont généralement
absentes. Pour atteindre cet objectif, nous avons eu recours & deux outils récemment
adoptés par la communauté scientifique afin d’accélérer 'amélioration des modéles et
de renforcer la fiabilité des simulations climatiques face a 'intensification du dérégle-
ment climatique. Le premier outil représente les Large Eddy Simulations (LES), qui
offrent une compréhension plus fine des processus atmosphériques et permettent de
développer des paramétrisations physiques plus réalistes et originales. Le second est
HighTune Explorer (htexplo), un outil de calibration automatique des paramétres
libres issus de la conception des paramétrisations. Cet outil permet d’ajuster les pa-
rameétres libres tout en améliorant le réalisme physique du modéle, corrigeant ainsi
une calibration antérieure inappropriée qui pouvait compromettre la fiabilité des si-
mulations climatiques. Etant donné que notre schéma de rafales de vent devait étre
couplé au schéma des poches froides dans le modéle climatique LMDZ, développé
au Laboratoire de Météorologie Dynamique, nous avons d’abord procédé a une éva-
luation détaillée du schéma des poches sur la base des LES, ce qui n’ait jamais été
fait auparavant. Par la suite, nous avons développé la paramétrisation des rafales
de vent associées aux poches, en nous appuyant sur des LES. Des simulations de
poussiéres ont ensuite été réalisées avec le modéle LMDZ afin d’évaluer la capacité
de ce nouveau schéma des rafales a représenter le soulévement de poussiéres. Nous
avons également profité de ce travail pour tester et valider, sur la base des LES, une
paramétrisation de la dynamique de population des poches, permettant de décrire
de maniére plus physique 1’évolution de leur densité, qui est arbitrairement imposée.

Cette partie est présentée en Annexe B.

Concernant I’évaluation du modéle des poches , désigné ici sous le nom de
modeéle GL10, deux LES du cas océanique en régime d’équilibre radiatif-convectif
(RCE) et une LES du cas continental correspondant & un cas de la campagne AMMA
ont été utilisées. Toutes les LES sont réalisées sur un domaine de 200 kmx200
km avec une résolution horizontale de 200 m. Nous avons évalué la physique du
modeéle, ses variables internes, ainsi que les variables intervenant dans le couplage
avec le schéma de convection profonde. Pour ce faire, nous avons d’abord réalisé un

échantillonnage afin de calculer ’ensemble des variables internes du modéle GL10
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dans les LES. Dans ces calculs, les poches sont définies comme les zones du domaine
ou 'anomalie de température & 10 m (73¢,,) est inférieure a un seuil, sans utiliser des
algorithmes d’identification d’objets de poches, compte tenu du caractére idéalisé des
LES utilisées. Ces seuils ont été fixés a -0.2 K pour le cas RCE et a -1 K pour le cas
AMMA, sur la base d’une analyse de la divergence du vent & 10 m, qui montre les
fronts de rafales et le centre des poches via les minima et maxima respectivement.
La validation de la physique du modéle GL10 s’est essentiellement basée sur des
comparaisons entre LES. Les variables de poches, déduites dans les LES selon la
formulation de la paramétrisation, ont été confrontées a celles obtenues directement
par échantillonnage sur ces mémes LES. Les résultats confirment les hypotheses de
base du modele. Ces comparaisons montrent cependant la nécessité d’ajuster certains
paramétres libres, notamment le coefficient k, qui relie la vitesse d’étalement des
poches (C,) a leur énergie d’affaissement (WAPE). Alors que le modéle GL10 fixait
k a 0.33, les LES suggerent une valeur de 0.66, ce qui est plus cohérent avec les
estimations de Lafore and Moncrieff (1989) (k=0.68) et Bryan (2005) (k=0.5).

La validation s’est ensuite effectuée dans la version uni-colonne du modéle LMDZ
sur les cas AMMA et RCE. Dans ce cadre, la validation est beaucoup plus exigeante
du fait de I'influence des autres paramétrisations. Les simulations LMDZ1D ont été
réalisées avec des conditions initiales et aux limites strictement identiques a celles
des LES. La densité des poches, c’est-a-dire le nombre de poches par unité de surface,
estimée dans les LES, a été imposée dans les simulations LMDZ afin de permettre des
comparaisons plus précises. Les comparaisons montrent globalement la pertinence
du modéle, bien que certaines divergences subsistent. Les origines de ces écarts ont
pu étre identifiées et des améliorations ont été apportées. Le biais sec observé sous
le sommet (h,y)) des poches dans le modéle a été attribué a une altitude (h,,) de
subsidence des masses d’air fixée trop haut (600 hPa sur l'océan et le continent)
dans la paramétrisation initiale. Dans les LES, h,, est observée a des altitudes plus
basses (en dessous de 800 hPa pour RCE et en dessous de 600 hPa pour AMMA).
En faisant dépendre h,, & h,., pour tenir compte de sa variation régionale, et en
la baissant & une valeur proche de celle observée dans les LES, 'humidité simulée
au h, s’est nettement améliorée. Ces résultats montrent que cette limitation du
schéma tient principalement au choix de la valeur d’un parameétre, en particulier A,,,
et non a la formulation physique du modéle. Un nouveau schéma numérique pour
le calcul de h,, présenté en annexe A, a été proposé et s’est révélé plus robuste en
réduisant significativement les plantages lors des simulations 3D. Un biais humide a
la surface des poches a également été identifié. Il est attribué a ’absence de prise en

compte de 'effet des thermiques sur la variation de 'humidité au sein des poches.
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Nous suggérons qu’un travail complémentaire de paramétrisation des thermiques
peu profonds, non nuageux, serait pertinent afin de favoriser le mélange entre air
humide en surface et I’air plus sec situé au dessus. L’imposition du coefficient k & 0.66
dans le modele, comme suggéré par les LES, a permis d’améliorer la représentation
des profils de dw sous h,. Cette modification contribue aussi significativement & une
meilleure simulation de C, ainsi que la puissance de soulévement liée aux poches,
méme si cette derniére reste encore sous-estimée. Des biais chaud et froid des poches
ont été respectivement constatés sur les cas RCE et AMMA. Ceux-ci ont pu étre
amélioré grace au réajustement de certains parameétres libres des schémas de poches
et de convection via 'outil htexplo. Les biais persistants pourraient étre corrigés en

intégrant une représentation plus physique de la densité des poches froides.

Pour le développement de la paramétrisation des rafales de vent liées a
I’étalement des poches |, nous nous sommes principalement appuyés sur les LES
des cas RCE et AMMA. Plusieurs tentatives ont été menées afin d’aboutir & un
schéma fonctionnel et physiquement plus réaliste. Dans ce modéle, les poches sont
supposées circulaires, et le vent qui dirige leur étalement est considéré comme radial.
Ce vent radial prend naissance au centre de la poche et diverge uniformément jus-
qu’a atteindre une vitesse maximale (C) sur les bords. Le vent total au sein d’une
poche est représenté comme la somme du vent moyen dans la poche (u,y), un vent
radial (u,.), et une composante turbulente gaussienne, dont la variance dépend du
module du vent non perturbé (u,; + u,). Un tirage Monte Carlo est utilisé pour
obtenir les distributions des composantes zonale, méridienne et du module du vent
de surface, sans avoir a calculer ’expression analytique de ces distributions. Cette
approche pourrait considérablement faciliter la tache des modélisateurs, en les libé-
rant de la contrainte des calculs mathématiques complexes et en leur permettant de
se concentrer davantage sur les aspects physiques, plus déterminants pour ’amélio-
ration des modeéles climatique.

Comme ce modéle des rafales ne fournit que les distributions du vent de surface a
I'intérieur des poches, il est combiné & un second modéle décrivant le vent de sur-
face hors des poches, prenant en compte les rafales associées aux thermiques. Ce
second modele a été développé par Adriana Sima en paralléle de ce travail de thése.
L’approche Monté Carlo a rendu & nouveau facile la combinaison de ces deux mo-
déles, sans avoir a dériver des formules analytiques. Cette combinaison s’effectue en
comparant une valeur aléatoire, tirée uniformément entre 0 et 1, a la fraction (o)
de surface occupée par les poches. Si la valeur tirée est inférieure a o, le modéle

de distribution du vent dans les poches est utilisé. Sinon, celui hors des poches est
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appliqué.

Les parametres libres du modéle combiné ont été ajustés a ’aide de 'outil htexplo,
en se basant sur les distributions de vent de surface calculées dans les LES sur les
cas AMMA et RCE. Le modeéle de rafales, couplé au schéma des poches froides et
a celui des thermiques, a été intégré dans LMDZ et testé sur les cas AMMA et
RCE de la version 1D. Dans ce cadre, C, et o, sont fournis par le schéma des
poches froides (modéle GCL10). La vitesse u,y, est considérée comme le vent moyen
dans la premiére couche du GCM (uy,r = uyg, ), mais elle devrait étre reliée au vent
des couches supérieures au sommet des poches. Cette paramétrisation est laissé aux
perspectives. Des comparaisons ont ensuite été réalisées entre les distributions du
module du vent obtenues avec LMDZ1D utilisant : la nouvelle paramétrisation des
rafales avec approche Monté Carlo (LMDZ-MC), la version standard basée sur la dis-
tribution de Weibull (LMDZ-WEIB), et les distributions issues des LES pour les cas
AMMA et RCE. Les résultats montrent que LMDZ-MC reproduit mieux les vents
de surface calculés dans les LES pour les deux cas. Ces résultats offrent & LMDZ une
distribution du vent de surface plus réaliste, utilisable non seulement pour étudier
les émissions, comme c’est le cas avec 'approche Weibull, mais aussi pour d’autres
phénomeénes atmosphériques comme le soulévement des vagues. Cela serait particu-
liéerement important pour I’étude du couplage atmosphére-océan. Ce nouveau modéle
de distribution du vent sous-maille, fondé sur des principes physiques plutdt que sur
une approche statistique comme celle de Weibull, constitue également un apport

important pour améliorer le réalisme des simulations climatiques.

Concernant I’évaluation de l’efficacité du schéma des rafales dans la repré-
sentation des émissions de poussiéres dans LMDZ | des simulations ont été
réalisées sur 'année 2006, en comparant les configurations LMDZ-MC et LMDZ-
WEIB. Une premiére série de simulations, dans laquelle l'interaction poussiéres-
rayonnement a été désactivée (NO), a permis d’isoler I'impact spécifique du schéma
de rafales. Les résultats montrent que, durant les phases de convection ot se forment
des poches au-dessus des zones sources, la configuration MCNO simule des émissions
alors que WEIBNO n’en simule pas. Cela indique que les poches engendrent dé-
sormais des vents suffisamment forts pour soulever les poussiéres, confirmant ainsi
la pertinence du nouveau schéma. L’effet des thermiques a également été étudié
a travers le cycle saisonnier. En saison séche, la version MC simule des émissions
légérement plus faibles que celles de WEIBNO. Cette différence s’explique par la dis-
tribution plus étroite des vitesses de vent dans MC par rapport a la loi de Weibull,

mais aussi par le role des thermiques qui renforcent le vent moyen en saison séche en
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ramenant les jets nocturnes vers la surface, ce qui accentue les vitesses fortes dans
WEIBNO. En saison des pluies, I'impact des rafales thermiques sur les émissions
apparait plus marqué, en raison d’une convection de couche limite plus intense du-
rant cette période. L’analyse du cycle saisonnier met en évidence une contribution
trés importante des poches aux émissions de poussiéres pendant la saison des pluies.
L’¢tude de la distribution verticale montre également que le modéle reproduit bien
les différences de profondeur de la couche limite convective entre les saisons, avec
une profondeur plus réduite en saison séche qu’en saison humide.

Nous avons également réalisé des simulations incluant 'interaction entre poussiéres
et rayonnement (INT) pour les versions MCNO et WEIBNO, afin d’étudier 1'effet
radiatif des poussiéres sur leur propre distribution ainsi que sur les précipitations.
Ces configurations sont respectivement notées MCINT et WEIBINT. La comparai-
son entre MC et MCINT montre une diminution des poussiéres en saison séche et
une augmentation en saison humide dans MCINT. En saison séche, le réchauffement
atmosphérique induit par les poussiéres tend a stabiliser la colonne, ce qui réduit les
vitesses de vent de surface et donc les émissions. En saison humide, ’apport d’hu-
midité lié & la mousson, combiné au réchauffement radiatif, renforce au contraire
I'instabilité atmosphérique, ce qui favorise les émissions. L’augmentation observée
dans MCINT pendant la saison des pluies pourrait également s’expliquer par un
renforcement des rafales associées aux poches, probablement li¢ & I'influence des
poussiéres sur la convection. Il serait cependant important d’effectuer des analyses
plus détaillées pour séparer la contribution des poches et des thermiques sur cette
élévation des poussiéres en saison des pluies. Les comparaisons entre WEIBNO et
WEIBINT indiquent également une diminution des poussiéres en saison séche et
une augmentation des poussiéres en saisons, sans doute en raison de 'effet des pous-
siéres sur la circulation globale et, par conséquent, sur le vent moyen. Concernant
les précipitations, les simulations révélent une augmentation des pluies au-dessus
de I’Atlantique Est, notamment dans le golfe de Guinée, aussi bien dans MCINT
que dans WEIBINT. De plus, dans ces deux configurations, les précipitations sont
déplacées vers le nord par rapport 8 MCNO et WEIBNO, probablement en lien avec
I'influence des poussiéres sur la modulation de la ZCIT. Enfin, les quatre configura-
tions (WEIBNO, MCNO, WEIBINT et MCINT) ont été confrontées a des observa-
tions de poussiéres. Les résultats montrent que 'intégration des rafales thermiques
améliore les simulations en saison séche, avec un gain plus marqué lorsque l'interac-
tion poussiéres-rayonnement est activée. En revanche, en saison des pluies, toutes les
configurations présentent une surestimation des concentrations. Si 'intégration des

rafales de poches augmente cette surestimation, elle permet néanmoins une repré-
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sentation plus réaliste du processus physique de soulévement. Cette surestimation
pourrait étre liée a ’absence, dans le modéle, de la prise en compte des effets de
I’humidité du sol et de la végétation, qui limitent le soulévement durant cette sai-
son. L’intégration de ces processus pourrait ainsi améliorer la représentation des

poussiéres dans le modéle.

7.2 Perspectives

Les résultats intéressants obtenus dans le cadre de ce travail de thése ouvrent
la voie a de nouvelles perspectives et encouragent a poursuivre les efforts visant a
améliorer la représentation de la convection, des poches et des poussiéres désertiques

dans les modéles climatiques, ou plusieurs défis subsistent encore.

S’agissant particuliérement de la convection et des poches, des efforts sont entrain
d’étre menés dans LMDZ. Cette thése a apporté une contribution importante & ces
avancées, notamment grace aux modifications du schéma des poches froides et a
I'intégration des rafales de vent liées & leur étalement. Néanmoins, plusieurs défis
restent encore a relever. Nous présentons d’abord les perspectives a court terme di-
rectement liées a cette these, avant de souligner des grands manquements du modéle
qui devront étre pris en compte dans les futurs travaux.

Nos résultats révélent par exemple des poches froides trés humides en surface, pro-
bablement liées a I’absence de prise en compte de la convection séche de la couche
limite sur la variation de I’humidité dans les poches. Une paramétrisation simplifiée
du transport convectif, inspirée d’un modéle de panache thermique, pourrait étre in-
troduite pour mieux représenter le mélange vertical a l'intérieur des poches froides,
sans activer ce schéma de maniére uniforme sur toute la maille.

Une autre amélioration nécessaire a court terme concerne la représentation du vent
moyen a l'intérieur des poches. Comme déja suggéré, ce vent devrait étre relié aux
vents des couches supérieures, situées au-dessus du sommet des poches. Au cours de
cette thése, nous avons tenté une paramétrisation en essayant de s’appuyer les LES,
mais une analyse plus approfondie est encore nécessaire pour mieux comprendre le
lien entre ce vent et la circulation de grande échelle. Ce développement, laissé pour
les perspectives, constitue une priorité & finaliser prochainement.

Il y’a également la densité des poches froides, jusque la imposée, qui devrait devenir
une variable interne du modeéle. On sait en effet qu’elle varie fortement entre une
convection de type « popcorn » sur I'océan ou les continents, et des systémes bien

organisés et durables comme les lignes de grains. Les poches peuvent également in-
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teragir lors de leur étalement, par fusion ou par collision, cette derniére ayant un
role important dans le déclenchement de la convection. Une paramétrisation de cette
densité, basée sur un modéle de dynamique de population, est actuellement en cours
de test. Ce modele, présenté en annexe B, nécessite encore des tests et ajustements

avant de pouvoir étre activé dans les simulations climatiques.

Plusieurs perspectives devront également étre considérées dans les futurs travaux.
Par exemple, dans LMDZ, le flux d’évaporation de surface est actuellement calculé
de maniére homogeéne a l'intérieur et a l'extérieur des poches froides. Un schéma
existe déja pour effectuer ce calcul de maniére distincte sur 'océan, mais il n’a pas
encore été implémenté sur le continent. L’intégration d'un tel schéma pour les sur-
faces continentales permettrait une meilleure représentation des processus physiques.
L’organisation de la convection profonde, ainsi que sa propagation, doivent égale-
ment étre intégrées dans le modéle. Dans ce contexte, le schéma des rafales associé
aux poches froides, développé dans cette thése, constitue une avancée importante.
Une fois le vent moyen dans les poches relié au vent environnemental situé au-dessus
d’elles, le modele pourrait représenter 'interaction entre les poches froides et le ci-
saillement du vent, processus important dans l'organisation et la propagation des
orages. Le cisaillement permet en effet de maintenir la structure convective en sé-
parant les courants ascendants des courants descendants. Cette séparation empéche
les courants descendants froids de retomber directement dans les ascendances, ce
tuerait l'orage. De leur coté, les poches froides contribuent au renouvellement des
cellules convectives en soulevant I’air chaud et humide a ’avant du systéme. L’asso-
ciation de ces deux mécanismes favorise a la fois 'organisation de la convection et
sa propagation, méme si d’autres processus peuvent intervenir.

La représentation de la transition entre la convection peu profonde et la convec-
tion profonde n’est pas trés bien représentée dans le modele. Ce passage s’effectue
par une phase intermédiaire, ol les nuages atteignent des altitudes de 1'ordre de la
mi-troposphére sans encore percer la tropopause. Or, dans le modéle, la transition
de la convection peu profonde vers la profonde est actuellement déclenchée & partir
d’une taille de cumulus fixée. Il est sans doute nécessaire de mieux paramétriser
cette étape intermédiaire, correspondant aux cumulus congestus, afin de mieux re-
présenter le processus.

Dans les futurs développement de paramétrisations, nous encourageons 1'utilisation
des LES afin de valider en amont la cohérence du cadre physique retenu. Cette étape
de validation peut étre effectuée avant toute implémentation dans un GCM, en vé-

rifiant directement dans les LES les relations établies. A partir de cette premiére
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image physique, il est ensuite possible d’échantillonner les variables internes de la
paramétrisation et de controler la validité des relations fondamentales entre elles.
Une telle validation par LES garantit ainsi une représentation physique solide avant

d’envisager toute implémentation dans un GCM.

Concernant les poussiéres désertiques, des efforts sont également entrain d’étre fait
pour améliorer leur représentation dans LMDZ. Grace a ces travaux, le modéle re-
produit bien les émissions en saison séche. Cependant, défis persistent encore, en
particulier durant la saison des pluies. Cette thése a contribué a ce domaine en
intégrant les émissions liées aux poches froides. Néanmoins, plusieurs limitations de-
meurent.

En saison humide, 'humidité du sol et la végétation réduisent fortement le sou-
levement des poussiéres. Aprés les précipitations, la cohésion entre les grains de
sable augmente, ce qui rend leur mobilisation plus difficile, tandis que la végétation
agit comme une barriére mécanique limitant ’action du vent. Ces deux processus,
encore absents du modéle, devraient étre paramétrés afin de corriger la surestima-
tion des émissions de poussiéres observée en saison des pluies. Concernant l'effet de
I’humidité, des paramétrisations existent déja dans LMDZ, mais n’ont pas encore
été testées faute de temps. Une premiére étape consisterait donc a les évaluer pour
analyser leur impact sur les émissions en saison humide, puis & développer une pa-
ramétrisation adaptée pour représenter 'effet de la végétation.

Un autre défi réside dans la représentation 'effet des poussiéres sur la microphysique
des nuages. En agissant comme noyaux de condensation, les poussiéres favorisent la
formation de petites gouttelettes qui peinent a grossir suffisamment pour précipi-
ter, entrainant ainsi une suppression des pluies. Ce processus, qui peut influencer
la convection, la formation et l'intensité des poches froides ainsi que les émissions
de poussiéres elles-mémes via des rétroactions, n’est pas encore pris en compte dans
LMDZ et devrait étre paramétrisé.

Egalement, le schéma de lessivage convectifs et de grande échelle implémenté dans
LMDZ ne permet pas de distinguer les particules retombant dans les poches froides
de celles déposées en dehors de ces poches. Il serait ainsi nécessaire de développer
une paramétrisation permettant de séparer ces deux contributions, car les poussiéres
réintroduites dans les poches peuvent influencer leur intensité, comme ’ont montré
Bukowski and van den Heever (2021).

Pour progresser ces questions, 1'utilisation de simulations & haute résolution, inté-
grant les poussiéres, serait pertinente afin de mieux comprendre les processus phy-

siques impliqués et d’élaborer des paramétrisations pertinentes. Il faudrait définir
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un domaine couvrant a la fois une zone source de poussiéres et une zone en aval,
afin d’avoir aussi leur transport et leur dépot.

Nous soulignons également que le manque de données d’observation, notamment a
proximité des zones sources, reste une limite majeure a I’évaluation des simulations
de poussiéres. Le renforcement des réseaux d’observation apparait donc important
pour améliorer leur représentation afin de mieux intégrer leurs effets dans les mo-

déles climatiques.

Dans cette thése, nous nous sommes focalisés uniquement sur l'effet des rafales
de poches froides sur le soulévement de poussiéres. Il serait également intéressant
d’examiner leur role dans le soulévement des vagues, une perspective particuliére-
ment pertinente pour les études de couplage océan—atmosphére. Les poches froides
peuvent en effet générer des vagues au dessus de I'océan, lesquelles jouent un role clé
dans les échanges d’énergie, de quantité de mouvement et de matiére entre I'océan

et I’atmospheére.

Les performances de LMDZ dans la représentation des concentrations de poussiéres
en surface durant la saison séche ouvrent des perspectives prometteuses pour les
études d’impact, notamment sur la qualité de I'air et la santé publique. En effet, au
cours de cette saison, les populations ouest-africaines sont particuliérement expo-
sées a de fortes concentrations de poussiéres, évoluant ainsi dans un environnement
fortement pollué. Il serait donc pertinent, dans de futurs travaux, de recourir &
des modéles tels que LMDZ afin d’évaluer 'exposition actuelle des populations a la

pollution liée aux poussieres désertiques et d’en projeter I'évolution a I’avenir.
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Annexe A

Nouveau schéma numérique du

calcul de la hauteur des poches

Au cours des investigations présentées dans le chapitre 4, nous avons mis en
évidence des oscillations numériques des propriétés des poches que nous avons pu
attribuer au calcul de la hauteur (h,x) des poches. Nous avons pu proposer une
correction de la méthode numérique employée pour déterminer h,y, sans changer
la définition de cette hauteur dans le modéle. En modélisation numérique, il est en
effet important de distinguer le monde des équations du monde numérique, ou les
équations du modele doivent étre reformulées dans un format adapté au traitement
informatique. Les cinq mondes de la modélisation numérique sont bien décrits dans
le document sur la modélisation du climat de F. Hourdin et H. Guillemot pour I’En-

cyclopaedia Universalis (2021).

L’analyse de la série temporelle de h,y dans les simulations de LMDZ CTRL (ou
on a imposée la densité de la LES, D, = 5.107!%) avant cette correction montre
des oscillations h,; dans le cas RCE au cours des 10 premiers jours de la simulation
(Fig. A.1a). Ces oscillations augmentent encore si on augmente la densité des poches
de 10.107% et 15.1071°. Ces oscillations s’amplifient également avec la diminution
du pas de temps (Fig. A.1b). Cela révéle une instabilité de ce schéma dans le cal-
cul de h,y, causée par un bruit numérique et non par un probléme de type CFL
(Courant-Friedrichs-Lewy), car dans le cas d’un probléme CFL, le schéma se stabi-
liserait avec la réduction du pas de temps. Dans la version originale du modéle, le
calcul numérique de h, est effectué de la maniére suivante : on calcule 'intégrale de
la courbe de §7 sur la verticale de 0 jusqu’a la hauteur ot 07 atteint -0.2 K (valeur
choisie arbitrairement), cette intégrale étant notée I, _o». Ensuite, on construit un

triangle rectangle dont la hauteur est h, et la base correspond a la valeur minimale
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de 6T h,y, est alors déterminée de sorte que 'aire de ce triangle rectangle soit égale
alp_go.

On observe sur les figures A.1la et A.1b que la modification de la densité des poches
entraine des changements sur les oscillations de h,. Ces oscillations deviennent plus
importantes quand la densité des poches augmente.

On analyse les profils de 67" dans ses simulations de LMDZ CTRL avec différentes
D, pour identifier I'origine de ces sauts de h,. Les analyses révélent que les oscilla-
tions de h,,; sont causées par les sauts de Ij,_g .o, elles-mémes dues aux discontinuités
dans la couche ot §7T atteint -0.2 K.

Afin de corriger ces oscillations de h,), nous proposons une méthode numérique
plus robuste pour déterminer cette hauteur. L’idée est de calculer A, a partir de la
pression ot I'intégrale verticale (négative) du profil de §7" atteint une fraction (o)
de sa valeur maximale. Le paramétre o;,; est fixé ici arbitrairement a 90%. Nous
calculons cette intégrale en s’arrétant au dessus de la premiére valeur non négative
de 0T, ce qui permet d’avoir un calcul continue de I'intégrale. Ce nouveau calcul de
hwi n'est pas dépendant de la valeur minimale de 07"

Pour tester ce nouveau schéma, nous réalisons une simulation de LMDZ sur le cas
RCE océanique en utilisant ce nouveau schéma (LMDZ NEW), avec des valeurs
de D,y imposées a 5.1071°, 10.1071% et 15.107!°. Les simulations de LMDZ NEW
montrent que ce nouveau schéma de h,, améliore nettement la représentation de
la hauteur des poches dans le cas cas RCE (Fig. A.la et Fig A.1b). Les sauts de
hor généralement observés dans les simulations de LMDZ CTRL ont majoritaire-
ment disparu avec LMDZ NEW. Nous constatons seulement de faibles oscillations
de h,r au début des simulations avec LMDZ NEW lorsque la densité est fixée a
10.107% et 15.1071% (Fig. A.1a). Cependant, ces oscillations disparaissent lorsque le
pas de temps est réduit (Fig. A.1b). Ces résultats montrent la stabilité de ce nou-
veau schéma numérique de h,. IIs montrent également que h,,; est moins sensible a
la densité des poches avec ce nouveau schéma, ce qui est important, car un modele
visant & calculer I’évolution de la densité des poches dans LMDZ est en cours de
développement.

L’utilisation de ce nouveau schéma de h,; a permis de résoudre des plantages ré-
currents dans les simulations globales (3D) LMDZ en 288x289x95 et dynamico
nb80 (Les deux & une centaine de km de résolution horizontale). Comme dans les
simulation 1D, ces plantages, causés par les oscillations de h,; générées par I’ancien
schéma, s’aggravaient avec la diminution du pas de temps. Ces résultats avec le 3D

confirmeraient donc la robustesse de ce nouveau schéma pour le calcul de hyy.
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(a)

LMDZ CTRL (D=5e-10)
500 ——— LMDZ CTRL (D=10e-5)
LMDZ CTRL (D=15e-5)
—— LMDZ NEW (D=5e-10)
—— LMDZ NEW (D=10e-5)
400 LMDZ NEW (D=15e-5)
300
€
200
100
00 2 4 6 8 10 12 14 16 18 20 22 24 26 28
jour
(b)
—— LMDZ CTRL (D=5e-10)
500 — LMDZ CTRL (D=10e-5)
LMDZ CTRL (D=15e-5)
—— LMDZ NEW (D=5e-10)
—— LMDZ NEW (D=10e-5)
400 LMDZ NEW (D=15e-5)

| I

100

00 2 4 6 8 10 12 14 16 18 20 22 24 26 28
jour

FIGURE A.1 — Comparaison de la hauteur des poches (h,) dans LMDZ selon ’an-
cien et le nouveau schéma numérique pour le calcul de A,y (correspondant respec-
tivement & LMDZ CTRL et LMDZ NEW), avec une densité¢ fixée & D, = 5.1071,
Dyr = 10.1071% et Dy = 15.1071% pour des pas de temps de 10 minutes (a) et de

5 minutes (b).
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Comme évoqué dans la section 4.6.2 du chapitre 4, h,; a été légérement abaissée
dans les simulations de LMDZ CTRL ainsi que dans les différentes configurations
modifiées. Dans le modéle, h, représente 'altitude ou le profil de 'écart de tem-
pérature (07') entre 'intérieur et l'extérieur s’annule, ce qui correspond a un oy
d’environ 99 % dans ce nouveau calcul numérique. Cependant, nous avons observé
que l'altitude o le minimum de dw (la o la subsidence dans la poche est plus forte)
se situe est bien plus élevée dans le modéle que dans les LES lorsque oy,; est fixé a
99 %. Cette divergence a conduit ’'ajustement de h,; en fixant une valeur de o;,;
de 75 %. Nous soulignons que cette modification sort du monde numérique, car elle
concerne directement le modeéle, mais son impact sur les résultats est limitée. Par
ailleurs, nous montrons ici que oy, peut étre utilisé pour ajuster la hauteur des

poches.
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Annexe B

Test d’'une paramétrisation de la

dynamique de population des poches

On présente ici des tests d’un modéle en cours de développement avec Jean-Yves
Grandpeix pour calculer la densité surfacique des poches froides (nombre de poches

par unité de surface) qui était imposée jusque la.

B.1 Présentation du modéle

Le modeéle décrit une population de poches (wakes) circulaires ayant toutes la
méme hauteur, les mémes profils de température et d’humidité et la méme vitesse
d’étalement, les rayons, quant a eux, pouvant prendre deux valeurs, selon que les
poches sont alimentées par des colonnes convectives ou non (auquel cas, elles s’ef-
fondrent simplement). Il s’agit de représenter, a I’aide de ce schéma trés simple,
une population de poches d’ages et de tailles variées, dont certaines sont alimentées
par des colonnes convectives pendant que d’autre sont simplement en train de s’ef-
fondrer. En outre ces poches peuvent entrer en collision ou fusionner. Il s’agit de
la troisiéme version de ce modéle; ¢’est une sophistication de la version précédente

(non présentée ici) dans laquelle tous les wakes avaient la méme taille.

B.1.1 Principes

Le modeéle suppose que les poches naissent a partir des Cumulonimbus issus des
cumulus avec un taux de naissance B. Ces poches meurent par effondrement lorsque
la convection ne les alimente plus. Elles peuvent également disparaitre a I'occasion
de leur rencontre : soit elles fusionnent, ce qui réduit leur nombre d’une unité, soit

leur collision entraine la disparition des deux poches initiales et la création d’une
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nouvelle, ce qui conduit également & une diminution d’une unité.

Le modéle décrit deux catégories de poches froides : les poches actives, alimentées
par des colonnes convectives, et les poches inactives, lesquelles s’effondrent. Chaque
catégorie de poche est caractérisé par un rayon spécifique : 4 pour les poches actives
et r; pour les poches inactives. La population des poches froides est ainsi décrite par
trois variables : D, la densité totale des poches; A, la densité des poches actives; et

I, la densité des poches inactives, avec la relation D = A + 1.

Le modéle suppose que les processus de rencontre ménent & un changement de rayon
des poches concernés. Comme le rayon des poches du modéle ne peut prendre que
deux valeurs, ces changement discontinus locaux du rayon moyen des poches vont
étre représentés par une évolution continue. Et, bien sur, d;r4 et 0;r; seront diffé-
rents de C,.

Il existe trois types de rencontres : entre deux poches actives, entre deux poches
inactives et entre une poche active et une poche inactive. Les trois taux de ren-
contres par unité de surface seront respectivement désignés par [A2]., [[*]co et
1]

Il est supposé que les rencontres de types [I?] sont collisionnelle : les deux poches
entrant en collisions meurent alors qu’'une nouvelle colonne convective apparait en-
gendrant une nouvelle poche active. Les rencontres de type [A?] et [A]], au contraire,
sont de nature fusionnelle, amenant & une nouvelle poche active a la place des deux
poches incidentes. La densité des poches actives évolue donc sous l'effet des nais-
sances, des morts (temps de vie 74 & paramétrer), des collisions I? (qui apportent
chacune une nouvelle poche active) et des collisions A% (qui diminuent chacune le
nombre de poches actives d'une unité). Cette dynamique est décrite par la relation

suivante :

1
OA=B— —A+ [P — [Aeor (B.1.1)
TA

Les poches inactives évoluent sous l'effet des morts des poches actives (lorsqu’une
poche active meurt, elle devient une poche inactive), des morts des poches inactives
(temps de vie 77 & paramétrer), des collisions [I?] et des collisions Al. Chaque col-

lision [I?] entraine la disparition de deux poches inactives et une collision ATl fait
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disparaitre une poche inactive. Cette dynamique est donnée par la relation suivante :

ol = iA — lI —2[1%cor — [Alcor (B.1.2)

TA TI

L’évolution de la densité totale est alors donnée par la relation suivante :

D—-A

T

0,D =B — — (1ot + [Acor + [T Aleat) (B.1.3)

Mais [I%]. + [A%cor + [[A]eo est égal au taux total de collisions, sans distinction

du type de poche; on I'écrira [D?].y :

D—-A

71

3tD:B—

— [D¥eal (B.1.4)
La géométrie de ces rencontres est illustrée sur la Figure B.1.

Pour estimer les taux de rencontre [A%].,;, [[*]cor et [Al]ey (et par conséquent,
[D?].01), nous nous plagons dans I'hypothése diluée, c’est-a-dire que la densité surfa-
cique de poches ne dépend pas de la présence des poches.

Pour commencer, le cas des rencontres [Al] est considéré. Pour une poche active
A de centre Cy et de rayon ry4, les poches inactives (de rayon r; et de centre C7)
qui vont rencontrer A pendant l'intervalle de temps dt sont celles vérifiant deux

conditions :

1. elles n’ont pas de point commun avec A pendant I'instant initial, ¢’est-a-dire :
|CACT]| > ra+11 (B.1.5)

2. elles présentent un recouvrement non vide avec A apres que les rayons ont crii
de par étalement a la vitesse C, (supposée identique pour les poches actives

et inactives) pendant le temps dt :
||CAC[|| > (TA—FO*(St)—f—(T[—f—C*(st) (B16)

L’ensemble des centres des poches inactives qui vont rencontrer A pendant dt est
donc la couronne de centre C'4, de rayon intérieur r4 + r; et de rayon extérieur
ra+ 1+ 2C.0t. L’aire de cette couronne est approximativement 27 (r4 + r7)2C.dt.

Dans I’hypothése diluée, le nombre de centres de poches inactives située dans cette
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FIGURE B.1 — Schéma de la couronne des centres des poches de rayon Ry qui vont
toucher la poche A de rayon R; pendant un intervalle de temps dt. La poche A est
de rayon R; au début de l'intervalle temporel (bord de A représenté en bleu) et de
rayon Ry + C,dt a la fin de 'intervalle (bord de A représenté en rouge). Les poches
B et C sont de rayon Ry au début de l'intervalle temporel (bord dessinés en bleu)
et de rayon Ry + C.0t a la fin de lintervalle (bords dessinés en rouge). B est la
poche la plus proche de A rencontrant A pendant 'intervalle temporel ; la distance
entre les centres de A et B est est Ry + Rs. C est la poche la plus éloignées de A
rencontrant A4 pendant l'intervalle temporel ; la distance entre les centres de A et de
C est de R+ Ry +2C,0t. L’ensemble des centres des poches de rayon R, rencontrant
A pendant 4t est la couronne hachurée comprise entre les cercles concentriques de
A de rayon Ry + Ry et Ry + Ry + 2C.,6t. Son aire est 4 m (Ry + Rs) C.0t
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couronne est 417 (r4+r;)C.dt. Et comme il y’a A poches actives par unité de surface,

le nombre [ A]., de rencontres [ A] par unité de surface et par unité de temps est :
(Al = 4L AT (ra + 71)Ci (B.1.7)

Le dénombrement des rencontres [AA] se fait de la méme fagon que le dénombrement
des rencontres [ A], & ceci prés que les deux poches qui se rencontrent sont indis-
cernables : la rencontre de deux poches actives A et B va étre comptée deux fois,
une premiére fois lorsque, considérant les poches qui vont rencontrer A, on trouve
B puis, lorsque, considérant les poches qui vont rencontrer B, on trouve A. Il faut

donc diviser le résultat du dénombrement par deux :

[A2],0 = 4% ,C, (B.1.8)

De méme :
[1?)eor = 41777 C, (B.1.9)

Finalement, le taux de rencontre [D2]col s’écrit :

[D?]eor = 4nC.[riPa, + raA® + (ra+r)IA] (B.1.10)

ot 'on a substitué o; a 7 r71%ay

Mais 7712 + raA% + (ra +r7)IA = (A+ I)(Ars + Ir;). En notant que A+ 1 = D
et que Ary + Iry = D7 ou 7 désigne le rayon moyen, le terme général de collision
s’écrit :

[D?) oo = 4nC. D7 (B.1.11)

Les équations d’évolution de D et de A s’écrivent alors :

1
oD = B — — — 47xC,.D*F (B.1.12)
TI
et :
A 2 2
A =B — — +4nC.[I7r; — A®r4) (B.1.13)
TA
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La fraction surfacique (04) couverte par les poches actives augmente par la naissance

2

N 2 N
5, ou 7. est un parameétre

des poches (chaque nouvelle poche a une aire a, = 7r
libre), par les rencontres de type [I?] (chaque collision entraine la création d’une
poche active d’aire a,), par les rencontres de types AI (chaque rencontre ajoute 7r?
a l'aire des poches actives, o 77 est le rayon des poches inactives) et par étalement ;
elle diminue par inactivation des poches (chaque inactivation fait disparaitre une

aire w4 oll 4 est le rayon des poches actives) :

1
0104 = Bay + [I?)eot@o + 77 [I Al oy + 2174 AC, — — Anr?, (B.1.14)
TA

soit :

0,04 = Ba, + 470, (ra + 7)o A + 4xCoril*a, + 2mCor g A — g4 (B.1.15)
TA

La fraction surfacique (o7) couverte par les poches inactives augmente par 'inac-
tivation des poches actives (chaque inactivation apporte une aire 774 aux poches
inactives) et par étalement; elle diminue par mort des poches (chaque mort fait
disparaitre une aire 7r%), par les rencontres de type [I A] (chaque rencontre entraine
la disparition d'une aire 7r?) et par les rencontres de type [I?] (chaque collision

entraine la disparition d'une aire 27r?) :

1 1
Oror = —Amry + 2wCorg I — —Iry — 217 [1%cor — 777 Al o (B.1.16)
TA TI

En utilisant o; = 771, il vient :

1 1
0o = —oa+2rCr ] — —op —4AnC.[2rior] + (ra + r)orA] (B.1.17)
TA Tr

La fraction surfacique totale (o) des poches est affectée par des rencontres de type
[I?] : chaque collision entraine la création d’une aire a, pendant que les deux poches
incidentes disparaissent (disparition d’une aire 277%). Les rencontres de type [A?] et

[AI], qui sont de type fusionnel, laissent au contraire la fraction o invariante.
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L’équation d’évolution de o s’écrit alors :

0,0 = Ba, — I 4 97FDC, — [1?) ot (27077 — a,) (B.1.18)
TI
soit :
0,0 = Ba, — I 4 97FDC, — 47 I*Cory(2mr% — a,) (B.1.19)
TI

Récapitulation : il faut choisir deux variables d’état parmi les densités A, I et D,
et deux variables d’état parmi les fractions surfaciques o4, o et 0. A et D sont
choisis pour les densités et o4 et o pour les fractions surfaciques.

Les équations s’écrivent :

(

D= B— L —4rC.D*r

oA =B — % + 4w C,[[Pr; — A?r ]

(B.1.20)
O = Ba, — 7 + 21T DC; — 4 I2Corr(27r? — ay,)
\(9150,4 = Ba, + 47C.(ra +r1)ojA+ 4nCorila, + 27Cra A — i_j
et )
I=D-—-A
Oy =0 — 0O
' ! (B.1.21)

o =nril

o4 =1r4A
\

B.1.2 Aspects techniques
Parameétrisation de 7;
Considérons une poche inactive ayant pour rayon et hauteur initiales r, et h,. En sup-

posant que la poche s’effondre adiabatiquement en gardant un volume constant (en

négligeant la variation de la masse volumique et en supposant la masse constante),
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on obtient (V est le volume de la poche) :

(r _ /—W_‘;L
(B.1.22)
T 3
\3th - —20* %
(
Wape = %hé@surf
(B.1.23)
\C* = /Wape

Cyx __ h

C*O h_O

Oh = —2h2, [ 2 Cuo

La formule de 0,h s’intégre facilement. En exprimant tout en fonction de C,, on

obtient : o o

t B.1.24
c. - ( )

(

Il est supposé que la poche est morte lorsque la vitesse d’expansion devient inférieure

a une vitesse seuil C,;. Cette vitesse seuil est atteinte au bout d’un temps ¢; donné

par :
C*O 2 C*O
=1+2—t B.1.25
( O*t) +27 ( )
ce qui donne :
To O*O 2
= -1 B.1.2
b= sl -1 (B.1.26)

Application : a chaque instant, nous connaissons le rayon r et la vitesse d’expansion
C, de la poche représentative. Nous connaissons donc la durée ¢; qu’il lui reste a

vivre :

r C*O

tI - 20* [( C*t

)2 —1] (B.1.27)

Supposant un régime permanent (D — A, r et C, constants), le nombre de poches qui
meurent dans l'intervalle [¢,¢ + t] est égal au nombre de poches inactives ayant un
age compris entre t; — 0t et ¢;, doit (D — A)%' En prenant, 7; = t; nous retrouvons

le terme de mortalité de ’équation.
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Le paramétre 74 est actuellement imposé dans le modéle, mais il doit étre égale-

ment paramétré.

Les paramétres libres du modéle sont donc : le rayon de naissance des poches (rg)

et la durée de vie des poches actives (74)

B.2 Validations de quelques hypothéses du modéle
dans les LES

Dans cette section, nous validons quelques hypothéses de base du modéle de
densité a partir d’une simple analyse des poches dans les LES. La figure B.2 présente
les cartes des anomalies de température & 10 m (710, ), sur lesquelles sont superposées
les ascendances associées aux thermiques et aux poches froides, ainsi que les nuages
bas, les nuages moyens et les précipitations pour les cas AMMA et RCE. Comme
dans les sections précédentes, les poches sont identifiées par des anomalies de Tig,,
inférieures a -0.2 K pour RCE, et 4 -1 K pour AMMA. Les nuages bas sont identifiés
comme les points de grille ou 'eau condensée dépasse 107° kg/kg, moyennée entre
0 et 4 km d’altitude. Les nuages moyens sont aussi calculés de fagon similaire, mais

moyennée entre 4 et 8 km d’altitude.

On observe que la plupart des nuages bas se forment en dehors des poches, aussi bien
dans RCE que dans AMMA. On note également une forte présence de nuages bas au
niveau des fronts de rafales des poches dans les deux cas. Cela s’explique par les fortes
ascendances générées a ces endroits. Comme expliqué dans les sections précédentes,
lorsque les poches s’étalent, elles soulévent l'air chaud a partir de leurs fronts de
rafales, déclenchant ainsi de nouvelles cellules convectives. Les nuages moyens, quant
a eux, se situent généralement au-dessus des poches. Bien qu’ils précipitent souvent &
I'intérieur de celles-ci, on observe également des poches ol ces nuages ne produisent
pas de précipitations, un constat particuliérement visible dans le cas RCE. Les poches
associées a des précipitations sont en général celles présentant de fortes ascendances
sur les bords et une présence assez forte de nuages bas autour. Dans les rares cas
sans pluie, les ascendances sont faibles ou absentes sur les bords des poches, et ne
sont pas associées a la formation de nuages. Cette observation est cohérente avec
I’hypothése du modele, selon laquelle seules les poches alimentées par la convection,
dites « poches actives », peuvent déclencher de nouvelles cellules convectives et

entretenir la convection. Les poches inactives, c’est-a-dire non alimentées par la
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X(km)

FIGURE B.2 — Méme chose que la Fig.4.6 du chapitre 4, mais avec l'ajout des nuages
bas (en violet), des nuages moyens (en blanc) et des précipitations (en gris). Les
nuages bas et moyens sont calculés aux points de grille ot ’eau condensée dépasse
1075 kg/kg, sur des moyennes d’altitudes respectives de 0 & 4 km et de 4 a 8 km.
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convection, s’étalent simplement puis disparaissent. Dans le cas RCE, on remarque
également que ce sont les poches de petite taille qui sont souvent associées a des
précipitations, tandis que les poches sans pluie tendent a étre plus grandes. Cela
soutient deux hypothéses du modéle : d'une part, que les poches naissent toujours
actives avec un rayon initial réduit ; d’autre part, que les poches actives possédent
un rayon moyen plus petit que les poches inactives. Méme pour les grandes poches
contenant de la pluie, les fortes ascendances ne sont localisées que sur les bords,
la ou les précipitations ont lieu. Cela suggére que ces poches étaient peut-étre a
I'origine de petites poches actives, qui se seraient fusionnées avec une ou d’autres
poches inactives, augmentant ainsi leur taille. Il serait pertinent d’utiliser les outils de
détection automatique des poches afin de pouvoir suivre leur évolution temporelle,
ce qui permettrait une meilleure compréhension des processus de rencontre entre

poches.

B.3 Evaluations des variables internes

Ici, nous testons le modéle de densité des poches dans LMDZ1D sur les cas
AMMA et RCE et évaluons ses variables internes par rapport aux LES. Les figures
B.3 et B.4 présentent a la fois les valeurs de densité, de fraction surfacique et de rayon
issues de LMDZ avec la dynamique des poches activée (LMDZ-POPDYN), LMDZ
avec la version standard ou la densité des poches est fixée (LMDZ-STAND) ainsi
que celles estimées dans LES pour les deux cas. Nous profitons aussi de cette sec-
tion pour analyser les variables de W APFE et ALP,,;. simulées par LMDZ-POPDYN
et LMDZ-STAND pour les deux cas Les simulations LMDZ-POPDYN et LMDZ-
STAND intégrent les modifications apportées au schéma des poches, notamment la
réduction de h,,, du coefficient k et le nouveau schéma numérique de h,. Des ex-
périences de calibration automatique de htexplo ont aussi été menées afin d’ajuster
certains parametres libres, mais nous présentons ici directement les résultats, sans
détailler ces étapes de calibration.

Les simulations RCE sont réalisées sur 60 jours et celle de AMMA sur la journée
du 10 juillet 2006. Pour la LES, nous représentons simplement la valeur obtenue sur

une moyenne calculée sur tous les instants disponible pour chacun des deux cas.

Dans le cas RCE, LMDZ-POPDYN simule en moyenne une densité totale (D tot)
des poches de I'ordre de 4.1071°, ce qui correspond environ & 4 poche sur 100 km
x 100 km, trés proche de celle estimée dans LES (Fig. B.3a). La densité (Dyy 4)

des poches actives est légérement inférieure mais reste proche de cette valeur (Fig.
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FIGURE B.3 — Densité totale des poches froides (wdens, en m~2) et densité des
poches actives (awdens, m~2) (a), fraction de surface totale (sigmaw) et fraction
de surface des poches actives (asigmaw) (b), rayon moyen des poches (radwk, en
m), incluant celles actives (aradwk, en m) et inactives (iradwk, en m) (c), ainsi
I'énergie d’affaissement (WAPE, en J/kg) et la puissance de soulévement (ALP,y,
en W.m~2) des poches simulés dans LMDZ avec la paramétrisation de la dynamique
de population des poches (LMDZ-POPDYN) et dans LMDZ la version standard ot
la densité de poches est fixée (LMDZ STAND) sur le cas RCE. Les lignes noires en
pointillés représentent les valeurs correspondantes estimées dans la LES.
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B.3a). Pour le cas AMMA, LMDZ-POPDYN fournit également des valeurs de D, 1ot
proches de celles des LES, avec une moyenne autour de 2.1071° (Fig. B.4a). L’évolu-
tion temporelle de D, 101 €st cohérente avec les LES : de nombreuses petites poches
apparaissent puis fusionnent progressivement, entrainant une diminution de la den-
sité et la formation de poches plus larges. Dans les deux cas, D, 4 reste légérement
inférieur & D,y 10+ mais trés proche (Fig. B.3a et Fig. B.4a), suggérant une présence
de poches actives plus importantes. Cette remarque est cohérente avec les analyses
des LES de la section précédente, ot 'on constatait la présence de pluie dans la
majorité des poches, traduisant une densité des poches actives plus élevée que celle
des poches inactives.

Pour la fraction surfacique totale (oupt0t), LMDZ-POPDYN simule dans les deux
cas une augmentation progressive jusqu’a atteindre 0.4, valeur a partir de laquelle
elle est contrainte a rester fixe (Fig. B.3b et Fig. B.4b). En effet, le modéle impose
une limite de 0.4 afin d’éviter une fusion généralisée des poches lorsque leur surface
devient trop importante. Le résultat de o, 1o Obtenus avec LMDZ-POPDYN consti-
tue une amélioration notable par rapport a la version standard, ou oy atteint
directement la valeur limite des ’apparition des poches, notamment sur le cas RCE,
ce qui n’est pas réaliste. La fraction surfacique des poches actives reste par ailleurs
trés proche de oy, 10, ce qui traduit la faible contribution des poches inactives.
L’évolution du rayon simulé par LMDZ-POPDYN apparait également réaliste, avec
des valeurs comparables a celles des LES pour les cas RCE et AMMA (Fig. B.3c et
Fig. B.4c). Dans les deux cas, le rayon des poches inactives reste inférieur a celui
des poches actives. Dans le cas AMMA, on constate cependant une augmentation
du rayon des poches inactives a partir de 21h, probablement liée a la dissipation de
certaines poches actives.

Enfin, concernant la variable WAPE, LMDZ-POPDYN reproduit des valeurs de
proches de celles des LES, bien qu’elles restent légérement sous-estimées (Fig. B.3e
et Fig. B.4e). En revanche, ALP,;, demeure fortement sous-estimé dans les deux cas
(Fig. B.3f et Fig. B.4f).

Comme suggéré plus haut, 1'utilisation des outils de détection d’objets de poches
serait intéressant afin d’obtenir automatiquement la densité et le rayon moyen des
poches dans les LES. Jusqu’ici, ces valeurs ont été estimées manuellement dans
les LES, ce qui limite la précision. Une telle approche permettrait une validation
plus rigoureuse. Il serait également pertinent de trouver une méthode permettant
d’échantillonner les poches actives et inactives a partir des précipitations observées

en leur sein, afin de mieux caractériser leurs propriétés géométriques respectives.
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B.4 Effets sur les profils 07, dq et dw

L’impact de la paramétrisation de la densité des poches sur les profils de 47T,
0q et dw est examiné dans cette section. Les analyses sont menées a la fois dans
LMDZ-POPDYN et LMDZ-STAND.

La figure B.5 illustre les profils simulés de 07", dq et dw dans LMDZ-POPDYN et
LMDZ-STAND, comparés & ceux obtenus par les LES. On constate que LMDZ-
POPDYN offre une meilleure représentation du profil de ¢7" dans les cas RCE et
AMMA (Fig. B.5a et Fig. B.5d). Dans le cas RCE, les profils de dq et dw sont égale-
ment bien reproduits (Fig. B.5b et Fig. B.5¢), malgré une surestimation de ’humidité
en surface des poches associées. En revanche, dans le cas AMMA, LMDZ-POPDYN
sur-estime le profil de d¢ au sommet des poches, et le profil de dw traduit une
subsidence trop faible dans les poches froides (Fig. B.5e et Fig. B.5f). Ces écarts
pourraient étre liés a ’absence de certains processus physiques, mais des diagnostics
plus approfondis restent nécessaires.

Il convient de préciser que les nouvelles simulations LES du cas AMMA n’ont été
disponibles qu’a un la fin de la thése, ce qui n’a pas permis d’effectuer des analyses
détaillées. Les biais obtenues pourraient donc aussi due & une manque d’analyses de

ces nouvelles LES. Des diagnostiques plus fines seront réalisées ultérieurement.

Dans l'ensemble, les résultats mettent en évidence de bonnes performances de la
paramétrisation de la densité des poches. Bien que des améliorations soient encore
possibles, cette paramétrisation constitue désormais une base solide pour une prise
en compte plus physique de I’évolution des poches froides dans LMDZ, avec une

représentation plus robuste et réaliste de leur densité.
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FIGURE B.5 — Profils verticaux de 07, dg et dw issus des LES, comparés aux si-
mulations LMDZ avec la paramétrisation de la dynamique de populations activée
(LMDZ-POPDYN) et avec la version standard & densité de poches imposée (LMDZ-
STAND), pour les cas RCE (a, b, ¢) et AMMA (d, e, f).
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Annexe C
Liste des Acronymes

GCM : Global Climate Model

SPLA : SimPLified Aerosol

LMD : Laboratoire de Météorologie Dynamique

FIT : Front InterTropical

AEJ : African Easterly Jet

TEJ : Tropical Easterly Jet

MCS : Mesoscale Convective System

AMMA : African Monsoon Multidisciplinary Analysis
MCS : Mesoscale Convective System

MJO : Madden-Julian Oscillation

NAO : North Atlantic Oscillation

LLJ : Low Level Jet

LPAO-SF : Laboratoire de Physique de I’Atmosphére et de I’Océan Siméon
Fongang

ALE : Available Lifting Energy

ALP : Available Lifting Power

CIN : Convective Inhibition

RCE : Radiative-Convective Equilibrium

ALP : Available Lifting Power

AOT : Aerosol Optical Thickness

PM10 : particules de diamétre inférieur & 10 micromeétres
WAPE : Wake Available Potential Energy

SCM : Single Column Model

LMDZ-WEIB : LMDZ utilisant une distribution de weibull pour le vent de

surface
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Annexe C. Liste des Acronymes

LMDZ-MC : LMDZ utilisant la paramétrisation des rafales de vent avec
approche Monté Carlo

NOINTER : sans interaction entre poussiéres et rayonnement

INTER : avec interaction entre poussiéres et rayonnement

ZCIT : Zone de Convergence Inter-tropicale

EP : Emissions de Poussiéres
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