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1 Abstract

A relevant description of atmospheric total speci�c humidity variance is
essential in global climate models (GCM) because the performance of the
cloud schemes and therefore the ability to predict cloud cover, a critical ele-
ment of climate modeling uncertainties, is largely based on this variance.
The aim of this work is to develop a uni�ed prognostic model of this speci�c
humidity variance based on turbulent transport schemes in the atmospheric
column of a GCM. This prognostic model is established and implemented in
the context of shallow convection to ensure consistency with previous work,
but the conceptual approach and tools are designed to subsequently adapt
to the mass �ux scheme of deep convection with the long-term objective of
making the speci�c humidity variance a state variable of the atmospheric mo-
del. The turbulent transport in the boundary layer is commonly modeled by
the combination of a mass �ux scheme of convective updrafts and a classical
K-di�usive scheme. To implement the prognostic variance model, in addi-
tion to an explicit well-known formulation, we show that judicious use of the
conservative formulation of tracer circulation in the mass �ux routine allows
variance to be transported very e�ciently and elegantly. Furthermore, model
adjustment is carried out using recently added automatic tuning methods
which are now an integral part of the development of parameterizations.

2 Introduction

The importance of cloud representation in the radiative budget of the
earth is widely documented (Bony et al., 2006; Stowasser et al., 2006; Zelinka
et al., 2017) which has led climate modelers to integrate increasingly accu-
rate cloud schemes in global climate models. Among these cloud schemes, a
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classical approach consists of building a sub-grid pdf of the (total or relative)
humidity or of another thermodynamic quantity such as the saturation de�cit
(Mellor, 1977; Sommeria and Deardor�, 1977; Jam et al., 2013) allowing us
to distinguish a saturated fraction of the mesh which is associated with cloud
fraction. These pdfs were gradually re�ned in their form, at �rst they were
symmetrical (triangle in (Smith, 1990), rectangle in (Le Trent and Li, 1991))
but observation and LES studies has shown the importance of asymmetrical
distribution especially in the convective boundary layer with cumulus clouds
(Lewellen and Yoh, 1993; Larson et al., 2002). Therefore it became essential
to capture this asymmetry which led to testing various pdf forms (log-normal
in Bony and Emanuel (2001), beta in Tompkins (2002) or bigaussian in Jam
et al. (2013),Golaz et al. (2002b)) with non-zero skewness. In parallel, the
modeling of the upper moments of the distribution has also evolved, �rst a
priori (Smith, 1990; Le Trent and Li, 1991)) then diagnosed (Bony and Ema-
nuel, 2001; Jam et al., 2013) from thermodynamical variables or prognosed
(Tompkins, 2002; Watanabe et al., 2009) from transport equations with va-
rious closure hypothesis. But whether they are established diagnostically or
prognostically, it has been necessary to develop a good understanding of the
physical sources of these distribution moments, in particular to close the
higher-order terms related to turbulent transport.

To study the turbulent source terms of humidity variance and higher mo-
ments, the modeling of turbulent transport in GCMs is therefore a central
context element. Higher-order turbulent closure models has been proposed
in (Mellor and Yamada, 1982) with assumption of downgradient di�usion for
the turbulent �uxes. This downgradient di�usion approach was also exploited
in the context of a joint Bigaussian pdf of velocity, liquid potential tempera-
ture and total speci�c humidity to predict cloud cover (Golaz et al., 2002a,b;
Larson et al., 2002). Though, alongside turbulent di�usion, the importance of
convective structures allowing non-local countergradient transport has long
been established (Deardor� (1966)). Several approaches exist to model these
structures, such as for example the addition of a countergradient di�usive
�ux term (Lock et al. (2000)) for boundary layer turbulence, here we place
ourselves within the framework of so-called mass �ux schemes. Concerning
the PBL, the association of these mass �ux schemes, representing organi-
zed convective plumes, with a classical K-di�usion theory modeling small-
scale turbulence (Mellor and Yamada (1982) Yamada (1983)), has led to the
�eddy di�usion mass �ux� (EDMF) models initially developed in Chat�eld
and Brost (1987) and widely disseminated since (Köhler et al. (2011) Hour-
din et al. (2002) Rio and Hourdin (2008) Neggers et al. (2009) Pergaud J.
et al. (2009)). This schemes has proven to be very e�ective in representing
dry boundary layers with cloud formation at the tops of ascending plumes so
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as stratocumulus and transition scenes (Frédéric Hourdin et al. (2019)). Mass
�ux schemes are also commonly used to represent deep convection scenes, in
particular the Tiedke's scheme (Tiedtke (1989) and the Emanuel's scheme
(Emanuel (1991)). Based on CRM studies, Klein showed the preponderant
role of convective terms in explaining the evolution of the variance of total
speci�c humidity (Klein et al. (2005)). The addition in a GCM of ad-hoc
convective source terms of variance has been proposed in diagnostic (see
Jam et al. (2013) for shallow convection or Bony and Emanuel (2001) for
deep convection) or prognostic models (Tompkins (2002), Watanabe et al.
(2009), Neggers (2009)) but the complete coupling with the mass �ux model
as developed by Klein does not yet seem to have been studied. In fact Klein
doubted the feasibility of implementing his developments in large-scale mo-
dels because of the lack of information on the variance in the thermal plume
scheme. Inspired by Klein's approach and relying on an original methodology
to circumvent the di�culties he raised, we propose here to integrate into a
GCM the complete coupling of the mass �ux scheme to the statistical cloud
scheme via a prognostic variance equation. It is worth noting at this point
that the choice of our Bigaussian pdf assures the closure of the third order
moment of the total speci�c humidity given knowledge of the variance, so we
don't have to develop a speci�c set of third order prognostic equations as in
Klein et al. (2005) or Golaz et al. (2002a) for example.

In the LMDZ model, large-scale humidity variability is diagnosed from
the speci�c humidity of ascending plumes in the mass �ux schemes (shallow
or deep) and from its large-scale mean value, with a bigaussian pdf in the
boundary layer. Although this model is very e�ective for representing cu-
mulus and stratocumulus scenes (Jam et al. (2013), Frédéric Hourdin et al.
(2019), Hourdin et al. (2021), Madeleine et al. (2020)), it fails to represent
some sources of variance, related to subsidence, intensity of detrainment or
precipitating downdrafts for example, which can have an impact on cloud
representation, especially in cases of deep convection. Rather than adding
ad-hoc diagnostic terms and multiplying free parameters, we gradually mo-
ved to a global redesign of the variance model towards a prognostic approach,
the �rst stage of which is shown here. This approach allow us to build up a
uni�ed vision of the variance evolution and its causes with very limited free
paramaters. The calibration of this free paramaters in LMDZ is now achivied
by using statistical learning tools based on Bayesian inference models. The
principle is to use a set of 1D simulations of the model with various choices
of parameters to produce a gaussian statistical emulator of some speci�c me-
trics over the hole space of parameters. These metrics are then compared to
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LES simulations which makes it possible to de�ne a subspace of satisfactory
parameters.

Our main objective is therefore to establish a uni�ed prognostic model
of the large-scale variance coupled to the turbulent transport scheme in a
GCM. The corresponding prognostic equations of the upper moments of spe-
ci�c humidity are described in (Klein et al. (2005) or Tan et al. (2018) for a
more general formalism), the originality of this work lies in the methodology
for implementing these equations within the framework of a GCM. Once this
methodology has been established, a second objective will be to deepen the
understanding of the role of the di�erent source terms of variance linked to
convection. Then we will show by the analysis of third order moments how
this model, coupled with the Bigaussian cloud scheme, makes it possible to
represent in a realistic way the asymmetry of the total speci�c humidity dis-
tribution. We focus on the implementation of this prognostic variance model
in the restricted framework of shallow convection. This �rst step is impor-
tant to lay the theoretical and methodological foundations of the new model
and to compare it to the pre-existing model and to large eddy simulations
(LES) in cumulus and stratocumulus scenes for which a very solid tuning
strategy had been developed (Couvreux et al. (2021) Hourdin et al. (2021)).
We analyse and compare cloud representation of the previous diagnostic and
the new prognostic model as well as some remarkable aspects of variance and
skewness especially in areas of strong detrainment. We also take the opportu-
nity to distinguish and discuss the contributions of the di�erent source terms
of variance.

The paper is organized as follows : Section 2 presents a description of
the LMDZ model setup and the methods used to develop and calibrate the
new parameterization, Section 3 presents the theoretical framework in which
the prognostic model takes place, in particular the elegant method which
will allow us to integrate it into the convective transport scheme (method
which could subsequently be extended to other transport models, di�usive
or advectives for example). Section 4 documents the results obtained after
tuning the free parameters of the new model, especially concerning cloud
cover and speci�c humidity variance as well as comparisons with the previous
model and discussions on the di�erent sources of variability.

3 Model and methods

In this part, we present the LMDZ model as well as the experimental
methodologies and the principle of semi-automatic tuning used to calibrate
and develop the new physical parameterizations.
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3.1 The LMDZ model

The parameterization which will be presented in this paper has been
tested and integrated into the global climate model of Laboratoire de Météo-
rologie Dynamique LMDZ. LMDZ is the atmospheric component of the IPSL
coupled atmosphere-ocean model, IPSL-CM, used in particular for the CMIP
exercises. Alongside many other physical parameterizations, the LMDZ mo-
del is characterized by a mass �ux approach (Rio and Hourdin (2008)) to
represent vertical turbulent transport by organized boundary layer convec-
tion. This thermal plume modele and its coupling to a bi-Gaussian cloud
scheme (Jam et al. (2013)) will be presented in sections 4.2 and 4.1 as it is
an essential element of the new parameterization. Deep convection on the
other hand is modeled by an Emanuel's scheme in interaction with an ori-
ginal parameterization of cold pools created by reevaporation of convective
rainfall (Grandpeix and Lafore (2010), Rio et al. (2009)).The LMDZ6A mo-
del used here, recently developed for CMIP6, includes developments in many
aspects of the model Madeleine et al. (2020) as for example a modi�cation
of the thermal plume detrainment which led to a signi�cant improvement of
stratocumulus representation Hourdin et al. (2019). The LMDZ model is a
�exible tool which contains in particular a single column model (SCM) ver-
sion extensively used for parameterization development based on 1D/LES
comparisons.

3.2 The LES cases

As described in next section 3.3 the parameterization development and
calibration strategy is based on systematic comparisons of 1D cases between
LES and SCM using statistical tools. Here we work speci�cally on cases that
embrace shallow convection scenes over earth and ocean as well as stratocu-
mulus/cumulus transitions cases. These cases were also central in the deve-
lopment of the thermal model in Rio and Hourdin (2008), the bi-Gaussian
cloud scheme Jam et al. (2013) and the new parameterization of the thermal
plume detrainment Frédéric Hourdin et al. (2019). They will be refered as
IHOP/REF, ARMCU/REF, RICO/REF et SANDU/REF,FAST et SLOW
and we will brie�y recall the context of these di�erent 1D cases.

IHOP comes from observations carried out during the International H2O
project on June 14, 2002 on the great plains Couvreux et al. (2005), it is an
almost cloudless boundary layer.

The ARM case is derived from observations collected on 21 June 1997
at the Atmospheric Radiation Measurement site in Oklahoma, USA (Brown
et al. (2002)) it represents a typical diurnal cycle of the shallow convective

5



boundary layer with appearance of a few cumuli clouds in the middle of the
day.

The RICO case (Rain In Cumulus over the Ocean van Zanten et al.
(2011)) is a case of shallow cumuli clouds over the ocean characterized by
frequent precipitation.

Finally, the SANDU REF, FAST and SLOW cases are described in Sandu
I. and Stevens B. (2011). They were built by compositing the large-scale
conditions encountered along a set of individual Lagrangian 3-day trajectories
performed for the northeastern Paci�c during the summer months of 2006
and 2007. They are ment to represent oceanic boundary layers overhung
by stratocumulus clouds which become thinner with a gradual transition to
shallow cumulus. REF, FAST and SLOW refer to di�erent con�gurations
involving more or less rapid transitions.

3.3 Methodology for setting up physical parameteriza-

tions in LMDZ

As explained in Hourdin et al. (2017), the calibration of the parameteri-
zations of a GCM is a very sensitive step in climate modeling with the mul-
tiplication of sub-grid schemes and their associated free parameters. Ideally,
the calibration work should be done in successive stages from the scale of
individual parameterization to the scale of the Earth's climate system as a
whole, but the signi�cant number of free parameters and parameterizations
makes this work increasingly delicate. It is on this observation that auto-
matic parameter tuning techniques were developed (Williamson et al. (2013)
Williamson et al. (2015) Couvreux et al. (2021) Hourdin et al. (2021)) allo-
wing to optimize the process and reduce biases. The principle is to rely at
�rst on systematic 1D/LES comparisons using statistical tools so that the
�eld of possible parameters could be reduced in successive waves. This work
is then completed by an automatic 3D tuning of the global climate system
compared to observations.

The intention of the tuning process is to circumscrib the space of the free
parameters by comparing relevant metrics of single-column simulations of the
LMDZ model with associated LES simulations. These comparisons are sys-
tematically computed using statistical tools (Williamson et al. (2013)) which
explore the model parameter space in successive waves and build an emu-
lator of the metric values. Once this emulator is built, the parameter space
is reduced at each wave according to the gap between the emulated values
of the metrics and the target values of the LES. This tuning process on 1D
simulations not only makes it possible to signi�cantly reduce the parameter
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space but it allows us to focus and improve our understanding of the physical
processes involved in the parameterizations and thus to adapt the underlying
modeling work. More than a simple statistical calibration tool, it is therefore
a real working support for the modeler.

Based on this approach, and using the previous mentioned 1D cases,
Hourdin et al. (Hourdin et al. (2021)) were able to �nely calibrate the key
parameterizations on which we will step on in the present work, the thermal
plume parameterization and the cloud scheme. Therefore it is essential that
the new variance model proposed here is compatible with the earlier results.
For this purpose we will reinvest the same tuning approach in order to obtain
reliable and consistent comparison criteria with the previous work.

4 Establishment of the prognostic model of to-

tal speci�c humidity variance

In this part, we describe the implementation of the variance prognostic
model within the physical parameterizations of LMDZ, especially the sta-
tistical cloud scheme and the thermal plume model. For this purpose it is
useful to brie�y recall the physical models on which these parameterizations
are based.

4.1 The actual statistical cloud scheme with diagnostic

variance

The LMDZ statistical cloud scheme is based on a Bigaussian pdf of satura-
tion de�cit in the presence of thermals (Jam et al. (2013)), see the descritpion
of the thermal plume model in section 4.2. The saturation de�cit is given by
s = al(qt − qsat(Tl) where Tl is the liquid temperature, qt the total speci�c
humidity, qsat the total speci�c humidity at saturation and al is a factor de-
pending on thermodynamic variables de�ned in Mellor (1977) Sommeria and
Deardor� (1977). The Bigaussian pdf of the de�cit at saturation reads :

pdf(s) = (1− α)G(s, senv, σenv) + αG(s, sth, σth) (1)

Where G is a Gaussian function of the variable s with mean value senv and
variance σ2

env in the environment and sth and σ
2
th inside the thermal plume, α

being the fraction of the grid covered by the thermal plume. This approach
is very powerfull to capture the positive skewness due to ascending plumes
but we should also notice that it fails representing the negative asymmetry
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due to the drying of the atmosphere by subsidence. On the other hand,
subsidences are generally less organized than ascendances in local structures
which reduces their impact on humidity asymemtry. With this choice of pdf
using the thermal plume fraction α to �x the weights of each Gaussian term,
the variance and skewness of the saturation de�cit are determined by the
following equations being given the standard deviations σenv and σth and the
mean values in both environment and thermals.

V = ασ2
th + (1− α)σ2

env + α(1− α)(s̄th − s̄env)
2 (2)

S =
3α(1− α)(s̄th − s̄env)(σ

2
th − σ2

env) + α(1− 3α + 2α2)(s̄th − s̄env)
3

V
3
2

(3)

In the current diagnostic version, the standard deviations of humidity in
thermals and the environment are parameterized as follows :

σth = BG2(α + 0.01)γ2(s̄th − s̄env) + bq̄th (4)

and

σenv = BG1
αγ1

1− α
(s̄th − s̄env) + bq̄env (5)

BG1, BG2, γ1, γ2 and b being tunable parameters. Once this pdf has
been established, we can deduce the cloud fraction cf of the mesh and the
cloud water content qc by :

cf =

∫ ∞

0

pdf(s)ds (6)

qc =

∫ ∞

0

spdf(s)ds (7)

4.2 The thermal plume model in LMDZ

Let ψ be a conservative variable, v⃗ the wind �eld and ρ the density. Using
an Euler decomposition of the physical quantities ψ = ψ̄+ψ′ and in the case
of non-viscous transport, we can write :
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∂ψ̄

∂t
= −v⃗. ⃗grad(ψ̄)− div(ρw′ψ′)

ρ
(8)

The �rst term on the right-hand is the tendency due to large-scale advec-
tion, computed by the dynamical core of the model, the second term is the
tendency due to turbulent transport in which the mass �ux model will inter-
vene. In this mass �ux approach, the vertical convective �ux of the variable
ψ is represented by :

ρw′ψ′
th = f(ψth − ψ̄) (9)

where f is the convective mass �ux, ψth the value of the variable in the
thermal plume and ψ̄ its value in the environment assimilated to the average
value in the layer. Here the population of thermal plumes is represented by
a unique thermal plume (Hourdin et al. (2002), Rio and Hourdin (2008), Rio
et al. (2010), which mass �ux is given by f = ραwth where α is the surface
fraction covered by the thermal and wth the vertical speed in it. This mass
�ux term is added to a classic K-di�usive term ρw′ψ′

diff = −Kρ∂ψ̄
∂z

which
will be less important in this discussion.

The vertical variation of the mass �ux f is given by ∂f
∂z

= e − d where e
is an entrainment term and d a detrainment term. Then we can write the
vertical variation of the variable �ux as :

∂fψth
∂z

= eψ̄ − dψth (10)

Which leads to the following transport equation after some elementary
algebra :

∂ψ̄

∂t
=
d

ρ
(ψth − ψ̄) +

f

ρ

∂ψ̄

∂z
(11)

This formulation is the one that makes it easiest to derive the variance
model. In this formulation the �rst term on the right-hand is the tendency due
to the thermal detrainment towards the environment, the second term is the
tendency associated with the compensatory subsidence in the environment
the impact of which depends on the vertical gradient of the variable in the
environment. Here the fact that the tendency of the variable does not depend
on entrainment is linked to the assumption that the entrained air is the
average air of the environment. This hypothesis simpli�es both mean and
variance equation.
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4.3 Variance transport equation in the environment

The equation 11 cannot be directly applied to the variance of a variable
because this variance is not a conservative variable. Analytical equations for
the variance evolution in the presence of detraining mass �uxes has been
proposed (Klein et al. (2005) with one single plume, or Tan et al. (2018) for
a general formalism with N plumes) but, as pointed out before, their imple-
mentation in the climate model requires knowledge of the humidity variance
in thermals. Although this is not an insurmountable di�culty in our model
where it is predicted, we have chosen to implement a more straightforward,
but theoretically equivalent, methodology. This approach avoids the explicit
calculation of variance in thermals by separately transporting q and q2 within
the mass �ux scheme. Let us �rst write the evolution of the variance of the
total speci�c humidity in terms of q et q2 :

∂q′2

∂t
=
∂q2

∂t
− ∂q̄2

∂t
=
∂q2

∂t
− 2q̄

∂q̄

∂t
(12)

To compute the convective variance tendency we only need knowledge
of the mean total speci�c humidity q̄, its convective tendency ∂q̄

∂t
and the

convective tendency of the total speci�c humidity square ∂q2

∂t
. q̄ and ∂q̄

∂t
are

already calculated in the thermal plume model, therefore only ∂q2

∂t
remains to

be estimated. Noting that total speci�c humidity is a conservative variable in
the thermal plume transport model, it assures that its square is also conser-
vative (indeed, the material derivative of a squared quantity is zero if the
material derivative of this quantity is zero) and can be transported with the
same equation 11. At this point it may be worth to delve into the physical
interpretation of the transport of q2 as a conservative quantity.Let us begin
by justifying the conservative nature of q2, assuming that the total speci�c
humidity q is conserve. The Lagrangian conservation of q is written as :

q(x+ dx, y + dy, z + dz, t+ dt) = q(x, y, z, t) (13)

dx, dy, and dz being taken along the particle trajectory. Thus, for q2, we
have :

q2(x+ dx, y + dy, z + dz, t+ dt) = q2(x, y, z, t) (14)

Note that the disturbance q′ = q − q̄n for its part cannot be considered as a
conservative tracer. To convince ourselves of this, we can imagine a particle
of speci�c humidity q = q̄i (so q′ = 0) at a level i of the model. If it is
transported to another level j such that q̄j ̸= q̄i, q

′ will no longer be zero in
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this new layer. The disturbance q′ (unlike q and q2) cannot be interpreted as a
physical quantity intrinsic to an air particle, it depends on the environment in
which this particle is found and is therefore not conserved along its trajectory.
With this established, the average values of q and q2 on all the air particles
at a given level n of the model and at a given time t can be written as :

q̄n(t) =
1

mn

∫
Ωn

q(x, t)ρdΩn =
1

mn

∑
pj

q(pj)δmj (15)

and

q2n(t) =
1

mn

∫
Ωn

q2(x, t)ρdΩn =
1

mn

∑
pj

q2(pj)δmj (16)

Where mn is the mass of the level n, Ωn its volume, ρ the density, pj the jth
air particle of the layer and δmj its mass. Of course it is essential to note
that :

1

mn

∑
pj

q2(pj)δmj ̸= (

∑
pj
q(pj)δmj

mn

)2 (17)

The di�erence being the variance we are looking for. To justify our ap-
proach, we will show how the transport q as well as q2 by the thermal model
can be interpreted in terms of sums or integrals on paths of elementary �uid
particles for which the Lagrangian conservation is assumed. These pathways
will lead us to a formulation in the form of an exchange matrix for �uid
particle transfer between the di�erent levels of the model, using a forma-
lism similar to that of thermal radiation exchange matrices (Cherkaoui et al.
(1996), Dufresne et al. (2005)). From now on, we generalize to a conservative
and intensive variable x, as are q and q2 in the thermal model. The average
value x̄n(t) of this variable on all the air particles at a given level n of the
model and at a given time t writes as in ??. Now suppose that at time t, over
a duration δt, a set of particles pj,add with total mass madd =

∑
pj,add

δmj,add

is added, such that maddx̄add =
∑

pj,add
x(pj,add)δmj,add. The average x̄n(t+δt)

is then written as :

x̄n(t+ δt) =
1

mn(t+ δt)
(
∑
pj

x(pj)δmj +
∑
pj,add

x(pj,add)δmj,add)

=
1

mn(t+ δt)
(mn(t)x̄n(t) +maddx̄add) (18)
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This equation simply translates the fact that each air particle carries a certain
value of x which is conserved throughout its trajectory and which is added
(or subtracted on whether the particle comes or goes) in the calculation of the
average x̄n in proportion to its mass. Thus in these turbulent �uxes which
randomly mix and redistribute the air particles, each can nevertheless be
followed with the value x that it transports. This equation can be applied to
both q and q2 ; however, and this is where caution is needed, it is not valid
to calculate q̄2. From this point on, we will no longer systematically rewrite
the sums or integrals over the entire set of �uid particles. Equation 18 indeed
shows that a formulation using ensemble averages accurately conveys the idea
of the transport of our conservative variable by the particles. This remark is
important because we do not know the individual values of x for each �uid
particle. To recover the required formalism we rewrite equation 18 as :

x̄n(t+ δt) = x̄n(t) +
madd

mn(t+ δt)
(x̄add − x̄n(t)) (19)

We now apply equation 19 in the context of transport of air particles by
thermals with an upward mass of air carried by the plume and a subsidence
in the environment.

x̄n(t+ δt) = x̄n(t)−
1

mn(t+ δt)
mn,up(x̄n,up − x̄n(t))

+
1

mn(t+ δt)
mn−1,up(x̄n−1,up − x̄n(t))

+
1

mn(t+ δt)
mn+1,down(x̄n+1,down − x̄n(t))

− 1

mn(t+ δt)
mn,down(x̄n,down − x̄n(t)) (20)

mn,up, x̄n,up being the mass and mean x value of ascending particls from the
thermal plume to the upper level at time t andmn,down, x̄n,down the descending
values from the subsidence to the lower level. Considering entrainement and
detrainement �uxes between the plume and the environment, mass and x
conservation in the thermal plume gives as in equation 10 :

mn,up −mn−1,up = me −md

mn,upx̄n,up −mn−1,upx̄n−1,up = mex̄e −mdx̄d (21)

md, x̄d being the mass and mean x value of detrained particls from the plume
to the environment at time t and me, x̄e the values for the entrained particls
from the environnement to the plume. Thus the equation 20 becomes :
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x̄n(t+ δt) = x̄n(t) +
1

mn(t+ δt)
md(x̄d − x̄n(t))−

1

mn(t+ δt)
me(x̄e − x̄n(t))

+
1

mn(t+ δt)
mn+1,down(x̄n+1,down − x̄n(t))−

1

mn(t+ δt)
mn,down(x̄n,down − x̄n(t))(22)

Considering that x̄e = x̄n(t), x̄n,down = x̄n(t) and this leads to :

x̄n(t+ δt) = x̄n(t) +
1

mn(t+ δt)
md(x̄d − x̄n(t))

+
1

mn(t+ δt)
mn+1,down(x̄n+1 − x̄n(t)) (23)

Finally, by de�ning the detrainment d as the mass of air detrained per
unit volume and time d = md

Sδzδt
, the entrainment e = me

Sδzδt
, and the upward

�ux f = −mdown

Sδt
, equation 23 becomes equation 11. It is therefore established

that the transport equation of the thermal model conveys nothing other than
the Lagrangian conservation of our variable of interest along the particle
trajectories.

Now we can trace our particls back to their source through the conser-
vation equation of x in the thermals. The discretized approach that we will
develop here can be read as entirely equivalent to integral approaches using
a Green's function or an adjoint transport equation (Hourdin et al. (1999)
,Hourdin and Talagrand (2006)). The goal is to highlight the in�uence of the
di�erent sources (here, the various levels of the model where �uid particles
may come from at time t+ δt).

Using the same approach than in equation 19, the stationary conservation
equation 21 of variable x can be written as :

x̂n+1 = x̂n +
1

m̂n+1

me(x̄e − x̂n)−
1

m̂n+1

md(x̄d − x̂n) (24)

where x̂n designs the mean value of x in the thermal plume at level n. When
refering to this model as stationary, it means that the transport by the ther-
mals occurs instantaneously at the scale of the time step δt of the large scale
model. Thus, at each time step of the model, the equation 24 does not depend
on δt. We now assume that x̄d = x̂n and x̄e = x̄n. It follows that :

x̂n+1 = x̂n +
1

m̂n+1

me(x̄n − x̂n) = x̂n +
enδzn
fn

(x̄n − x̂n) (25)

x̂n+1 being the mean value of x in the ascending air coming up to the (n+1)th
level. The values of x̄n at the lower levels are all known and constitute the
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"sources" of our problem. It is therefore possible, from this mathematical
sequence, to express x̂n in terms of the value x̂b+1 = x̄b, which represents
the entrainment at the base of the thermal, and the di�erent values of x̄i for
n > i > b. The result will take the form x̂n =

∑n−1
j=b aj,nx̄j, where the aj,n

need to be speci�ed. It can be "easily" veri�ed that :

x̂b+2 = (1− eb+1δzb+1

fb+1

)x̄b +
eb+1δzb+1

fb+1

x̄b+1 (26)

And for n > (b+ 2) :

x̂n =
n−1∏
j=b+1

(1− ejδzj
fj

)x̄b +
en−1δzn−1

fn−1

x̄n−1 +
n−2∑
j=b+1

n−1∏
i=j+1

(1− eiδzi
fi

)
ejδzj
fj

x̄j(27)

This completely de�nes the coe�cients aj,n introduced above. Note that this
formulation is nothing other than the vertical discretization of the integral
solution of the equivalent di�erential equation expressed using a Green's
function or the adjoint formalism. Knowing that x̄d = x̂n is the detraining
at level n we can substitute our coe�cients into equation 23 and obtain the
exchange matrix :

x̄n(t+ δt) = x̄n(t)
[
1− 1

mn(t+ δt)
md −

1

mn(t+ δt)
mn+1,down

]
+

1

mn(t+ δt)
md

n−1∑
j=b

aj,nx̄j(t) +
1

mn(t+ δt)
mn+1,downx̄n+1(t) (28)

x̄n(t+ δt) =
n+1∑
i=b

mi,nx̄i(t) (29)

Where the coe�cients mi,n are completely de�ned by the previous equation.
Thus, we can express the value of x̄n at time (t+δt) as a linear function of the
di�erent sources x̄j (for b ≤ j ≤ n+1) at the previous time step, which clearly
illustrates the physics of transport by the thermals through the air particles
that exchange between di�erent levels. The term (n+ 1) corresponds to the
subsidence, and all terms strictly less than n are due to the ascending plume.
Of course, we could continue to trace back in time step by step to reach the
initial moment of the simulation, but we will not pursue the reasoning with
this discretized formalism, which is quite complex to manipulate.

Two elegant and simpler formalism of analyzing the quantity of a tracer
provided at a level of the model are given by the adjoint transport forma-
lism (Hourdin et al. (1999), Hourdin and Talagrand (2006)) and the Green's
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formalism. Within the framework of the adjoint formalism, Hourdin et al.
(Hourdin and Talagrand (2006)) establish the equivalence between the mea-
surement, at time tf in a detection volume ΩD, of the tracer of concentration
q obeying the direct transport equation and the measurement, at time ti in
a source volume ΩS, of a retrotracer of concentration q* obeying the adjoint
transport equation (backtracking). Considering that at the initial instant a
source distribution σ = qSδ(t− ti) (δ(t− ti) being a temporal dirac in ti and
qS a given concentration �eld) of tracer is injected into the volume ΩS, the
direct transport equation is written :

∂q

∂t
+ v⃗. ⃗grad(q) = σ (30)

Which is the conservation equation outside the initial time of tracer injection
and whose solution can be written using a linear function L from the source :
q = L(σ).

Similarly, if we de�ne the measurement distribution at time tf and over

volume ΩD as µ = δ(t−tf)
mD(tf )

(where mD(tf ) is the mass of the detection volume,

please note that with these notations µ is expressed in kg−1s−1 unlike σ which
is in s−1), the adjoint transport equation is written :

−∂q
∗

∂t
− v⃗. ⃗grad(q∗) = µ (31)

Whose solution can be written using a linear function L∗ from the source :
q∗ = L∗(µ). The retrotracer concentration is here expressed in kg−1, here
again note the di�erence in units with q̄. With this notation the operators
L and L∗ are adjoint with respect to the air-mass-wheighted scalar product
<,> de�ned as :

< ϕ,ψ >=

∫
Ω×τ

ρϕψdΩdτ (32)

In this context, we can �nally write :

< L(σ), µ >=< σ,L∗(µ) > (33)

Which can be developped as :∫
Ω×τ

ρµqdΩdτ =

∫
Ω×τ

ρσq∗dΩdτ (34)

The left-hand side of this equation actually comes down to the integral we
have already used in 15 and 16 to calculate the mean of q and q2 at level i
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of the model. In fact, the temporal dirac of the µ measurement distribution
makes the temporal integration disappear and places us at time tf . In the
case of measurement of total speci�c humidity at time tf at the nth level of
the model, we get :∫

Ω×τ
ρµqdΩdτ =

1

mD

∫
ΩD

q(x, tf )ρdΩD (35)

On right-hand side of 34, taking into account the temporal Dirac of σ at ti, we
�nd the integral of the retrotracer concentration at the source as previously
announced. This reasoning, based on the general conservation equation for
q, can be extended to the case where an Eulerian decomposition q = q̄ + q′

is applied, leading to the transport equation 8 and then 11, by using the
thermal model (but it could also include the di�usion model). In this case,
we obtain adjoint transport equations for q̄ and qth in the thermal model.
The direct and adjoint integral measures are written in the same way for q̄ :∫

Ω×τ
ρµq̄dΩdτ =

∫
Ω×τ

ρσq∗dΩdτ (36)

Note that equation 36 could be discretized over the GCM grid cells, since
there is only one value for q̄ per grid cell. Speci�cally, if we are interested
in the measure of q̄ over a single cell n of the model, the integral on the
left-hand side of the equation then simply reduces to qn. By eliminating the
time integral on the right-hand side using the Dirac delta function of the
distribution σ, we then obtain :

qn(tf ) =

∫
Ω

ρqS(ti)q∗(ti)dΩ (37)

Furthermore, it can be shown that the quantity
∫
Ω
ρq(t)q∗(t)dΩ (q being the

direct tracer and q∗ the retrotracer) is conserved over time.
We now turn our attention to Green's formalism, which will provide a

complementary perspective to the analyses above. The system of transport
equations 10 and 11 for q̄ and qth is a linear system whose solution can be
expressed using the Green's propagator functions, denoted as g(x, t|xS, ti),
given the initial conditions qS. For a cell n of the model, this solution is
expressed as :

qn(tf ) =

∫
Ω

ρg(xn, tf |xS, ti)qS(tS)dΩ (38)

The Green's function is naturally interpreted as the propagation function of
sources to the point and time of observation. This clearly shows the conver-
gence between the two formalisms : by comparing equations 38 and 37, the
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Green's function, which is the direct response of the problem at (xn, tf ),
corresponds to the response of the adjoint problem at (xS, tS). This is a
well-known property of the direct and adjoint Green's functions of a linear
system. Note that the use of this formalism allows for the development of
backtracking Monte Carlo methods, which can be advantageously coupled
with the climate model (see Tregan et al. (2023),Villefranque et al. (2022)
for further details).

After these theoretical considerations, we are now justi�ed in transporting
the square of the total speci�c humidity as a conservative tracer, just like the
total speci�c humidity itself. So to compute equation 12 we only have to call
the plume transport routine for both total humidity and its square, instead
of just the �rst one, with no need to implement further equations. Of course
we can check the consistency of this approach by deriving the analytical
development which joins and provides another perspective on the Klein's
formalism of variance transport. Applying the equation 11 both to q and q2,
we obtain :

∂q′2

∂t
=
d

ρ
(q2th − q2) +

f

ρ

∂q2

∂z
− 2q̄[

d

ρ
(qth − q̄) +

f

ρ

∂q̄

∂z
] (39)

Subsidence terms combine as follows : f
ρ
∂q2

∂z
−2q̄ f

ρ
∂q̄
∂z

= f
ρ
∂q′2

∂z
. Detrainment

terms can also be rearranged : (q2th−q2)−2q̄(qth− q̄) = (qth− q̄)2+(q
′2
th−q

′2).
And the convective variance tendency �nally reads :

∂q′2

∂t
=
d

ρ
[(qth − q̄)2 + (q

′2
th − q′2)] +

f

ρ

∂q′2

∂z
(40)

This approach leads to a similar equation that Klein (Klein et al. (2005))
derives from the mixing of two air masses and its impact on the humidity
variance in the environment. This is not surprising because both approaches
ultimately relie on the air mass conservation equations. In the present for-
malism we can underline the absence of the entrainment term, due to the
already mentioned fact that we assumed that the entrained air had the ave-
rage composition of the environment. We can interpret the di�erent terms of
the equation 40 as follows :

� The �rst represents the impact of the mean values di�erence between
the thermal plume and the environment

� The second expresses the impact of the variances di�erence between
the thermal plume and the environment

� The last one expresses, due to compensatory subsidence, highlights
the role of the vertical gradient of variance
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Note that this variance transport equation is limited to organized convec-
tive sources which are supposed to be dominant in the studied cases, it could
subsequently include the di�usive terms, computed with the same approach
by calling the di�usive transport model for both q and q2. We could also
include possible source/sink terms due to evaporation of precipitation for
instance, or large-scale advection, this will be the subject of forthcoming
publication. Here we place ourselves in a framework where the transport of
variance is carried out by the organized convective terms and we only add a
classical exponential dissipation term representing the small scale homogeni-
zation processes which will be discussed in the next section 4.4. The present
model �nally reads :

∂q′2

∂t
=
d

ρ
[(qth − q̄)2 + (q

′2
th − q′2)] +

f

ρ

∂q′2

∂z
− q′2

τ
(41)

where τ represents the relaxation time of the variance in the environment.
In practice we can either implement this variance equation term by term or
call the thermal transport equation for q and q2 as described before. Howe-
ver, the two methods lead to very di�erent implementation of the variance
model, each of which having its own interest. In the �rst method we explicitly
calculate the di�erent terms of the equation 41 which allows us to compare
the relative importance of this terms, especially the one associated to the
di�erence in humidity mean and variance. The second way is much simpler
to implement and can be transposed to other transport processes (di�usive
transport or large-scale advection for example). In this case it is no longer
necessary to extract all the physical quantities from the thermal model, only
the tendencies of q2 and q̄ are necessary. The two ways of proceeding are
completely equivalent, the �rst allows better analysis of the physical content
of the model, the second has the advantage of very great simplicity of im-
plementation and provides a methodology that can easily be transposed to
other models.

4.4 The relaxation time in the variance model

The Newton relaxation time τ which appears in the dissipation term is
an important parameter of the variance calculation. It can be estimated by
assimilation to the relaxation time of the turbulent energy as was propo-
sed in Nieuwstadt and Brost (1986) Neggers (2009). Tompkins (Tompkins
(2002) proposes to divide this relaxation time into two components : a �rst
one based on quite fast small-scale 3D turbulence as before, and a second one
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representing very slower large-scale two-dimensional dissipation due to hori-
zontal wind shear instability. This second component would be present even
in case of strong temperature strati�cation. Although it will be a part of our
re�ection when it comes to the upper atmosphere, we neglect it here, as we
only focus on shallow convective cases where the �rst component is totally
dominant. The order of magnitude of the turbulence depending relaxation
time is given by :

τ =
l

w∗
(42)

where w∗ =
√
TKE (TKE being the turbulent kinetic energy) is a ty-

pical vertical speed associated with turbulent phenomena, l a mixing length
of roughly 100m (Blackadar (1962)). We obtain an order of magnitude of
100s to 1000s for τ which is a fairly fast relaxation, especially compared to
the 10-days estimated 2D relaxation (Tompkins (2002)). The adjustment of
the parameter τ is the only tuning issue of the present model. It has been
performed in two manners : �rst as an entirely free parameter, then by using
equation 42 with a free multiplicative factor. Let us specify that in this se-
cond case, it was necessary, as in Golaz et al. (2002a), to de�ne an upper
limit to relaxation time as our TKE is likely to cancel out even below 3000m.
This prevents the relaxation terms from becoming too small and allowing the
variance to accumulate too strongly.

4.5 Injecting the total speci�c humidity variance into

the cloud scheme

To replace the previous diagnostic model with a prognostic model based
on humidity variance transport equations, it is �rst necessary to connect the
humidity variance to the variance of the saturation de�cit which drives the
statistical cloud scheme. This well-known relationship (Tompkins (2002)) can
be written as :

σ(s)2 = a2l (q
′2 + α2

l T
′2
l − 2αlq′T ′

l ) (43)

Where αl = (∂qsat
∂T

)Tl , al was mentioned in section 4.1 and Tl is the liquid
temperature.

We see that a liquid temperature variance term appears in this equation
as well as a cross-correlation term whose physical interpretations are des-
cribed in Tompkins (2003) for example. Several studies have analyzed the
relative importance of humidity and temperature contributions to variance
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(Price (2001) Tompkins (2003)). Although the temperature contribution is
not completely negligible, it appears from these analyzes that order 1 is
mostly dominated by the variability of speci�c humidity. In the context of
this work, it seemed relevant to mainly concentrate on the speci�c humidity
variability. Orders of magnitude of these variabilities can be estimated in
LMDZ by simply diagnosing the di�erences in humidity and liquid tempera-
ture between the thermals and the environment, on this basis we obtain an
order of magnitude of 10−4kg/kg for q′2 and closer to 10−5kg/kg for α2

l T
′2
l . In

this work the hypothesis will be made that the variance of s is controlled by
the variance of the total speci�c humidity. Therefore the humidity variance
computed by the prognostic model will be injected into σenv (after multipli-
cation by al) instead of being prescribed by the diagnostic parameterization.

5 Results

5.1 Tuning setup

In this part, we resume the 1D tuning work carried out on the IHOP,
ARMCU, RICO and SANDU cases in Couvreux et al. (2021) Hourdin et al.
(2021) by adding the variance model and its relaxation time as a free para-
meter. We use the same metrics as in paragraph 5.1 of Hourdin et al. (2021)
to compare SCM simulations to LES. The free parameters are also the same
with exchanging the diagnostic model parameter BG1 by the parameter τ ,
allowed to vary between 100s and 2000s.

We brie�y recall the choice of metrics for the tuning process, for more
details on the mathematical formalisms, refer to Hourdin et al. (2021). The
metrics used to compare 1D GCM simulations to LES are based on three
quantities : potential temperature, humidity and cloud cover. These metrics
are de�ned by temporal and spatial integrations of the three quantities over
time and altitudes. For cloud cover, three speci�c metrics are used, the �rst
is linked to the maximum cloud cover on the vertical αcld,max, the second
represents an average altitude of the cloud cover zcld,ave and the last one tells
us about the typical altitude of the maximum cloud cover zcld,max. Figure 1
details all the di�ernet metrics used in this tuning (the three cloud metrics,
and those concerning potential temperature and humidity).

Concerning the free parameters to be tuned, our description will also be
quite brief, please refer again to Hourdin et al. (2021) for the formal details.
These parameters primarily concern the modeling of the entrainment and
detraining rate of the thermal plume model which depend on the buoyancy
and the vertical speed in the ascent (these parameterizations are controlled
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Case IHOP ARMCU RICO SANDU SANDU SANDU
Subcase REF REF REF REF SLOW FAST
time 7-9 7-9 19-25 50-60 50-60 50-60

θ400−600m × × ×
qv,400−600m ×
αcld,max × ×
zcld,ave × ×
zcld,max × × × ×

Figure 1 � Metrics for the 1D/LES tuning. Time average is given in hours
from the beginning of the simulation. Potential temperature is given in K,
humidity in kg/kg and heights in m.

by the parameters A1, B1, B2, CQ). The modi�cation of the detraining rate
proposed in Frédéric Hourdin et al. (2019) introduces a characteristic height
di�erence in the calculation of buoyancy which is controlled by the DZ pa-
rameter. The BG2 parameter (see paragraph 4.1) is linked to the standard
deviation of humidity in the thermal plume. The parameter BG1 of the diag-
nostic variance model, see section 4.1, was removed and logically replaced by
the relaxation time of the new model. Finally, the CLC and EVAP parame-
ters are involved in the precipitation and rain re-evaporation model, CLC
being associated with the critical incloud water from which precipitation is
activated and EVAP being a free parameter of the precipitation �ux equa-
tion which controls the fraction of precipitation that re-evaporates at a given
altitude. The formalism of these parameterizations was introduced by the
work of Sundqvist in Sundqvist (1978). Figure 2 presents a summary of the
di�erent parameters to be tuned.

5.2 Simulation scores according to the tuning tool

At each tuning wave, LMDZ SCM-simulations are computed within the
range of authorized parameters by the previous wave (NROY : not-ruled out
yet). For each of this simulations, a score is assigned per metric, this score
being de�ned from the di�erence between the target value of the metric (the
average value of the LES) and the value for the given simulation, as well
as from the accepted tolerance. The closer the score is to 0, the closer the
simulation metric is to the target value, a score equal to 1 indicates that the
di�erence between the simulated metric and the target value corresponds
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Name Min Max Ref Sampling controls
A1 0.5 1.2 2. linear contribution of buyoncy to the

plume acceleration
A2 1.5e− 3 4.e− 3 2.e− 3 linear drag term in the plume accelera-

tion
B1 0. 1. 0.95 linear scaling factor for entrainment and

detrainment
CQ 0. 0.02 0.012 linear in�uence of humidity contrast on

detrainment
DZ 0.05 0.2 0.07 linear environmental air altitude shift

for buyoncy computation
BG2 0.03 0.2 0.09 linear width of the plume subgrid scale

water distribution
EVAP 5.e− 5 5.e− 4 1.e− 4 log reevaporation of rainfall
CLC 1.e− 4 1.e− 3 6.5e− 4 linear autoconversion of cloud liquid

water to rainfall
tau−var 100. 2000 700 linear timescale for variance dissipation

Figure 2 � Free parameters of the 1D/LES tuning

exactly to the tolerance which we are willing to accept. The simulations can
thus be classi�ed according to the obtained scores, either on an average score
criterion or on a maximum criterion. Her we use the maximum criterion to
classify the ten most e�cient simulations in order to prevent large errors on
certain metrics from being compensated by very good results on others.

Figure 3 compares the results obtained on all the metrics between the
diagnostic and prognostic models. In particular we see that the ten best
simulations achieve almost identical scores in both cases, close or even lower
than 1. The distribution of scores in the di�erent metrics is also very similar.
In particular, one of the key points which limits the performance of the model
is the di�culty in jointly representing the maximum cloud cover of the RICO
and ARMCU cases : the �rst being too big and the second too small.

It is important to underline that the tuning process does not aim to
select an optimized con�guration of the model but rather to highlight a
range of parameters leading to acceptable results within the framework we
have de�ned and the typical performance of the model in this range. In this
context this tuning showed that the acceptable range of the relaxation time is
300s to 800s which is consistent with the previous qualitative considerations.
Or, if using the TKE to de�ne the relaxation time, the acceptable range of
the mixing lenght shows up to be 70m to 160m.
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5.3 Comparisons of variances and cloud covers

In this section, we focus on the variance and cloud covers pro�les which are
the main observables of this work, being noticed that most physical quantities
are little a�ected by the change in variance parameterization as observed
in section 5.2. Figure 4 plots the vertical pro�les of humidity variance in
ARMCU/REF, RICO/REF and SANDU/REF and its evolution over time,
comparison is made between the old diagnostic model, the new prognostic
model and the LES. Figure 7 plots the vertical pro�les of cloud cover over
time in the three studied cases and compares the results of the diagnostic
and prognostic model both facing the LES.

Here again we see a very strong similarity between the two models, both
very close to the LES simulation. One of the recently resolved default of
the LMDZ cloud scheme was to reproduce a fairly satisfying cloud pro�les
of stratocumulus and stratocumulus to cumulus transition cases (Hourdin
et al. (2019)) with their almost total cloud cover. Hourdin et al. show how a
judicious modi�cation of the detrainment parameterization made it possible
to correct this problem. Therefore it is interesting to focus on the SANDU
transition case. Despite the qualitative leap allowed by the new parameteri-
zation of the detrainment established in Frédéric Hourdin et al. (2019), we
see that the cloud cover tends to remain saturated while it gradually fades
in the LES. Moreover this cloud cover is a little too thick at night in LMDZ
especially from of the second day of the simulation where it becomes signi-
�cantly �ner in the LES. Figures 7 and 4 shows that these two aspects are
attenuated with the new variance prognostic model. Looking deeper at the
variance pro�le, we can attribute this improvement to a better representa-
tion of the variance peak at the top of the clouds. Let's remind, indeed, that
an increase in the variance of the statistical cloud scheme, in case of high
cloud cover, is likely to reduce the cloud cover by increasing the fraction of
air with lower humidity. This better representation of the variance peak can
partly be attributed to the thermal plume detrainment peak in this area as
we can see in Figure 5 (in the middle bottom) even if this peak seems to take
place a little too high. In fact, the detrainment is directly involved in the
variance transport equation but it cannot be captured by the old diagnostic
model which does not take it into account but only contains a multiplicative
term depending on the thermal fraction (dashed red curve in the middle of
Figure 5). This term vanishes to zero while the detrainment reaches its peak
which explains the di�erence in behavior between the two models. We can
notice, however, that the great di�erence in humidity between thermals and
environment plays a crucial role at these altitudes (in green in Figure 5 in
the middle) but in the diagnostic model this term is multiplied by a factor
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which tends quickly to zero while in the prognostic model the multiplicative
factor, which depends on the detrainment, cancels out later and can even
reach a local maximum at the top of the clouds.

Another interesting information from this study is the clear predominance
of the �rst term of the variance transport equation 40 (see Figure 5 on the
left), a term which represents the squared di�erence in humidity between
thermals and environment. Di�erence of variance and subsidence terms ap-
pear to be an order of magnitude smaller so that it could be neglected if we
want to simplify the implementation of the explicit transport equation in the
model. This will be very usefull when it comes to deep convection transport,
which will be treated in a future publication, and more generally in cases
where the model does not predict the humidity variance in the updraft but
only its mean humidity. Let us specify that this dominance of the �rst term
doesn't match Klein's study Klein et al. (2005) where the �rst two terms are
of the same order of magnitude, the last one being smaller.

Finally we can also focus on the pro�les of the third order moments of
the saturation de�cit distribution (Figure 6). At �rst, while the predictions
of the new prognostic model (in blue) are globally realistic, we notice a little
tendency to overestimate the skewness (or the centered third order moment).
A possible explanation, already mentioned before, is the lack of representa-
tion in the pdf of organized subsidizing structures which tend to locally dry
out the environment. Although subsidences are taken into account as sources
of variance, they cannot negatively impact the third order moment because
of the binary structure of our pdf with only thermal plume and environment.
This is particularly visible in rare areas of negative skewness but it should
not overshadow the quite accurate estimation of the third-order moments of
the model.

Concerning the previous diagnostic model (dashed red curve), there is an
inconsistent drift in the skewness at the cloud tops, but a more detailed ana-
lysis shows that this drift is entirely explained by the premature cancellation
of the variance, as we mentioned earlier. Indeed, the third-order centered
moment, when not normalized by the variance, behaves very similar to the
prognostic model.

This shows that the choice of a weighted bivariate Gaussian pdf, based on
the fraction of thermals, provides a satisfactory framework for representing
the asymmetric distribution of humidity at di�erent atmospheric levels espe-
cially when associated with the prognostic variance model, which helps avoid
inconsistent behaviors at the cloud tops through the thermal detrainment
term.
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6 conclusion

In the work presented above, we focused on designing and testing in a
GCM a prognostic model of the variance of total speci�c humidity whose
physical content is based on the general transport equations. In the context
of shallow convection, we made large use of the thermal plume model in which
the speci�c humidity is treated as a conservative variable. This property al-
lowed us to easily transport its square and show o� the equation of evolution
of the variance by assimilating the di�usive homogenization to a simple New-
tonian relaxation revealing a time parameter which can be estimated from
the tke. The implementation of this model coupled to a Bigaussian statisti-
cal cloud scheme made it possible to reproduce with great consistency the
previous results obtained with the diagnostic model by using new automatic
tuning tools. In particular, the vertical variance and cloud cover pro�les are
close to LES in the shallow convection and transition cases ARMCU, RICO,
SANDU, and IHOP. Certain defective characteristics of these pro�les could
be erased with the new model, in particular at the top of the clouds where
a peak of detrainment can have a signi�cant impact on the variance and
skewness. As a natural extension of this work, and it is in progress, it will be
relevant to integrate the formalism of the Emanuel's scheme for deep convec-
tion into the variance model and further source terms like evaporation. A last
step would be to transport the large-scale variance as a state variable in the
dynamics of the model with the same approach, that is to say by calling the
transport of the speci�c humidity square to compute the variance tendency.
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Figure 3 � Metric scores over chosen waves including the best simulations.
Top : with the previous diagnostic model. Bottom : with the prognostic
model. All the scores from the 5 wave simulations are represented with their
minimum and maximum scores. The ten best tuning simulations with their
scores are highlighted. The 11 metrics are recalled on the left side with their
acceptable margins of error σ.
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Figure 4 � Variance of total speci�c humidity, including the contribution
of thermals from the Bigaussian model, in the cases ARMCU/REF (top),
RICO/REF (middle) and SANDU/REF (bottom). Thick gray is the LES,
blue is the LMDZ simulation with new prognostic variance and dashed red
with previous diagnostic model. On the left the pro�les at 7 p.m. for ARMCU,
8 p.m. for RICO and midnight on the last day for SANDU, in the middle
the cloud cover pro�le at the same dates and on the right side temporal
evolutions of the averaged variance between 500m and 2500m for ARMCU
and RICO and 400m and 2200m for SANDU. These data were obtained with
the best tuning simulations for each model.

34



0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

TENDENCY TERMS vs ALTITUDE

MEAN TERM
VARIANCE TERM
DESCENT TERM

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

NORMALIZED VARIANCE TERMS vs ALTITUDE

DETRAINMENT
THERMAL FRACTION
QUOTIENT DET/TH FRACTION
HUMIDITY DIFFERENCE

0.0 0.1 0.2 0.3 0.4 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

STD DEVIATION vs ALTITUDE

SCM
SCM OLD
LES

0.0 0.1 0.2 0.3 0.4 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

0.0 0.1 0.2 0.3 0.40.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

0.0 0.2 0.4 0.6 0.8 1.0
VARIANCE TENDENCY TERMS (µg/kg/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

0.0 0.2 0.4 0.6 0.8 1.0
NORMALIZED VARIANCE TERMS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
STD DEVIATION (g/kg)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AL
TI

TU
DE

 (k
m

)

Figure 5 � Various pro�les in the ARMCU/REF (top) RICO/REF (middle)
and SANDU/REF (bottom) cases. On the left : comparison between the 3
source terms of variance in equation 40, blue being d

ρ
(qth − q̄)2 the squared

mean di�erence term, dashed red the variance di�erence term d
ρ
(q

′2
th − q′2)

and gray the subsidence term f
ρ
∂q′2

∂z
. In the middle the normalized pro�les

of some physical quantites involved in the variance model : the detrainment
rate d (dashed blue), the thermal fraction multiplicative term in the diag-
nostic model αγ1

1−α(dashed red) and the square of the total humidity di�erence
between thermal and environment (q̄th − q̄env)

2(black). The quotient of the
detrainement term by the termal fraction term is also represented (dashed
gray). On the right the total humidity variance pro�les are remained : blue
for the prognostic variance model, dashed red for the diagnostic one and thick
gray for the LES. This pro�les were computed at the same dates than before.
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Figure 6 � Skewness (centered third order moment (numerator of equation
3) of the saturation de�cit distribution on the left, skewness of the satura-
tion de�cit distribution and its evolution in time (averaged over the same
vertical interval) on the middle and right side. Top ARMCU/REF, middle
RICO/REF and bottom SANDU/REF at the same date than previously for
left and middle. Blue : SCM with prognostic variance, dshed red : SCM with
diagnostic variance, thick gray : LES.
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Figure 7 � Total cloud cover in the ARMCU/REF (top), RICO/REF
(middle) and SANDU/REF (bottom) cases. On the left the LES simula-
tion. In the middle the di�erence in cloud cover between the best tuning
simulation with the old diagnostic model and the LES, black contours indi-
cating the cloud cover in the SCM simulation. On the right the di�erence
in cloud cover between the best tuning simulation with the new prognostic
model and the LES, black contours indicating the cloud cover in the SCM
simulation.
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