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Abstract

It is shown that, starting from any existing Monte Carlo algorithm for estimation
of a physical quantity A, it is possible to implement a simple additional procedure
that simultaneously estimates the sensitivity of A to any problem parameter. The
corresponding supplementary cost is very low as no additional random sampling is
required. The principle is presented on a formal basis and simple radiative transfer

examples are used for illustration.
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1 Introduction

Monte Carlo methods are commonly used for the simulation of various trans-
port phenomenal[8][9][10]. The term Monte Carlo is, however, used to cover
such a wide range of distinct statistical approaches, that it is always a source
of ambiguity to adress any Monte Carlo methodology on a general basis. In
the present paper, we restrict the analysis to methods that may be shown to

rely on the generic Monte Carlo algorithm for estimation of multiple integrals.

We address the question of estimating parametric sensitivies with Monte Carlo
algorithms. Parametric sensitivity estimates are required in numerous physical
contexts[13][1], in particular that of inverse radiative transfer problems as a
basis for numerous retrieval algorithms [11][12]. For our purposes, sensitivities
are mainly considered as a way of deriving first order radiative transfer models
for unstationary coupling with other complex phenomena such as natural con-
vection [4] or chemical reactions in combustion systems[5]. In such contexts,
the Monte Carlo method is of particular interest because of its ability to deal
with complex geometries and/or complex spectral properties [2],[3]. To our
knowledge, the question of computing corresponding parametric sensitivities

has not yet been addressed.

We first show that low cost sensitivity computations can be easily associated
with Monte Carlo methods, provided that the underlying integral formulation
is explicit. This is seldom the case however, for good reason, as we illustrate
with a simple radiative transfer problem. The central aim of the paper is then
to show how this problem may be effectively bypassed, making possible the

computation of non-trivial sensitivity examples.



2 Principle (1)

Let us briefly recall the Monte Carlo algorithm in order to define the vocab-
ulary and notation. If A is the integral (to be computed) of a function f over
a multiple dimension domain D, the first step is to introduce arbitrarily a

non-zero probability density function p over D and to formulate A as the ex-

pectation of W = % where X is a random variable distributed according to
p:
(=) f(X)
Az/fxdxz P o (2)de = B2 = Bow 1
[ syie = [ ez = B =B ()

The second step is to sample numerically a large number N of realizations x,
Zy ... ¢y of the random variable X, that is to say according to the arbitrarily
chosen probability density function p. Then, for each realization z;, the so-
f(@i)
P

called Monte Carlo weight w; = @) is computed and the corresponding

average value is retained for numerical estimation of A (see Appendix):

1

Once presented this way, the question of implementing sensitivity estimations
inside Monte Carlo algorithms is of no particular subtlety. If the function f
to be integrated now depends on any parameter A, the sensitivity of A to A,

noted J)A hereafter, may be expressed as

OA = /D O f (2 N dz: = /D %p(m«)d:p —E <%) — E(BW)
(3)
and then estimated as
HA~ — ivj Drw; (4)
N i=1



This means that for any Monte Carlo algorithm inside the above described
family, where Monte Carlo weights are computed analytically on the basis
of randomly generated variables, sensitivity estimations may be performed
by computing the weight sensitivities and taking the average. This operation
generally represents a very low additional cost because no further sampling is
required (the same set of random generations is used for sensitivity estimations
as for integral estimation). Figure .1 proposes a schematic representation of
this simple way of associating sensitivity estimations to most standard Monte

Carlo algorithms.

The first conceptual difficulty is that for most Monte Carlo algorithms the
underlying integral formulation is not explicit. The reason is to be found in
what is commonly considered as the main quality of Monte Carlo algorithms:
they preserve strong analogies with the involved physics. This means that
a Monte Carlo algorithm may be successfully designed and implemented by
reproducing physical statistical events one after another, without requiring
any complete mathematical translation. We consider below a simple radiative

transfer example for illustration.

3 Example (1)

Consider the surface radiative power emitted by a blackbody and absorbed by
an adjacent plane parallel uniform slab of grey absorbing material of thickness
z (see Fig. .2). The blackbody temperature is denoted by 7 and the slab
absorption coefficient by k. The addressed problem is hereafter to compute

the sensitivity to k of this absorbed power.



Classically, the design of a corresponding Monte Carlo algorithm would strictly
follow available statistical models of photon emission and photon transport.
For instance, the surface flux emitted by the blackbody, o7, is split into N
bundles of power "TT4 and for each bundle an emission direction # is randomly
generated according to the well known distribution of blackbody-emission di-
rections (Lambert law): pq (@) = where the vector 7 is normal to the
slab. Then the bundle is followed along a straight line through the absorbing

layer, with an exponential extinction to represent absorption, and when leav-

ing the layer the remaining bundle-power is ”TT‘leacp (—w';’(‘e)) where 6 is the

angle between the emission direction and the normal. ZZ° [1 —exp (— coIZfe))}

is therefore the bundle-power that was absorbed by the slab.

From these random angular generations, the absorbed flux is simply estimated

as the sum of all the absorbed fractions:

2w e (i) ®

No formal integral expression is required to produce this algorithm. It is how-

ever very easy to identify the Monte Carlo weight as w(f) = oT* [1 —exp (—%)]

and the sensitivity of A to the parameter k may therefore be estimated as

1 X zoT* kz
Ar — i With Oyw; = ——— —
Ok N ;akw with Oyw cos(Gi)exp ( cos(Gi)) (6)

4 Principle (2)

From this example, it could be concluded that sensitivity estimations within
existing Monte Carlo algorithms are trivial to implement even if the formal

integration is not explicit: (1) identifying the Monte carlo weight expression,



(2) deriving it as a function of the considered parameter and taking the av-
erage. This is only true if the probability density function used for random
generations is independent of the parameter (note that in Eq. 3 the proba-
bility density function p(z) has no parametric dependence on A). In our first
example this was the case as the directional probability density function was

independent of the absorption coefficient.

In the general case, the probability density function p chosen for random sam-
pling of 1, x5 ... £y may depend on the considered parameter )\ (see Fig.
.1). Let us therefore consider that a given Monte Carlo algorithm is available,
without the corresponding integral (which can be cumbersome for multiple
dimension problems as will be illustrated below), and that sensitivity estima-
tions are required. All we know is that the addressed quantity A is estimated
as the average of a Monte Carlo weight W that is a function of a random
variable X. The probability density function has a parametric dependence on

A. We may formally write

A:/Dw(x; A)p(z; N)dx (7)

and the sensitivity of A to A is

A= /D [Oxw(z; Np(z; A) + w(z; N\)oap(z; N)] d ®
- /D [&w(ac; A) + w(z; /\)%] p(z;N)dz = E (@W 4 W%)

It appears that a correction term is required by comparison with the simple

case of an insensitive probability density function.

1 & Orp(zi; A)

Implementing a sensitivity estimation inside any existing Monte Carlo algo-



rithm is therefore a source of no practical difficulty, as all the information
required for Eq. 9 is accessible by simple analysis of the considered original

algorithm.

5 Example (2)

To illustrate such a practical implementation, let us reconsider the preceding
example, the layer being now both absorbing (absorption coefficient k,) and
scattering (scattering coefficient k;). An example of the application of stan-
dard Monte Carlo algorithms consists of emitting bundles at the source and
following them until they exit the layer by a random walk corresponding to the
pure diffusion assumption[8]. The traveled length before exit is then used to
compute the extinction of the bundle-power according to the pure-absorption
exponential extinction. As before, the algorithm starts with the random sam-
pling of an emission direction u; for each of the N bundles of initial power
%. Then a scattering path length o, is sampled according to an exponential
distribution on |0, +00[ : ps(0o1; ks) = ksexp(—kso1). This path length is used,
starting at the emission point in the direction w3, to define a first scattering
location P; (see Fig. .3). If P is outside the layer, the length [ to the layer exit
is used to compute the fraction of the bundle-power that is absorbed within
the slab as "TT4 [1 — exp(—kyl)]. If Py is inside the layer, a scattering direction
U5 is sampled according to the scattering phase function: pq  (u3;%1). A new
scattering path length o5 is then sampled and from P; in the direction u5 the
next scattering location P, can be defined, etc. As before, when the bundle fi-
nally leaves the layer (either transmitted or reflected), the fraction of its initial

power that was absorbed within the slab is computed as "TT4 [1 — exp(—k.l)]



where [ is now the total length of the multi-diffusion path.

This algorithm is quite simple in the sense that it is physically intuitable, but
the underlying integral formulation is cumbersome as there is no limit to the
number of possible scattering events before exit. This means that the vector z
of all sampling events required for Monte carlo weight computation is formally

of infinite dimension:

r = (7173,01,“_’2,0'2,?[:’,,0'3,---) (10)

Practically speaking however, Eq. 9 may be used directly without entering this

formalization exercise. First, the Monte Carlo weight is without ambiguity
w(z; k) = 0T [1 — exp(—kyl)] (11)

and the probability density function of any bundle path with n scattering
events before the layer exit is the product of successive emission and scattering

probability density functions:

(x5 ks) = pae(U)ps(o1; ks)pa,s(U2; 1) ps(02; ks )pa,s (U35 U2) ... Pa.s(tn; U 1)Ps(0n; ks)
(12)

where pq (1) is the angular probability density function of the emission di-
rection 41, px(0;; ks) is the probability density function of the scattering mean
free path at the j-th scattering event, and pg s(uj; u;21) is the angular prob-
ability density function of the j-th scattering direction u; knowing that the

incident direction was ;.

For estimation of the sensitivities to the absorption coefficient, we are in the

same conditions as in the preceding example: the sampling probability density



functions are independent of k, and Eq. 9 can be used with

Opw(x; ko) = loT exp(—k,l) (13)
and
Ok (2; ks)
a LA 14
p(z; ks) (14

For estimation of the sensitivities to the scattering coefficient, they are the
contrary to the sensitivities of the absorption coefficient : the Monte Carlo

weight is insensitive to ks and therefore only the correction term remains:
B, w(w; ka) = 0 (15)
and thanks to logarithmic derivations,using the fact that po. and po s are

independant of k;,

Ok P(z3ks) _ OnPoe(ti) N Ok, ps(01; k) N Ok, Pa,s(Us; 1)
p(z; k) Pae(U1) ps(o1; k) Pa,s(U2; 1)

Figure .4 ! displays results obtained for both sensitivities with a strict appli-

(16)

cation of Eq. 9 for a case of isotropic scattering using 10¢ bundle generations.

The same methodology may be used, in case of anisotropic scattering, to
compute sensitivities to the parameters of the scattering phase function. Sen-
! For a fixed value of the absorption coefficient, the absorbed flux decreases with
increasing scattering coefficient. The reason is that when k; increases, more photons
are reflected after very short distances. Ok, A is therefore negative. The fact that
the sensitivity of the absorbed flux to k, is positive is trivial. Its decrease with
increasing ks may be explained by considering again the fact that when k, increases
more photons are reflected after very short distances, reducing the possibility of

absorption



sitivities to the asymmetry factor g are displayed in Fig. .5 2 using a Henyey-
greenstein phase function[7]. According to this phase function model, the co-
sine p of the angle a between the incident and scattering directions is dis-
tributed according to the probability density function (at the j-th scattering
event) par(py; 9) = (14-9%2(1% where p1; = cos(e;) = uj}1.4; The limit g =1
corresponds to the pure forward-scattering case, g = —1 to the pure backward-

scattering case, and g = 0 to isotropic scattering. The sampling probability

density function p(z; ks, g) now exhibits both sensitivities to ks and g with

Ogp (x5 ks, 9) i - 59 + 915 — 3u; (17)
p(z;ks,9) = 9> +1—2gp;)
The Monte Carlo weight is insensitive to g and therefore
Ogw(z;ke) =0 (18)

and these two last expressions can be used in conjunction with Eq. 9 to pro-

duce sensitivities to the phase function parameter g as illustrated in Fig. .5.

Note 1:

On these last simulation results, one may note that the flux and its sensitivity
to g are associated with very distinct statistical relative-uncertainties. As a
2 A simple physical interpretation of these results may be obtained by considering
the medium reduced scattering coefficient k., = (1 — g)k, that allows the establish-
ment of an approximate equivalence between an anisotropically scattering medium
and an isotropically scattering medium with a lower scattering coeflicient: increas-
ing g at constant ks can be seen as equivalent to decreasing k. in an isotropically
scattering medium. The physical interpretations proposed for Fig. .4 can therefore
be directly translated for interpretating the increase of A with increasing ¢ in the

present figure.

10



matter of fact, for g close to 1, Monte Carlo computation of sensitivities to g
is unpractical. Generally speaking, the reason is that the Monte Carlo weights
corresponding to A and to dy A may have very distinct statistical distributions
(see Appendix). In such extreme cases, it may be impossible to optimize the
sampling probability density functions for simultaneous efficient computation
of the addressed quantity on the one hand, and its sensitivities on the other

hand.

Note 2:

Another parametric study concerning this physical problem could be to ana-
lyze sensitivities to the slab thickness z. On the basis of Equations 11 and 12,
one could be led to estimate that both the Monte Carlo weight and the sam-
pling probability density function are insensitive to z. The conclusion would be
that slab absorption is insensitive to slab thickness, which is an obvious non-
sense. The reason is that the space of all possible optical paths changes with
slab thickness. Generally speaking, if the integration domain D depends on
the considered parameter A, Eq. 3 and Eq. 8 are incorrect because the partial
derivation may not be reported inside the integral. In such cases, reformulation
exercises may be required and the main interest of the simple above-presented

methodology (low-cost implementation of sensitivity procedures) is lost.

6 Conclusion

Our purpose was to show that sensitivity estimations are easy to implement in
most Monte Carlo algorithms, provided that they are based on an underlying

multiple integral formulation, even if this formulation is not explicit. We used

11



radiative transfer examples for illustration but this approach can be extended
to a wider range of applications. If the sampling pdf’s are independent of the
considered parameter, it is sufficient simply to compute the sensitivity of the
Monte Carlo weight and take the average. If the sampling pdf’s do depend
on the considered parameter, a correction term must be added that is simply
the product of the Monte Carlo weight with the logarithmic derivative of the
sampling pdf (or the sum of the logarithmic derivative of the pdf’s of the

successive sampling events).
Appendix : Statistical uncertainties

The numerical behavior of a Monte Carlo algorithm is commonly appreciated
referring to the standard deviation of the estimator. With the notations of
Section 4, A = [, f(z,\) dz = [pw(z; \)p(z;\) dz is estimated with any
realization of the random variable S defined as the average of N independent

realizations of W :

and

1 N
S = N Zzzl’wz
. The standard deviation of S is related to the standard deviation of W ac-

cording to

1
Os = —F—=0
TN

Similarly for the sensitivity 0y A, the estimation is made with any realization
of the random variable R defined as the average of N independent realizations

of V:

8,\A:r

12



and

, with

hp(@s; A)
i =0 i A B A)————
v hw(Zi; A) + w(zs; A) (@ )
The standard deviation of R is related to the standard deviation of V according

to
1

OR = g
R \/NV

Both o5 and oy tend to zero when increasing N to infinity, which ensures
the convergence of the Monte Carlo algorithm, but the convergence speed
is entirely driven by the values of oy and oy respectively. The choice of
the sampling probability density function p is therefore essential to ensure
fast convergence (small number of required sampling events) as it fixes the

distributions of the Monte Carlo weights W and V.

One of the advantages of the presented methodology is that the same sam-
pling events may be used both for estimation of A and 0, A. The same sampling
probability density function p must therefore be used for W and V. Conse-
quently, the question arises of the possibility that p be adjusted in such a way

that both ow and oy are satisfactory.

There is no systematic answer to this question. Generally speaking, detailed
understanding of the physical processes at work allows successful optimization
of the integral evaluation [6]. This does not necessarily ensure that the sensi-
tivity estimation is optimized. For problems in which the sensitivity estimation
is essential, similar physical reasoning may be concentrated on the sensitivity
itself. But as illustrated in the following example, there is no mathematical

constraint relating the statistics of W and V.

13



Consider the case where the function to be integrated is

f(z;A) = a+ Ag(z)

where « is a constant and g is any function of # independent of the parameter

A. In the particular case A = 0, f becomes independent of x. If p is taken

as uniform on D, w(z;0) = £ (‘;;0) is independent of z and therefore oy = 0.
This corresponds to an ideal optimization of A estimate. Correspondingly,
v(z;0) = “’(Tm) and the standard deviation oy can take any value depending on

g.

14
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A= j £(x,A)dx

D is independant of A

‘ Arbitrary choice of non - zero probability density function p on D ‘

‘ Random sampling of x,,X,,........ X, according to p ‘

Computation of ®, =

N
Estimation of A as A = %Zmi
i=1

f(x;, M)
p(x;,A)

If p is independant of A If p is dependant of A
. 9,f(x;;1) . :
Computation of 9, @, = =*—=== Computation of 9,0, = J, ) and 9,p(x;:1)
p(x;) p(x;;A) p(x;;A)
\ \
Estimation of 9, A Estimation of 0, A
-l

as9,A=—Y"0,0, R 9,p(x;;A)

v ! asd,A=—) [0,0, +®, 2~

Fig. .1. Schematic representation of a Monte Carlo algorithm for estimation of an

integral A together with its sensitivity to a parameter A

N

Fig. .2. One dimension slab geometry for Example (1): pure absorption (no scatter-

ing)
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Fig. .3. One dimension slab geometry for Example (2): absorption and scattering
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Fig. .4. Fraction of the surfacic flux emitted by a blackbody that is absorbed by
an adjacent, uniform, isotropically-scattering slab of thickness z, of absorption co-
efficient k, and of scattering coefficient ks;. The absorption optical thickness kqz
is fixed to unity and the scattering optical thickness k;z is varied from 0 (which
corresponds to Sec.3) to 100. Absorbed fractions (+) correspond to the right axis,

whereas the sensitivities to k,z (*) and to ksz (x) correspond to the left axis.
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Fig. .5. Fraction of the surfacic flux emitted by a blackbody that is absorbed by
an adjacent, uniform, anisotropically-scattering slab of thickness z, of absorption
coefficient k, and of scattering coefficient k5. Absorption optical thickness k,z and
scattering optical thickness ks;z are fixed to unity. Anisotropic phase functions are
represented with Henyey-Greenstein model and the asymmetry factor g is varied
from O (isotropic scattering) to 1 (forward scattering). Absorbed fractions (+) cor-
respond to the right axis, whereas the sensitivities to g (*) correspond to the left

axis. Error bars correspond to the estimated standard deviation of the Monte Carlo

estimate.
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