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Abstract

A Monte Carlo approach to radiative transfer in participating media is described and tested. It solves to a
large extent the well known problem of Monte Carlo simulation of optically thick absorption con6gurations.
The approach which is based on a net-exchange formulation and on adapted optical path sampling procedures
is carefully designed to insure satisfactory convergence for all types of optical thicknesses. The need for such
adapted algorithms is mainly related to the problem of gaseous line spectra representation in which extremely
large ranges of optical thicknesses may be simultaneously encountered. The algorithm is tested against various
band average computations for simple geometries using the Malkmus statistical narrow band model. ? 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the emergence of computational physics, Monte Carlo methods have been extensively used
for numerical simulation of radiative heat transfer in participating media. They 6rst appeared as
strict numerical implementations of photon transport stochastical models [1,2]. As such, they were
commonly quali6ed by “exactness” and were mainly used for production of reference solutions in
the process of validating other numerically more eBcient simulation techniques.
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Recent research eHorts depart from this original position in three ways [3,5]:

(1) underlying physical formulations are intensively rediscussed (reverse formulations, net-exchange
formulations), sometimes preserving very little similitude with photon transport models;

(2) intensive use is made of all available convergence enhancement techniques;
(3) the emergence of massively parallel hardware allows one to seriously consider statistical methods

for operational use (and not only for reference solution production), in particular when thinking
of the diBculties encountered with deterministic techniques in front of detailed three-dimensional
geometries and complex spectral properties.

Among the strongest handicaps of today’s Monte Carlo algorithms, are the diBculties related to
numerical behavior in the optically thick limit [4,5]. In case of very short photon mean free paths,
most bundles are absorbed in the vicinity of their emission positions which means that only very
few bundles eHectively participate to distant radiative transfers. The consequence is that Monte
Carlo algorithms based on bundle transport formulations require very large numbers of statistical
realizations for suBciently accurate radiative exchange estimations. For less intuitive reasons, as we
will illustrate hereafter, path integrated Monte Carlo algorithms encounter similar diBculties. 1

The other numerical diBculty encountered with optically thick media is related to spatial dis-
cretization. Computational costs impose constraints to geometrical grid sizes that cannot be reduced
suBciently for the optically thin assumption to be valid. It therefore becomes essential to account
for sub-grid scale temperature pro6les. In the optically thick limit indeed, the radiative net-exchange
between adjacent volumes is proportional to temperature gradients at the interface (diHusion assump-
tion) and the assumption of isothermal meshes would lead to strong energy net-exchange overestima-
tions. This constraint requires that Monte Carlo algorithms do not consider global mesh emissions,
starting from mesh boundaries, but instead reduce the physical description to local sub-grid emissions,
as a function of sub-grid temperature pro6les, through random generations of emission positions [6].

These questions are particularly sensitive in gaseous media as line spectra induce wide ranges
of optical thicknesses; the optically thick limit being rapidly encountered in the spectral vicinity of
absorption line centers. Solutions were proposed in [4,7,8] to overcome this speci6c diBculty on
the basis of hybrid algorithms, combining Monte Carlo with diHusion algorithms. However, such
hybrid algorithms face two new diBculties: that related to the criteria used when switching from
one model to the other, and that related to the behavior of diHusion models in the vicinity of surface
boundaries. Among recent attempts, Cherkaoui et al. [6,9] showed, for quasi-isothermal H2O–CO2–
air mixtures, using a narrow band statistical model [10], that thanks to intrinsic reciprocity principle
satisfaction, net exchange Monte Carlo algorithms were much less sensitive to optical thickness than
standard or reverse Monte Carlo algorithms. However, the spatial integration procedure could not be
simply optimized on the basis of average transmission functions. The required computational eHort,
although much smaller than for standard algorithms, still increased signi6cantly as a function of
optical thickness.

1 In the present text, the terminology “bundle transport algorithm” will be used for algorithms in which energy is
distributed via emission of energy bundles, each of which is entirely absorbed at a single stochastically determined location.
The alternative terminology “path integrated algorithm” will denote algorithms in which bundle energy is exponentially
distributed along stochastically determined semi-in6nite optical paths.
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We now present such a net exchange Monte Carlo approach devoted to gaseous radiation simu-
lation. DiHerences with [6] are essentially that:

• spectral integrations are performed with a k-distribution model, randomly generating monochro-
matic absorption coeBcients [11,12] instead of using narrow-band average transmission functions;

• a path integrated algorithm is used instead of a bundle transport algorithm;
• sub-grid temperature integrations are signi6cantly optimized by physical and mathematical simpli6-

cations associated with the k-distribution spectral formulation (exponential extinction and bypassing
of spectral correlation diBculties [13–18]).

Section 2 begins on a monochromatic basis with simple one-dimensional geometries, discussing
spatial integration procedures. Generalization is then made to any geometries. At this stage a
net-exchange re-formulation is further introduced and convergence illustrations are made on the
basis of simple one-dimensional slab con6gurations.

Section 3 introduces the k-distributions Monte Carlo spectral integration approach, discussing
sampling probability choices. The same test case is used for convergence illustrations considering
narrow-band integrated radiative powers, on the basis of Malkmus model [10], for a wide range of
line overlap parameters and average optical thicknesses.

2. Optics and geometries

Using k-distribution approaches for spectral integration allows one to consider all optic and ge-
ometric integrations on a pseudo-monochromatic basis (see Section 3). Transmission functions are
therefore exponential functions, which in the frame of MC integration allows simple variance reduc-
tion techniques to be implemented, in particular as far as sub-grid integration is concerned. For the
sake of clarity, in the present section, optic and geometry are discussed assuming a non-scattering,
uniformly absorbing medium. Both assumptions may be easily relaxed as in any standard Monte
Carlo algorithm. 2

2.1. Sub-grid integration

In order to illustrate the behavior of standard MC algorithms as function of optical thickness
and to introduce the principle of the proposed algorithm, the simple problem of monochromatic slab
emission is 6rst analysed. This permits the derivation of analytical solutions and associated variances
from which our choices of optimized probability density functions may be physically discussed and
tested.

Consider a horizontal slab of semi-transparent medium between black boundaries. The slab thick-
ness is L and the downward unit vector normal to the slab is written ñ (see Fig. 1). The temperature

2 Scattering is usually represented via random generation of scattering positions and angles, the MC algorithm being
kept unchanged on the basis of broken lines optical paths instead of straight lines [2]. Non-homogeneous absorption creates
no source of diBculty provided that the variations of absorption coeBcient are known along each optical path, which in
the frame of the k-distribution approach may be achieved using the correlated-k assumption [13,17].
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Fig. 1. Non isothermal 1D slab con6guration —–: linear
blackbody intensity pro6le; - - - parabolic blackbody in-
tensity pro6le.

Fig. 2. Number of required bundle realizations for MC es-
timation of inhomogeneous slab emission with a 1% rel-
ative error, as function of slab optical thickness. Results
corresponding to Algorithms 1, 2 and 3 are analytical,
whereas the results of Algorithm 4 were obtained with
eHective MC simulations.

pro6le is such that the monochromatic blackbody intensity at the considered frequency follows a
linear pro6le from B0 at the bottom to 0 at the top.
Downward radiative Qux at the bottom can be expressed as

F =
∫
2	

d!(̃u)
∫ L

0
dz k exp

(
− kz

ũ · ñ
)

B0(1− z=L)

= 2	B0

(
1=2− 1

3kL
+

E4(kL)
kL

)
; (1)

where En is the nth exponential integral.

Algorithm 1. In the most straightforward MC algorithm; sampling events are randomly generated in
a way that preserves a close analogy with photon transport statistics. As far as the present test case is
concerned; z and ũ are sampled according to respectively uniform and isotropic probability density
functions. F is then estimated counting bundles reaching the bottom boundary before absorption;
which may be formally represented via the following expression:

F =
∫ L

0
dz pZ(z)

∫
2	

d!(̃u)p�(̃u)
∫ +∞

0
d�p�(�) w1(z; ũ; �) (2)

with

w1(z; ũ; �) = 2kL	B0(1− z=L)S
(
� − z

ũ · ñ
)
;

where S is a step function: S(a)=0 if a¡ 0 and S(a)=1 otherwise. The position of emission in
the one-dimensional slab is produced by generating randomly the abscissa z according to pZ(z)=1=L.
The direction of emission is generated according to p�(̃u)=1=2	. Then z and ũ de6ne a line of sight
along which a virtual absorption position is generated according to an exponential pdf between 0
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and +∞: p�(�)=k exp(−k�). This leads to a bundle weight w1=w∗
1 (z)=2kL	B0(1−z=L) when the

bundle reaches the bottom boundary; w1 = 0 otherwise. The radiative Qux addressed corresponds to
the average weight: F= 〈w1〉. The practical algorithm uses a 6nite number N of emission-absorption
events to estimate F as the average of corresponding weights and such an estimate is associated
with a statistical error

E�;1 =

√
1
N
(〈w2

1〉 − 〈w1〉2): (3)

In the present simple case; this error can be obtained analytically as

E�;1 =
2	B0√

N

√
kL
2

− 2
kL

E5(kL)− 2
3
+

1
4kL

−
(

F
2	B0

)2

:

The “pathological” behavior of such MC algorithms for strong optical thicknesses can be seen
noticing that E�;1=F � √

2kL=N when kL�1 and therefore that the relative error tends to in6nity
when optical thickness tends to in6nity. Fig. 2 displays the number of random generations required
for a 1% relative error as a function of optical thickness. In terms of physical images, this behavior
can be explained by the fact that for strong optical thicknesses, most bundles are absorbed within the
slab; therefore only a few bundles contribute to the radiative Qux at the boundary and the statistics
require large numbers of emitted bundles for satisfactory accuracies.

Algorithm 2. This interpretation could lead one to believe that path integrated MC algorithms; in
which all bundles leave the emitting volume element (no complete self absorption); would have
better statistical behaviors. In these algorithms; bundles are emitted as described above with the
same initial weight w∗

2 (z) = w∗
1 (z); but instead of being absorbed at one single absorption position;

each bundle undergoes an exponential attenuation along the de6ned ray until the bottom boundary
is encountered. In our case; such an algorithm corresponds to the following formulation:

F =
∫ L

0
dz pZ(z)

∫
2	

d!(̃u)p�(̃u)w2(z; ũ) (4)

with

w2(z; ũ) = 2kL	B0(1− z=L) exp
(
− kz

ũ · ñ
)

:

Events are de6ned with only two random generations (emission position and direction; no absorption
position). As before; F = 〈w2〉 and for a practical MC calculation with N events; the statistical error
is

E�;2 =
2	B0√

N

√
kL
4

− 1
4kL

E5(2kL)− 1
6
+

1
16kL

−
(

F
2	B0

)2

:

For strong optical thicknesses; this relative error simpli6es to E�;2=F �√
kL=N ; which is better than

that of a straightforward bundle transport algorithm but still tends to in6nity with increasing optical
thicknesses. Path integrated algorithms therefore encounter equivalent bad behaviors. The reason is
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that; although complete auto-absorptions have been suppressed; only bundles emitted in the immediate
vicinity of the boundary leave the volume with a signi6cant weight; all other bundles are strongly
attenuated and reach the boundary with a quasi-zero weight. The statistical diBculties are therefore
very similar. The number of bundles required for a one percent relative error with Algorithm 2 are
displayed in Fig. 2 and can be compared with that of Algorithm 1.

Algorithm 3. In both the above cases; the diBculties are obviously associated with emission position
random generations. These diBculties can be relieved by modi6cation of pZ(z) to choose emission
positions close to the boundaries. However; exponential extinction depends on emission angles and
radiation may come from further inside the slab for quasi-normal directions whereas only the very
bottom of the slab contributes to quasi-tangential Quxes. It appears therefore that angular and spatial
integrals ought to be inverted and emission directions generated before emission positions. If the
direction ũ is generated 6rst; an adapted pdf of z knowing ũ can be chosen to match exactly the
exponential attenuation from z to the boundary. This adapted pdf is:

pZ;a(z; ũ) =

k
ũ · ñ exp

(
− kz

ũ · ñ
)

1− exp
(
− kL

ũ · ñ
) : (5)

As for all biased MC algorithms; the bundle weight must be adjusted in accordance with the new
pdf choice; which implies here that the previous bundle weight w∗

2 (z) should be replaced by

1− exp
(
− kL

ũ · ñ
)

exp
(
− kz

ũ · ñ
) 2	(̃u · ñ)B0(1− z=L):

The fact that ũ · ñ appears as product in this bundle weight expression would introduce an undesired
distribution width in the optically thick limit. As a 6rst step; to illustrate that MC algorithms may
be simply adapted to deal with optically thick con6gurations; this diBculty can be bypassed via a
modi6cation of the angular distribution using p�;l(̃u; ñ) = ũ · ñ=	. The initial bundle weight then
becomes

w∗
3 (z) =

1− exp
(
− kL

ũ · ñ
)

exp
(
− kz

ũ · ñ
) 	B0(1− z=L):

Altogether; the corresponding optimized algorithm consists of the following: (i) directions are gener-
ated randomly according to p�;l(̃u; ñ) which corresponds to a Lambert angular distribution;
(ii) positions are alloted randomly according to the exponential distribution pZ;a(z; ũ); (iii) bun-
dles are alloted the initial weight w∗

3 (z); (iv) the rest of the algorithm is kept unchanged; either a
bundle transport or a path integrated algorithm. Applying this algorithm in its ray-tracing form to
the same test case as above corresponds formally to the following expression:

F =
∫
2	

d!(̃u)p�;l(̃u; ñ)
∫ L

0
dz pZ;a(z; ũ)w3(z; ũ) (6)
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with

w3(z; ũ) =
[
1− exp

(
− kL

ũ · ñ
)]

	B0(1− z=L)

and the corresponding statistical error is

E3 =
2	B0√

N√
1
4
− 1

3kL
+

1
4(kL)2

− 2E5(kL)
k2L2 − E3(kL)

2
− 1

kL
E4(kL) +

E5(2kL)
k2L2 −

(
F

2	B0

)2

:

Unlike the other two algorithms; the relative error does not tend to in6nity with increasing optical
thickness; but instead decreases to zero as E3=F � (1=3kL)

√
5=N . Fig. 2 displays the numbers of

bundles required to reach a 1% relative error and illustrates that the adapted algorithm encounters
no speci6c diBculty for strong optical thicknesses.

Algorithm 4. This last Algorithm 3 shows however worse behavior than the two preceding
in the optically thin limit. Such behavior is due to angular integration: the Lambert distribution
(p�;l(̃u; ñ) = ũ · ñ=	) is indeed adapted to optically thick system emissions but not to thin ones that
tend to isotropy (p�(̃u) = 1=2	). This dependence on optical thickness may for instance be ap-
proached using an angular pdf that combines both limit cases:

• The Lambert law is kept for systems with optical thickness greater than unity:

p�;a(̃u; ñ; kL) = p�;l(̃u) if kL¿ 1

• For systems with optical thickness lower than unity; a Lambert like distribution is used for slab
tangential directions and a uniform distribution for close to normal directions:

p�;a(̃u; ñ; kL) =
1

1− kL=2

(
S(kL− ũ · ñ) 1

2kL
ũ · ñ
	

+S(̃u · ñ− kL)
1
2	

)
: (7)

The algorithm then formally corresponds to

F =
∫
2	

d!(̃u)p�;a(̃u; ñ; kL)
∫ L

0
dz pZ;a(z; ũ)w4(z; ũ) (8)

with

w4(z; ũ) = w3(z; ũ)
p�;l(̃u; ñ)

p�;a(̃u; ñ; kL)
:

Numerical results obtained with Algorithm 4 are reported in Fig. 2 showing good behavior in both
optically thin and optically thick limits.

2.2. Generalized algorithmic procedure

The preceding simple example (Monte Carlo estimation of the power emitted from a non-isothermal
slab to a surface) illustrated how important it is to work on both the formulation choice and the
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Fig. 3. Emission positions and emission directions. (a) In-
tegration over the envelope. (b) Integration over a convex
surrounding surface (see Appendix A).

Fig. 4. Absorption segments and exchange positions.

pdf adaptations to deal with optically thick conditions. A general three-dimensional Monte Carlo
algorithm is presented hereafter that bene6ts from these observations concerning sub-grid integration
optimization, generalizing the principle of Algorithm 4 to any geometry. For the sake of clarity,
the algorithm is formally enunciated assuming black system boundaries, and the required extension
associated with surface reQexions are rapidly treated via independent footnotes.

Let us consider a system divided into NV volume elements Vi of semi-transparent material and
NS opaque surface elements Si. Volume and surface elements are non-isothermal and the volume
elements cannot be assumed optically thin. The temperature 6eld will be described as a continuous
6eld and the corresponding blackbody intensity 6eld at the considered frequency will be noted B(̃x)
where x̃ is the coordinate vector.

When computing exchange rates from a volume to a surface, ’(Vi; Sj) (the radiative power emitted
by Vi that is absorbed by Sj), or between two volume elements, ’(Vi; Vj), with bundles starting from
Vi, the 6rst step is the random generation of an emission position ẽ within Vi and of an emission
direction ũ. The most direct extension of Algorithm 4 to three-dimensional geometries consists in
the following procedure (see Appendix and Fig. 3a):

(1) A position x̃1 is uniformly and randomly generated on Vi’s envelope, noted 3 Si: pS (̃x1)=1=Si.
(2) The emission direction ũ is randomly generated on the outward hemisphere at x̃1 according to

the previously de6ned pdf adapted as function of Vi’s optical thickness: p�(̃u; ñ1; kL) (see Eq.
(7)) where ñ1 is the outward oriented unit vector normal to Si at x̃1. In the one dimensional
case the length L was chosen as the slab thickness, but in the general case L should be taken
as a length scale characteristic of Vi’s thickness from x̃1’s view point.

(3) x̃1 and ũ are used to de6ne a continuous segment within Vi from x̃1 to x̃2, where x̃2 is the 6rst
intersection with Si starting from x̃1 in the direction −ũ.

(4) The emission position ẽ is randomly generated along the segment [̃x1; x̃2] according to an expo-
nential distribution:

ẽ = x̃1 − �ũ with p�(�) =
k exp(−k�)

1− exp(−k‖̃x2 − x̃1‖) :

3 Depending on the geometries, generating x̃1 on the envelope Si may be tedious, in which case the alternative procedure
described in Appendix may be preferred.
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At this stage, emission position and direction have been randomly generated to de6ne a line of sight
leaving Vi at x̃1. A bundle is then followed along this direction starting at x̃1 with the following
initial bundle weight:

w∗
0 = 	Si[1− exp(−k‖̃x2 − x̃1‖)] p�;l(̃u; ñ1)

p�;a(̃u; ñ1; kL)
: (9)

As in any ray-tracing algorithm, the bundle weight is exponentially attenuated along its path as a
function of the amount of encountered absorber. At any location ỹ, the remaining bundle weight is
noted w∗(ỹ) and satis6es w∗(ỹ)¡w∗

0 .
When computing ’(Vi; Sj) with N such emission events, each bundle is followed until Sj is

encountered at location ã. The Monte Carlo weight is then computed as

w(̃e; ã) = w∗(̃a)B(̃e) (10)

and ’(Vi; Sj) is estimated as the average weight 〈w〉N . For optical paths where complete absorption
occurs before Sj is encountered, the event is attributed a weight 4 w = 0.

Generally speaking, the line of sight intersects any volume element Vj in m segments [ỹ 2l−1; ỹ 2l]
with l=1; : : : ; m (see Fig. 4). When computing ’(Vi; Vj), the ray is therefore followed until complete
absorption, de6ning these m segments and the Monte Carlo weight is computed as

w(̃e; ỹ 1; : : : ; ỹ 2m) =
m∑

l=1

w∗(ỹ 2l−1)[1− exp(−k‖ỹ 2l − ỹ 2l−1‖)]B(̃e): (11)

When computing ’(Si; Sj) and ’(Si; Vj) starting from Si, the algorithm is strictly similar in the limit
case of L = +∞: emission positions are generated uniformly on Si (� = 0); the angular distribu-
tion becomes Lambert distribution (p�;a(̃u; ñ1;+∞) = p�;l(̃u; ñ1)); and the initial weight becomes 5

w∗
0 = 	Si. The proposed algorithm allows therefore a continuous treatment of sub-system emissions,

from optically thin volumes to opaque surfaces, via optimized pdf choices for the total range of
system optical thicknesses.

At this stage the algorithm is a forward algorithm in the sense that quantities addressed are
exchange rates from one geometrical element to another. As discussed in the introduction section,
net-exchange algorithms have been shown to ensure better convergence in numerous con6gurations.

4 When simulating black boundary cavities, complete absorption occurs at the 6rst boundary encounter and Sj may
only be encountered once. In the case of reQecting boundaries, the optical path is continued after each surface encounter
generating randomly a reQexion direction according to the local directional–directional reQectivity function. At each such
reQexion, the weight is attenuated according to the directional absorptivity (w∗ → (1− $)w∗) and the path is interrupted
when w∗ ¡%=TBmax is satis6ed, where % is the required accuracy and TBmax the maximum absolute blackbody intensity
diHerence between the emission point and any other location in the cavity. Such a multiple broken line optical path may
encounter Sj at several locations ã1; : : : ; ãm under incident directions corresponding to directional absorptivities $1; : : : ; $m

and the MC weight is computed as

w(̃e; ã1; : : : ; ãm) =
m∑

l=1

$lw
∗(̃al)B(̃e):

5 In case of a non-black surface, w∗
0 is multiplied by the directional emissivity.
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For the sake of numerical quality, it is therefore preferable to further add this net-exchange reformu-
lation step to the preceding algorithm which may be very simply performed thanks to the reciprocity
principle. One may refer to [6,19] and [20] for details concerning net-exchange formulations, but the
essential picture is that quantities addressed are net-exchange rates between geometrical elements.
The net-exchange rate  (Vi; Vj) between volumes Vi and Vj is the power emitted by Vi and absorbed
by Vj minus the power emitted by Vj and absorbed by Vi:

 (Vi; Vj) = ’(Vi; Vj)− ’(Vj; Vi):

The radiative balance of any element is therefore the sum of all net-exchange rates with other
discretization elements. Independently of the physical insight that net-exchange formulations may
provide to radiative transfer problems, numerical bene6t associated with this formulation is that it
intrinsically satis6es the reciprocity principle. Apart from con6gurations in which strongly irregular
discretizations are required, one may think of con6gurations in which dominant radiative exchanges
occur between elements at similar temperature levels. The reason why in such cases net-exchange
formulations lead to better numerical behavior than standard forward formulations is simply that
when two elements are at similar temperature levels the two reciprocal exchange rates are numerically
close to each other. The diHerence between these two exchange rates, that is the contribution to the
radiative balance, may therefore be very small compared to exchange rates themselves. A numerical
estimation procedure based on independent exchange rates estimations may therefore lead to very
high levels of uncertainties (diHerence of two approximate quantities of similar magnitudes). In
numerical methods based on net-exchange formulations, the quantities addressed are directly the
net-exchange rates between elements and this diHerence taking step is bypassed.

This is particularly relevant to optically thick con6gurations in which main radiative exchanges
occur between adjacent elements and correspond to exchange locations that are very close to the
interface. These locations are therefore likely to correspond to very similar temperature levels.

As shown in [19] our forward Monte Carlo algorithm may be turned into a net-exchange algorithm
via an additional step of absorption location random generation within each absorption segment. In
practice, this means that the algorithm is kept strictly identical to what was presented above except
that each time an absorption segment [ỹ 2l−1; ỹ 2l] is identi6ed. An absorption position ãl is randomly
generated (as for emission) according to an exponential distribution:

ãl = ỹ 2l−1 + �ũ with p�(�) =
k exp(−k�)

1− exp(−k‖ỹ 2l − ỹ 2l−1‖) :

Monte Carlo weights are then modi6ed by replacing blackbody intensities at the emission position
B(̃e) by blackbody intensity diHerences between emission and absorption positions. Eqs. (10) and
(11) therefore simply become

w(̃e; ã) = w∗(̃a)[B(̃e)− B(̃a)] (12)

for interaction with a surface and

w(̃e; ỹ 1; : : : ; ỹ 2m; ã1; : : : ; ãm)

=
m∑

l=1

w∗(ỹ 2l−1)[1− exp(−k‖ỹ 2l − ỹ 2l−1‖)][B(̃e)− B(̃al)] (13)
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for interaction with a volume. The average values of these new Monte Carlo weights are now
estimated from N realizations to approximate the net exchange rates  (Vi; Sj) and  (Vi; Vj) directly.

2.3. Convergence illustration (monochromatic)

Simple con6gurations (one dimension slab) are used for convergence quality illustration. Simula-
tions are 6rst performed on a monochromatic basis and similar examples are later reconsidered in
Section 3 with an additional integration over gaseous line spectra.

The slab geometry is that of Fig. 1. The boundaries are black and absorption coeBcient is uniform.
The 6rst test case is that proposed in [5] for comparison of forward bundle transport algorithm,
forward path integrated algorithm and reverse path integrated algorithm. 6 The temperature pro6le is
such that the monochromatic blackbody intensity at the considered frequency is B0 at the boundaries
and uniform at B0 +TB across the slab. Estimated quantities are radiative Qux divergence averages
within each of the 10 regular layers used for slab discretization.

For slab optical thickness kL=10, Fig. 5 presents successively the exact and Monte Carlo solutions,
the percent error presented in [5] for the three tested strategies (in the speci6c case of B0=0) and the
percent error reached with our proposed adapted net-exchange methodology (which is independent
of B0 owing to the net-exchange formulation). All corresponding simulations are performed using
10,000 ray sampling per element. The conclusion of this 6rst exercise is undoubtedly the same as
that of Fig. 2: a simple reformulation of the emission position and emission angle integrals allows
one to solve the well known problem of Monte Carlo convergence for optically thick con6gurations.
To further illustrate this point, Fig. 6 displays the radiative Qux divergence averages (and statistical
error) within layer 1 (against the boundary) and layer 5 (one of the two central layers) as a function
of optical thickness widely above kL = 10. These simulations con6rm that in the proposed scheme
statistical errors are insensitive to optical thickness in the optically thick limit.

However, this 6rst test case is not very representative of practical optically thick con6gurations
in which most of the physics lies in the energy redistribution process within the medium via short
distance photon exchanges. Treatment of non-uniform temperature pro6les is essential keeping in
mind the limiting case of the Rosseland approximation in which energy transfers are modeled on
the basis of second order spatial derivatives (as for any diHusion process). In our second test case,
the temperature pro6le is therefore chosen such that the monochromatic blackbody intensity at the
considered frequency follows a parabolic pro6le across the slab, from B0 at the boundary to B0+TB
at the slab center. Slab discretization is now performed on the basis of 20 layers of equal width.
Fig. 7 displays simulation results and statistical errors for three optical thicknesses (kL=0:1, kL=1
and kL = 10) for 10,000 ray samplings per element. Similarly, Fig. 8 displays the results obtained
for layer 3 and layer 10 as a function of optical thickness.

Statistical errors are necessarily higher for this second test case than for the isothermal slab:
sub-grid temperature pro6le integration is now essential whereas only the angular integration had to
be statistically reconstructed in preceding test case. Worth some attention is the fact that errors are
higher close to the boundaries than at the center of the slab. After a close look at this behavioral
diHerence, it appears that this is not a boundary eHect. It is related to the temperature pro6le only:

6 The corresponding denominations used in [5] are the forward collision based algorithm, forward pathlength algorithm
and reverse algorithm respectively.
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Fig. 5. Comparison of the proposed net-exchange Monte-Carlo (NEMC) approach against “collision based”, “pathlength”
and “reverse” algorithms as reported in [5]. The computations are on a monochromatic basis. The test case is a uniform
one-dimensional slab at B0 + TB with black boundaries at B0 discretized in 10 regular layers. Presented quantities are
radiative Qux divergence averages for each layer normalized by 	TB. 10,000 sampling events per discretization ele-
ment are used for each algorithm. In [5] computations were performed with B0 = 0 whereas NEMC behaviors are in-
sensitive to B0. (a) Analytical and NEMC solutions. (b) Percent errors as reported in [5]. (c) Percent errors as obtained
with NEMC.

Fig. 6. (a) Radiative Qux divergence averages for layer 1 (against the boundary) and layer 5 (at slab center) as
functions of slab optical thickness for the same test case as in Fig. 5. (b) Corresponding MC standard deviation
(statistical errors).
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Fig. 7. (a) Estimated radiative Qux divergence averages, using the proposed net-exchange Monte-Carlo approach using
10,000 sampling events per discretization element. The test case is a 1D slab with black boundaries. Computations are
held on a monochromatic basis. Absorption coeBcient is uniform. The blackbody intensity pro6le is parabolic from B0

at the boundaries to B0 + TB at the center. The slab is discretized in 20 regular layers. (b) Corresponding MC standard
deviation (statistical errors).

this pro6le is such that the second order spatial derivative of the monochromatic blackbody intensity
is constant (which explains why the radiative Qux divergence tends to a Qat pro6le when increasing
optical thickness), but the net energy transfer rate of each layer is being computed essentially as
the sum of two net-exchange rates with neighboring layers. Numerical conditions are very distinct
for layer 3 and layer 10 for instance. For layer 3, blackbody intensity gradients are of similar mag-
nitude at both interfaces and the net energy transfer rate is therefore computed as the diHerence of
two uncertain net-exchange rates of similar magnitudes. Statistical errors on radiative net-exchanges
are therefore ampli6ed by this diHerence taking step. This diBculty is not encountered with layer
10 because the parabolic pro6le is Qat at the slab center which means that the net-exchange rate
between layer 10 and layer 11 tends to zero with increasing absorption. Reducing this sensitivity of
the algorithm to the sub-grid temperature pro6le could be partly achieved via an explicit representa-
tion of this spatial dependence in the pdf choice for emission position sampling. But at the present
stage, without a speci6c high accuracy requirement, the results seem quite acceptable (never more
than a few percent error with 10,000 ray samplings), especially when thinking of complete diver-
gences as are commonly encountered with standard Monte Carlo algorithms in the optically thick
limit.

3. Spectral integration

3.1. Principles

In the preceding section, MC integrations were considered on a monochromatic basis, optimizing
the algorithm in such a way that satisfactory convergence is ensured for all types of optical thick-
nesses. The motivation for this optimization attempt was that when considering spectral integration
over line spectra, a large range of optical thicknesses may be encountered from very high thicknesses
at line centers to optically thin con6gurations between lines.
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Fig. 8. Radiative Qux divergence averages (a and b) and standard deviations (statistical errors, c, d, e and f) for layer 3
and layer 10 as a function of slab optical thickness for the same test case as in Fig. 7. Also presented are computations
performed on a narrow band interval using Malkmus model as a function of average optical thickness UkL for two
values of the shape parameter (line overlap parameter): ' = 0:1 and ' = 0:01. Analytical solutions corresponding to
the optically thin and optically thick models are presented as straight lines for comparison. Standard deviations in c
and d correspond to the use of pdf K;1(k) = f(k) for k-sampling, whereas e and f correspond to the use of pdf K;2(k),
see Eq. (21).
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When computing integrated exchange (or net-exchange) rates over a spectral interval [�min; �max]
with a MC algorithm, the only step to be added to the preceding algorithms is the random generation
of a frequency � within [�min; �max] according to an arbitrarily chosen pdf. As for optic and geometric
considerations, this pdf is essential in the sense that numerical convergence depends on its choice.
In order to formalise this point, let us write the spectrally integrated net-exchange rate between
volumes Vi and Vj using a synthetic path-integral formulation in which *�(Vi; Vj) is the space of
all possible optical paths +, at frequency �, and h (+; �) is the contribution of monochromatic net
exchange along *:

 (Vi; Vj) =
∫ �max

�min

d�  �(Vi; Vj) =
∫ �max

�min

d�
∫
*�(Vi;Vj)

d+ h (+; �): (14)

As before, pdf ’s are introduced for integration variables � and + and Monte Carlo estimates are
obtained on the basis of corresponding sampling events:

 (Vi; Vj) =
∫ �max

�min

d� pdf N (�)
∫
*�(Vi;Vj)

d+ pdf *(+)w (+; �)

≈ 1
N

N∑
n=1

w (+n; �n); (15)

where +n and �n are N random generations of optical path and frequency according to pdf * and
pdf N , and where the MC weight w is computed as

w (+; �) =
h (+; �)

pdf N (�)pdf *(+)
:

For a given frequency, optimizing optical path sampling was the object of Section 2: pdf *(+) is
therefore nothing but a formal representation of spatial and angular sampling procedures that were
carefully discussed above as a function of optical thickness. The remaining question is therefore that
of optimizing the frequency pdf choice. In this optimization exercise, the variance of w (+n; �n) must
be as low as possible, keeping pdf N (�) simple enough to handle for practical random sampling. This
compromise is extremely diBcult to reach when dealing with gaseous infrared spectra such as those
of water vapor and carbon dioxide. The spectral variations of the radiative transfer functions to be
integrated are so sharp and irregular that it seems not feasible to design suBciently simple spectral
pdf ’s that could compensate for h ’s variations.
Very strong simpli6cations may however be introduced when the spectral interval is narrow enough

for blackbody intensities, surface reQexion properties and scattering properties to be assumed inde-
pendent of frequency: this is the narrow band assumption that is a common basis for all so-called
narrow band spectral integration models. Under this assumption, the function to be integrated de-
pends only on frequency through the spectral dependence of absorption coeBcients, which oHers the
opportunity for narrow band k-distribution methodology to be applied:

• A new function h̃ is introduced that explicitly de6nes the absorption coeBcient dependence:
h (+; �) = h̃ (+; k�).
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• The distribution of absorption coeBcients within the interval [�min; �max] is noted f(k) (the inverse
transmission function [11]) and is modeled to the level of required accuracy.

•  (Vi; Vj) may then be re-written in a way that justi6es a new MC algorithm in which random
absorption coeBcients are generated instead of random frequencies:

 (Vi; Vj) = [�max − �min]
∫ kmax

kmin

dk f(k)
∫
*(Vi;Vj)

d + h̃ (+; k)

=
∫ kmax

kmin

dk pdf K(k)
∫
*(Vi;Vj)

d+ pdf *(+) w̃ (+; k)

≈ 1
N

N∑
n=1

w̃ (+n; kn) (16)

with

w̃ (+; k) = [�max − �min]
f(k)

pdf K(k)
h̃ (+; k)
pdf *(+)

:

Note that the frequency dependence of optical path domain *(Vi; Vj) vanishes owing to the narrow
band assumption.

The main advantage of such a formulation is that the variations of the product h̃ (+; k)f(k) with
k are much less erratic than those of h (+; �) with frequency, so that optimizing the choice of pdf K
becomes realistic. 7 The task of adapting the k-sampling pdf choice to the considered con6guration
type was studied and illustrated in [12] and three limit cases were identi6ed:

• For computation of net exchange rates between two black surfaces at distance l:

pdf K(k) = fss(k; l) = e−klf(k)= U.(l): (17)

• For computation of net exchange rates between an optically thin volume and a black surface at
distance l:

pdf K(k) = fgs(k; l) = ke−klf(k)= U.′(l): (18)

• For computation of net exchange rates between two optically thin volumes at distance l:

pdf K(k) = fgg(k; l) = k2e−klf(k)= U.′′(l); (19)

where U.(l) is the average transmission function. Thanks to inverse Gaussian distribution properties,
these pdf ’s are mathematically easy to handle, provided that the considered spectrum follows the
Malkmus model [12]. In the general case, the best 6tted Malkmus spectrum may be used, insuring

7 In this presentation two distinct pdf ’s of k are introduced. The 6rst one, f(k) is the physical distribution of k as it
appears in the considered spectrum. The second pdf K (k) is entirely arbitrary and serves only for the MC algorithm. It
is however mainly on the basis of physical considerations that pdf K may be adequately chosen, ensuring that statistical
convergence is reached with an acceptable number of random generations.
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6rst order representation of emission=absorption spectral correlations. As illustrated later, linear
combinations of such limit case pdf ’s may be used for intermediate cases, but nevertheless the
design of adapted k-sampling pdf ’s for each new con6guration family remains a key step of such
MC simulation eHorts to insure fast numerical convergence.

When the spectral interval [�min; �max] is not narrow enough for the narrow band assumption to
be valid, the interval may be divided in Nb narrow bands of width T�j around �j. DiHerent inverse
transmission functions fj(k) are introduced for each narrow band and Eq. (14) is written:

 (Vi; Vj) =
Nb∑
b=1

T�b

∫ kmax;b

kmin;b

dk fb(k)
∫
*b(Vi;Vj)

d+ h̃ ;b(+; k)

=
Nb∑
b=1

Pb

∫ kmax;b

kmin;b

dk pdf K;b(k)
∫
*b(Vi;Vj)

d+ pdf *;b(+)w̃ (+; k; b)

≈ 1
N

N∑
n=1

w̃ (+n; kn; bn) (20)

with

w̃ (+; k; b) =
T�b
Pb

fb(k)
pdf K;b(k)

h̃ ;b(+; k)
pdf *;b(+)

:

As for continuous integrals, in the frame of MC methods, discrete sums may be handled via arbitrary
choices of discrete probabilities. Here Nb probabilities P1; : : : ; PNb are introduced (

∑Nb
b=1 Pb = 1) and

narrow band index random generation are performed according to this weighting, which should be
chosen to match as accurately as possible the relative contribution of each band to the 6nal result.
As discussed in [6] this unknown contribution may be estimated on the basis of simple physical
reasoning, but here again the choice remains problem-dependant, and may require substantial eHort
for non-intuitive new con6gurations.

3.2. Convergence illustrations (narrow band)

This general methodology was implemented practically and tested in [21] for application to com-
bustion con6gurations. We con6ne ourselves to academic test cases similar to those used in the
preceding section in order to illustrate statistical convergence qualities as functions of average opti-
cal thickness for diHerent types of gaseous spectra. Spectral integration is performed over a spectral
band of width T� for which the narrow band assumption is valid. The Malkmus statistical narrow
band model is used so that parametric analysis is performed by varying the band average absorption
coeBcient Uk and the shape parameter 8 2. This model is used here under its k-distribution form
[11,12].

With the same 20 layer discretization as for monochromatic simulations, Fig. 8 displays radia-
tive Qux divergence averages and percent statistical errors for layer 3 and layer 10 as functions of

8 The shape parameter also called the line overlap parameter: 2=2+=3 where + is the half line width at half height and
3 the average line-to-line spacing.
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average optical thickness UkL, for two values of the shape parameter that are typical of spectrally sep-
arated gaseous spectra (2=10−2 and 2=10−1). Convergence qualities associated with two distinct
k-sampling pdf ’s are compared in terms of statistical errors for a given number of sampling events.
The 6rst one corresponds to straightforward k-sampling according to the physical distribution of ab-
sorption coeBcient within the considered spectral interval: pdf K;1(k)=f(k) (Fig. 8c–d). The second
was proposed in [21], for combustion applications, as an attempt to account for the dependence on
k of pseudo-monochromatic radiative exchanges (Fig. 8e–f):

pdf K;2(k) = $K(l)fgs(k; 0) + [1− $K(l)]fss(k; 0) (21)

with

$K(l) =
gss(1=l; 0)− U.(l)gss(1=l; l)

1− U.(l)
;

where gss is the cumulative distribution of fss (see Eqs. (17) and (18)) and where the length l is
taken as l= L for surface emissions and l= L=20 for volume emission.
The physical reasoning leading to this adapted pdf choice is the following. In the present sys-

tems the net radiative Qux at each boundary is the result of a net-exchange with a gas volume of
characteristic length scale L. There is indeed no net-exchange with the opposite boundary surface
because the surfaces are at the same temperature. In the case where the system may be considered
optically thin, the net radiative Qux at each boundary may then be seen as a net-exchange between
a black surface and an adjacent optically thin gas volume; consequently, not taking into account
volume temperature inhomogeneities, the best adapted k-sampling pdf is pdf K(k)=fgs(k; 0). At the
other extreme, where the system may be considered optically thick, always putting aside volume
temperature inhomogeneities, the net radiative Qux may be seen as the result of a net-exchange
between two adjacent black surfaces (the boundary itself and the optically thick volume behaving
like an opaque surface) and the best adapted k-sampling pdf is therefore pdf K(k) = fss(k; 0). For
intermediate cases, a linear combination of both limit pdf ’s may be used as presented in Eq. (21).
The weighting factor $K(L) was chosen to reQect the fraction of the considered net-exchange due
to k-values for which kL¡ 1 is satis6ed:

$K(L) =

∫ 1=L
kmin

(1− e−kL)f(k) dk∫ kmax

kmin
(1− e−kL)f(k) dk

which leads to the above de6nition. When using the Malkmus model, the cumulative function gss—
and therefore $K(L)—take an analytical form to be found in [12].

When considering the net radiative power of a layer, a similar reasoning may be used with the
physical image of a gaseous volume of characteristic length L=20 exchanging radiation with the rest
of the gas plus the black boundaries. Again putting aside temperature inhomogeneities, there remains
a simple net-exchange between a gaseous volume and an adjacent isothermal perfect absorber, which
means that we return to the same optimization problem replacing system scale L with layer thickness.

The conclusion of Fig. 8 is essentially that the net-exchange procedure for integration of optics
and geometrics dimensions described above, combined with the k-sampling procedure, leads to sat-
isfactory convergence qualities for an extremely wide range of average optical thicknesses, even for
spectrally marked line spectra. This is obviously directly related to the conclusions of Section 2
concerning the ability of our algorithm to deal with optically thick conditions (that are here rapidly
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encountered at line center frequencies). However, it is still worth comparing Fig. 8c–d and Fig. 8e–f
to illustrate how statistical convergence depends on the k-sampling pdf choice. In the optically thick
limit, both the k-sampling pdf ’s considered are identical as lim Ukl→+∞pdf K;2(k) = pdf K;1(k) =f(k).
From the comparison of statistical errors obtained with 2= 10−2 and 2= 10−1 with those obtained
for monochromatic simulations, it may be concluded that this pdf choice is well adapted to the
physics of high optical thickness gaseous radiative exchanges. The additional spectral dimension is
indeed only responsible of a factor 2 or 3 increase (for the same number of sampling events) of the
statistical error, which means that f(k) is a realistic model of the contribution of k in the [0;+∞[
interval.

Observations are quite diHerent in the small to moderate optical thickness ranges. Under such
conditions, when using pdf K;1(k) = f(k) for k-sampling, the additional spectral dimension may
induce as high as a two orders of magnitude increase of the statistical error, which means that f(k)
is a poor model of the contribution of k to radiative exchanges in the optically thin limit. It is
the object of pdf K;2(k) to try to better model these k-contributions as functions of system optical
thickness, which appears to be successful in the present test case. Similar observations were made
in [21] for a wide range of combustion con6gurations, but we should emphasize that this pdf choice
should receive some critical attention when considering distinct con6guration types.

4. Conclusion

In this paper we presented a MC method that overcomes the diBculties encountered by classical
MC methods when computing radiative transfers in optically thick media. In order to develop this
method, we made a permanent link between the various MC algorithms, the corresponding integral
equations and the corresponding statistical errors. Analytic expressions of these errors allowed us to
formalize the interpretation of general algorithmic properties.

We 6rst considered the computation of the energy emitted by a volume of participating media
in a simple one-dimensional case. For current MC algorithms, we showed a monotonic increase of
statistical error with optical thickness. The reason was identi6ed as the random sampling of emission
positions, which is uniform over the volume for classical MC methods. A new sampling procedure
was designed that closely combines the generation of emission angles and emission positions in
order to optimize the computation of the energy emitted by the volume. It takes into account the
continuous change of the distribution emission directions at volume boundaries, which is isotropic
when the medium is thin, and is lambertian when the medium is thick. It also favors emission
positions close to the volume boundaries in such a way that there is again a continuous change of
the sampling distribution of emission positions from a uniform distribution in the optically thin limit
to an opaque surface-like emission in the optically thick limit.

For this 6rst simple case, the new algorithm dramatically changes the behavior of the MC integra-
tion: the error now decreases when optical thickness increases. The reason is that when the medium
is optically thin, the temperature and the optical properties have to be sampled inside the whole
volume. But when the optical thickness is very high, the energy emitted by the volume is perfectly
known and corresponds to the energy emitted by an equivalent black surface whose temperature is
the temperature of the edge of the medium. Our algorithm takes advantage of this property and thus
a few photons are enough to sample this edge.
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Our algorithm was de6ned in order to optimize the computation of the energy emitted by a volume
of participating media. Nevertheless one is often more concerned with computing the energy budget
of a volume and of determining the distribution of corresponding internal radiative sources or loss.
We therefore computed radiative budgets for various test pro6les. Our method appears to be more
accurate than previous MC algorithms, and overall we demonstrated that, with a constant number
of sampling events, the relative statistical errors of estimated radiative budgets 6rst increases slowly
with optical thickness and 6nally reaches an asymptotic value for optically very thick con6gurations.
The MC algorithm therefore remains eBcient even for very high optical thicknesses.

We next considered the question of the required additional spectral integration when the medium
is a gas with a separated line spectrum. We used a k-distribution approach based on the Malkmus
narrow band statistical model. The 6rst straightforward algorithm was to sample the absorption
coeBcient according to the k-distribution function. This method is far from being the most eBcient
but still produces acceptable results. For a given accuracy, the required number of sampling events is
almost independent of optical thickness and is comparable to the number of sampling events required
in the monochromatic case in the optically thick limit. This is consistent with the fact that within
a narrow band, for separated line spectra, the absorption coeBcient varies over a few orders of
magnitude and thus the optically thick limit is always reached in some spectral regions. The design
of a more adequate k-sampling procedure was the next step. Based on an empirical hypothesis, we
showed that signi6cant improvements can be obtained for low and intermediate optical thicknesses.
Nevertheless a general methodology does not currently exist and further investigations are needed.
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Appendix A

The radiative power emitted and exiting from a volume Vi may be expressed as

F =
∫
Vi

dV (̃e)
∫
4	
d!(̃u) k exp(−k‖̃x1 − ẽ‖)B(̃e);

where x̃1 is the location of the 6rst encounter with Vi’s envelope, starting from ẽ in the direction
ũ. Computing this multiple integral using a standard MC algorithm, a uniform pdf is chosen for
emission position random generation (pV (̃e) = 1=Vi) and an isotropic pdf for emission direction
(p�(̃u) = 1=4	) which leads to the following reformulation:

F =
∫
Vi

dV (̃e)pV (̃e)
∫
4	
d!(̃u)p�(̃u)w(̃e; ũ)

with

w(̃e; ũ) = 4	kVi exp(−k‖̃x1 − ẽ‖)B(̃e):
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Another formulation may be retained that leads to the basis of the MC algorithm detailed in the
text. In this formulation, the total exiting Qux is obtained by integrating surface Quxes over Vi’s
envelope:

F =
∫
Si

ds(̃x1)
∫
2	
d!(̃u)

∫ ‖̃x2−x̃1‖

0
d� k exp(−k�)(̃u · ñ1)B(̃e):

Introducing the proposed surface, angular and line pdf ’s, F may be written:

F =
∫
Si

ds(̃x1)pS (̃x1)
∫
2	
d!(̃u)p�;a(̃u; ñ1; kL)

∫ ‖̃x2−x̃1‖

0
d�p�(�)w(̃x1; ũ; �)

with

w(̃x1; ũ; �) = 	Si[1− exp(−k‖̃x2 − x̃1‖)] p�;l(̃u; ñ1)
p�;a(̃u; ñ1; kL)

B(̃e)

leading to Eq. (9).
In case of complex discretizations, the envelope Si may be diBcult to handle and an alternative

algorithm may be preferred that is based on the following formulation, in which the integration over
Si is transformed into an integration over any convex closed surface Si; c surrounding Vi (see Fig.
3b):

F =
∫
Si;c

ds(̃x0)
∫
2	
d!(̃u)

m∑
l=1

∫ ‖̃x2l−x̃2l−1‖

0
d�l k exp(−k�l)(̃u · ñ0)B(̃el);

where ñ0 is the unit vector normal to Si; c at x̃0, the positions x̃1; : : : ; x̃2m are the successive locations
of Si’s encounters starting from x̃0 in the direction −ũ and ẽ l is de6ned as ẽ l = x̃2l−1 − �lũ.

Introducing the same surface, angular and line pdf ’s as above and introducing an arbitrary set of
discrete probabilities P1; : : : ; Pm (corresponding to the discrete sum that appears in this last formula-
tion choice) leads to

F =
∫
Si;c

ds(̃x0)pS (̃x0)
∫
2	

d!(̃u)p�;a(̃u; ñ0; kL)
m∑

l=1

Pl

∫ ‖̃x2l−x̃2l−1‖

0
d�l p�l(�l)w(̃x0; ũ; l; �l)

with

pS (̃x0) =
1

Si; c
; p�l(�l) =

k exp(−k�l)
1− exp(−k‖̃x2l − x̃2l−1‖)

and

w(̃x0; ũ; l; �l) =
1
Pl

	Si; c[1− exp(−k‖̃x2l − x̃2l−1‖)] p�;l(̃u; ñ0)
p�;a(̃u; ñ0; kL)

B(̃el):

The corresponding algorithm is very similar to the algorithm detailed in Sections 2 and 3. A position
is generated uniformly on the convex surface and an outward direction is generated around the
normal. These positions and directions de6ne a 6nite number m of emission segments within Vi

among which one is randomly chosen according to P1; : : : ; Pm. Finally the emission position is
randomly generated along this segment according to an exponential pdf. We used such an alternative
procedure practically when dealing with cylindrical con6gurations in which non-convex annulus grids
are encountered [21].
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