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Abstract

We forced a global terrestrial carbon cycle model by climate fields of 14 ocean and

atmosphere general circulation models (OAGCMs) to simulate the response of terrestrial

carbon pools and fluxes to climate change over the next century. These models

participated in the second phase of the Coupled Model Intercomparison Project

(CMIP2), where a 1% per year increase of atmospheric CO2 was prescribed. We obtain a

reduction in net land uptake because of climate change ranging between 1.4 and

5.7 Gt C yr�1 at the time of atmospheric CO2 doubling. Such a reduction in terrestrial

carbon sinks is largely dominated by the response of tropical ecosystems, where soil

water stress occurs. The uncertainty in the simulated land carbon cycle response is the

consequence of discrepancies in land temperature and precipitation changes simulated

by the OAGCMs. We use a statistical approach to assess the coherence of the land carbon

fluxes response to climate change. The biospheric carbon fluxes and pools changes have

a coherent response in the tropics, in the Mediterranean region and in high latitudes of

the Northern Hemisphere. This is because of a good coherence of soil water content

change in the first two regions and of temperature change in the high latitudes of the

Northern Hemisphere.

Then we evaluate the carbon uptake uncertainties to the assumptions on plant

productivity sensitivity to atmospheric CO2 and on decomposition rate sensitivity to

temperature. We show that these uncertainties are on the same order of magnitude than

the uncertainty because of climate change. Finally, we find that the OAGCMs having the

largest climate sensitivities to CO2 are the ones with the largest soil drying in the tropics,

and therefore with the largest reduction of carbon uptake.
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Introduction

Our understanding of the impacts of future climate

change on the carbon cycle is based on results of

climate (ocean and atmosphere general circulation

model, OAGCM) and carbon cycle models. A number

of former such studies have simulated how the

terrestrial carbon uptake increase under rising CO2

when making the reasonable assumption that photo-

synthesis increases with CO2, and how this increase is

generally reduced when climate change is accounted

for. In those studies, carbon cycle models are either

forced by climate fields (Cao & Woodward, 1998;

Cramer et al., 2001) or directly coupled with OAGCM

(Cox et al., 2000; Berthelot et al., 2002; Dufresne et al.,

2002). For instance, Cramer et al. (2001) used six

dynamic global vegetation models, but forced by one

scenario of anthropogenic climate to quantify the

magnitude of the terrestrial ecosystems response to

climate change. They found that the land carbon uptake

is reduced by about 50% because of future climate
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change. By 2100, the land uptake ranges between 3.7

and 8.6 Gt C yr�1 under CO2 change only, and ranges

only between 0.3 and 6.6 Gt C yr�1 when climate change

is also accounted for. However, such an analysis does

not account for the uncertainty because of the future

climate as simulated by the AOGCMs. Results from

intercomparison projects, such as the Coupled Model

Intercomparison Projects CMIP1 and CMIP2, clearly

show that there is also a large uncertainty in the

simulated climate (Meehl et al., 2000; Covey et al., 2003).

For example, the CMIP2 highlights an increase in global

temperature between 1.1 1C and 3.1 1C at the time of

CO2 doubling and a percentage change of the global

mean precipitation (PPT) ranging from�0.2% to 1 5.6%

(IPCC 2001).

Hereafter, a conceptually static land carbon cycle

model, SLAVE (Friedlingstein et al., 1995), is driven by

different scenarios of climate change produced in the

context of CMIP2 (Meehl et al., 2000; Covey et al., 2003).

Our objective is to examine how uncertainties in

future climate change predictions translate into un-

certainties in future carbon fluxes. We first describe the

terrestrial carbon model and the input climate scenar-

ios. We then calculate how much those changing

climates impact the terrestrial uptake of carbon. The

mechanisms by which different climate scenarios

may regionally increase or decrease carbon sinks are

analyzed, as well as the robustness of those results to

the different climate scenarios and to changing para-

meters of the carbon models, the effect of CO2 increase

on net primary productivity (NPP) and the temperature

dependency of soil respiration. We suggest that there is

a relationship between the sensitivity of the land carbon

uptake to temperature increase and the sensitivity of

temperature increase to an increase in atmospheric CO2.

Carbon cycle model and climate scenarios

The terrestrial carbon cycle model

The carbon model, called SLAVE, accounts for nine

natural ecosystems and croplands (Friedlingstein et al.,

1995; Friedlingstein et al., 1999), whose distribution is

held to be constant during all the periods of simulation.

The land cover is based on data set observations from

Matthews (1983). Terrestrial carbon cycling is driven by

the GCM monthly fields of surface temperature, PPT,

solar radiation and by the annual atmospheric CO2

concentration, which directly influences NPP. The

model computes the water budget, NPP, allocation,

phenology, biomass, litter and soil carbon budgets.

Carbon assimilated through NPP is allocated to three

phytomass pools: leaves, stems and roots. Litter and

soil carbon pools are both divided into metabolic and

structural components. NPP is a function of the three

climatic variables following a light use efficiency

formulation, where light use efficiency is sensitive to

temperature and PPT (Potter et al., 1993):

NPP0 ¼ e�APAR� Te1 � Te2 �We: ð1Þ

The absorbed photosynthetically active radiation

(APAR) is deduced from incoming solar radiation and

from Leaf Area Index (LAI) (Sellers et al., 1996), LAI

being diagnosed from the calculated leaf biomass. e is

the maximum light use efficiency. The first temperature

stress factor, Te1, which depresses NPP at very high and

low temperatures, varies from 0.8 at 0 1C to 1.0 at 20 1C

to 0.8 at 40 1C and is set equal to zero for monthly

temperatures below �10 1C (Potter et al., 1993). The

second temperature stress factor, Te2, depresses NPP

when the temperature is above or below the optimum

temperature (defined as the air temperature in the

month when the NDVI reaches its maximum for the

year (Los et al., 1994)), the reduction being greater at

high than at low temperatures (Potter et al., 1993). The

soil water stress term, We, is a function of evapotran-

spiration and varies from 0 in very dry ecosystems to 1

in very wet ecosystems.

The soil water content (SWC) is computed as the

balance between monthly precipitation (PPT) and

actual evapotranspiration (AET). AET is limited by

the potential evapotranspiration (PET) and by the

available water (PPT 1extractable soil water). PET

is calculated following Thornthwaite formulation

(Thornthwaite, 1948; Thornthwaite & Mather, 1957).

We note the Thornthwaite formulation only uses

temperature, and is not based on an energy budget.

There are now more suitable methods to estimate PET,

such as Penman-Monteith or Priestly-Taylor, but the

Thorntwhaite approach is the only one that we could

use with the climate data time-series available from the

CMIP2 project, which are monthly surface temperature

and monthly PPT.

The SWC, as simulated by SLAVE, is the water

quantity in the first 30 cm of soil but is limited by an

upper limit (Qmax).

The NPP increases in response to increasing CO2

(Wullschleger et al., 1995; DeLucia et al., 1999) under a

Michaelis–Menten b factor formulation (Gifford, 1992).

b is a function of SWC (fSWC), nitrogen (fN) and

phosphorus (fP) availabilities (Friedlingstein et al., 1995):

b ¼ b0 fSWC fN fP: ð2Þ

For each litter and soil carbon pools, heterotrophic

respiration (RH) is calculated as the product of the pool

carbon content (Ci) by a decomposition rate depending
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on soil moisture and temperature:

RH ¼
X4

i¼1

Ki � Ci; ð3Þ

where

Ki ¼ Ki;max � fT � fH2O: ð4Þ

The optimal decomposition rate Ki,max equals 10.4 yr�1

for metabolic litter, 0.58 yr�1 for structural litter and

0.006 yr�1 for decomposing soil organic matter (at

30 1C). The temperature sensitivity function, fT, is a

Q10 function: a temperature increase of 10 1C induces an

increase of a factor of Q10 of the decomposition rate,

with Q10 being fixed to 2 for each pool. The SWC

dependency, fH2O, first increases when SWC increases,

saturates under optimal humidity conditions and then

decreases to account for reduced decomposition under

anaerobic conditions (Parton et al., 1993).

Methods

We used the output of coupled ocean–atmosphere

general circulation models (OAGCM), listed in Table

1, which participated in the CMIP2. We selected 14

among the 20 original models, keeping only the most

recent version of each model when several were

available, and discarding simulations shorter than 80

years. These are BMRC (Power et al., 1998; Colman,

2001), CCCMA (Boer et al., 2000; Flato et al., 2000),

CCSR (Emori et al., 1999), CERFACS (Barthelet

et al., 1998), CSIRO (Gordon & O’Farrell, 1997; Hirst

et al., 2000), DOE (Washington et al., 2000), ECHAM3

(Cubasch et al., 1997; Voss et al., 1998), GFDL (Delworth

& Knutson, 2000), GISS (Russell et al., 1995; Russell &

Rind, 1999), IAP (Wu et al., 1997; Zhang et al., 2000),

IPSL (Khodri et al., 2001), MRI (Tokioka et al., 1996),

NCAR (Boville & Gent, 1998) and UKMO (Gordon et al.,

2000). The two different CMIP2 simulations consist of a

Control run with constant greenhouse gas concentra-

tions and of a Greenhouse run with increasing CO2 at a

rate of 1% per year. Note that the initial CO2 mixing

ratio depends on the model and varies from 290 to

360 ppmv (Table 1). Both simulations extend for 80

years.

The climate forcing available by the OAGCM of

CMIP is monthly or 20 years averaged data. The only

monthly surface data available from the CMIP project

are surface temperature, PPT and sea level pressure.

The other data are not defined at this time step as these

were not requested by the CMIP protocol to the

OAGCM community. SLAVE was, therefore, ideally

suited for the simulations we made, considering the

few available monthly variables.

We use the atmospheric CO2 curve and the OAGCM

temperature and PPT to force the land carbon model

SLAVE. We do not use soil moisture calculated by

OAGCM but compute it in SLAVE as described in the

previous section. Two reasons justify this choice: first,

this variable is not available at monthly time step in the

CMIP data base and, second, most of OAGCM use

different soil models (depth, number of layers, soil

types, etc.). Therefore, it would not be coherent to force

SLAVE with different GCM soil characteristics to

compare the impact of soil water change on productiv-

ity or RH.

In a first test, we initialized carbon pools and fluxes

to equilibrium in SLAVE using the control climate of

each OAGCM. This resulted into widely different

global NPP estimates, ranging from 32 Gt C yr�1 in

BMRC up to 63 Gt C yr�1 in MRI as can be seen in

Table 1 Climate models used to simulate the impact of climate changes on terrestrial carbon cycling

OAGCM Origin Initial atmospheric CO2

BMRC Bureau of Meteorological Research, Australia 330

CCCMA Climate Center, Canada 330

CCSR Center for Climate System Research, Japan 345

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France 353

CSIRO Commonwealth Scientific and Industrial Research Organisation, Australia 330

DOE Department of Energy Parallel Climate Model, USA 355

ECHAM3 Max Planck Institute for Meteorology, Germany 345

GFDL Geophysical Fluid Dynamics Laboratory, USA 360

GISS Goddard Institute for Space Sciences, USA 315

IAP Institute for Atmospheric Physics, China 345

IPSL Institut Pierre Simon Laplace, France 320

MRI Meteorological Research Institute, Japan 345

NCAR National Center for Atmospheric Research, USA 355

UKMO United Kingdom Meteorological Office, Great Britain 290

OAGCM, ocean–atmosphere general circulation model.
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Table 2. Such discrepancies in the modeled NPP mainly

reflect differences in tropical climate among the models.

Any combination of temperature and PPT, which

implied low SWC in the tropics, always yielded a

lower NPP estimate. Thus, in order to cast off the

influence of the spread in control run climates on the

initial state of SLAVE, we decided to initialize SLAVE’s

carbon pools with an observed climatology constructed

from data over the past 150 years (Dai et al., 1997;

Hansen et al., 1999) and constant atmospheric CO2 set to

280 ppmv. From this initial state, we then computed the

response of terrestrial carbon pools and fluxes first to

rising CO2 at a rate of 1% yr�1 without climate change

(simulation Fert for Fertilization only), and second to

rising CO2 and changing climate according to each

OAGCM prediction (simulation FertClim for Fertiliza-

tion plus Climate effects). To ensure continuity between

the observed climate fields and those from OAGCM

calculations, we used the following equations:

TðtÞ ¼ T0 þ DT

with DT ¼ TGH � TCON;

PðtÞ ¼ P0 þ DP

with DP ¼ P0
ðPGH � PCONÞ

PCON
if

PGH

PCON
2 ½0:5; 2�;

and DP ¼ ðPGH � PCONÞ if
PGH

PCON
2 ½0; 0:5�

or ½2;þ1�;
ð5Þ

where T(t) and P(t) are the perturbed temperature and

PPT used in the FertClim case, and T0 and P0 their

climatological values; the GH (respectively, CON)

subscript refer to the greenhouse run (respectively,

control run) of each OAGCM. The use of two arbitrary

thresholds in the computation of P(t) allows us to filter

out unrealistic PPT values when the ratio PGHR/PCON is

either too large or too small. As changes in incoming

short-wave radiation have small impacts on NPP in

SLAVE (Berthelot et al., 2002), we maintained this

forcing constant (Bishop & Rossov, 1991) in both Fert

and FertClim simulations.

Short description of the different simulated climate

We describe here the changes in land temperature and

PPT deduced from Eqn (5) as well as those of SWC as

calculated into SLAVE. This is a necessary first step to

further understand in the following how climate will

impact the modeled land uptake of CO2.

Regarding temperature, we focus here on three

models, UKMO, DOE and IAP, that are illustrative of

the range in land temperature change as shown in Fig.

1a and b. We picked up UKMO as the warmest model

over continents ( 1 3.5 1C at 2CO2) and DOE as the

coldest one ( 1 2 1C at 2CO2). UKMO is also the

warmest model at any latitude, whereas DOE is

globally the coldest but yet shows a significant

warming at northern latitudes (Fig. 1b). In both UKMO

and DOE, the warming over land is more pronounced

at northern latitudes than in the tropics, which is not

the case in IAP (Fig. 1b). Regarding PPT, there are very

large spatial differences between the 14 models (Fig. 1c

and d). In global rainfall, the wettest models are

CERFACS and IAP with an 8% increase, and the driest

one is CCCMA with a 2% decrease. Such large model

spread for PPT primarily reflects discrepancies in the

tropics of up to 650 mm yr�1 between the two extreme

models (IAP and CCCMA), while on the other hand, all

models robustly predict an increase in PPT at high

northern latitudes (Fig. 1d). SWC, critical in calculating

biospheric fluxes within SLAVE, depends on PPT and

temperature through evapotranspiration. Maximum

decrease in global SWC is found in the warmest UKMO

(�15%) and in the driest CCCMA simulations (�12%)

(Fig. 1e). Note that, generally, a global decrease in SWC

reflects mostly a drying of tropical soils, whereas in the

Northern Hemisphere SWC can even increase (Fig. 1f).

Impact on terrestrial carbon fluxes

Spatial patterns in the response of carbon uptake to
climate change

Net ecosystem production (NEP) calculated from the

difference between NPP and RH would be an increas-

ing sink with time in the absence of climate change, but

Table 2 Net primary production (in Gt C yr�1) simulated by

SLAVE when forced by the control climate of each OAGCM

OAGCM NPP (Gt C yr�1)

BMRC 32

CCCMA 59

CCSR 45

CERFACS 56

CSIRO 60

DOE 53

ECHAM3 44

GFDL 60

GISS 51

IAP 47

IPSL 50

MRI 63

NCAR 51

UKMO 51

Experiment average 52 � 8

OAGCM, ocean–atmosphere general circulation model; NPP,

net primary productivity.
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in the presence of rising CO2 enhancing NPP. We found

that NEP, under climate change and rising CO2, reaches

up to lower values than implied by rising CO2 alone.

This is quantified by taking the difference between the

results of FertClim and Fert simulations, that is herein

described using the ‘D’ symbol. The ‘between models’

mean value of DNEP is of �3.7 Gt C yr�1 with a

standard deviation of 2.7 Gt C yr�1, which corresponds

to a relative change DNEP/NEP of �27 � 20% less

uptake in response to climate impact. There is a

significant spread in DNEP as evidenced in Fig. 2, but

this spread is also remarkably parallel to the spread of

SWC, suggesting that DNEP is primarily sensitive to

SWC change (Fig. 1e). To further elucidate the correla-

tion between DSWC and DNEP, we analyzed how

climate change modifies separately the input of carbon

to ecosystems by NPP and the output via RH. Globally,

NPP is reduced by climate change, with DNPP

amounting to �6.9 � 4.0 Gt C yr�1. This signal is driven

by the response of tropical ecosystems that suffer from

drought stress (Fig. 3a). The large standard deviation

(a) (b)

(d)(c)

(e) (f)

Fig. 1 The left columns shows the time series of climate forcing used to calculate carbon fluxes: changes of global average land

temperature in 1C, land precipitation in % and soil water content in % expressed as a difference between FertClim and Fert simulations.

The right columns show the latitudinal changes in climate forcing between the last 10 years and the first 10 years of the simulation.

The black curve represents the average of all the simulations, the dark shading the two standard error limits, and the light shading

the maximum and the minimum envelope.

Fig. 2 Time series of changes in net land uptake (NEP) induced

by climate change (in Gt C yr�1) expressed as a difference

between FertClim and Fert simulations. Negative values mean

that NEP gets reduced under climate change.
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between models (Fig. 3b) is mainly because of various

degrees of soils drying in the tropics. Warmer and drier

climates induce a pronounced reduction in tropical

NPP as illustrated by the UKMO, IPSL and CCCMA

results. Unlike in the tropics, at northern latitudes, all

models consistently predict an increase in NPP, which

in turn results in an increase in NEP (Fig. 3a and i). The

reason for this is that rising temperatures act to advance

the growing season, which favors additional carbon

sequestration in spring (Berthelot et al., 2002). The

growing season is typically advanced by 4 days in

ECHAM3 or IPSL simulations, and by up to 10 days in

UKMO simulation by the end of the simulation. The

NEP amplitude thus increases in response to climate

change until July but decreases during the second part

of the growing season (August and September), as most

of climate models simulate temperature greater than

optimum temperature for photosynthesis. The average

of NEP change during the growing season (April–

September) shows an increase for most of the experi-

ences, mostly explained by a greater NEP in FertClim

simulation than in the Fert one in the beginning of the

growing season.

RH follows the response of NPP to climate, with

some lag because of the turnover of carbon (Fig. 3e).

Although RH depends directly on temperature via Q10,

we found that the response of respiration to climate

change is mostly governed by change in decomposing

soil carbon itselfreflecting the evolution of NPP. In

regions where NPP decreases because of climate

change (e.g. the Amazon), RH will also decrease, even

if the decomposition rate gets higher.

In summary, despite large spread amongst models,

we found that drier and warmer conditions in the

tropics act to reduce NPP and thus NEP, and warmer

temperatures in the Northern Hemisphere augment

NPP and NEP. In the global signal, the tropical

reduction is in most cases larger than the Northern

Hemisphere increase. In addition, the regions with

larger than average NPP, RH and NEP changes also

Fig. 3 Spatial distribution of the mean (first left column) (in g C m�2), standard deviation (second column) (in g C m�2), interexperiment

relative agreement (F) (third column) and relative contribution of internal variability (I) (fourth column) of net primary productivity,

heterotrophic respiration and net land uptake changes. In the last column, the dashed line corresponds to the global signal and the solid

one to the zonal averaged signal; see text for definitions.

964 M . B E R T H E L O T et al.

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 959–970



generally have a larger standard deviation (Fig. 3b, f

and j).

Agreement and disagreement between modeled land
carbon quantities

Statistical framework. We now examine how the response

of carbon sinks to climate change differs under each

future climate simulation. To do so, we applied the

statistical tools developed by Räisänen, (2000);

Räisäinen (2001) to determine similarities and

differences between scenario-driven carbon quantities.

The method developed by Räisänen (2001) ideally

requires an infinitely large population of model runs,

which is approximated here by the 14 scenarios. The

change in each member of this population can be

written as

Xij ¼Mþ di þ Zij; ð6Þ

where M is the mean value for the whole population, di

a model related deviation and Zij a deviation associated

with internal variability in experiment ij. Index i

corresponds to the number of models used, j rep-

resents the experiments made using the same model

but differing in their initial conditions. However, in our

case, the sample is composed of a finite numbers of

models (14) and only one experiment has been run for

each model. In the absence of such ensembles, the two

terms di 1 Zij also can not be separated directly; we thus

used the method developed by Räisäinen (2001), which

was previously adapted to the CMIP2 experiments.

We obtain an analogous expression for the squared

change (A2) in any modeled quantity at the end of the

simulation: it can be written as the sum of the mean

square value (M2) of the different scenarios over the last

20 years of integration, and of the total interexperiment

variance (E2) of all the model runs, so that A2 5 M2 1 E2.

The total interexperiment variance E2 in the 14

experiments is further separated into the sum

E2 5 D2 1 N2, where N2 refers to a within model

variance (N2 � {Z2}) containing the contribution of

internal variability (noise), yielding a range of results

within each model. D2 is a between model variance

(D2 � {d2}) associated with the differences implied by

distinct climate change scenarios as used to calculate

carbon quantities.

The contribution of D2 and N2 to the total

interexperiment variance must be separated in an

indirect way. We estimated the value of the within

model variance N2 after Räisänen (2000) by first

separating each 80 years time series into four

segments of 20 years duration, second removing a

linear trend in each time segment to the difference

between FertClim and Fert simulations, third

computing the variance of the residuals to the linear

fit within each of the four segments and fourth taking

an average of these four estimates of N2. We estimated

the between model variance D2 as the difference

between E2 and N2.

Useful quantities can be constructed using such

statistical decomposition, especially the Relative

Agreement (called F) defined by

F ¼M2

A2
: ð7Þ

The value of F indicates whether all the 14 experiments

have a coherent common signal or not. A value of 1

would mean perfect agreement among the different

experiments, and the agreement between models is

significant only if F � 0.5. While F allows us to study if

the modeled quantities are in agreement, the

disagreement can be divided into contributions of

model differences (called M) and internal variability

(called I), according to

I ¼ N2

E2
;

M ¼ D2

E2
:

ð8Þ

Results

We first examined the agreement between the different

scenarios for the modeled DNPP. The interexperiment

relative agreement in DNPP induced by climate change,

FDNPP, is higher than 0.6 north of 551N (Fig. 3c). In this

region, increasing temperatures (DT) are the main

driver of NPP changes (see the section Spatial patterns

in the response of carbon uptake to climate change), and F

for modeled DT is above 0.8 (Räisäinen, 2001). Two

other regions where the modeled DNPP shows a

common behavior with FDNPP40.7 are the Mediterra-

nean area and the tropics (Fig. 3c), where SWC changes

are strongly coherent among the different climate

scenarios (FDSWC40.7). In those two regions, SWC

change is mostly controlled by temperature changes,

which are highly coherent, rather than by PPT change.

For high northern latitudes, the Mediterranean

regions and the tropics, we found that the total

interexperiment variance E2
DNPPis mostly attributed to

between model errors, rather than to within model

errors (Fig. 3d). Over such regions, the contribution of

the within model noise to the modeled change in NPP,

IDNPP, does not exceed 0.4 because of small internal

variability on the DT and DSWC signals used as an

input to force NPP. When the DNPP signal is zonally

averaged, FDNPP increases above 0.8 in the bands 45–

301S, 201S–401N and 4551N, whereas IDNPP drops

down to below 0.2 (Fig. 3d). Similar to the response of
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climate variables to increased radiative forcing (Räisäi-

nen, 2001), the response of NPP to various climate

scenarios, as assessed in our case by a unique terrestrial

carbon model, becomes more coherent when spatial

averaging is applied to the model fields. However, in

some areas, spatial averaging does not improve FDNPP

because it increases the contribution of the ‘between –

model’ variance D2 to the squared change A2 (in

particular in the band 50–451S).

Second, we inspected the common behavior of

change in RH from FDRH. Wherever DNPP is coherent,

DRH is also coherent (Fig. 3g). This not so surprising

since changes in RH primarily reflect changes in NPP,

with some time lag because of the turnover of carbon in

ecosystems (Berthelot et al., 2002). There is an exception

to this rule for the forest ecosystem around the equator

(101S to 01), where FDRH is lower than 0.5, whereas

FDNPP is higher than 0.6. Over that particular region, the

disagreement in DRH between the different climate

scenarios is because of a proportionally larger contribu-

tion of the within model noise variability, with

IDRH40.8 (Fig. 3h). The value of DRH for a given

climate scenario reflects how a change in climate

modifies the product of soil carbon pools by their

decomposition rates (the latter being dependant on

temperature and soil moisture). The fact that DRH is

less coherent than DNPP around the equator can thus

be explained either by a low F in the soil carbon pools

change or by a low F in the decomposition rates change,

or a combination of both. We have calculated a F40.7

for the soil carbon pools change and Fo0.4 for the

decomposition rates change showing that the disagree-

ment in DRH at the equator is mostly because of the

differences in decomposition rates changes variability

(temperature, soil moisture) rather than to differences

in decomposing soil pools. When averaging zonally

DRH, the F increases and becomes close to FDNPP,

excepted around the equator.

Third, we looked at the common behavior in DNEP.

Mapping FDNEP (Fig. 3k) shows a geographic distribu-

tion that is quite parallel to the ones of FDNPP (Fig. 3c).

However, unlike for NPP, the total variance of DNEP is

mostly attributed to the ‘within model’ noise (Fig. 3l)

rather than to the ‘between model’ spread (Fig. 2). This

is because, as in Räisäinen, (2001), in the absence of an

ensemble of climate simulations for any given climate

model, we approximate the ‘within model’ noise IDNEP

by the signal of interannual variability in DNEP. The

interannual variability of DNEP reflects the ones of

DNPP and the one of DRH, which is governed by the

effect of climate interannual variations on decomposi-

tion rates of soil organic matter. Therefore, IDNEP

includes both noise in DNPP, which generates noise

on the size of decomposing soil carbon pools, and noise

in the specific rates of decomposition. This is likely not

to be a specific feature of the SLAVE carbon model,

since nearly all studies of today’s interannual varia-

bility of NEP (Kindermann et al., 1996; Jones et al., 1998;

Tian et al., 1998; Gerard et al., 1999; Botta et al., 2000)

have demonstrated that interannual variations in NPP

are equally as important as those in RH in determining

the fluctuations of NEP.

Sensitivity of the results to the carbon model

parameters

How NEP changes in response to climate change

obviously depends on the land carbon cycle model

that is employed. Would the conclusions of the former

section be strongly different if modeled NPP was more

or less sensitive to CO2 increase, or RH more or less

sensitive to soil warming and drying? We tested the

sensitivity of DNEP to varying pairs of (b0, Q10) (Eqns

(2)–(4)) both for a warm climate model scenario (IPSL)

and for a cold scenario (DOE).

We varied the value of b0 in Eqn (2) between 0.2 and 1

around the control setting of 0.65, which best matches

the historical CO2 curve (Friedlingstein et al., 1995).

We also varied the dependency of soil respiration on

temperature, Q10, between 1 and 3 around its standard

value of 2. For each (b0, Q10) pair, we recomputed an

initial carbon state for SLAVE, and then a Fert and

FertClim simulation, using DOE and IPSL changing

climate scenarios, to estimate the impact of climate

change on NEP.

When b0 increases, DNEP/NEP tends to decrease as

the increase in NEP because of rising CO2 is larger than

the increase in the climate change impact on NEP. It

means that for a very strong fertilization effect, the

impact of climate change in lowering the uptake of CO2

becomes secondary (Table 3). Another extreme is the

case of no fertilization at all (b0 5 0), in which rising

CO2 generates no additional carbon uptake, whereas

climate change would act to turn the land biosphere

into a source of carbon.

When Q10 increases, DNEP/NEP tends to increase.

This is because higher Q10 accelerates the oxidation of

soil carbon, and hence RH tracks more quickly

increasing NPP, inducing in fine a smaller net uptake

of carbon (Table 3).

In the two experiences DOE-SLAVE and LMD-

SLAVE, DNEP responds qualitatively in the same way

to changing b0 and Q10: If b0 increases or Q10 increases,

DNEP increases for both scenarios. This suggests that

the ‘transfer function’ between ‘input climate scenarios

and ‘output’ DNEP given in Fig. 2 could be conserved

throughout a large range of varying b0 and Q10. Hence,

the conclusions of this section on how different climate
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scenarios qualitatively resulted in different DNEP are

likely to hold true for different settings of the

parameters of the SLAVE terrestrial carbon model.

However, if one desires accurate quantification of

DNEP, then varying the biospheric model’s parameters

turns out to be equally as important as going from one

climate scenario to another. The difference between

DNEP/NEP modeled under a cold climate scenario and

under a warm scenario reaches up to 30% and from 12%

to 44% if we change biopsheric parameters (Table 3).

Relationship between the impact of climate change

on carbon fluxes and the sensitivity of climate to

changes in radiative forcing

The sensitivity of the terrestrial carbon uptake to

increasing temperature can be expressed as g, the ratio

of cumulated DNEP to DT. A larger ‘carbon sensitivity’

g in a coupled carbon-climate simulation such as the

one performed by Cox et al. (2000) would translate into

strong climate-carbon cycle positive feedbacks with

faster increase in atmospheric CO2 and more pro-

nounced temperature rise. When considering DNEP

and DT averaged over the last 20 years of each

simulation, the most negative g values correspond to

the BMRC, CCSR, IPSL and UKMO models (Table 4).

The interexperiment average value of g is of �47 �
19 Gt C yr�1

1C�1 (Table 4) and it is mainly explained

by the behavior of tropical biomes, over which the NEP

reduction is important because of soil drying.

We correlated in each simulation the ‘carbon sensi-

tivity’ with the OAGCM climate sensitivity a, expressed

as the ratio between land temperature increase, DT, and

atmospheric CO2 increase, DCO2. A large value of

means that for a given increase in CO2 radiative forcing,

water vapor, clouds and other physical feedbacks in the

climate system act to strongly amplify the CO2 induced

change in temperature. We can see in Fig. 4 that the

simulations with the highest a (UKMO, IPSL) also have

a more negative g in the tropics. In the latitude band

251S–251N, the correlation coefficient between a and g
reaches up to �0.6 (with a 98% significant level as

calculated using the bilateral student test). In other

words, the more sensitive a given GCM climate to

increasing CO2, the more important the reduction of

terrestrial carbon uptake per 1 1C warming in the

tropics. This result is not directly intuitive, but it

suggests that the mechanisms that act in the climate

Table 3 Relative change in NEP induced by climate change

for different settings of two key parameters in the SLAVE

model: the biotic growth factor b and the temperature

dependency of soil respiration Q10

DNEP/NEP

b Q10

0.2 0.65 1 1 2 3

DOE �30% �15% �11% �8% �15% �20%

IPSL �87% �43% �33% �35% �43% �50%

Two different GCMs climate forcings are examined: DOE and

IPSL.

NEP, net land uptake; GCM, general circulation model.

Table 4 Global climate sensitivity of the OAGCM to CO2

increase (a5DT/DCO2) and global carbon sensitivity of

SLAVE to climate change (g5DNEP/DT)

OAGCM g (Gt C 1C�1) a ( 1C ppm�1)

BMRC �73.9 5.5� 10�3

CCCMA �55.6 6.7� 10�3

CCSR �64.8 5.7� 10�3

CERFACS �40.7 5.7� 10�3

CSIRO �33.2 7.0� 10�3

DOE �22.0 4.6� 10�3

ECHAM3 �46.5 5.5� 10�3

GFDL �40.2 7.5� 10�3

GISS �43.9 5.1� 10�3

IAP �61.7 5.8� 10�3

IPSL �68.9 7.0� 10�3

MRI �6.7 5.6� 10�3

NCAR �32.9 5.1� 10�3

UKMO �63.0 7.2� 10�3

Experiment average �46.7� 19.2 (6.0 � 0.9)� 10�3

OAGCM, ocean–atmosphere general circulation model.

Fig. 4 Subscribed symbols: carbon sensitivity defined as the

change in net land uptake normalized by degree warming as a

function of climate sensitivity defined as the change in

temperature per ppm of additional atmospheric CO2. Other

symbols: sensitivity of soil water content to temperature as a

function of climate sensitivity. All variables are averaged over

tropical lands in the band 251S–251N.
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system to amplify the radiative forcing of CO2 are also

causing a reduction in the carbon uptake by tropical

plants. We searched for a mechanism or a chain of

mechanisms, which correlate the climate sensitivity

with the carbon sensitivity. Since tropical NEP in

SLAVE is mainly controlled by SWC, the correlation

between g and the sensitivity of SWC change to

increasing temperature (DSWC/DT) is high (0.9). Thus,

we regressed DSWC/DT as a function of a over the

tropics (Fig. 4), and obtained a correlation of 0.7 (98%

significance). A possible explanation could be that a

reduction in SWC increases the resistance for surface

evaporation, and thereby reduces the latent heat flux.

To balance approximately the same solar net radiation,

this would translate into an increase in surface

temperature and therefore of sensible heat flux and

long wave radiation. Another possible explanation is

that the more sensitive OAGCM have initial drier land

surface states and are therefore less able to dissipate

additional energy as latent heat.

In coupled carbon climate simulations, the models

with large climate sensitivities to CO2 might thus be

those with the largest soil drying, and therefore those

with the largest reduction of carbon uptake and in fine

the largest climate-carbon positive feedbacks. Interest-

ingly, the only two GCMs that have performed climate

carbon coupled simulations, IPSL (Dufresne et al., 2002)

and UKMO (Cox et al., 2000), show precisely the highest

values and large g (Fig. 4).

Conclusion

We used 14 CMIP2 OAGCM climate simulations to

force the biosphere model SLAVE in order to estimate

how the range in future climate prediction translates

into terrestrial carbon storage. All the experiments

show that climate change acts to globally reduce the

terrestrial carbon uptake. However, the regional dis-

tribution of NEP reduction can be very different

according to the OAGCM used. We use a variance

decomposition method to quantify the interexperiment

agreement and to separate the uncertainty because of

differences between modelsbecause of model internal

variability. Agreement between modeled land tempera-

ture changes is very good, but this is not the case for

PPT and SWC changes. We find that there is a good

model agreement on the responses of tropical, Medi-

terranean and high northern latitudes NPP and NEP to

climate change. For example, the NEP reduction in the

tropics is a pattern present in the majority of the 14

simulations. In those regions, the residual disagreement

in carbon quantities is mostly explained by scenario

differences when we consider NPP, RH and pools

changes, but, on the contrary, it is rather explained by

high internal variability for NEP change.

As internal variability may hide the climate change

impact on NEP, we thus have to increase the averaging

period to improve the estimation of NEP change. An

average over a decade may be necessary to detect

climate change impact on NEP signal as a shorter

averaging period would have kept a large internal

variability.

The land biospheric carbon pool reduction because of

climate change, varies from 30 Gt C for the less sensitive

experiment (MRI, which shows low climate sensitivity

to CO2 increase, a, and the lowest sensitivity of carbon

storage to changing climate, g) to 240 Gt C for the most

sensitive models (IPSL and UKMO, largest a and large

g) by the end of the simulation. We also performed a

sensitivity study on the carbon cycle response to

climate change by varying the values of Q10 and b0,

and found that this leads to an uncertainty in carbon

storage changes that is as important as the one induced

by the spread in climate change scenarios. Conse-

quently, the systematic forcing of a carbon cycle model

using a range of climate scenarios should be clearly

extended to carbon cycle models with other parame-

trizations.

Finally, the use of several climate scenarios allows us

to correlate the sensitivity of carbon storage to climate

change with climate sensitivity to increasing CO2 in the

tropical band. We find that when SLAVE is forced by

the GCM with the largest climate sensitivity, it also

simulates a stronger reduction of NEP per 1 1C of

warming. A possible mechanism to explain such a

relation is the following: the reduction of NEP as

mainly driven by a reduction in SWC would induce a

reduction of latent heat flux. This could lead to an

increase in surface temperature, sensible heat flux and

long-wave radiation. Another explanation could be the

drier initial state of land surface that goes against

dissipation of additional latent heat flux.

It is worth noting as a conclusion that the only two

climate models that performed climate-carbon simula-

tions (Cox et al., 2000; Dufresne et al., 2002) are the ones

with the largest a and large g. We may thus anticipate

that the positive climate-carbon feedback could then be

lower when coupled simulation will become available

from other climate models.
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