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Abstract 

It has been speculated that the vegetation change and human land use have 

modulated the dust sources in North Africa and contributed to the observed increase of 

desert dust since 1960s.  However, the roles of surface disturbances on dust generation 

are not well constrained due to limitations in the available data and models.  This study 

addresses this issue by simulating the Total Ozone Mapping Spectrometer (TOMS) 

Absorbing Aerosol Indices (AAIs) for model predicted dust and comparing them with the 

observations.  Model simulations are conducted for natural topographic depression 

sources with and without adding sources due to vegetation change and cultivation over 

North Africa.  The simulated AAIs capture the previously reported properties of TOMS 

AAI as well as observed magnitude and spatial distribution reasonably well, although 

there are some important disagreements with observations.  Statistical analyses of spatial 

and temporal patterns of simulated AAI suggest that simulations using only the natural 

topographic source capture the observed patterns better than those using 50% of surface 

disturbance sources.  The AAI gradients between Sahara (north) and Sahel (south) 

suggests the best mixture of surface disturbance sources are 20-25%, while spatial and 

temporal correlations suggests the optimum mixture of 0-15% with the upper bound of 

25-40%.  However, sensitivity studies show that uncertainties associated with 

meteorology and source parameterization are large and may undermine the findings 

derived from the simulations.  Additional uncertainties will arise because of model errors 

in sources, transport and deposition.  Such uncertainties in the model simulations need to 

be reduced in order to constrain the roles of different types of dust sources better using 

AAI simulation. 



 

1. Introduction 

Dust from the arid regions of North Africa is transported long distances and 

modifies the atmospheric radiative budget [e.g., Miller and Tegen, 1998] as well as 

biogeochemistry at a regional scale [e.g., Chadwick, et al., 1999; Martin, 1990].  

However, current estimates of anthropogenic impacts of mineral aerosols have large 

uncertainties [Houghton et al., 2001].  These large uncertainties are a product of 

uncertainties at microscopic and macroscopic levels; the former includes mineralogy, size 

distribution, particle shapes, and state of mixing with other species, and the latter includes 

spatiotemporal distribution and the anthropogenic portion of dust.   

Atmospheric desert dust generated by disturbances to the land surfaces such as the 

Sahel drought and anthropogenic land use change may represent important part of the 

present mineral dust from North Africa and may have contributed to the observed large 

increase at Barbados [Prospero and Nees, 1986; Tegen and Fung., 1995; Mahowald et 

al., 2002].  However, Prospero et al. [2002] argue that natural dry topographic 

depressions are the dominant sources of mineral dust aerosol through analyses of Total 

Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Index (AAI) data [Herman et 

al., 1997; Torres et al., 1998].  Mahowald et al. [2002] compare model simulations of 

dust mobilized from natural topographic depressions and disturbed sources and show that 

they cannot be distinguished over North Africa by TOMS derived aerosol optical depths 

(AODs) [Torres et al., 2002] or other available data.  Luo et al. [2003] extended this 

study and showed that differences in model simulations due to meteorology or source 

parameterizations are more important than differences due to different sources.  Recently, 



Tegen et al. [2004] estimated using dust storm frequency that the land use source 

accounts for less than 10% of the global dust load, while Mahowald et al. [2004] using 

the same data show that 0-50% land use source is statistically indistinguishable using a 

different model and methodology.   

TOMS AAI is useful for observing absorbing aerosols such as black carbon and 

soil dust since it detects these aerosols over desert and vegetated land as well as over 

ocean [Herman et al., 1997; Torres et al., 1998].  However, as previously reported 

[Herman et al., 1997; Torres et al., 1998; Hsu et al., 1999; Mahowald and Dufresne, 

2004] and demonstrated in section 3 of this paper, the value of TOMS AAI depends on 

vertical profile of an aerosol in addition to its column loading, size distribution and 

optical properties.  This characteristic has complicated the use of TOMS AAI in its 

interpretation and application for diagnosis of model simulated aerosols.  For example, 

identification of source regions of desert dust using TOMS AAI [e.g., Goudie and 

Middleton, 2001; Prospero et al., 2002] may be sensitive to the actual height of dust 

aerosol.  Attempts to compare TOMS AAI against model derived AOD [e.g., Zender et 

al., 2003a; Mahowald et al., 2003] have been hampered by the non-unique relationship 

between AAI and AOD.  Estimates of AOD from TOMS AAI such as done in Torres et 

al. [2002] rely on dust height prescribed by model and thus no longer are model-

independent quantities.   

In this study, as an alternative way to utilize TOMS AAI and compare model 

simulations and observations, we estimate TOMS AAI over North Africa by simulating 

the radiances that the TOMS sensor would measure if dust were present in the 

atmosphere as predicted by the model.  Since a 3-D atmospheric transport model provides 



estimate of vertical profile, column loading and size distribution of aerosol all together, 

this method determines AAI uniquely for an assumed optical property and a model 

simulated aerosol distribution without assuming any of these parameters.  Note that the 3-

D aerosol distribution is self-consistent as contrasted to the case of AOD estimated from 

TOMS AAI in which the height of aerosol is, in general, prescribed with a different 

model from the one to be diagnosed.  Bias in the model simulated AAI may be a product 

of errors in the model used to simulate dust and exogenously given optical properties, but 

not an error in other model.  However, whether the bias in the simulation is due to the 

column loading, the vertical profile, size distribution or assumed optical property of dust 

is not generally clear.  In this study, biases in simulated AAI are mainly attributed to the 

bias of dust loading in order to derive the spatial and temporal distribution of dust source 

while considering other possibilities as well by analyzing the simulations.   

Similar methods are used in recently published papers.  Ginoux and Torres [2003] 

derived empirical function of TOMS AAI with surface pressure, single scattering albedo, 

optical depth and height of aerosol layer and proposed applications of this method in 

validating simulated dust distributions and in characterizing dust source areas.  Their 

daily empirical aerosol indices (AI’s) correlate moderately (correlation coefficients are 

between 0.3 and 0.6) and monthly mean AI’s correlate well (between 0.6 and 0.9) with 

TOMS AAI over dust source regions in North Africa.  Ginoux et al. [2004] calculated 

AAI using model predicted dust and radiative transfer calculation.  This is basically the 

same method as in this paper, and the differences are briefly summarized in section 2.3.  

AI’s are calculated over North Africa and North Atlantic with these two methods for the 

same model simulated dust field.  They are shown to agree well with each other and be 



capable to capture the magnitude and distribution of a specific dust plume observed in 

TOMS AAI quite well.   

We conduct systematic comparisons between TOMS and model simulated AAIs 

over North Africa over the period of 1984 to 1990, during which TOMS measurements 

were most stable [McPeters et al., 1996; Cakmur et al., 2001; Torres et al., 2002].  Our 

goal is to constrain the role of disturbances on the land surface in modulating dust 

sources, and thus we include natural topographic depression sources, disturbed vegetation 

sources and land use sources.  We conduct several sensitivity studies to determine how 

important other factors are in producing uncertainties and biases in our results.   

In section 2, models, schemes, data and methods used in this study are described.  

Section 3 shows general features of the base case simulations that will help basic 

understanding of AAI simulations.  Section 4 presents sensitivity studies to assess the 

errors due to assumptions used to calculate monthly mean AAIs throughout this study in 

comparison to calculations under more realistic conditions with these assumptions 

relaxed.  Section 5 investigates the roles of different source processes through statistically 

analyzing how well the simulations reproduce the observed patterns.  Sensitivity studies 

using different meteorological datasets and mobilization schemes are conducted in 

section 6 in order to further investigate the biases in simulations seen in section 5 and 

evaluate uncertainties involved in the simulations.  Section 7 integrates the results and 

analyses from previous sections and discusses the biases in the simulations and the roles 

of different source processes.  Finally, section 8 concludes the study.   

 

2. Methods 



2.1. Dust mobilization, transport and deposition 

Model simulations described in detail in Mahowald et al. [2002], Luo et al. [2003] 

and Mahowald et al. [2003] as well as several new sensitivity studies described below are 

used in this study.  In the main part of this study, the Model of Atmospheric Transport 

and Chemistry (MATCH) [Rasch et al., 1997; Mahowald et al., 1997] is coupled with 

Dust Entrainment And Deposition (DEAD) model [Zender et al., 2003b] to simulate dust 

mobilization (entrainment), transport and deposition.  National Center for Environmental 

Prediction/National Center for Atmospheric Research (NCEP) reanalysis data [Kalnay et 

al., 1996; Kistler et al., 2001] is used to drive the coupled model at the T62 resolution 

(1.8 x 1.8 degrees) and with 28 vertical levels.  For comparison, the MATCH transport 

model is also coupled with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol 

Radiation and Transport (GOCART) mobilization scheme [Ginoux et al., 2001; Luo et 

al., 2003] and driven by the meteorological dataset of the National Aeronautics and 

Space Administration Data Assimilation Office (NASA DAO) for 1995.  Simulations 

using DAO data are conducted at the same horizontal resolution but with 20 vertical 

levels. 

The DEAD mobilization scheme is based on the friction velocity (wind stress at the 

surface), which is a function of the wind speed, roughness length and the atmospheric 

stability at the surface.  The mass flux of saltating particles depends on the excess of the 

wind friction speed over the threshold wind friction velocity for saltation. The saltating 

particle flux hF was calculated by White’s formulation [1979]. 
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where c is constant, aρ  is the atmospheric density, *U  is the wind friction speed, g is 

acceleration of gravity, and *
tU is the threshold wind friction speed.  The threshold 

velocity is calculated by a semi-empirical parameterization as a function of particle 

density and diameter and air density [Iversen and White, 1982], and modified for soil 

moisture following Fecan et al. [1999].  We use the relation between the vertical and 

horizontal flux from Marticorena and Bergametti [1995]  

6)(%134.0)/log( −= clayFF hv  

and globally uniform value of clay fraction = 20%.  The mobilization is sensitive to wind 

velocity, atmospheric stability and soil wetness.   

The dust mobilization in GOCART model is based on empirical formulation by 

Gillette and Passi [1988].  
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where C is a dimensional factor, S is source function, mU10  is the horizontal wind speed 

at 10 m, and tU  is the threshold velocity, and ps  is the fraction of each of 7 size classes.  

The threshold velocity depends on the particle size and soil moisture.  The threshold 

velocity was calculated with modified Belly’s relationship [1964] as a function of surface 

wetness, particle diameter and density, and air density [Ginoux et al., 2001].   

We use four aerosol size bins with the diameter ranges of 0.1–1.0, 1–2.5, 2.5–5.0, 

and 5.0–10.0 µm and assume a lognormal size distribution within each size bin [Zender et 

al., 2003b].  Due to the uncertainties in the available soil texture data, we assume 



globally uniform mass fractions in each bin at source to be 0.1, 0.3, 0.3, and 0.3.  (These 

mass fractions are the same as Tegen and Fung [1994] and Ginoux et al. [2001] although 

our size ranges are different from theirs so that we have more mass in smaller size ranges.  

The sensitivity of assuming different size distribution is examined in section 4.5).  The 

resulting diurnal mean global dust distributions are averaged over each month for the 

region of 10.5°N–39.0°N; 30.0°W–30.0°E, which includes North Africa and eastern 

North Atlantic but excludes low latitude regions where biomass burning aerosol (which is 

also detected by TOMS AAI) is abundant.  Since this does not guarantee the domain is 

free from biomass burning aerosols and especially the southern part of the domain may 

be prone to contamination of biomass burning aerosols, however, an additional analysis is 

conducted excluding winter months when biomass burning is active in section 5.4.  The 

dust concentrations in the simulations have been made smaller by 8% relative to the 

globally tuned values in previous studies [Luo et al., 2003, Mahowald et al., 2002] in 

order to match the TOMS AAI over this region. 

 

2.2. Source regions 

Dry, unvegetated topographic depressions are considered as dust sources due to the 

input of fine soil particles [Prospero et al., 2002; Ginoux et al., 2001] and used in our 

base case (B) simulations.  In order to explore the role of surface disturbance, we look at 

“new desert (D)” and “cultivation (C)” source regions [Mahowald et al., 2002].  New 

desert regions are defined as “potential source areas” or dry and unvegetated areas in 

1980–1984 but not in 1965–1969 using the BIOME3 equilibrium vegetation model 

[Haxeltine and Prentice, 1996] (driven by precipitation from Dai et al. [1997] and 



temperature and cloudiness from NCEP reanalysis).  New desert areas previously 

supported plants, which acted to hold down the soils.  When the plants are removed, there 

should be larger amounts of easily erodible soils than in regions that have long been 

desert, similar to the “Sahara Boundary Shift” source by Tegen and Fung [1995].  

Cultivation source regions have dry, unvegetated soils being cultivated or used for 

pasture and are defined using the Matthews [1983] data set when there is a desert as 

defined by the BIOME3 equilibrium vegetation model.  We are presuming that the land 

use would disturb the soils and allow the soil particles to be more easily mobilized [e.g., 

Saxton et al., 2000].  Therefore, the sizes and locations of new desert source and 

cultivation source, shown in Figure 3 of Mahowald et al. [2002], are sensitive to any bias 

in BIOME3 model simulations.  These sources are used in combination with the 

topographic depression sources in simulations (cases BD and BC) so that each type of 

source accounts for 50% of the total dust mobilized in North Africa.  We also isolate the 

topographic depression source in Lake Chad/Bodele Depression area for further 

sensitivity studies (case BL), where the source in this area is four times larger than in the 

original simulations and accounts for 15% of total mobilization.  Dust mobilization from 

North Africa west of 40ºE is tuned to be equal in all these comparisons.  Hereafter, BD, 

BC, and BL sources are collectively referred to as ‘combination sources’.   

 

2.3. Simulation of TOMS AAI 

The presence of ultraviolet (UV) absorbing aerosol is detected as AAI derived from 

TOMS measurements using a spectral contrast method in the near UV region where the 

ozone absorption is very small [Herman et al., 1997; Torres et al., 1998].  In cloud free 



conditions, AAI depends on the amount, size distribution, optical properties and height of 

absorbing aerosols, the solar and viewing geometries [Herman et al., 1997; Torres et al., 

1998].  Here we estimate a Nimbus-7 TOMS AAI by simulating the TOMS 

measurements at two near UV bands through radiative transfer calculations for a dust 

profile and atmospheric and surface conditions given by the model.   

AAI is defined as; 
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[Herman et al., 1997] where RsdstI ;  are radiance at 340 and 380 nm at the top of the 

atmosphere in presence of dust and surface reflectivity Rs, which would be measured by 

TOMS sensor in the real atmosphere and are to be simulated here.  RmclrI ;  are radiance 

that would be measured in absence of aerosols and calculated as follows;  
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[Dave, 1978; McPeters et al., 1996].  The radiance 0; =RsclrI  is computed assuming no 

aerosols and no reflection at the surface.  The reflectivity Rm is assumed to be 

independent of wavelength and is calculated using radiances at 380 nm;  
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and T and S are transmission and atmospheric diffuse reflectivity respectively and given 
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=1;  are downward and upward surface irradiance for the clear sky with 

surface reflectivity of 0 and 1 respectively. 

We use the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) 

model [Ricchiazzi et al., 1998] to calculate the radiance and irradiance needed in the AAI 

calculation above.  It incorporates the LOWTRAN7 band models [Pierluissi and Peng, 

1985] and the DISORT discrete ordinate method [Stammes et al., 1988].  Therefore, the 

simulated AAI is also called as MATCH-SBDART or MS AAI as contrasted to TOMS 

AAI.  The optical properties are obtained through Mie calculations using model estimated 

particle size distributions and refractive indices from Sinyuk et al. [2003] and Torres 

[personal communication, 2003].  The resulting single scattering albedoes at 380 nm for 

the four size bins are 0.948, 0.883, 0.851, are 0.861 respectively.  Our computations 

reproduce the published results of Torres et al. [1998] if the optical properties from that 

study are used.  We use solar zenith angle calculated for each month and latitude at local 

solar noon since Nimbus-7 satellite has a sun-synchronous orbit with a noon equator 

crossing time [McPeters et al., 1996].  The viewing angle is assumed to be nadir.   

Ginoux et al. [2004] use very similar method to this, in which they simulate 

radiance and flux using a radiative transfer model to calculate AAI.  There are a few 

differences between our method and theirs.  They use mass-weighted average altitude of 

dust while we use the whole vertical profile of dust predicted by the model.  They 

calculate daily AAI using realistic satellite viewing angles, which is not done in this 

study because we calculate AAI for monthly averaged data.  The effects of using monthly 



averaged dust and atmospheric variables and fixed viewing angle at nadir are evaluated in 

section 4.  They use optical properties of dust in their 7 size bins calculated through Mie 

theory using refractive index from Colarco et al. [2002].  Their method resolves optical 

properties in smaller sizes better and leads to higher absorption in larger particles (our 

single scattering albedo in 5.0-10.0 µm diameter range is 0.861 and their value in 6.0-

12.0 µm range is 0.725, see Table 6 in Ginoux et al. [2004]).   

 

2.4. Comparisons with TOMS AAI observations 

We calculate AAI for monthly averaged model predicted dust distribution and 

compare with monthly average of Nimbus-7 TOMS AAI data over the period from 1984 

to 1990, during which TOMS measurements were most stable [McPeters et al., 1996; 

Cakmur et al., 2001; Torres et al., 2002].  TOMS measurements are available daily basis 

on a 1.25º by 1.0º grid but data may be missing due to sun glint or contaminated with 

cloud [Torres et al., 1998; Cakmur et al., 2001].  We assume that pixels with 380 nm 

reflectivity higher than 0.2 are contaminated with cloud and excluded them.  This 

criterion is chosen as the central value of the suggested range between 0.15 and 0.25 in 

Cakmur et al. [2001].  The data are then interpolated into T62 grids by averaging TOMS 

data within each T62 grid cell excluding the points of missing data.  If data is missing at 

all points within a T62 grid cell, this grid cell is not given an effective value of TOMS 

AAI.  A monthly average is calculated only at points where TOMS data are available on 

ten or more days following the suggestion by Cakmur et al. [2001].  However, as Cakmur 

et al. [2001] suggest, detecting mineral dust by TOMS AAI is thought to contain 

uncertainty.  They, based on Hsu et al. [1999], suggest that uncertainty in daily TOMS 



AAI is approximately 0.2 and that in monthly mean is about 0.1.  The uncertainty may be 

due to undetected subpixel clouds and the presence of biomass burning aerosols.  

Possible bias in monthly mean TOMS AAI due to cloud contamination of data is 

examined in section 4.2 also. 

 

3. Analyses of base case simulation 

Figure 1 shows the dependence of AAI (for an amount of dust equivalent to unit 

AOD at 380nm) on the vertical level of dust for each of four size bins (a) and dependence 

of AAI on AOD for different levels for the bin 1 (diameter range of 0.1-1.0 µm) dust (b).  

As previously reported [Hsu et al., 1999; Torres et al., 1998; Mahowald and Dufresne, 

2004], for a given AOD, AAI is higher with dust at a higher altitude and of larger 

particles and is nearly linear to height from the model’s bottom layer to 500hPa (Figure 

1a).  (Both AOD and AAI are less sensitive to large particles than small particles, but 

AAI is more sensitive to large particles than AOD is.)  For a given level of dust, AAI is 

nearly linear to AOD also, with different slopes for different height of dust (Figure 1b).   

The cross sectional view of dust concentration and AOD and AAI values from 

Bodele Depression source (near 18ºN 19ºE) to the west-southwest in Figure 2 

demonstrate how AAI evolves as dust is carried away from its source and higher in the 

atmosphere (the location of the cross section is shown in Figure 3(a2)).  It shows an 

increase of AAI from 17ºE to the west following the upward transport of dust despite the 

almost constant AOD.   

Spatial distributions of MS AAI for January and July of 1984 are shown in Figure 3 

(a) with corresponding AOD distributions (b), ratios between AAI and AOD (c), and 



mass weighted mean of dust height (d).  Spatial distributions of MS AAI are similar to 

those of AOD.  However, the AAI/AOD ratio varies between 1.0 and 3.0 over North 

Africa, and the spatial pattern of this ratio is similar to that of average height of dust 

(correlation coefficients between AAI/AOD and dust height for January and July of 1984 

are 0.80 and 0.86 respectively).  These AAI/AOD ratios correspond to the AAI sensitivity 

to AOD of bin 1 dust at the middle to upper troposphere and dust in other classes in lower 

troposphere (Figure 1a).  Figure 4 shows the spatial distribution of dust source areas as 

‘basin factor’, which is calculated from the topography and indicates the source strengths 

(same to “preferential source areas” in Mahowald et al., 2002; a) and actual mobilization 

in January and July of 1984 (b1 and b2).  Source areas along the Atlantic Coast and in 

Bodele Depression are active in January, and sources from southern Algeria to the west 

are active in July.  It can be seen in Figure 3 that although both AOD and AAI become 

large downwind of the source regions (south in January and west in July), and AAI 

values tend to be larger farther from the source, consistent with Figure 2.   

Monthly averages of satellite retrieved TOMS AAI for January and July of 1984 

are shown in Figure 5, in which regions where data is available on nine days or fewer in 

each month are blacked out.  Comparisons of Figure 3 and Figure 5 suggest that the 

model is capable of capturing the rough spatial patterns of TOMS AAI, but it misses 

many features.   

 

4. Evaluation of the simplifications and assumptions used in the method 

In the analyses presented in sections 5 and 6, MS AAI is calculated for monthly 

average of diurnal mean dust distributions over all days within a month using fixed 



satellite geometry to minimize the computation costs.  However, AAI calculated in this 

way may lead to a bias when compared with monthly averaged TOMS AAI because of 

several factors.  First of all, due to the nonlinear nature of AAI, AAI calculated for 

monthly mean dust distribution can be different from monthly average of AAIs calculated 

for daily dust.  Second, TOMS AAI is not available for all days due to sun glint and cloud 

contamination as shown in Figure 5b.  Third, TOMS measurement is made once a day 

around local solar noon (maximum difference is about 1 hour (before or after noon) on 

the edges of the swath since the nodal period of Nimbus-7 satellite is 104 minutes 

[National Aeronautics and Space Administration, 2003; The British Atmospheric Data 

Centre, 2002]).  Forth, satellite zenith angle of Nimbus-7 TOMS varies from 0 to 51 

degrees but it is assumed to be 0 (nadir) in the simulations.  Additionally, sensitivity of 

MS AAI to the assumed dust particle size distribution is also demonstrated.  The effects 

of these simplifications and assumptions in calculating monthly average AAIs are 

examined for January and July of 1984 unless an effect is larger or of more interest in 

other months. 

 

4.1. AAI for monthly mean dust and monthly average of daily AAI 

AAI calculated using monthly mean dust, atmosphere, and solar geometry are 

compared with monthly average of AAIs calculated for diurnal mean model results.  

Figure 6 shows absolute difference (former minus latter; a) and relative difference 

(absolute difference divided by latter; b) in April (1) and July (2).  Differences are small 

in January (only up to 0.05).  The calculation with monthly mean dust and other 

conditions overestimates AAI by up to 0.32 and 18% in April and 0.44 and 11% in July 



where AAIs are high, and underestimates it by up to 0.1 and 30% in April occur where 

AAIs are relatively small (there is almost no underestimate in July).  The relative errors 

are largest in April in both the maximum magnitude and frequency (i.e., number of grid 

points).  If we look at grid cells where AAI is larger than 0.5 (70.1% of all) to avoid small 

denominators, the maximum relative errors are +18% and –12%, and number of grid cells 

with relative errors exceeding +/– 10% are about 3% in April. 

 

4.2. Monthly averages for all days and for days when TOMS data is available 

Figure 7 shows the absolute (a) and relative (b) differences between MS AAI 

calculated for simple monthly average dust (using data of all days in a month) and 

reconstructed (from data of days when TOMS data is available) monthly average of dust 

and atmosphere in January (1) and July (2) of 1984.  In July, the simple average is larger 

than reconstructed average by more than 0.3 (more than 10%) over large areas from the 

peak AAI region (western Sahara; southwest or downwind of the source region in Figure 

4) to the west with the maximum difference of 0.99 (64%) off the west coast of North 

Africa.  In January also, the simple average is larger by more than 30% over North to 

Central Sahara although the difference in actual values are much smaller than in July.  

However, over the Mediterranean in July, the simple monthly average MS AAI is smaller 

by over 0.3 and 30%.  Relative error exceeds 30% (positive or negative) in 3% in January 

and 8% in July of the grid cells with reconstructed average AAI of over 0.5. 

These errors may be a result of cloud screening using the reflectivity criterion and 

correlation between dust loading and cloud amount.  The reflectivity at 380 nm becomes 

higher with higher column loading of dust.  If reflectivity criterion higher than 0.15 is 



chosen, this value is not reached with maximum dust loading in the clear sky condition 

(similarly to Cakmur et al. [2001]).  However, reflectivity of grid cells with high dust 

loading can exceed the criterion with less subgrid clouds, and hence they can be excluded 

from the average preferentially.  This can lead to a lower AAI in the reconstructed 

monthly averages excluding pixels and days of high reflectivities.  Another possibility is 

that there tends to be less dust when TOMS data is available (which is when there is less 

cloud).  This may suggest a positive correlation between dust and cloud amounts over 

this region, as seen in the case of low thin clouds in Mahowald and Kiehl [2003].   

 

4.3. AAIs calculated for local noon dust and diurnal mean dust 

Since diurnal variabilities of dust mobilization and vertical mixing are large [Luo et 

al., 2004], there expected to be difference between AAI at local noon and AAI calculated 

for diurnal mean dust.  Figure 8 shows absolute (a) and relative (b) differences between 

AAIs calculated for monthly average of dust and atmosphere at local solar noon (12:00Z 

in 5ºW–5ºE, 11:20Z in 5–15ºE and 10:40Z in 15–25ºE) and monthly average of diurnal 

mean dust and atmosphere in January (1) and July (2).  AAI calculated for monthly 

average of diurnal mean data is smaller than that of local noon data by more than 0.3 and 

20% over Bodele Depression and northeastern Libya (maximum is 0.40 and 31%) in 

January, and by more than 0.5 and 10% (maximum 0.63 and 22%) in the high AAI region 

over southwestern Algeria and northern Mali in July.  This suggests that diurnal means 

underestimate AAI in source regions (see Figure 4), and sometimes overestimate it is 

nearby downwind regions (e.g. south of Bodele Depression in January). 

 



4.4. Difference due to satellite viewing angles 

AAIs are calculated with satellite zenith angles 0, 15, 30, and 45º and 

corresponding solar zenith and azimuth angles for satellite and solar positions and 

latitudes.  Figure 9 shows absolute (a) and relative (b) errors associated with calculating 

AAI using a nadir satellite viewing angle while the actual satellite zenith angle is 45º in 

April (1) and July (2).  The calculated viewing angle at a given point in the domain is 

approximated by 45º (i.e., falls between 37.5 and 51º, the latter of which is the maximum 

viewing angle of the TOMS satellite sensor [National Aeronautics and Space 

Administration, 2003; The British Atmospheric Data Centre, 2002]) from about 30% (at 

40ºN) to 45% (at 10ºN) of the time depending on the latitude (average for all latitudes is 

39%). 

This analysis shows that for satellite viewing zenith angles larger than zero, the 

error due to using viewing angle of 0º is always negative and has small seasonal and 

spatial structures.  With satellite zenith angle of 45º, relative error exceed 20% in about 

3% of points where AAI is larger than 0.5, with maximum of 24%.  With satellite 

viewing angle of 30 degrees, errors are much smaller and points where relative error 

exceeds 10% are about 5% of all points with AAI larger than 0.5, and the maximum 

relative error is 13%.  The average maximum relative error (weighted with the relative 

frequencies with which the satellite viewing angle falls into the ranges of the four given 

angles) is about 12% in both April and July.  Since the differences are one-sided (always 

negative) and have small seasonal and spatial structures (Figure 9b), and since the model 

has been tuned to give a desired magnitude of AAI, some of these differences must have 

already been compensated.  Therefore their effects on comparisons between monthly 



averaged observed and simulated AAIs are not thought to be large.   

 

4.5. Difference due to assumed particle size distribution 

In this study, mass fractions of four size bins (0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 

µm in “diameter”) in the source are assumed to be 0.1, 0.3, 0.3 and 0.3 respectively.  

These fractions represent much more dust in the smaller size fractions than other studies 

[e.g. Ginoux et al. 2001].  Additionally, recent field observations suggest that previous 

modeling studies may underestimate particle sizes of transported African dust [Colarco et 

al., 2003; Grini and Zender, 2004].  For this sensitivity study AAI is calculated using the 

source mass fractions of 0.03, 0.17, 0.41, and 0.39 for the same four size bins.  These 

fractions are calculated from the mobilization scheme incorporating saltation-

sandblasting dust production mechanism described in Grini and Zender [2004] (this is the 

global result and different from their results for Sahara shown in the paper [Zender, 

personal communication, 2005]).  Thus, the new estimates of appropriate size 

distributions give much less dust in the smaller two size bins (1/3 to 1/2) and more in the 

larger size bins compared with the size distribution used in the base case. 

The values of AAI and AOD become nearly half of the original values and as a 

result, the ratios of AAI/AOD do not change very much (not shown).  This is mainly due 

to smaller radiative effects per unit mass (mass extinction coefficient) of larger particles.  

Over North Africa, the modified mass fraction case has slightly larger AAI/AOD, due to 

the larger fraction of large particles close to the source regions (Figure 1).  Next we look 

at the impact of changing the size distributions on the spatial distribution of MS AAI 

(shown in Figure 10).  These results show that there are only small relative differences in 



the spatial distribution.  Thus changing the size distribution between different bins 

changes the mean AAI, but not the spatial or temporal distribution of the AAI. 

 

4.6 Combined effect 

Errors associated with the simplifications examined in 4.1, 4.2 and 4.3 are spatially 

heterogeneous and so they may impact our comparisons between model simulated and 

observed AAI distributions.  Additionally, they may add non-linearly when included 

together, so here we look at the combined impact of several of these sensitivities.  Figure 

11 shows the errors when the effects in sections 4.1, 4.2 and 4.3 are examined at the same 

time, that is, average of AAI values calculated for dust and atmosphere at local noon of 

days of the month on which TOMS data is available.  Effects of satellite geometry and 

particle size distribution are not combined here because they are spatially much less 

heterogeneous, combining them are technically more complicated, and the significance of 

combining them is not as clear.  Note that the figures do not have values west of 5ºW and 

east of 25ºE due to the lack of local noon model outputs in these regions.  They look 

similar to superpositions of the separate cases (compare (a2) and (b2) of Figure 11 with 

those in Figures 6, 7 and 8) and no strong non-linearity is apparent.  The absolute error is 

up to –0.41 and 0.24 in January and –0.57 and 0.64 in July, and the relative error is up to 

about –60% and 20% in both January and July where AAI in combined sensitivity case is 

over 0.5.  Relative error exceeds 30% (positive or negative) in 4% in January and 9% in 

July of all grid cells with AAI over 0.5.  These are comparable to the case of 

reconstructed monthly average (section 4.2 and Figure 7).  Combined errors outside the 

region of Figure 11 are examined by simply superposing the errors shown in Figures 6 



and 8 (not shown).  It creates a region over Western Sahara (west of 10ºW) to the 

Atlantic in July where errors add up to a maximum of a little over 1 (over 80%) over the 

ocean.   

The errors associated with simplifications in timing of measurements and averaging 

are thought to introduce an important level of uncertainty to our comparisons between 

simulations and observations.  Errors due to simplification in satellite geometry and 

assumption of particle size distribution add the uncertainty to lesser degree.  These 

uncertainties are large, but not larger than the errors and uncertainties seen in the later 

sections due to model and observational differences. 

 

5. Analyses of different source processes 

As described in section 2, simulations are conducted for four types of dust sources; 

100% topographic depression source (B), 50% of topographic depression source 

combined with 50% of new desert source (BD) and with 50% of cultivated land source 

(BC), and 85% of topographic depression source with 15% source from Lake Chad and 

Bodele Depression region (BL).  AAIs and other quantities are averaged over the whole 

domain (10.5–39.0°N; 30.0°W–30.0°E) as well as Sahara (23.8–35.2°N; 15.0°W–

30.0°E), Sahel (10.5–21.9°N; 20.6°W–30.0°E), and Bodele (12.4–20.0°N; 13.1–20.6°E; 

within Sahel) subdomains and analyzed.  We compare simulated AAI with different types 

of sources against TOMS AAI in order to assess which source type is most consistent 

with observations.  Any bias in simulated AAI can be due to the biases in either the 

column loading or the vertical profile of dust, both of which are a result of mobilization, 

transport and deposition processes.  Atmospheric processes that may lead to a bias in 



AAI are examined in Section 6 through sensitivity studies using a different input 

meteorology and source scheme. 

 

5.1. Spatial distributions 

Figure 12 shows the distributions of AAIs from TOMS observation (a) and MS/B 

(case B; (b)), MS/BD (c), MS/BC (d), and MS/BL (e) simulations averaged over all 

months from 1984 to 1990.  The TOMS AAI plots such as Figure 12a and Figure 5a and 

b show local maxima of AAI over several regions, which is consistent with dust source 

regions identified by Prospero et al. [2002].  The correlation coefficients of spatial 

distributions of simulated AAIs with observation are between 0.79 (case BC) and 0.87 

(case B) (correlation coefficient in each case is given in the parentheses in the figure).  

Determining if these values are statistically distinct from each other is made complicated 

by the fact that dust loadings are spatially correlated due to horizontal transport.  The 

correlations of nearby grid cells reduce the degree of freedom and hence lower the 

probability that two correlation coefficients are statistically distinguishable, however the 

factor by which it is reduced is not obvious.  In Table 1 we show the factors by which we 

can reduce the degrees of freedom and still obtain statistically significantly different 

correlations  (i.e., they are distinct exactly at 95% confidence level).  We assume that this 

factor must be great than five in our analysis, due to spatial correlations.  Even though the 

spatial correlation coefficient of MS/B AAI with observation is a little higher than those 

of other cases, the differences are statistically insignificant and MS/B AAI is worse in 

terms of capturing the observed strength of AAI over Bodele Depression and western 

Sahel and generally overestimates AAI over Sahara especially over southwestern Algeria 



and western Sahara in July (Figure 5).  As a result, case B simulation underestimates the 

ratios of AAI values of Sahel and Bodele to Sahara (Figure 13).  The other three 

simulations overcorrect these ratios (i.e., D, C and L sources are too strong), and 

therefore a linear combination of the different sources can be selected to best match the 

observations.  The observed Sahel/Sahara ratio is obtained when D or C sources are about 

25% of the total dust source (not shown).   

As shown in Table 1, the spatial distribution of AAI over Sahel is better reproduced 

in case B (correlation coefficient with observation is 0.81) than other cases in which the 

Sahel dust plume seems to be shifted to the south (correlation coefficients in cases BD, 

BC and BL are 0.64, 0.42, and 0.69 respectively).  The spatial correlation in case BC is 

statistically significantly lower than in case B with the reduced degree of freedom by 

factor of over 10.  Dust mobilizations with D (new desert only) and C (cultivation only) 

sources (not shown) have local maxima about 1 to 2 grid boxes (1.8 to 3.6 degrees) south 

of that with B source in the Bodele subdomain.  Also the southward bias is prominent 

from November to May (not shown), which coincide the seasons in which the 

combination sources (i.e., BD, BC, and BL) overestimate AAI (discussed in section 5.2) 

and northeasterly winds dominate in the lower troposphere over Sahel.  Therefore, the 

southward biases seen in the annual average simulated AAI distributions with 

combination sources are considered as a product of the difference in locations of dust 

source and the bias in seasonality of dust mobilization.   

 

5.2. Seasonality of AAI by region 

Figure 14 shows the seasonal change of observed and simulated AAIs averaged 



over all years (1984–90) over the whole domain (a), Sahara (b), Sahel (c), and Bodele (d) 

subdomains.  Over the whole domain, MS/B simulation overestimates AAIs in March to 

May and underestimates in July to September.  This seems to be due to overestimates of 

AAIs over Sahara in boreal winter to spring and underestimates in Sahel and especially in 

Bodele in summer to early fall.  The magnitudes of summertime underestimates in Sahel 

and Bodele are large and the balance between these and the springtime overestimate in 

Sahara is considered as the reason for the bias in the Sahel/Sahara and Bodele/Sahara 

ratios in Figure 13.  While these annual average ratios are improved by adding other 

sources (i.e., cases BD, BC and BL), the large deficiencies in summer along with the 

overestimates in spring in Sahel and Bodele are made worse by addition of sources as 

shown in Figure 14 and Table 1.  Especially over Sahel, the correlations of simulated 

monthly AAIs (averaged over all years) with observed ones are statistically significantly 

higher in case B than in cases BD and BC.  The seasonality of AAI is further analyzed 

using different wind and dust schemes in section 6 in order to better understand the 

uncertainties associated with these analyses.   

 

5.3. Interannual changes by region 

Figure 15 shows the interannual changes of observed and simulated AAIs averaged 

over all months.  All simulations show basically the similar patterns in terms of year-by-

year changes as well as increasing trends in the period, and these patterns do not agree 

with those of observations.  Correlation coefficients between observations and 

simulations are negative in all cases and regions (not shown), and combination sources do 

not improve the correlations.   



Correlation coefficients of simulated AAIs of all months in the seven-year period 

(seasonality is included) with observed ones are significantly higher in case B than in 

other cases over all regions except Sahara (Table 1).  However, all simulations fail to 

reproduce observed anomalies of AAI (changes of monthly AAI with average seasonality 

removed) (Table 1).   

 

5.4. Optimum source mixture and acceptable range  

As shown above, the case BD and BC simulations correlate with the observations 

statistically significantly worse than the case B simulations in spatial (BC only) and 

temporal (seasonal and over all 84 months) comparisons.  As mentioned in section 5.1, 

simulations using lower fractions of new desert and cultivation sources suggest that the 

optimum mix of sources in terms of Sahel/Sahara ratio is 25% of new desert (D) or 

cultivation (C) (and 75% of topographic (B)) sources.  However, as summarized in Table 

1, it is 15% of D or C source in terms of spatial correlation over the whole domain and 

0% over Sahel.  Temporal (seasonal and time series) correlations are highest with 100% 

B source over all regions.  D and C sources need to be less than 25% in order for the all 

correlations to be statistically indistinct from case B.  

Even though the domain has been chosen to minimize the influences of biomass 

burning smoke, its effects in the seasonal comparisons cannot be ruled out.  If December, 

January and February, when biomass burning is active near the southern boundary of the 

domain (e.g., Menaout et al., 1991; Stroppiana et al., 2000), are excluded, the time series 

correlations of mixed source cases with observations become higher by up to 0.13 over 

Sahel and Bodele subdomains, while those correlations do not change almost at all with 



case B.  In this case, the optimum mix is still 100% topographic source, but the new 

desert and cultivation sources can be up to about 35% to keep the time series correlations 

indistinct from case B.  However, we cannot judge whether these changes happened due 

to biomass burning or just by chance.   

 

6. Sensitivities studies using different wind datasets and dust mobilization schemes 

Analyses in the previous sections are based on simulations using NCEP reanalysis 

and the DEAD mobilization scheme.  In this section, sensitivity studies are performed 

using different combinations of meteorological datasets and dust mobilization schemes.  

The primary purpose of these sensitivity studies is to examine how robust the results in 

the previous section are to changes in the model configuration.  If the results from the 

sensitivity studies are quite different from the original study (and this is actually the 

case), the simulations are analyzed in detail in attempt to identify the factors that cause 

the observed differences. 

The sensitivity studies use the topographic depression source (case B), either NCEP 

or DAO meteorological dataset, and either DEAD or GOCART dust mobilization 

scheme.  A simulation using DAO wind and GOCART scheme for mobilization but 

NCEP for transport is also performed.  Hereafter, these configurations are expressed as 

B-NDN, B-DDD, B-DGD, and B-DGN, with letting the first letter (B) indicate the 

topographic source, the first and last letters after the hyphen the meteorological dataset 

(i.e., NCEP or DAO) used for mobilization and transport respectively, and the second the 

mobilization scheme (i.e., DEAD or GOCART).  Additionally, the DGD simulation is 

performed with 50% topographic depression and 50% cultivation sources (case BC-



DGD).  All simulations are conducted for February to November of 1995 except B-NDN 

which is simulated for all months in 1995.  These simulations correspond to those 

summarized in Table 1 of Luo et al. [2003].  Since TOMS AAI is unavailable in this year 

for comparisons unfortunately, average TOMS AAIs over 1984–1990 are used for 

comparisons.  Comparing AAI simulated for 1995 with climatological TOMS AAI 

should also be noted as a source of uncertainty. 

 

6.1. Spatial distributions 

Figure 16 shows the AAI distributions predicted by these simulations averaged 

over February to November of 1995.  TOMS AAI averaged over February to November 

and 1984 to 1990 minus and plus standard deviation of interannual variability at each 

point are also shown in Figure 16 (a) and (b) respectively, and these give the likely range 

of TOMS AAI in 1995 if there is no trend in decadal timescale.  Figure 16 (c) is the result 

of the same model configuration as Figure 12 (b).  All the simulations for 1995 (c-g) 

predict AAI larger than the higher limit of the range based on mean and variability 

between 1984 and 1990 (b) but by much higher degrees in cases using DAO wind for 

mobilization (d-g) than in case using NCEP wind (c).  The simulations using DAO for 

mobilization also seem to produce spatially less heterogeneous patterns of AAI than that 

using NCEP.  This may be due to less spatial variability in wind speed in original DAO 

data and/or the interpolation of data from 2.5ºx2.5º grids (Luo et al., 2003).  The 

simulation using 50% cultivation source (g) produces AAI distribution highly 

concentrated over eastern Sahel.   

The spatial distributions of AAI with DAO mobilization (cases B-DDD, B-DGD 



and B-DGN) correlate with observation (averaged over February to November of 1984 

to1990) better (correlation coefficients are 0.86, 0.85, 0.84 respectively) than with NCEP 

(0.78) but not in statistically significant manner.  The correlation in case BC-DGD is 

lower (0.72) than in the case B-DGD, as we saw in section 5 that BC-NDN less correlates 

with observations than B-NDN does in 1984-1990.  The spatial correlation of DGD 

simulation with the observation becomes highest (0.87) when the mixture of C source is 

15% and the correlation becomes statistically significantly lower (0.79) than this with 

40% C source (when the degree of freedom is reduced by factor of 5.  See section 5.1).  

Sahel/Sahara and Bodele/Sahara ratios are somewhat improved with DAO mobilization 

but they are still lower than the observed values while they are overestimated with BC 

source (Sahel/Sahara ratios for TOMS, B-NDN, B-DDD, B-DGD, B-DGN, and BC-

DGD are 1.54, 1.02, 1.24, 1.27, 1.21, and 2.2 respectively, and this ratio with DGD 

simulation matches the observation when C source is about 20%).  However, the 

observed AAI distribution within the Sahel subdomain is best reproduced in B-NDN 

simulation (correlation coefficients with B-NDN, B-DDD, B-DGD, B-DGN, and BC-

DGD are 0.81, 0.77, 0.75, 0.76, and 0.18 respectively) and the correlation with BC-DGD 

is statistically significantly lower than other cases.  The correlation of DGD simulation is 

highest (0.75) with 0% C source (case B-DGD) and, assuming the distribution of dust 

sources is the dominant cause of the bias in the simulations, cultivation source needs to 

be less than 40% to keep the spatial correlation within Sahel not significantly worse than 

this case, and at this mixture the correlation coefficient within Sahel is 0.51.   

 

6.2. Seasonality of AAI by region 



Figure 17 (a) shows the seasonalities of AAI simulated with different 

meteorological datasets and mobilization schemes averaged over the whole domain and 

the three subdomains (i.e., Sahara, Sahel, and Bodele).  Also shown are the seasonalities 

of TOMS AAI (with error bars for plus and minus interannual standard deviations) and 

B-NDN simulation for 1984–1990, but in order to focus on the comparisons of 

seasonalities, both of their values (as well as the standard deviations) are increased by 

26% so that the annual average AAI in B-NDN over the whole domain for 1984–1990 

equals that for 1995.  Notice that changing the meteorology does not change the 

seasonality much (B-DDD vs. B-NDN), while changing the source scheme does change 

the seasonality (B-DGD vs. B-DDD).   

In the whole domain and all subdomains, simulations using GOCART (B-DGD, B-

DGN and BC-DGD) do not produce the large deficiency in summer that NDN 

simulations with all source types (i.e., all simulations in section 5) produce, even though 

B-DDD does produce it using the same wind as B-DGD.  Therefore, the source 

parameterization may be responsible for the deficiencies in summer time AAI seen in 

section 5.  On the other hand, simulations using the GOCART source scheme with either 

set of winds tends to overestimate AAI in fall and underestimate it in spring, which is 

opposite to simulations using the DEAD scheme with either DAO or NCEP winds—

cases B-DDD or B-NDN.  These effects are thought to be combined with the effects of 

combination sources to produce the seasonal pattern seen in case BC-DGD, where the 

summer time deficiency has disappeared and overestimates in fall to early spring have 

become prominent in Sahel and Bodele.  Although the seasonal changes are not 

statistically analyzed due to a small size of samples (i.e., number of months; 10) here, the 



seasonal pattern of BC-DGD simulation is obviously the least consistent with the 

observed seasonal pattern, as in the cases of combination sources in the previous section.  

However, this pattern is also very different from those of the combination sources in the 

previous section, suggesting the substantial dependence of AAI seasonal patterns to 

meteorological data and source scheme used in simulations.   

 

6.3. Factors determining AAI 

Before looking closer at the differences due to different wind and mobilization 

schemes in different regions, it is helpful to look at the seasonal correlations between 

simulated AAI and their possible determining factors.  Along with AAI, Figure 17 also 

shows seasonal changes of AOD (b), dust mobilization (c), surface wind speed (at 

reference height (10m); d), mass weighted average height of dust (e), and planetary 

boundary layer height (PBLH; f) (AOD and mobilization for B-NDN84-90 are increased 

by 26% as AAIs are).  PBLH indicates the degree of turbulent mixing and hence affects 

vertical transport of dust.  Table 2 shows correlation coefficients between AAI and these 

quantities in the Bodele subdomain.  Seasonal changes of simulated AAIs generally 

highly correlate with those of AODs, and mobilizations highly correlate with surface 

wind speed.  However, correlation coefficients of AAIs and AODs with mobilization and 

surface wind are not high, especially with GOCART mobilization (i.e., B-DGD and B-

DGN).  This may be due to greater importance of transport and smaller seasonal change 

of GOCART mobilization as we shall see in section 6.4.  AODs are more highly 

correlated with mobilization than AAIs in all cases, presumably due to the altitude 

dependence of the AAI.  Similar results are seen for the larger region of the Sahel (not 



shown).   

Contrary to the cases of mobilization and surface wind, AAI correlates well with 

average dust height with GOCART mobilization and do not with DEAD mobilization, 

suggesting the greater roles of mobilization in simulations with DEAD and transport in 

those with GOCART in determining AAIs.  Average dust heights highly correlate with 

PBLH in simulations using NCEP transport but do not in those with DAO transport.  

Therefore, it can be said that PBLH is representative of vertical mixing in NCEP but 

something other than PBLH is more important in DAO, and as seen in section 6.4, it may 

be moist convection.   

Although seasonality of soil moisture content inversely correlates with mobilization 

quite well (see Figure 7 of Luo et al., 2003), soil moisture does not seem to play an 

important role in controlling dust mobilization since it does not frequently become high 

enough to considerably inhibit dust mobilization in Bodele and Sahel in the simulations.   

 

6.4. Explanation of seasonal changes of AAI 

General qualitative features seen in Figure 17 are summarized in Table 3, in which 

differences between B-DDD and B-DGD and between B-DGD and B-DGN are 

organized as differences by mobilization schemes and by meteorological datasets used in 

transport.  Figure 17 (c3) and (c4) show that the GOCART scheme (used in B-DGD and 

B-DGN) produces larger mobilizations in summer and smaller in spring in Sahel and 

Bodele than DEAD (used in B-NDN and B-DDD) does, so the former cases do not 

produce the large summertime deficiency in these regions.  Since the surface wind 

minimizes in summer and maximizes in spring in these regions (Figure 17 (d3) and (d4)) 



(and the amplitude of seasonal change of surface wind speed in DAO is about the same as 

that of NCEP when normalized), this may be due to a smaller sensitivity of GOCART 

mobilization to surface wind speed compared with DEAD mobilization.  The smaller 

sensitivity of GOCART scheme to wind speed can be seen in Figure 2 in Luo et al. 

(2004), which shows that dust mobilization occurs continuously with GOCART while it 

occurs only in a short time of a day with DEAD and that GOCART produces smaller 

diurnal and day-to-day variations than DEAD does.  This seems due to lower threshold 

wind speed and less sensitivity to wind speed of GOCART mobilization beyond the 

threshold, both of which are evident in the instantaneous (not diurnally or monthly 

averaged) values of surface wind speeds and dust mobilization in the domain in all 

seasons and all time of a day (not shown).   

Since the average height of dust is greater in DAO (B-DGD) than NCEP (B-DGN) 

transport in all regions and seasons (Figure 17 (e), Table 3), the vertical mixing is thought 

to be more efficient in DAO than NCEP simulations, consistent with Luo et al. [2003; 

Figure 10].  This is true even in summer in Bodele and Sahel where the planetary 

boundary layer height (PBLH) is much lower in DAO than in NCEP (Figure 17 (f3) and 

(f4)).  Since in boreal summer MATCH predicts more convective precipitation with DAO 

than NCEP while the resolved vertical advection is stronger with NCEP (not shown), 

stronger moist convection is considered responsible to the stronger vertical mixing in 

simulations with DAO transport.  B-DGD predicts similar AAI values to B-DGN in 

summer even though it predicts higher dust height since it predicts lower AOD, which is 

likely due to differences in horizontal transport and wet deposition.  DAO predicts ITCZ 

at the north of Sahel in summer and southerly wind over Sahel, which is less dusty, while 



NCEP predicts ITCZ just over Sahel and very weak meridional wind component (not 

shown).  B-DGD also predicts more wet deposition following more precipitation in Sahel 

in summer than B-DGN (not shown).   

Although further description of analyses of seasonal changes are not presented 

here, most of the general features seen in Figure 15 and Table 3 can be explained by 

weaker sensitivity of GOCART mobilization to the surface wind speed and more efficient 

vertical mixing with DAO.  However, no single combination of mobilization scheme and 

meteorological datasets used for mobilization and transport can be identified to predict 

the observed features better than others. 

 

7. Discussions 

7.1. The summertime AAI deficiency in Sahel 

Brooks [1999] and Brooks and Legrand [2000], using their analysis of Infrared 

Difference Dust Index (IDDI) over 1984–1993, show that dust mobilization becomes 

highest in the 18–20ºN from July to September and sustains high in northern Sahel (15–

20ºN).  The analyses of visibility in N’Tchayi Mbourou et al. [1997] also show similar 

seasonal patterns (although their data indicates number of hours of reduced visibility and 

is not directly comparable with dust mobilization).  These patterns are consistent with 

TOMS AAI (Figure 5 (a2); Figure 14 (c), (d)) but they are quite different from our 

simulation results.  All simulations including those using GOCART mobilization scheme 

(B-DGD, B-DGN and BC-DGD), which do not produce the summertime AAI deficiency, 

show distinctive minima in mobilization in summer in Sahel and Bodele in response to 

the minimum mean surface wind in summer.  Station data of mean surface wind speed in 



northern Sahel shown in Figure 18 (derived from NOAA NCDC Daily Station; averaged 

over 1994–1999) also tend to minimize in August and September in this area.   

Brooks [1999] and Brooks and Legrand [2000] state that the dust mobilization in 

summer in northern Sahel is due to passages of “disturbance lines” or “convective 

disturbances”, which are active near ITCZ.  They also state that these disturbances 

effectively transport dust vertically, which will also contribute to increased AAI values.  

Tegen et al. [2002] points out the discrepancy between their model predicted dust and the 

observations are due to underestimate of peak wind speeds in ECMWF used in their 

model simulations, which is partly due to missing wind gusts in squall lines.  Pye [1987] 

also describes the roles of disturbances associated with squall lines in dust mobilization 

and transport in southern Sahara and Sahel in boreal summer.  METEOSAT visible and 

near infrared images [EUMETSAT, 2005] show that convective clouds are not 

uncommon over northern Sahel in August and September.  Rowell and Milford [1993] 

report that nearly 40% of all squall lines in the central Sahel (2.5ºW–14ºE) in August 

1985 were observed north of 14ºN and over 15% were north of 16ºN.  On the other hand, 

MATCH simulations using both NCEP and DAO analyses produce very little cloud water 

over northern Sahel (column integrated cloud water amount averaged for 15–20ºN is less 

than for 10–15ºN by over (NCEP) or nearly (DAO) one order of magnitude in August 

and September).  Therefore it is suspected that the summertime AAI deficiency in our 

simulations is caused because these disturbances are not well recreated in our transport 

simulations.  However, although comparisons between maximum and mean wind speeds 

in the NOAA NCDC station observations and meteorological datasets near the Bodele 

Depression (15 stations including all in Figure 18 and 66 grid boxes in 12-22ºN, 2-20ºE) 



suggest meteorological data misses the variations of wind speeds significantly (the ratio 

of maximum to mean wind speeds is less than a half of observations), no evidence is 

found that they miss maximum wind speeds in summer more than in spring.  Direct 

observations and quantitative analysis are required to determine the reason of summer 

time deficiency of modeled dust and the possible roles of convective disturbances in dust 

mobilization and transport.   

 

7.2. Source evaluation with uncertainty 

In section 5, it is shown that inclusion of new desert (D), cultivation (C), or 

enhanced Bodele (L) sources in the simulations improves the agreement of the simulated 

Sahel/Sahara ratio with the observed one.  The optimum mixture in terms of the 

Sahel/Sahara ratio is about 25% of D or C source.  However, adding these sources leads 

to southward bias of the Sahel dust plume and lessens the spatial agreement of AAIs with 

observation as a whole, although correlation coefficients are usually not statistically 

distinct from each other (except the case BC over Sahel).  Adding sources does not 

improve the agreements in interannual changes and adds bias to seasonality to a degree of 

statistical significance in many cases.  Assuming the simulated vertical profile is correct, 

the best mixture in terms of the spatial and temporal correlations is 0-15% of D or C 

sources.  In order for all spatial and temporal correlations of case BD and BC simulations 

with observation not to be statistically indistinct from case B, D or C source needs to be 

less than 25% of total dust amount.  If we assume that biomass burning obscures our 

wintertime signal and exclude these months, up to 35% of new desert source or 

cultivation source are statistically allowed. 



However, analyses in section 6 suggest that simulations using different 

meteorological datasets and mobilization schemes produce quite different patterns.  

Using DAO dataset for mobilization seems to somewhat improve the spatial agreement 

with observation in the whole domain but slightly deteriorate the correlation within 

Sahel.  Even though mobilization using GOCART scheme does not produce the 

summertime deficiency, we cannot say GOCART produces better seasonal agreement.  

Use of a combination source in simulation with GOCART mobilization and DAO dataset 

(case BC-DGD) makes the simulation worse in reproducing the observed seasonality 

compared to the case with topographic depression source (case B-DGD).  The simulated 

Sahel/Sahara ratio suggests the optimum mixture is about 20% of cultivation source.  The 

spatial correlations suggest that the simulation best reproduces the observation when 

cultivation source is 0-15% and the upper bound of cultivation source is 40%.  These are 

very similar to the results of the analysis using NCEP dataset and DEAD scheme (i.e., B-

NDN vs. BC-NDN or BD-NDN) described above.   

However, it should be noted that the seasonal pattern produced in case BC-DGD is 

very different from the case with the same source and different model configuration (case 

BC-NDN).  Therefore, it is questionable if we can conclude that the results about source 

mixture in both model configurations are consistent and therefore likely correct.  The 

large difference in the results from different model configurations suggests a large 

uncertainty in our results due to uncertainties in the meteorology and source 

parameterization.  As examined in section 4, our calculations of monthly mean observed 

and simulated AAIs add a certain degree of uncertainty.  Biases may be present in other 

assumed parameters such as simulated vertical profile and optical properties of dust.  As 



seen in section 2, the TOMS observations themselves contain some uncertainties.  

Comparing simulations for 1995 with 1984-1990 climatology of TOMS AAI also 

potentially introduces a large bias.  These uncertainties combined may surpass the 

difference in the simulations due to different sources and hence we cannot confidently 

conclude that the simulation using the optimum mixture of sources derived in previous 

sections reproduces the observed pattern significantly better than with other sources. 

 

8. Conclusions 

In this study, the TOMS Absorbing Aerosol Index (AAI) is simulated for model 

predicted dust distributions using radiative transfer calculations.  The previously reported 

properties of AAI; linearity to the aerosol optical depth (AOD) for a given height of dust, 

quasi-linearity to height of dust for a given AOD, higher AAI for larger particles for a 

given AOD, are reproduced.  Vertical mixing is important in determining AAI, and 

therefore AAI often maximizes not over the region of maximum source strength but over 

a downwind region with active vertical mixing, which is unlike the case of AOD.   

Using this method, AAI is estimated based on model simulations of North African 

desert dust and compared with observed TOMS AAI to evaluate the importance of 

natural and anthropogenic disturbances on land surfaces.  The bias in simulated AAI is 

assumed mainly due to dust source distribution although it may also be due to modeled 

mobilization, atmospheric transport and assumed optical properties of dust.  The base 

case simulations are conducted using MATCH transport model and DEAD dust 

mobilization scheme driven by NCEP reanalysis data.  AAIs are calculated for monthly 

averaged diurnal mean dust, atmosphere, solar geometry and fixed satellite position at 



nadir.  These simplification may lead to an error up to about 1 AAI unit when combined 

compared to calculations under more realistic conditions, and a large error usually occurs 

over the region of high AAI (dust loading).  Change in the assumed particle size 

distribution has a large effect on the values of simulated AAI.  In our sensitivity study 

where mass fractions of dust particles are reduced in smaller sizes and increased in larger 

sizes, the AAI as well as AOD values become about a half of those with original size 

distribution.  Changing the size distribution did not, however, change the spatial or 

temporal distribution of the simulated distribution.  Although these errors introduce an 

important uncertainty in comparisons of observed and simulated AAIs, they are not as 

large as the model-observational errors seen in the analysis, or uncertainties due to 

changing the model formulation.   

The simulations are conducted for topographic depression source, and three 

additional sources: new desert, cultivation, and enhanced Bodele sources.  The spatial 

distributions of simulated AAI using topographic depression source capture the observed 

features generally well.  However, annual mean distribution overestimates AAI over 

Sahara and underestimates over Sahel.  The simulation using a topographic depression 

source overestimates AAI in spring over Sahara and significantly underestimates in 

summer over Sahel and Bodele Depression.  It also fails to capture the interannual 

changes of AAI.  Adding the new desert source or the cultivation source, or enhancing 

the Bodele Depression source improves the annual mean Sahel/Sahara ratios, but leads to 

further overestimate of AAI in spring and does not improve the large underestimates in 

summer.  Adding other sources does not improve the agreement of interannual changes 

either and makes the AAI distributions in Sahel biased to the south.  The addition of the 



new desert source or the cultivation source makes the resulting spatial and temporal 

correlations with observations statistically significantly lower compared to the case with 

topographic depression source only.  The optimum mixing of new desert or cultivation 

sources is estimated to be 25% in terms of Sahel/Sahara ratio and 0-15% in terms of 

spatial and temporal correlations with observation.  Dust from these sources needs to be 

less than 25-35% of total dust loading in order to keep them statistically 

indistinguishable.   

The sensitivity studies are performed using DAO meteorology and GOCART 

mobilization scheme.  Simulations using different meteorological datasets and 

mobilization schemes produce very different spatial and temporal distributions of AAI.  

These differences are explained by assuming smaller wind-speed dependence of 

GOCART mobilization and more efficient vertical mixing with transport using DAO.  

The large underestimates of AAI in summer in Sahel and Bodele are suspected to be due 

to missing subgrid scale disturbances in model simulations.  The simulation using DAO 

meteorology and GOCART mobilization scheme for a combination source may be 

interpreted in a qualitatively similar way to the base case simulations; the addition of 

cultivation source makes the simulation worse in terms of reproducing observed AAI 

patterns, the optimum mixture of cultivation source is 20% in terms of Sahel/Sahara ratio 

and 0-15% in terms of spatial correlations, and it needs to be less than 40% to be 

statistically indistinct from the optimum mixture.  However, these propositions about 

different source types may not be able to be conclusive due to the large uncertainties in 

simulations using meteorological datasets and source parameterizations as well as in 

observed data.  More intensive analysis with other datasets is required to assess the 



relative roles of natural topographic depressions and surface disturbances in dust 

generation.  
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Table 1. Correlation coefficients of simulated spatial distributions (correlated individual 

grid cells averaged over all years and months), seasonal changes (correlated 12 months 

averaged over all years), time series (correlated all months in the seven-year period 

individually), and anomalies (correlated all months in the period but seasonality is 

removed) of AAI with observed ones over the whole domain and subdomains.  Numbers 

with % indicate the fraction of second source (e.g., case BD35% is a mixture of 65% 

topographic and 35% new desert sources) and it is 50% for BD and BC and 15 % for BL 

if not given. 

Type Case
Domain B thres 

corr† BD BD 
35% 

BD 
25% 

BD 
15% BC BC 

35% 
BC 

25% 
BC 
15% BL 

Whole 0.87  0.84 0.87 0.88 0.89 0.79 0.85 0.88 0.89 0.84 
Sahel 0.81  0.64 0.71 0.75 0.79 0.42 0.58 0.69 0.77 0.69 Spatial 

thres fac‡   3.6 1.7 0.67 0.12 10. 5.2 2.0 0.28 2.0 
Whole 0.92 0.59 0.57 0.71 0.79 0.85 0.59 0.73 0.81 0.86 0.69 
Sahara 0.86 0.37 0.66 0.75 0.79 0.83 0.74 0.80 0.82 0.84 0.72 
Sahel 0.89 0.46 0.45 0.59 0.68 0.77 0.43 0.58 0.68 0.78 0.55 Seasonal 

Bodele 0.77 0.10 0.40 0.50 0.58 0.66 0.31 0.42 0.51 0.62 0.51 
Whole 0.79 0.64 0.50 0.61 0.67 0.73 0.52 0.63 0.69 0.74 0.53 
Sahara 0.74 0.56 0.55 0.63 0.67 0.70 0.62 0.67 0.70 0.72 0.58 
Sahel 0.76 0.60 0.41 0.51 0.59 0.66 0.39 0.51 0.59 0.67 0.43 

Time 
series 

Bodele 0.64 0.43 0.35 0.44 0.50 0.56 0.28 0.37 0.45 0.53 0.41 
Whole 0.17  0.29    0.27    0.14 
Sahara 0.09  0.20    0.18    0.07 
Sahel 0.24  0.27    0.26    0.15 Anomaly 

Bodele 0.26  0.17    0.16    0.13 
* The underlined correlation coefficients are highest ones in the different mixtures of the 

same combinations of sources.  

* Bold numbers indicate that the correlation coefficients are statistically distinct from 

those in case B with a 95% confidence level.  For spatial correlations, this judgment is 

made using reduced degree of freedom by factor of 5.  

† Threshold correlation coefficient; a correlation smaller than this value is significantly 

smaller than the correlation in case B with a 95% level. 



‡ Threshold factor of reduction of degree of freedom; the differences of the shown spatial 

correlations for Sahel from that in case B (0.81) become insignificant with a 95% level 

if degree of freedom is reduced by more than this factor. 



Table 2. Correlation coefficients between seasonal changes of AAI, AOD, mobilization 

(Mobil), surface wind speed (Wind), average height of dust (Height), and PBLH (all 

monthly averages from simulations) averaged over Bodele subdomain 

AAI AAI AAI AOD Mobil AAI AAI Height 
 

AOD Mobil Wind Mobil Wind Height PBLH PBLH 

NDN84-90 

NDN95 

DDD95 

DGD95 

DGN95 

0.98 

0.98 

0.96 

0.78 

0.95 

0.33 

0.24 

0.48 

-0.30 

-0.62 

0.20 

0.06 

0.42 

-0.15 

-0.51 

0.53 

0.43 

0.68 
0.25 

-0.40 

0.96 

0.94 

0.93 
0.97† 

0.97† 

0.11 

0.14 

-0.30 

0.51 

0.80 

0.59 

0.63 

0.85 

0.65 

0.88 

0.85 

0.83 

-0.12 

0.08 

0.84 

* Bold numbers show statistical significance of the correlation coefficients with a 95% 

level. 

† The same value because DGD and DGN share both mobilization and surface wind. 



Table 3. Summary of seasonality of AAI and its determining factors by 

meteorological datasets for transport and mobilization schemes used in simulations 

 Sahara Sahel Bodele 
 Spring Summer Fall Spring Summer Fall Spring Summer Fall 

AAI 

NDN 
>DDD 
>DGN 
~DGD 

>TOMS 

DGD 
~DGN 
>DDD 

>TOMS 
>NDN 

DGD 
>DGN 
>DDD 
>NDN 

>TOMS

DDD 
>DGD 
~NDN 

~TOMS
>DGN 

DGN 
~DGD 

>TOMS
>>DDD
>NDN 

DGD 
>DGN 
>DDD 
>NDN 

~TOMS

DDD 
>DGD 
~NDN 

>TOMS 
~DGN 

DGD 
~DGN 

>TOMS
>>DDD
>NDN 

DGD 
>DGN 
>DDD 

>TOMS
>NDN 

by schemes 
by datasets† 

D > G 
N ~ D 

D < G 
N ~ D 

D < G 
N < D 

D > G 
N < D 

D << G 
N ~ D 

D < G 
N < D 

D > G 
N < D 

D << G 
N ~ D 

D < G 
N < D 

AOD 
by schemes 
by datasets† 

 
D > G  
N > D 

 
D < G  
N > D 

 
D < G  
N < D 

 
D > G  
N ~ D 

 
D < G  
N > D 

 
D < G  
N < D 

 
D > G  
N < D 

 
D << G 
N > D 

 
D < G  
N ~ D 

Mobilization 
by schemes 

Strong 
D > G 

Strongest 
D > G 

Weak 
D < G 

Strongest
D > G 

Weak 
D < G 

Strong 
D < G 

Strongest 
D > G 

Weak 
D << G 

Strong 
D < G 

Surface wind 
by datasets‡ 

Strong 
N ~ D 

Strongest 
N ~ D 

Weak 
N ~ D 

Strongest
N ~ D 

Weak 
N ~ D 

Strong 
N ~ D 

Strongest 
N > D 

Weak 
N < D 

Strong 
N ~ D 

Dust height 
by datasets† 

Variable 
N < D 

High 
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* “Spring”, “summer”, and “fall” represent from February to June, from July to 

September, and October and November, respectively.   

* “>”,“>>”, “<”, and “~” respectively refer to generally “greater than”, “much greater 

than”, “smaller than”, “at similar magnitude as”.   

* D and G in the “by schemes” parts refer to DEAD and GOCART schemes 

respectively.   

* N and D in “by datasets” parts refer to NCEP and DAO datasets respectively.   

† Datasets for transport only.   

‡ Comparisons are made for normalized surface wind speed.  The actual values of 

surface wind are always stronger in DAO than NCEP dataset.   



Figure Captions 

Figure 1. (a) Dependence of AAI on the vertical level (in sigma*1000 ~ pressure in hPa) 

of each of four size bins of unit AOD equivalent dust and (b) dependence of 

AAI on AOD for different levels of dust of size bin 1 (diameter range of 0.1-

1.0 µm).   

Figure 2. (a) The cross sectional view of dust concentration (shading) and average height 

of dust (solid line) and (b) the AOD (dashed line) and AAI (solid line) values 

from Bodele Depression source (18ºN19ºE) to the southwest (June of 1984).  

The location of the cross section is shown in Figure 3(a2). 

Figure 3. (a) Spatial distributions of simulated AAI, (b) AOD distributions (c), ratios 

between AAI and AOD, and (d) average height of dust (sigma*1000) for (1) 

January and (2) July of 1984.  The pink thick line in a2 shows the location of 

the cross section shown in Figure 2.   

Figure 4. (a) Dust source areas (basin factor (fraction) in dry unvegetated land that 

indicates the source strength) and (b) actual mobilization (µg m-2 s-1) in (1) 

January and (2) July of 1984. 

Figure 5. (a) Monthly averages of TOMS AAI and (b) number of days for which TOMS 

measurements with under-threshold cloud contamination are available for (1) 

January and (2) July of 1984.   

Figure 6. (a) Absolute (the former minus the latter) and (b) relative (absolute divided by 

the latter) differences between MS AAI calculated for monthly mean dust and 

atmosphere and monthly average of MS AAIs for daily dust and atmosphere in 

(1) January and (2) July of 1984.   



Figure 7. (a) Absolute and (b) relative differences between simple and reconstructed 

(average over days when TOMS data is available at a given point) monthly 

averages of MS AAI for (1) January and (2) July of 1984.   

Figure 8. (a) Absolute and (b) relative differences between monthly averages of MS AAI 

calculated for daily mean dust and atmosphere and MS AAI for dust and 

atmosphere at local solar noon in (1) January and (2) July of 1984.   

Figure 9. (a) Absolute and (b) relative differences between MS AAI calculated using 

nadir looking viewing angle and using 45-degree viewing zenith angle in (1) 

April and (2) July of 1984.   

Figure 10. (a) Absolute and (b) relative differences between MS AAI calculated using 

original particle size distribution (mass fraction of 0.1, 0.3, 0.3, and 0.3 in four 

size bins) and modified one (0.0325, 0.174, 0.409, and 0.385 in the same bins) 

(1) January and (2) July of 1984.   

Figure 11. Effects examined Figures 6, 7, and 8 are combined: (a) absolute and (b) 

relative differences between MS AAI calculated using simple monthly average 

of daily mean dust and atmosphere and average of MS AAI calculated for dust 

and atmosphere at local noon on days of the month for which TOMS data is 

available in (1) April and (2) July of 1984.   

Figure 12. The distributions of AAIs averaged over all months and years from (a) TOMS 

observation and (b) MS/B (MATCH-SBDART case B), (c) MS/BD, (d) 

MS/BC, and (e) MS/BL simulations.  The solid line and ‘+’ respectively show 

the latitudes at which TOMS and MS AAI maximize on each longitude.  

Numbers in parentheses are correlation coefficients between MS and TOMS 



AAIs.   

Figure 13. Ratios of annual average AAI values of Sahel (10.5–21.9°N; 20.6°W–30.0°E) 

and Bodele (12.4–20.0°N; 13.1–20.6°E) to Sahara (23.8–35.2°N; 15.0°W–

30.0°E). “TS” indicates “TOMS” and others are “MS” with indicated source 

types. 

Figure 14. Seasonal changes of TOMS and MS AAIs averaged over all years (1984–90) 

over (a) the whole domain (10.5–39.0°N; 30.0°W–30.0°E) and (b) Sahara 

(23.8–35.2°N; 15.0°W–30.0°E), (c) Sahel (10.5–21.9°N; 20.6°W–30.0°E), and 

(d) Bodele (12.4–20.0°N; 13.1–20.6°E) subdomains.   

Figure 15. Interannual changes (averaged over all months) of TOMS and MS AAIs 

averaged over (a) the whole domain and (b) Sahara, (c) Sahel, and (d) Bodele 

subdomains.   

Figure 16. TOMS AAI averaged over 1984-1990 (a) minus and (b) plus standard 

deviation, and AAIs predicted by simulations in cases (c) B-NDN, (d) B-DDD, 

(e) B-DGD, (f) B-DGN, and (g) BC-DGD in 1995, all averaged over February 

to November.   

Figure 17. Seasonalities of (a) AAI, (b) AOD, (c) dust mobilization (µg m-2 s-1), (d) 

surface wind speed (m s-1), (e) average height of dust (sigma*1000 ~ pressure 

in hPa), and (f) planetary boundary layer height (km) averaged over the whole 

domain and Sahara, Sahel, and Bodele subdomains in simulations with 

different combinations of meteorological datasets and mobilization schemes.  

For easier comparisons, MS/B-NDN84-90 AAI values in the whole domain are 

adjusted (26% larger than the original values) so that their annual average 



equals that of MS/B-NDN95 values.  Also, MS/B-NDN84-90 AAI in other 

subdomains, AOD and mobilization for case B-NDN84-90, and TOMS84-90 

AAI are adjusted using the same factor.  Error bars for TOMS84-90 show one 

standard deviations also adjusted with the same factor. 

Figure 18. Station data of surface wind speed in Northern Sahel averaged over 1994–1999 

(derived from NOAA NCDC Daily Station). 
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