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Climate sensitivity refers to the change in global mean temperature in response to a change

in external forcing, usually a doubling of CO2. Despite decades of research attempting to

narrow uncertainties, equilibrium climate sensitivity estimates from climate models still span

roughly 2 to 5◦C, precluding accurate projections of future climate. The spread arises largely

from differences in the feedback from low clouds, for reasons not yet understood. Here we

show that differences in the simulated strength of convective mixing between the lower and

middle tropical troposphere explain about half of the variance in climate sensitivity estimated

by 43 climate models. The apparent mechanism is that such mixing dehydrates the low-cloud

layer at a rate that increases as climate warms, and this rate of increase depends on the initial

mixing strength, linking the mixing to cloud feedback. Mixing inferred from observations

appears sufficiently strong to imply a climate sensitivity greater than 3◦C for a carbon dioxide

doubling. This is significantly higher than the currently accepted lower bound of 1.5◦C,

thereby constraining model projections toward relatively severe future warming.
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Introduction

Ever since numerical global climate models (GCMs) were first developed in the early 1970’s they

have exhibited a wide range of equilibrium climate sensitivities (roughly from 2-4.5 ◦C warming

per equivalent doubling of CO2)1 and consequently broad range of future warming projections,

due mostly to the range of simulated net cloud feedback2, 3. This feedback strength varies from

roughly zero in the lowest-sensitivity models to about 1.2-1.4 W m−2 K−1 in the highest4. High

clouds (above ∼ 400 hPa or 8 km) contribute about 0.3-0.4 W m−2 K−1 to this predicted feedback

because their top temperatures do not increase much in warmer climates, which enhances their

greenhouse effect. Mid-level cloud changes also make a modest positive-feedback contribution in

most models5.

Another positive feedback in most models comes from low cloud, occurring below ∼750

hPa or 3 km, mostly over oceans in the planetary boundary layer below about 2 km. Low cloud

is capable of particularly strong climate feedback because of its broad coverage and because its

reflection of incoming sunlight is not offset by a commensurate contribution to the greenhouse

effect6. The amount of low cloud can increase or decrease depending on the model, causing most

of the overall spread in cloud feedbacks and climate sensitivities among GCMs5, 7. No compelling

theory of low cloud amount has yet emerged.

A number of competing mechanisms have however been suggested that might account for

changes in either direction. On the one hand, evaporation from the oceans increases at about

2% K−1, which all other things being equal may increase cloud amount8. On the other hand,
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detailed simulations of non-precipitating cloudy marine boundary layers show that if the layer

deepens in a warmer climate, more dry air can be drawn down toward the surface, desiccating the

layer and reducing cloud amount8, 9.

The LT-mixing mechanism and MILC

We consider that a mechanism similar to this one, which has so far been considered only for a

particular cloud regime, could apply more generally to shallow upward moisture transports, e.g.,

by cumulus congestus clouds or larger-scale shallow overturning found broadly over global ocean

regions. Air lifted out of the boundary layer can continue ascending, rain out most of its water

vapour, and then return to a relatively low altitude—or it can exit directly at the low altitude,

retaining much more of its initial vapour content. The latter process reduces the “bulk precipitation

efficiency” of convection10, allowing greater transport of moisture out of the boundary layer for

a given precipitation rate. Such a process can increase the relative humidity above the boundary

layer11 and dry the boundary layer. Unlike the global hydrological cycle and the deep precipitation-

forming circulations12, however, it is not strongly constrained by atmospheric energetics11.

We present measures of this Lower-Tropospheric or LT-mixing and the amount of moisture it

transports, and show that mixing varies substantially among GCMs and that its moisture transport

increases in warmer climates at a rate that appears to roughly scale with the initial LT-mixing.

The resulting increase in the low-level drying caused by this mixing produces a mixing-induced

low cloud (MILC) feedback of variable strength, which can explain why low-cloud feedback is
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typically positive5 and why it is so inconsistent among models.

In a GCM, vertical mixing in the lower troposphere occurs in two ways (Extended Data Fig-

ure 1). First, small-scale mixing of heat and water vapour within a single grid-column of the model

is implied by convective and other parametrisations. LT-mixing and associated moisture transport

would depend on transport by shallow cumulus clouds, but also on the downdrafts, local com-

pensating subsidence, and/or evaporation of falling rain assumed to accompany deeper cumulus.

Second, large-scale mixing across isentropes occurs via explicitly resolved circulations. Whether

this contributes to LT-mixing will again depend on model parametrisations, but in this case, on

their ability to sustain the relatively shallow heating that must accompany a shallow (LT) circula-

tion. We measure these two mixing phenomena independently, starting with the small-scale part,

and show that both phenomena progressively dry the boundary layer as climate warms.

The small-scale component of LT-mixing

LT-mixing parametrised within a GCM grid cell cannot be directly diagnosed from model output

(although it contributes to the convective terms in the water vapour budget, see below). We assert,

however, that an atmosphere’s propensity to generate it can be gauged by observing the thermal

structure just above the boundary layer in ascending, raining regions. As discussed above, air there

is either transported directly from the boundary layer with minimal precipitation via LT-mixing,

or indirectly by ascending in deeper, raining clouds and then descending. It would arrive cool and

humid in the former case, but warmer and drier in the latter case due to the extra condensation,
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allowing us to gauge their relative strength by observing mean-state air properties.

To do this we thus employ an index S, proportional to the differences ΔT and ΔR of tem-

perature and relative humidity between 700 and 850 hPa (S taken as a linear combination, see

Methods Summary) averaged within a broad ascending region which roughly coincides with the

Indo-Pacific Warm Pool (Fig. 1). Among the full set of 48 models used in this study, those with

a less negative ΔT in this region consistently show a more negative ΔR there (Fig. 2a), and the

variations in each quantity are quite large. We interpret this as strong evidence that both quantities

are dominated by variations, evidently large, in the amount of LT-mixing in the ascent region, with

higher S indicating stronger mixing.

Small-scale LT-mixing of moisture is part of the overall source of water vapour from parametrised

convection, Msm. This quantity is available from nine of the models (see Methods Summary). It

always exhibits strong drying near the surface. Above about 850 hPa, it can either dry the atmo-

sphere on average or moisten it depending on the model (Extended Data Figure 2), reflecting the

competition between drying from condensation and moistening from LT-mixing and from evapo-

rating precipitation falling from higher altitudes.

Although Msm does not reflect LT-mixing alone, we can test whether LT-mixing (as diag-

nosed from S) affects how Msm responds as climate warms. The available data confirm that, upon

a +4K warming, convective drying of the PBL increases by 4-17 W m−2 (6-30%), compared to

a typical increase of 8% in global or tropical surface evaporation. The drying increase is highly

correlated (r = −0.79) with S (Fig. 2b). Thus, convective dehydration of the PBL outstrips
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the increase in surface evaporation with warming, in all models except those with the lowest S.

Higher-sensitivity models also have higher S (Fig. 1), suggesting that this process drives a positive

feedback on climate.

The large-scale component of LT-mixing

We next turn to the large-scale LT-mixing, which we associate with shallow ascent or flows of air

upward through the boundary layer top that diverge horizontally before reaching the upper tro-

posphere. While air ascending on large scales over warm tropical oceans typically passes through

nearly the whole troposphere, over cooler oceans ascent often wanes with altitude showing that this

type of mixing indeed occurs in Earth’s atmosphere (Fig. 3). The associated mid-level outflows are

well documented for the central and eastern Pacific and Atlantic ITCZ (Intertropical Convergence

Zone) and some monsoon circulations13, 14. While these are indeed the regions where shallow as-

cent is steadiest, hence clearest in monthly-mean data (Fig. 3), in daily reanalysis data shallow

ascent is equally strong outside the tropics due largely to contributions from extratropical storms.

Note also that although we focus here on regions of ascending air, that is because the ascending

branches are where the circulations are easiest to measure; they must however descend elsewhere,

exerting a net transport of water vapour that is upward and toward the convective regions.

Fig. 3 compares the observations with two example models. Neither model shows as much

shallow ascent (red colour) as the observation-based estimates, but the IPSL-CM5A model comes

closer. While convective treatment in the newer IPSL-CM5B model is more detailed and produces
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better results in important respects15, here it is seen to produce strong deep ascent (white spots)

where it is weaker and shallower in observations (red zones), showing that improvement in some

aspects of a simulation does not automatically generalise to others.

We quantify the large-scale LT-mixing more thoroughly by calculating the ratio D of shallow

to deep overturning (see Methods Summary) in a broad region encompassing most of the persistent

shallow ascent (see Fig. 3). This index D varies by a factor of four across 43 GCMs (see below).

Interestingly however D and S are uncorrelated (r = 0.01), confirming that the two scales of

mixing are controlled by different aspects of model design.

The effective source of moisture MLTlg due to this shallow overturning, and its change upon

climate warming, can be directly calculated from model wind and humidity fields. We approx-

imate MLTlg using monthly-mean data from the 10 available atmospheric models (see Methods

Summary). Despite MLTlg isolating only shallow mixing while Msm includes the effects of all

parameterised convection, the profiles MLTlg (Fig. 4) resemble those of Msm, with strong drying in

the boundary layer and weak moistening above. Not unexpectedly, these effects are greater in the

high-D models than in the low-D ones.

Crucially, the low-level drying also increases faster upon +4K warming in the high-D models

(by about 30%, or 1.5 Wm−2K−1 when expressed as a latent heat flux) than in the low-D models

(25%, or 0.9 Wm−2K−1). Thus the response of MLTlg grows with D as Msm grew with S; the

relationship for D is not as strong (r = 0.46 land+ocean, 0.25 ocean only), partly because the

spread of D happens to be somewhat narrow among the available atmosphere models, but is still
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significant at 95% confidence.

Climate sensitivity

We now apply the indices S and D to the 43 GCMs for which an equilibrium climate sensitiv-

ity (ECS) is available. Each index independently explains about 25% of the variance in ECS

(Fig. 5a,b).

Since the ranges of D and S are similar (each 0.3-0.4), as are (approximately) those of their

drying responses upon warming (see below), we form an overall LT-mixing index (the LTMI) by

simply adding the two: LTMI = S + D. This LTMI explains about 50% of the variance in total

system feedback (r = 0.70) and ECS (r = 0.68) (Fig. 5c). Thus, while our measure of LT-mixing

does not explain all of the variations among GCMs, it does explain a significant portion of the

model spread.

This explanatory power derives primarily from low cloud feedbacks. The correlation be-

tween LTMI and the +4K change in shortwave cloud radiative effect in the CMIP5 atmosphere

models, which spans a range of 1.8 W m2K−1 in the Tropics, is 0.65 in the Tropics and 0.57 in

subsidence regions (equivalent values estimated from a subset of the coupled models providing the

needed output are 0.25 and 0.47 respectively). These correlations suggest that the predictive skill

of LTMI arises from both subsidence and other regions; further work is needed to better assess

this. Cloud amount reduces more in high-LTMI models both at low and mid-levels (Extended Data

Figure 3), though the greater net radiative impact of low cloud makes its effect dominate16. Pre-
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viously reported water vapour and lapse-rate feedbacks17 are, in constrast, not correlated with the

LTMI.

Is the imputed LT-mixing impact on low clouds strong enough to explain the ∼ 1.5 W m−2

K−1 spread of cloud feedbacks seen in GCMs?4 One recent study18 imposed increased surface

latent heat fluxes in a large region typified by shallow clouds, finding an increase in cloud-related

net cooling of about 1 Wm−2 for a 2-3 Wm−2 increase in the surface flux, other things held fixed.

An even larger sensitivity, nearly 1:1, has been reported in a different model for advective changes

in moisture input19. If a similar but opposite cloud response occurred for moisture removal by LT-

mixing, then to explain the feedback spread, the boundary-layer drying responses would need to

span a range across models of about 3 W m−2 per K of surface warming. This roughly matches the

contribution to the spread from Msm alone (Fig. 2b). The additional drying response from MLTlg

was about 0.6 W m−2 K−1 greater in the high-D models (mean D of 0.34) than in the low-D ones

(mean 0.24), which if rescaled by the full spread of D in the full GCM ensemble, implies a further

source of spread in drying response of about 2 W m−2 K−1. We conclude that, even if not all low

clouds are as sensitive as the ones examined in the cited studies, the LT-mixing response is strong

enough to account for the cloud feedback spread and its typically positive sign5.

Why does moisture transport increase so strongly with warming? The magnitude of these

increases, typically 5-7% K−1, is roughly what would be expected if the circulations remained

similar against a Clausius-Clapeyron increase in moisture gradients20, as indeed it does, at least

for the large-scale part21 (Extended Data Figure 4). Further study is needed to understand why
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this is so, and to examine in greater detail how clouds respond to changing moisture transports;

changes in low cloud amount may for example help the atmosphere restore imbalances in boundary

layer moist enthalpy such as those caused by LT-mixing19. Since LTMI ignores any information

on clouds, it is likely that additional measures of cloud characteristics22 could explain some of the

variations in low-cloud feedback not yet explained here.

We end by considering observational estimates of S and D (see Fig. 5). These show an S

near the middle of the GCM range, but a D close to the top end, as hinted already by Fig. 3. D may

not be well constrained since ω must be inferred from observational reanalyses, although available

horizontal wind observations support the existence of strong mid-level outflows13, and the result is

consistent across both reanalyses examined. The reanalysis estimates of S are less consistent but

this quantity can be fairly well constrained by radiosonde observations.

Taking the available observations at face value implies a most likely climate sensitivity of

about 4◦C, with a lower limit of about 3 ◦C. Indeed, all 15 of the GCMs with ECS below 3.0 ◦C

have an LTMI below the bottom of the observational range. Further work may be needed to better

constrain these indices, and to test whether their relationship to ECS is robust to design factors

common to all models. For example this should be tested in global cloud-resolving models. The

possibility can never be ruled out that feedbacks could exist in nature that are missing from all

models, which would change the climate sensitivity from that suggested by our result. Nonetheless,

based on the available data, the new understanding presented here pushes the likely long-term

global warming toward the upper end of model ranges.
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Discussion

While a few previous studies have already noted that higher-sensitivity models better simulate cer-

tain cloud-relevant phenomena23–25, ours is the first to demonstrate a causal physical mechanism,

or to show consistent predictive skill across so many models, or to point to processes connecting

low-cloud regions to the deep tropics. The MILC mechanism is surprisingly straightforward. LT-

mixing dries the boundary layer, and the drying rate increases by 5-7% K−1 in warmer climates

due to stronger vertical water vapour gradients. The moisture source from surface evaporation

increases at only about 2% K−1. Thus as climate warms, any drying by LT-mixing becomes larger

relative to the rest of the hydrological cycle, tending to dry the boundary layer. How important

this is depends on how important the diagnosed LT-mixing was in the base state of the atmosphere.

LT-mixing is unrealistically weak in models that have low climate sensitivity.

Climate-sensitivity-related differences in LT-mixing, both at small (Fig. 1) and large scales

(Fig. 3), are most detectable in regions of tropical deep or mixed-level convection and mean up-

ward motion. This does not mean, however, that the greater low-level drying in a warmer climate

or its spread among models will be limited to these regions. Large-scale LT-mixing carries water

vapour not only upward but also horizontally away from subsidence regions; since both directions

of transport intensify in a warmer atmosphere20, subsidence regions should bear the brunt of the

overall boundary-layer drying. Moreover, shallow ascent is equally strong (though more transient)

in mid-latitude storm tracks as in the tropics, suggesting that MILC feedback may be just as impor-

tant outside the tropics as in them. As for small-scale LT mixing, even though there are reasons to
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measure it in ascending regions (see Methods), its impact upon warming is much more widespread

and differs significantly among models in subsiding regions (Extended Data Figure 5). We hypoth-

esise that this is because models with more small-scale LT-mixing in ascending regions also have

more in descending regions, although we cannot directly confirm this. Overall the behaviour is

consistent with published results showing that subsiding regions contribute strongly to the spread

of cloud feedbacks in models, with storm tracks and tropical convective regions also playing a

role16, 26, 27.

LT-mixing behaviour appears to result from a competition between shallow and deep con-

vection in situations where either could occur. Such situations persist in many tropical regions,

notably the ITCZ. Understanding and properly representing this competition in climate models is

undoubtedly needed for more accurate future climate projections.

Although tested here on models used over the past decade or so, we presume that this mech-

anism has been a leading source of spread in sensitivity since the dawn of climate modelling. To

finally identify an atmospheric process that drives variations in climate sensitivity offers an un-

precedented opportunity to focus research and model development in ways that should lead to

more reliable climate change assessments.

Methods Summary

Data for computing S and D come from control runs of 48 models: 18 from CMIP3 (Coupled

Model Intercomparison Project version 3)28 and 30 from CMIP529 (see Extended Data Tables 1-2).
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ECS was reported for all but one CMIP3 model by the IPCC28. For CMIP5 we employ effective

climate sensitivities calculated from abrupt 4xCO2 experiments, available for 26 models, following

a standard regression procedure30, 31. Data for Msm and MLTlg come from 10 CMIP5 atmosphere

models providing “amip” (specified ocean surface temperature) control and +4K ocean warming

runs. Eight of these models provided Msm; we also included data from the PCM (CMIP3).

Observational estimates come from radiosondes and two monthly reanalysis products (ERAi

and MERRA). Reanalyses are produced from a model constrained to the full extent possible by a

variety of observations32, 33.

We calculate S within a region where convective effects are a leading term in thermodynamic

budgets, defined by the upper quartile of the annual-mean mid-tropospheric ascent rate where it

is upward, −ω500 (ω the pressure velocity). We define S ≡ (ΔR/100% − ΔT/9K)/2, which

normalises ΔR to 100% humidity, ΔT to the ∼ 9K range between dry and saturated adiabatic

values, and averages these two pieces of information with equal weight to reduce noise from other

factors.

To calculate MLTlg we compute ω1 (the average of ω at 850 and 700 hPa) and ω2 (the average

among 600, 500 and 400 hPa). Δ = ω2 − ω1 measures the local horizontal outflow in the lower

troposphere above the boundary layer. Moisture is transported upward and outward wherever

Δ > 0 and ω1 < 0. We restrict measurement to tropical ocean regions from 160W-30E (see Fig. 3).

The moisture supplied to the environment is estimated as MLTlg = −〈q dω/dpH(Δ)H(−ω1)〉,

where q is the specific humidity, 〈〉 a mean over the restricted region, and H the step function.
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Finally D ≡ 〈ΔH(Δ)H(−ω1)〉/〈−ω2 H(−ω2)〉.
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Methods

Data for computing S and D come from 48 models: 18 from the CMIP3 (Coupled Model In-

tercomparison Project version 3)28, first two years of each “picntrl” run, and 30 models from the

CMIP529, first two years of each “1pctCO2” run. Two years of data is sufficient to specify S and D

to within 0.02 or better of their long-term values. CMIP3 data were obtained from the Australian

NCI node, and CMIP5 data including the amip and amip+4K runs were obtained on 14/9/2012 and

22/10/2012 from the IPSL Ciclad repository. ECS values for CMIP3 were reported for all but one
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model by the IPCC28. For CMIP5 we employ effective climate sensitivities calculated from abrupt

4xCO2 experiments, available for 26 of the 30 CMIP5 models, following a standard regression

procedure30, 31.

Data for Msm and MLTlg come from 10 CMIP5 atmosphere models providing “amip” (speci-

fied ocean surface temperature) control and +4K ocean warming experiments. A key advantage of

this experiment setup is that interannual ocean variability is the same in the control and warming

runs, and changes in the SST pattern, which could complicate interpretation especially for circu-

lation changes, are avoided. Data are from 1989-98, except for IPSL-CM5A where some of these

years were corrupted and alternative years were used. Results from individual years were similar

to those for the 10-year averages. Eight of these models provided Msm; we also included data from

the PCM CMIP3 1%-per-year-to-quadrupling experiment, with changes rescaled to +4K equiva-

lent (actual change 3.3K). PCM Msm data come from 10 years near the beginning and 10 near the

end of the 1%-per-year-to-quadrupling experiment, obtained from the NCAR node of the ESG.

Shortwave cloud radiative effect (SWCRE) is obtained by differencing the all-sky and clear-

sky top-of-atmosphere shortwave fluxes for each model run. To calculate cloud feedback we first

composite the sensitivity of SWCRE to SST in dynamical regimes defined by vertical-mean ver-

tical velocity, and then we compute the sum (weighted by the PDF of omega) over regimes (or

only subsidence regimes defined by ω > 0)7. For coupled models, the warming-induced change is

obtained from abrupt CO2 quadrupling experiments, after removing the instantaneous change as-

sociated with rapid adjustment to higher CO2 estimated from the first 12 months after quadrupling.
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Only one realisation is used per model. For atmosphere-only models it is simply the difference

between +4K and control simulations.

Observational estimates come from radiosondes and from two monthly reanalysis products

(ERAi and MERRA), years 2009-10. The reanalyses are produced from a model constrained to the

full extent possible by a variety of observations32, 33. MERRA reanalysis data from 1 September

2009 were used to compare D inside/outside the Tropics, but monthly data were used otherwise.

Radiosonde data were obtained from the IGRA archive and subjected to simple quality-control

checks for outliers. The 10 stations sited in the relevant region and meeting the criteria described

by a previous study34 were used, and the mean taken over the two years. The radiosonde net-

work sampling bias, as determined from station-sampled reanalysis output, was relatively small

compared to the overall reanalysis biases.

We calculate S in ascending regions, where convective effects are a leading term in thermo-

dynamic budgets; in subsidence regions humidity is sensitive to irrelevant non-local factors and

even to numerical resolution35, perhaps explaining why it is less informative for our purposes. The

calculation region is defined by the upper quartile of the annual-mean mid-tropospheric ascent rate

in ascending regions, −ω500 (ω the pressure velocity). We define S ≡ (ΔR/100% −ΔT/9K)/2,

which normalises ΔR to 100% humidity, ΔT to the ∼ 9K range between dry and saturated adia-

batic values, and then averages these two pieces of information with equal weight. Such averaging

should reduce the noise from other factors that influence one quantity or the other. Varying the

weighting of the two terms does not strongly affect results.
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To calculate MLTlg, we first compute ω1 (the average ω at 850 and 700 hPa) and ω2 (the

average among 600, 500 and 400 hPa). The difference Δ = ω2 − ω1 then measures the local

horizontal outflow in the lower troposphere above the boundary layer. Moisture is transported

upward and outward at this level wherever Δ > 0 and ω1 < 0. We restrict measurement to

tropical ocean regions from 160W-30E (see Fig. 3). The moisture supplied to the environment

is then estimated as MLTlg = −〈q dω/dpH(Δ)H(−ω1)〉, where q is the specific humidity, 〈〉

indicates the mean over the restricted calculation region, and H is the step function. The index D

is computed as D ≡ 〈ΔH(Δ)H(−ω1)〉/〈−ω2 H(−ω2)〉.

Values of D and S are similar with 10 years of data or one year, and are similar whether

individual months or long-term means for each month of the year are used. These indices capture

over 25% of the ECS variance even if computed from only a single month of data from each model.

Thus, long records are unnecessary for deducing the strength of LT-mixing.

The reason for restricting calculation of D to the cooler tropical longitudes is that a few

climate models erroneously place much of the shallow ascent over warm oceans, where it does

not seem to contribute as much to low-cloud feedback. In observations, and in most models, the

restriction has little effect since most of the shallow ascent persistent enough to appear in monthly-

mean data is already located in the specified region. We speculate that the location of the ascent

matters because the associated shallow descent is more relevant if it occurs over, or upstream of,

regions of radiatively important low cloud.

Both LT-mixing indices retain statistically significant correlations with ECS for all alterations
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to their definitions that we tried. Specifically, the correlation of S with ECS (rS−ECS) is similar

with ω500 percentiles of 0.25 or 0.5, but drops with looser thresholds, which begin to pick up parts

of the resolved LT-mixing region. Tighter thresholds reduce the spread in S between models,

reducing rS−ECS. The correlation rD−ECS is somewhat weaker (as low as 0.3) if the longitudinal

restriction for D is removed, or if other definitions of ω1 and ω2 are used.
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Figure 1 Multimodel-mean local stratification parameter s. The index S is the mean

of s within the regions outlined in white. Multimodel averages of s are shown separately

for (a) low-sensitivity (ECS < 3.0 ◦C) and (b) high-sensitivity (ECS > 3.5 ◦C) models,

among coupled models with known ECS. The white dots inside the S-averaging region

show locations of radiosonde stations used to help estimate S observationally. A few

coastal regions that are off-scale appear white.

Figure 2 Basis for the index S of small-scale LT-mixing and its relationship to the

warming response. (a) ΔT700−850 vs. ΔR700−850, each averaged over a tropical region of

mean ascent (see Fig. 1), from all 48 coupled models; for reference, a saturated-adiabatic

value of ΔT is shown by dotted line, and a dry-adiabatic value (not shown) would be

∼ −16K. Error bars are 2-σ ranges. (b) Change in small-scale moisture source Msm below

850 hPa in the Tropics upon +4K ocean warming, vs. S computed from the control run,

in eight atmosphere models and one CMIP3 model. Symbol colour indicates modelling

centre or centre where atmosphere model was originally developed (see legend), shape

indicates model generation.

Figure 3 The structure of monthly-mean tropospheric ascent reveals large-scale

LT-mixing in observations and models. Upward pressure velocity in one September

month from (a) the MERRA reanalysis, (b) IPSL-CM5A model and (c) IPSL-CM5B model,

with values at 850 hPa shown in red and those at 500 hPa shown in green plus blue. Bright

red implies ascent that is weighted toward the lower troposphere with mid-tropospheric
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divergence (see colour scale), white implies deep ascent, and dark colours imply descent.

In (a) black lines outline the region in which the index D of large-scale LT-mixing is com-

puted. The Pacific and Atlantic ITCZ regions are consistently red in the reanalyses and

models, while isolated red patches in other areas tend to vary with time.

Figure 4 Estimated water vapour source MLTlg due to large-scale LT-mixing and

its response to warming. See Methods for calculation details. Data are from 10 CMIP5

atmosphere models, averaged 30S-30N over oceans, with the average of the four models

having largest D shown in magenta and that of the four with smallest D shown in blue.

Dashes show results in +4K climate. Changes at +4K are nearly identical whether or not

land areas are included.

Figure 5 Relation of LT-mixing indices to Equilibrium climate sensitivity (ECS).

ECS vs. (a) S, (b) D, and (c) LTMI = S +D from the 43 coupled models with known ECS.

Linear correlation coefficients are given in each panel (second figure in bottom panel is

the correlation to total system feedback). Error bars shown near panel axes indicate 2σ

ranges of: (a) the direct radiosonde estimate, (c) the S from radiosondes added to the D

from each of the two reanalyses.
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Extended Data Figure 1 — Illustration of atmospheric overturning circulations. Deep over-

turning strongly coupled to the hydrological cycle and atmospheric energy budget is shown by

solid lines; LT-mixing is shown by dashed lines. The MILC feedback results from the increasing

relative role of LT-mixing in exporting humidity from the boundary layer as climate warms, thus

depleting the layer of water vapour needed to sustain low cloud cover.

Extended Data Figure 2 — Small-scale moisture source Msm. Vertical profile averaged over

all tropical oceans, for two selected climate models (see legend) with very different warming re-

sponses, in present-day (solid) and +4K (dashed) climates.

Extended Data Figure 3 — Response of cloud fraction to warming. Profile of average change

in model cloud fractional cover at +4K in the four atmosphere models with largest (magenta) and

smallest (blue) estimated +4K increases in PBL drying, averaged from 30S-30N (dashed) or 60S-

60N (solid). Drying estimate is obtained by adding the explicitly computed change in Mlg to the

change in Msm estimated from S via the relationship shown in Fig. 2a. Typical mean cloud fraction

below 850 hPa is about 10-20%, and the changes shown are absolute changes in this fraction, so

are of order 10% of the initial cloud cover.



Extended Data Figure 4 — Response of large-scale LT-mixing to warming. Profiles of mean

vertical velocity in regions of shallow ascent, in control and +4K climates. Similarity of dashed

and solid lines indicates that mass overturning associated with these regions is roughly the same in

the warmer simulations, on average.

Extended Data Figure 5 — Response of small-scale, low-level drying to warming. Change in

convective moisture source Msm below 850 hPa upon a +4K warming in eight atmosphere models

and one CMIP3 coupled model; units are W m−2, with negative values indicating stronger drying

near the surface. Zero contours are shown in white (a few off-scale regions also appear white).

The models used for calculating Mlg are the eight shown here plus two for which Msm data were

unavailable: CNRM-CM5 and FGOALS-g2.



Model Centre Forcing (W m2) Total feedback (W m2K−1) ECS (K)

ACCESS1-0 ACCESS 3.01 -0.79 3.79

ACCESS1-3 ACCESS 2.96 -0.86 3.45

BCC-CSM1-1 BCC 3.35 -1.16 2.88

BNU-ESM GCESS/BNU 3.78 -0.92 4.11

CanESM2 CCC 3.85 -1.05 3.68

CCSM4 NCAR 3.70 -1.27 2.92

CESM1-BGC NCAR — — —

CESM1-CAM5 NCAR — — —

CMCC-CM CMCC — — —

CNRM-CM5 CNRM 3.71 -1.14 3.25

CSIRO-Mk3-6-0 CSIRO/QCCCE 2.63 -0.66 3.99

FGOALS-g2 LASG/IAP 2.89 -0.84 3.45

FGOALS-s2 LASG/IAP 3.84 -0.92 4.16

GFDL-CM3 GFDL 3.00 -0.76 3.96

GFDL-ESM2G GFDL 3.11 -1.31 2.38

GFDL-ESM2M GFDL 3.41 -1.41 2.41

GISS-E2-H GISS 3.83 -1.66 2.30

GISS-E2-R GISS 3.77 -1.79 2.11

HadGEM2-ES MOHC 2.95 -0.65 4.55

INMCM4 INM 2.98 -1.44 2.07

IPSL-CM5A-LR IPSL 3.12 -0.76 4.10

IPSL-CM5B-LR IPSL 2.66 -1.03 2.59

MIROC5 MIROC 4.16 -1.54 2.71

MIROC-ESM MIROC 4.27 -0.92 4.65

MPI-ESM-LR MPI 4.15 -1.15 3.60

MPI-ESM-MR MPI 4.11 -1.20 3.44

MPI-ESM-P MPI 4.35 -1.27 3.42

MRI-CGCM3 MRI 3.26 -1.26 2.59

NorESM1-ME NCC — — —

NorESM1-M NCC 3.21 -1.13 2.83

Extended Data Table 1 — List of CMIP5 coupled models used. Centre acronyms used to

identify them in scatter plots are also shown. The derived forcing, total feedback, and equilibrium

climate sensitivities are given for models with abrupt 4xCO2 simulations.



Model Centre ECS (K)

CCCMA-CGCM3 1 CCC 3.4

CCCMA-CGCM3 1 T63 CCC 3.4

GFDL-CM2-0 GFDL 2.9

GFDL-CM2-1 GFDL 3.4

GISS-MODEL-E-H GISS 2.7

GISS-MODEL-E-R GISS 2.7

IAP-FGOALS1-0-G IAP 2.3

INGV-ECHAM4 INGV —

INMCM3-0 INM 2.1

IPSL-CM4 IPSL 4.4

MIROC3-2-HIRES MIROC 4.3

MIROC3-2-MEDRES MIROC 4.0

MPI-ECHAM5 MPI 3.4

MRI-CGCM2-3-2A MRI 3.2

NCAR-CCSM3-0 NCAR 2.7

NCAR-PCM1 NCAR 2.1

UKMO-HadCM3 MOHC 3.3

UKMO-HadGEM1 MOHC 4.4

Extended Data Table 2 — List of CMIP3 coupled models used. Centre acronyms used to

identify them in scatter plots are also shown, as are feedback values given by Randall et al. (2007).
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