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Abstract 42 
Several studies have shown that most climate models underestimate cloud cover and overestimate 43 
cloud reflectivity, particularly for the tropical low-level clouds. Here we analyze the characteristics 44 
of low-level tropical marine clouds simulated by six climate models, which provided COSP output 45 
within the CMIP6 project. CALIPSO lidar observations and PARASOL mono-directional 46 
reflectance are used for model evaluation. It is found that the ‘too few, too bright’ bias is still 47 
present for these models. The reflectance is particularly overestimated when cloud cover is low. 48 
Models do not simulate any optically thin clouds. They fail to reproduce the increasing cloud 49 
optical depth with increasing lower tropospheric stability as observed. These results suggest that 50 
most models do not sufficiently account for the effect of the small-scale spatial heterogeneity in 51 
cloud properties or the variety of cloud types at the grid scale that is observed.  52 
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 53 
1. Introduction 54 
 55 

Low-level clouds are ubiquitous in the tropics and play an important role in the Earth’s 56 
radiative budget and climate radiative feedbacks. Low-level cloud feedback differences are a major 57 
source of spread in model estimates of climate sensitivity (e.g., Roeckner et al., 1987; Bony and 58 
Dufresne, 2005; Webb et al., 2006; Vial et al., 2013; Zelinka et al., 2020). 59 
 60 
 The cloud radiative effect in the SW (shortwave) primarily depends on the cloud cover, but 61 
also on cloud albedo. Several studies have shown that most climate models underestimate the cloud 62 
cover and overestimate the cloud albedo, a deficiency referred to as the ‘too few too bright bias’ 63 
(e.g., Webb et al., 2001; Zhang et al., 2005; Nam et al., 2012; Klein et al., 2013). The coupling 64 
between these two biases mainly results from the radiation budget tuning of coupled atmosphere-65 
ocean climate models, needed to prevent any global temperature drift due to an unbalanced energy 66 
budget (e.g., Mauritsen et al., 2012; Hourdin et al., 2017). This deficiency particularly impacts 67 
tropical marine low-level clouds (Webb et al., 2001; Zhang et al., 2005; Nam et al., 2012; Klein et 68 
al., 2013). The goal of this study is to examine whether the “too few too bright” bias is still present 69 
in six models that recently participated to the sixth phase of the Coupled Model Intercomparison 70 
Project (CMIP6) (Eyring et al., 2016), and to examine whether it may have a common origin among 71 
different climate models. 72 
 73 
 The CMIP6 climate models, the satellite observations and the methodology used for the 74 
model evaluation are described in Sect. 2. The simulated cloud cover, reflectance and vertical 75 
distribution are analyzed section 3. Conclusions are given in Sect. 4. 76 
 77 
2. Methodology 78 
2.1 CMIP6 models and COSP simulator 79 
 80 
 Six general circulation models (GCMs) that participated in CMIP6 are considered (Table S1 81 
in supporting information). We analyze the results of the AMIP experiment where atmospheric 82 
models are forced with observed sea surface temperatures and sea-ice cover. This AMIP model 83 
configuration, in which the interannual variability is rather consistent with the historical sequence, 84 
especially over the tropical ocean, allows us to use a shorter record for model-observation 85 
comparison than if coupled configuration was used. The simulated cloud properties are compared 86 
with observations over the 2007-2010 period using the Cloud Feedback Model Intercomparison 87 
Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011). More 88 
specifically, we use the CALIPSO (Chepfer et al., 2008) and PARASOL (Konsta et al., 2016) 89 
simulators that compute the cloud cover, the vertical profile of the cloud fraction and the cloud 90 
reflectance that may be directly compared with observations. The total reflectance observed by the 91 
instrument contains the clear sky contribution. The cloud reflectance CR, which excludes the 92 
contribution of the clear sky around clouds, is calculated for every grid cell and for each time step, 93 
according to the relation 94 
        CR= [ R – (1 - CC) * CSR ] / CC                                             (2.1) 95 
where R is the monodirectional total reflectance, CC is the cloud cover estimated by the lidar 96 
simulator and CSR is the clear-sky reflectance (Konsta et al., 2016).   97 
 98 
 The analysis of the instantaneous cloud properties gives a detailed view of how the 99 
parameterizations actually work, allowing a more demanding evaluation of their behaviors and 100 
possibly finding ways to improve them (Konsta et al., 2016). For that reason we use the highest 101 
possible temporal resolution, which is a daily resolution for the CMIP6 experiments analyzed here, 102 
meaning that Eq. 2.1 is calculated using the daily averages of CC and CR. Using multiple models 103 
(IPSL-CM6A, CNRM, MRI and HadGEM3) we verified that the analysis results shown here are 104 
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consistent when using either daily outputs or outputs every 3 hours. Regarding the spatial resolution, 105 
we keep the native resolution of the models (Table S1), which is close to that of the observations 106 
(2°x2°). 107 
 108 
2.2. Observational and reanalysis datasets 109 
 110 
 For each GCM, we compare the cloud cover and the cloud vertical distribution simulated by 111 
COSP with the GCM-Oriented CALIPSO Cloud Product (GOCCP), developed to be consistent 112 
with COSP (Chepfer et al., 2010). Here we use four years of observations (2007-2010) of daily 113 
statistics being representative of the cloud climatology over a 2°x2° grid and with a vertical 114 
resolution of 480 m. Clouds present at a pressure larger than 680 hPa are considered as low-level 115 
clouds following ISCCP definition. A more detailed description of the observational and reanalysis 116 
datasets is presented in Text S1.  117 
 118 
 The PARASOL satellite provides measurements of reflectance at 6x6 km2 (Tanré et al., 119 
2011). The monodirectional reflectance measurements are only kept for one viewing angle (Konsta 120 
et al., 2012) and are collocated to the CALIPSO trace. Then, in every 2°x2º grid box, the mean 121 
cloud reflectance is calculated from the values of the reflectance observed by PARASOL and the 122 
cloud cover observed by CALIPSO at the same time (Eq. 2.1) (Konsta et al., 2012). The directional 123 
cloud reflectance is chosen because it is less sensitive to cloud geometry and instrument viewing 124 
angle than the cloud albedo and is essentially dependent on the cloud optical depth (Konsta et al., 125 
2016). Cloud optical depth increases with cloud reflectance, e.g. cloud reflectance of 0.1, 0.3 and 126 
0.6 correspond to values of cloud optical depth of about 1.6, 5.5, and 16.5 respectively for 127 
homogeneous liquid water clouds composed of spherical droplets. Cloud albedo and cloud 128 
reflectance are closely related and the two can be merged if one wishes to retain only a general 129 
image (Fig. S1). 130 
 131 
 In order to analyze how cloud properties depend on their environment, we use the ERA-132 
Interim atmospheric reanalysis (Dee et al., 2011). These data are interpolated on a 2°x2° grid at 133 
13:30 local time, the approximate time of the CALIPSO/PARASOL daytime passing in the tropics. 134 
We will make use of the lower tropospheric stability (LTS), defined as the potential temperature 135 
difference Δθ between the 700 hPa level and the surface (e.g., Klein and Hartmann 1993). 136 
 137 
 138 
 139 
3. Low-level tropical marine clouds in six CMIP6 models 140 
3.1. The too few and too bright bias 141 
 142 
We focus on the tropical ocean (30°S-30°N) and on situations where low-level clouds are the 143 
dominant clouds. To determine whether low-level clouds are dominant in a mesh, we use as a 144 
criterion that the fraction CClow of low-level clouds is larger than 90% of the total cloud cover 145 
(CClow > 0.9 * CC). Adding the criterion of excluding mid and high-level clouds (CCmid + 146 
CChigh < 0.1 * CC) did not significantly change the results (Konsta et al., 2012). We obtain that the 147 
relative frequency of occurrence of situations where low-level clouds are dominant in a 2°x2° grid 148 
cell over tropical oceans is 35% in observations and from 27% up to 40% in models (Fig. S2). This 149 
is consistent with the value of about 30% obtained by Oreopoulos et al. (2017). All the results 150 
presented in the rest of the paper concern these situations. 151 
 152 
The multi-model mean low-level cloud cover presents a spatial pattern that corresponds globally to 153 
the observations with fairly low and uniform values in the trade wind regions, and higher values in 154 
the east of the ocean basins (Fig. 1a,c). However, observations show that the cloud cover is close to 155 
1 along the east coast of the tropical oceans, while the model ensemble mean cloud cover is only 156 
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about 0.7 above the same areas. Beyond the multi-model mean, this underestimation of cloud cover 157 
is present in all models except IPSL-CM6A (see Fig. S3 for individual models). This bias is not due 158 
to the too low occurrence of clouds with the right fraction but rather to lack of clouds with a high 159 
fraction (Fig. 1e). The frequency of occurrence of low-level clouds with a fraction close to 1 is 160 
small for all models due to parameterization problems in the stratocumulus clouds (Slingo, 1980; 161 
Kawai et al., 2019), except IPSL-CM6A, for which dedicated developments clearly improved their 162 
representation (Hourdin at al., 2019) but led to an overestimation of their occurrence. For cloud 163 
cover lower than 1, observations show a fairly flat statistical distribution with a maximum around 164 
0.35, while almost all models show a more sharp and skewed distribution, with a maximum around 165 
0.1-0.2 (Fig. 1e). This high frequency of occurrence of low cloud cover is found in the observations 166 
for small tropical cumulus clouds (Mieslinger et al., 2019). An exception is MIROC6 which shows 167 
a fairly flat statistical distribution, but a maximum around 0.6. 168 
 169 
For the cloud reflectance, the difference between observations and models is even more dramatic 170 
(Fig.1b,d) (see Fig. S3 for individual models). The observed reflectance PDF is highly skewed and 171 
peaks at a low value of 0.12 (Fig.1f). The most frequent low-level clouds have a low reflectance. 172 
The PDF of the models’ reflectance is in contrast almost symmetric, centered at a much higher 173 
value. The median of the cloud reflectance is about 0.15 for the observations. It is much larger for 174 
the models, going from 0.25 (for IPSL-CM6A) up to 0.4 (for HadGEM3) with a mean value of 175 
about 0.35. 176 
 177 
 178 
3.2. Relationship between low-level cloud cover and brightness 179 
 180 
We now analyze the covariation between cloud fraction and cloud reflectance. Two separate cloud 181 
populations appear clearly in the observations (Fig. 2a): one population with a small or intermediate 182 
cover (CC<60%) and a small reflectance (CR < 0.3) corresponding to cumulus clouds with cumulus 183 
cloud regime covering most of the ocean, and another population with a large reflectance (0.2 < CR 184 
< 0.7) and a cloud cover close to one corresponding to stratocumulus clouds mainly on the east side 185 
of the ocean basins (Konsta et al., 2016). This is consistent with what is already shown in Figure 1 186 
but emphasizes that, for cumulus clouds, their reflectance is low when their cover is low, and it 187 
increases with increasing cloud cover. A synthesis view is shown in Fig. 2h, where cloud 188 
reflectance has been averaged in each cloud cover bin. This is consistent with the results of Leahy et 189 
al. (2012) who show that the relative fraction of optically thin clouds increases with decreasing low-190 
level cloud cover. 191 
 192 
Models show a very different picture. As already noted in Fig. 1, only two models (IPSL-CM6A 193 
and MRI) simulate the two distinct cloud populations. But what is clear here is the inability of the 194 
models to simulate clouds with low fraction and low reflectance (i.e. low optical thickness, low 195 
water content). Instead of showing an increase in cloud reflectance with increasing cloud cover, 196 
several models show an opposite relationship, especially when the cloud cover is low. In these 197 
models (HadGEM3, IPSL-CM6A and to a lesser degree GFDL), the smaller the cloud fraction, the 198 
larger the cloud reflectance. This behavior was also noted in the IPSL-CM5 model family (Konsta 199 
et al., 2016). However, several of them (IPSL, CNRM, HadGEM3, MIROC6 and GFDL) show a 200 
positive relationship between cloud fraction and cloud reflectance when CC > 0.4. MIROC6 201 
simulates the increase in cloud reflectance with the cloud fraction, but it fails to simulate enough 202 
cloud with low fraction and clouds with small reflectance. MRI simulates the increase in cloud 203 
reflectance with cloud fraction for the cumulus clouds only, but cumulus cloud reflectance is too 204 
high and CR for high cloud fraction is too low. The difficulty of the models to reproduce the 205 
increase of cloud reflectance with increasing cloud cover is evident in Fig. 2-h, and none of the 206 
models simulate the low values of cloud reflectance when the cloud cover is low. 207 
 208 
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3.3. Sensitivity of the low-level cloud properties to their environment 209 
 210 
As is well recognized (e.g., Klein and Hartmann 1993, Wood and Bretherton 2006), the cloud cover 211 
increases when the LTS increases (Fig. 3a) in long-term observations. This feature is examined here 212 
for instantaneous model/observations pairs and is shown to be reproduced by the models, with a 213 
slope consistent with observations but with a bias that can be large. In models, the LTS when low-214 
level clouds are dominant are too low compared to those in the reanalysis, except for GFDL (Fig. 215 
3c). 216 
 217 
Observations show that the cloud reflectance increases with the LTS (Fig. 3b). But all models 218 
simulate a decrease in cloud reflectance with increased LTS (Fig. 3b), i.e. a variation opposite to 219 
that observed. This problem is consistent with the large difference between observations and models 220 
in how cloud reflectance varies with cloud cover (Fig. 2).  221 
 222 
Observations also show the increase of the cloud cover when the near-surface wind speed increases 223 
(Fig. 3d) as explained in Nuijens et al. (2015) and already mentioned in previous analyses 224 
(Mieslinger et al., 2019, Scott et al., 2020). In contrast, the models simulate no dependence, they 225 
only exhibit a similar cloud cover – wind relationship for low wind speeds (except for MIROC) but 226 
not when the surface wind speed exceeds about 5m/s. The cloud reflectance shows no dependence 227 
on the surface wind speed both for the observations and the models (not shown).  228 
 229 
3.4. Vertical structure of low-level cloud properties 230 
The vertical structure of low-level clouds is critical as it may significantly impact low-level cloud 231 
feedbacks (Brient et al. 2016). In observations, the low-level cloud fraction over ocean exceeds 10% 232 
from slightly above the surface up to 2.5 km with a maximum of about 20% near 1.25 km (Fig. 4a). 233 
Our sample of CMIP6 models do not show the strong bias present in most of the CMIP5 models for 234 
which the cloud layer was confined within the first kilometer (Nam et al., 2012). However, the 235 
models differ significantly from one to another; while HadGEM3, MRI and MIROC6 simulate the 236 
maximum cloud fraction at a height close to that in the observations, other models simulate it at a 237 
much lower (750 m in CNRM and GFDL) or higher altitude (2.2 km in IPSL). There is also a large 238 
inter-model spread in the cloud fraction maximum, ranging from about 15 % (for CNRM, MRI and 239 
GFDL) to about 30% for MIROC6, HadGEM3 being the closest to the observed value (~22%). It 240 
should be noted that the 480 m vertical resolution of the data from the GOCCP observations and the 241 
COSP simulator smooths the cloud profiles and therefore limits a detailed analysis along the 242 
vertical. 243 
 244 
CALPISO lidar permits observations of optically-thin low-level clouds (CR < 0.2, i.e. optical 245 
thickness < 3) throughout their depth (Chepfer et al., 2008). As shown in section 3.1, these clouds 246 
are dominant in observations but not in models. As compared to the overall cloud profile (Fig. 4a), 247 
optically-thin clouds tend to be shallower on average (maximum peaks at 750 m) with reduced 248 
cloudiness throughout cloud depth (Fig. 4b). All models (except IPSL) also simulate shallower 249 
optically-thin clouds with a maximum cloud fraction at around 750 m. But, unlike in the 250 
observations where optically-thin clouds can be found up to 2.5 km, in models these clouds remain 251 
exclusively confined within the lowest atmospheric levels. The IPSL model is the only one to 252 
simulate these clouds, yet with a strong overestimation of the amplitude and height of the cloud 253 
fraction maximum.  254 
 255 
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In observations, optically thick low-level clouds (CR > 0.4, i.e. optical thickness > 8) exhibit a 256 
greater vertical extension and a significantly larger maximum fraction than optically-thin clouds. 257 
Note that the sharp decrease in cloud fraction below the cloud peak height may be partially due to 258 
the attenuation of the lidar beam as it passes through thick clouds. Thus, the cloud fractions at low 259 
levels are strongly affected by the cloud top height in both models and observations.  260 
 261 
To provide a more complete view, we show on Figure 4d how cloud top altitude varies with cloud 262 
reflectance. In observations, the cloud-top height is at about 1.5 km, in good agreement with Lu et 263 
al. (2021), and increases only slightly with the cloud reflectance. In contrast, this increase is 264 
substantially stronger in the models, especially for optically-thin clouds (CR below 0.4-0.5). This is 265 
also visible when the mean cloud-top altitude is shown as a function of both the cloud cover and the 266 
cloud reflectance (Fig. S4). A hypothesis to explain this difference is that at the scale of a 2°x2° 267 
mesh some optically-thin veil clouds, commonly observed beneath the trade inversion in 268 
stratocumulus-to-cumulus transition zones, but also more broadly over the tropical oceans (Kuang-269 
Ting et al., 2018; Wood et al. 2018), could be missing in models. Results shown on Figures 3 and 4 270 
are not significantly changed when removing situations where stratocumulus type clouds are 271 
dominant (cloud fraction above 0.9), which suggests that this discrepancy between observations and 272 
models concerns primarily cumulus-type of clouds.  273 
 274 
4. Discussion and Conclusions 275  276 
The “too few and too bright” bias of low-level clouds is still present in the subset of CMIP6 models 277 
we analyzed. The distribution of the observed daily cloud cover shows a broad maximum of cloud 278 
fraction at around 0.35, and a sharp secondary maximum near 1 corresponding to stratocumulus 279 
clouds over the eastern part of the ocean basins. For most of the models, this distribution has a 280 
marked main mode for low values of cloud cover and a missing or very limited secondary 281 
maximum for cloud cover near 1, except for IPSL-CM6A for which this secondary maximum is 282 
large and for MIROC6 for which this distribution is flat and symmetrical. The errors on the daily 283 
cloud reflectance are very different. The distribution is almost symmetrical for all models, while for 284 
the observations the distribution is concentrated around the low values with a long tail towards the 285 
high reflectance. This frequent occurrence of optically-thin low-level clouds is also found by Leahy 286 
et al. (2012) and Mieslinger et al. (2021).  287 
 288 
The co-variations of cloud cover and cloud reflectance also exhibit very different behaviors 289 
between models and observations. While in observations the cloud reflectance increases as the 290 
cloud fraction increases, models show either an inverse dependence or no dependence at all. The 291 
cloud optical thickness in models is much too large when the cloud cover is low. A consequence of 292 
this problem emerges when analyzing the dependence of cloud properties on cloud environmental 293 
conditions. In particular, while the cloud fraction increases with the lower tropospheric stability in 294 
both observations and models, the reflectance increases with the LTS in observations but not in 295 
models.  296 
 297 
The vertical profile of cloud fraction in this sample of CMIP6 models better agrees with that of the 298 
observations than did the CMIP5 models (Nam et al., 2012). However, the cloud-top height is too 299 
low for optically-thin clouds. Cloud-top height increases much faster with cloud optical thickness in 300 
these CMIP6 models than in observations.  301 
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 302 
These results may reflect the fact that outside the stratocumulus region on the eastern part of the 303 
oceans, the models simulate small cumulus clouds that are “too compact”, i.e. low cloud cover, high 304 
reflectance. This could arise if the models’ representation of clouds does not sufficiently account for 305 
(if at all) the sub-grid scale heterogeneities of cloud properties. As noted by Del Genio et al. (1996), 306 
GCM cloud schemes assume that the cloud fractions by area and by volume are equal, i.e. clouds 307 
occupy the entire depth of individual model layers over the cloud fraction of that layer, whereas in 308 
observations (Brooks et al., 2005) and LES models (Neggers et al., 2011) the former is much larger 309 
than the later. Accounting for sub-grid scale heterogeneity in the geometry of clouds influences the 310 
cloud radiative properties, by increasing the fraction and reducing the reflectance (Jouhaud et al., 311 
2018). In addition, accounting for sub-grid scale heterogeneity in the autoconversion rate reduces 312 
the cloud water content (Hotta, et al., 2020), and thus the cloud reflectance. 313 
 314 
A complementary hypothesis is that the models simulate too often, or even almost exclusively, 315 
small cumulus clouds at low levels (i.e. near the lifting condensation level). In models, the 316 
distribution of cloud fraction resembles that of the observed active cumuli and the reflectance 317 
increases with the cloud-top altitude, as expected for this type of cloud. These clouds do not leave 318 
such a marked signature in the observations that we use here. This might be explained by recent 319 
analyses showing that thin layers of clouds are often present beneath the trade inversion, and 320 
generally mixed with other cloud types when looking at a scale of a few hundred kilometers (Wood 321 
et al. 2018, Bony et al., 2020, Stevens et al., 2020). In the observations that we use, which are on a 322 
2°x2° grid, close to that of the models, the probability of observing only small cumulus clouds is 323 
low, they are almost always mixed with other cloud types. Another way to phrase our hypothesis is 324 
that the models do not manage to simulate, in the same atmospheric column, the variety of low-325 
level cloud types that is present in nature. 326 
 327 
 328 
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Figures 572 
 573 
 574 
Figure 1: For situations over the tropical ocean where low-level clouds are dominant, geographical 575 
distribution of the a) observed (CALIPSO-GOCCP) and c) multi-models mean (IPSL-CM6A, 576 
CNR-CM6, HadGEM3, MRI-ESM2, MIRCO6 and GFDL-CM4) total cloud cover, and of the b) 577 
observed (CALIPSO-GOCCP, PARASOL) and d) multi-models mean cloud reflectance. For the 578 
same situations, Probability Distribution Function of e) the cloud cover and f) the cloud reflectance 579 
observed with CALIPSO-GOCCP and PARASOL (black line) and simulated by the models 580 
(colored lines). All the data are daily for the 4 years period 2007 – 2010. 581 
 582 
 583 
Figure 2: 2D histograms of cloud reflectance and cloud cover a) observed (CALIPSO-GOCCP, 584 
PARASOL) and simulated by b) IPSL, c) CNRM, d) HadGEM3, e) MRI, f) MIROC6, and g) 585 
GFDL models, and h) mean cloud reflectance for each cloud cover bin of 0.03 observed with 586 
CALIPSO-GOCCP and PARASOL (black line) and simulated by the models (colored lines). The 587 
error bars mark the standard error of the mean cloud reflectance within each cloud cover bin. All the 588 
data are daily values over the tropical ocean, when low-level clouds are dominant and for the period 589 
2007-2010.  The colorbar gives the number of points at each grid cell (cloud cover – cloud 590 
reflectance) divided by the total number of points. 591 
 592 
 593 
 594 
Figure 3: a) Cloud cover, b) Cloud reflectance as a function of the LTS, c) PDF of LTS and d) 595 
Cloud Cover as a function of the surface wind speed. The black lines correspond to observation and 596 
ERA Interim reanalysis, the colored lines to models results. All the data are daily values taken over 597 
the tropical ocean, when low-level clouds are dominant and for the period 2007-2010. The standard 598 
error of the mean is below 0.01 % (Text S2) and not shown in the Figure for the sake of clarity.   599 
 600 
 601 
 602 
Figure 4: Vertical profile of the cloud fraction (CF3D) a) for all low-level clouds, b) for optically 603 
thin low-level clouds (CR<0.2), c) for optically thick low-level clouds (CR>0.4), and d) mean cloud 604 
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top altitude as a function of cloud reflectance, for the observations (CALIPSO-GOCCP, PARASOL, 605 
black lines) and models (lidar and PARASOL simulator, colored lines). Cloud top altitude is 606 
defined as the highest level of low-level clouds where the sum of the cloud fraction (CF3D) from 607 
the top is greater than 10% of the cloud cover (sumCF3D(from top) > 10%CC). All the data are daily 608 
values over the tropical ocean, when low-level clouds are dominant and for the period 2007-2010. 609 
The standard  error of the mean is below 0.01 % (Text S2) and not shown in the Figure for the sake 610 
of clarity.     611 
 612 
 613 
 614 
 615 
 616 
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 44 
Text S1: Observational properties  45 
 The observational datasets used in the study are the GCM-Oriented CALIPSO Cloud Product 46 
(GOCCP) that provides the total cloud cover (CC), the cloud cover in three layers (Low, Mid, High 47 
following ISCCP definition – CClow, CCmid, CChigh) as well as the cloud fraction profile (3D Cloud 48 
Fraction - CF3D), and the PARASOL visible directional reflectance, which is a surrogate for the cloud 49 
optical depth.  50 
   The GOCCP product consists in applying Scattering Ratio (SR) thresholds values to the 532 51 
nm lidar SR signal to detect the presence of clouds (Chepfer et al., 2010). The cloud detection (0 or 52 
1) is done at the original horizontal Level 1 CALIOP resolution (330 m along track and 75 m cross 53 
track of the satellite orbit), and on a lower vertical resolution (40 equidistant vertical levels of 480 m 54 
height). Layered cloud fractions are also computed for three atmospheric layers: upper levels 55 
(between 50 and 440 hPa) middle levels (between 440 and 680 hPa) and low levels (altitudes below 56 
the 680 hPa level). In case of overlapping clouds CClow+CCmid+CChigh cloud be > 1. The cloud 57 
fraction is then interpolated on a 2° x 2° latitude/longitude grid to provide the final cloud product 58 
used in the analysis. To ensure that the values are statistically significant, only grid boxes containing 59 
more than 30 % of the maximum possible number of measurements (based on the satellite overflights) 60 
are considered in the analysis (Konsta et al., 2012).   61 
 The PARASOL instrument [POLDER-like, (Deschamps et al., 1994)] has a multi-viewing 62 
angle capability, allowing for the estimation of instantaneous monodirectional reflectance of clouds. 63 
The calibration of PARASOL is described by Fougnie et al., (2007). The calibration accuracy is within 64 
1.5% for the 865 nm channel. Over the ocean surface, the visible directional reflectance is mostly 65 
sensitive to the solar zenith angle, to the viewing direction and to the cloud optical depth. In this 66 
analysis the reflectance observed in a single viewing direction has been selected (Konsta et al., 2015), 67 
so that it is mostly sensitive to the cloud optical depth and less to other parameters. After avoiding 68 
directions less sensitive to the optical depth (e.g. directions sensitive to glitter reflection, the 69 
backscatter and the nadir direction), the one at 865 nm which is most frequently observed by 70 
PARASOL was selected. All directional reflectance values measured by PARASOL in this direction 71 
have a spatial resolution of 6 x 6 km2. They are then projected onto a 2° x 2° grid. The 72 
representativeness of sampling the PARASOL pixels (6 x 6 km2) collocated with CALIOP pixels (330 73 
m x 75 m) and averaged on a 2 ° x 2 ° grid is presented in detail in Appendix 1 of Konsta et al. (2015).  74 
 The ERA-Interim reanalysis is used in this study to estimate the lower tropospheric stability 75 
(LTS). ERA-Interim reanalysis performance is initially discussed in Dee et al., 2011. Since then, 76 
several studies have investigated the performance of ERA-Interim against radiosonde measurements 77 
for a variety of applications (Luo et al., 2020; Guan et al., 2018; Vergados et al., 2014). ERA-Interim 78 
is the predecessor of ERA5 and has been used extensively by the climate community (e.g. Pfeifroth 79 
et al., 2013; Pfahl et al., 2014, Bony et al., 2020), while biases on the surface wind speed have been 80 
identified (Belmonte Rivas and Stoffelen, 2019). 81 
 82 
   83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
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 95 
 96 



Text S2: Statistical error calculation  97 
 As it is commonly done, we defined the standard error of the mean of random variable M as 98 
the standard deviation σ of M divided by the square root of the number of degrees of freedom N’ 99 ఙ√ேᇲ . 100 
Here we assumed that the spatio-temporal auto-correlations of the variables are sufficiently low so 101 
that N’ is eaual to the number of samples to compute the mean. The calculations are performed over 102 
4 years of daily values for every grid cell. No time average takes place nor the seasonal cycle is 103 
removed.   104 
 105 
 106 
 107 
 108 
Model’s 
short name 

Modeling Center CMIP6 Model Resolution 
 

Number of 
vertical 
layers below 
680 hPa 

Key references 

IPSL IPSL, France IPSL-CM6A-
LR 

2.5º x 1.25º 29  Boucher et al., 2020  
Hourdin et al., 2020 

CNRM CNRM-
CERFACS, France 

CNRM-CM6-1 1.4º x 1.4º 21 Roehrig et al., 2020 

HadGEM3 Hadley Centre, UK HadGEM3-
GC31-LL 

1.875º x 
1.25º 

20 Walters et al., 2019 

MRI MRI, Japan MRI-ESM2-0 1.125º x 
1.1214º 

17 Yukimoto, 2019; Kawai et 
al. 2019 

MIROC6 MIROC, Japan MIROC6 1.4º x 1.4º 13 Tatebe et al., 2019 
GFDL NOAA-GFDL, 

USA 
GFDL-CM4 2.5º x 2.0º 13 Zhao et al., 2018a, 2018b; 

Silvers et al., 2018  
 109 
Table S1. CMIP6 models used in this study  110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
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 125 

 126 
Figure S1: Relationship between daily mean Cloud Albedo and daily mean cloud reflectance over the 127 
tropical oceans, over the period 2007-2010 simulated with a) IPSL, b) CNRM, c) HadGEM3, d) MRI, 128 
e) MIROC6 and f) GFDL. Cloud Albedo is calculated from the difference of the upward SW radiation 129 
between clear sky and all sky conditions divided with the downward SW radiation for the cloudy part.  130 
 131 
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 166 
 167 
Figure S2: Probability that the sky in a 2ºx2º grid cell corresponds to one of the following situations: 168 
clear sky (CC=0, white bar), mix clouds (magenta bar), mid or high dominant clouds (blue bar) and 169 
low dominant clouds (red bar) for observations (CALIPSO-GOCCP, left column) and the models 170 
(with COSP lidar simulator) for daily values on a 4-year period (2007- 2010). Low dominant clouds 171 
are defined by using the criterion CClow > 0.9 *CC, similarly for mid and high dominant clouds.  172 
 173 
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 201 
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 203 
Figure S3: For situations where low-level clouds are dominant, geographical distribution of the cloud 204 
fraction (left column) a) observed (CALIPSO-GOCCP) and simulated with c) IPSL, e) CNRM, g) 205 
HadGEM3, i) MRI, k) MIRCO6 and m) GFDL, and cloud reflectance (right column) b) observed 206 
(CALIPSO-GOCCP, PARASOL) and simulated with d) IPSL, f) CNRM, g) HadGEM3, j) MRI, l) 207 
MIRCO6 and n) GFDL. 208 
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Figure S4: Color maps of cloud reflectance and cloud cover over the tropical ocean for dominant low 225 
level clouds a) observed and simulated by b) IPSL, c) CNRM, d) HadGEM3, e) MRI, f) MIROC6, 226 
and g) GFDL, where the color bar presents the mean value of cloud top altitude (in km) at each grid 227 
cell (cloud cover – cloud reflectance). Cloud top altitude is defined as the highest point over the 2°x2° 228 
grid where the sum of the cloud fraction (CF3D) from the top is greater than 10% of the cloud cover 229 
(sumCF3D(from top) > 10%CC).  230 
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