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Abstract This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from6

eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project7

(CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate8

response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but9

can also result from fast land and tropospheric adjustments to the CO2 radiative forcing. By considering10

tropospheric adjustments to CO2 as part of forcings rather than feedbacks, and by using the radiative kernels11

approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with12

water vapor, temperature lapse rate, surface albedo and clouds. Taking tropospheric adjustments into account13

reduces the strength of cloud feedbacks by about 33% on average, but does not affect much the spread of model14

estimates. The inter-model spread of climate sensitivity estimates primarily results from differing climate15

feedbacks. About 70% of the spread stems from cloud feedbacks, with a large contribution from the tropics.16

Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large17

range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow18

cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the19

spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity20

responses throughout the troposphere.21

Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks22

for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model23

simulations with large forcing (e.g., 4×CO2), nonlinearities cannot be assumed minor and neglected. Having said24

that, some results presented here are consistent with a number of previous feedback studies, despite the very25

different nature of the methodologies and all the uncertainties associated with them.26
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1 Introduction30

The equilibrium global-mean surface temperature change associated with a doubling of CO2 concentration in the31

atmosphere is referred to as Climate Sensitivity. As it controls many aspects of climate change, including the32

response of the hydrological cycle and of regional climate features to anthropogenic activities, climate sensitivity33

remains a centrally important measure of the size, and significance, of the climate response to greenhouse gases34

(Bony et al, 2013, in press). Unfortunately, climate sensitivity estimates from climate models have long been35

associated with a large spread (Charney et al, 1979; Randall et al, 2007). This spread, which has not narrowed36

among the current generation of models (Andrews et al, 2012), remains within the 2 to 4.5 degrees range.37

Attempts to estimate the likely range of climate sensitivity from observations of the current climate or from instru-38

mental or natural archives have not narrowed this range substantially (Knutti and Hegerl, 2008). An alternative39

to this holistic approach consists in constraining observationally the individual processes or feedbacks that con-40

trol climate sensitivity, especially those which are most responsible for inter-model differences. For this purpose,41

interpreting the spread of climate sensitivity estimates amongst models constitutes a pre-requisite.42

For climate models participating in the Third Phase of the Coupled Model Intercomparison Project (CMIP3),43

cloud feedbacks were identified as the leading source of spread of climate sensitivity estimates (Bony et al, 2006;44

Dufresne and Bony, 2008; Soden and Held, 2006), with a major contribution from low-cloud feedbacks (Bony and45

Dufresne, 2005; Randall et al, 2007; Webb et al, 2006). However, Gregory and Webb (2008) and Andrews and46

Forster (2008) subsequently pointed out that the atmosphere, humidity and clouds in particular, could exhibit47

fast adjustments to the CO2 radiative forcing, and that inter-model differences in cloud adjustments could48

contribute significantly to the spread of climate sensitivity.49

The CO2 radiative forcing has been commonly taken as the radiative flux change at the top of the atmosphere50

(TOA) after allowing the stratosphere to adjust to the CO2 increase (Forster et al, 2007). The reason for using51

this stratosphere-adjusted forcing rather than the instantaneous CO2 forcing, is that the stratospheric52

temperature adjustment occurs on a much smaller time-scale (i.e., weeks to months) than the long-term climate53

response (operating over at least several decades). The same rationale is used now for the tropospheric54

adjustments to change in CO2 concentration. As tropospheric adjustments to greenhouse gases are fast and not55

necessarily mediated by surface temperature changes, they may not be considered as part of feedbacks but rather56

as part of forcings. Such a distinction matters for models for which the cloud response to increased CO2 does not57

exhibit much correlation with surface warming but primarily results from fast tropospheric adjustments. These58

findings call for a revisit of the concepts of forcing and feedback, of the methodologies used to assess them from59

model outputs, and of our interpretation of climate sensitivity uncertainties.60

61

The purpose of this study is to interpret the range of equilibrium climate sensitivity estimates from models62

participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5, Taylor et al, 2012). In63

section 2, we present the methodologies used to diagnose the radiative forcings and feedbacks of each model by64

taking into account the tropospheric and land surface adjustments to CO2 . In section 3, these methodologies are65

applied to CMIP5 model outputs, and model estimates of climate sensitivity are interpreted in terms of radiative66

adjustments and feedbacks. The inter-model spread of climate sensitivity is quantified, and then decomposed into67
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different contributions related to individual adjustments and feedbacks, and into regional contributions. As the68

spread of climate sensitivity arises primarily from the tropics, we analyze in section 4 inter-model differences in69

water vapor, lapse-rate and cloud feedbacks. A conclusion is presented in section 5.70

2 Data and Methodology71

2.1 Conceptual framework72

Let F and ∆R (in Wm−2) be a radiative forcing imposed to the climate system and the resulting imbalance in73

the Earth’s radiation budget at the TOA, respectively. The climate system responds to this radiative imbalance74

by changing its global mean surface temperature ∆Ts (in Kelvin), and at any time the climate response opposes75

the radiative forcing according to:76

∆R = F + λ∆Ts, (1)

where λ (< 0, in Wm−2K−1) is the feedback parameter (Bony et al, 2006; Dufresne and Bony, 2008; Gregory et al,77

2004).78

When the climate system reaches a new equilibrium, ∆R = 0 and the equilibrium climate sensitivity ∆T e
s can be79

estimated as80

∆T e
s =

−F

λ
(2)

Consider now that the radiative forcing F induces tropospheric adjustments to increased CO2 concentration81

(Fadj,co2), without any change in ∆Ts. The equilibrium climate sensitivity ∆T e′
s can then also be estimated as:82

∆T e′

s =
−(F + Fadj,co2)

λ′
, (3)

where λ′ is the feedback parameter when the adjustments are considered as part of the forcing.83

If we assume that both equilibrium temperature changes are equals (i.e., ∆T e
s = ∆T e′

s ), then the relationship84

between λ and λ′ can be written as:85

λ′

λ
=

F + Fadj,co2

F
(4)

Figure 1, which illustrates this reasoning, shows the relationships between the forcings, the feedback parameters86

and the equilibrium global mean surface temperature according to the energy balance in Eq. 1, when the87

adjustments to CO2 are included in the forcing (in blue) or in the feedbacks (in black). As discussed later in this88

section and Section 2.2, our attempts to devise a forcing that could capture adjustments to CO2 without also89
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capturing changes due to land surface warming, were unsuccessful. Figure 1 also represents this forcing (i.e., that90

includes adjustments to CO2 and land surface warming: F + Fadj), which can, however, easily be diagnosed from91

CMIP5 experiments, and that we use in this study (as defined in Section 2.2 and Eq. 12).92

93

Fig. 1 Schematic representation of Eq. 1 showing the relationships between the forcings, the feedback parameters and the equilib-
rium global mean surface temperature when the tropospheric adjustments to CO2 forcing are considered (in blue) or not (in black).
Here, we assume that the adjustments to CO2 are negative (Fadj−co2 < 0). The intercept at ∆Ts = ∆Ts,0 (red cross) represents
the adjusted radiative forcing estimated from fixed-SST experiments, in which the land surface temperature is allowed to adjust
by ∆Ts,0 to increased CO2, while holding the SST fixed (see also Section 2.2).

Under this framework, the imbalance in the Earth’s radiation budget at the TOA (∆R) depends on changes in94

CO2 concentration, in surface temperature Ts and in the feedback variables X (where X ≡
P

x and x refers to95

atmospheric temperature, water vapor, surface albedo and clouds). At first order, by neglecting nonlinearities, Eq.96

1 can be written in a general form as:97

∆R(CO2, Ts, X) ≈ ∂R

∂CO2

˛̨̨̨
Ts,X

∆CO2 +
∂R

∂Ts

˛̨̨̨
CO2,X

∆Ts +
∂R

∂X

˛̨̨̨
Ts,CO2

∆X (5)

where on the right hand side of Eq. 5, we now explicitly introduce the stratosphere-adjusted forcing to CO2 (first98

term), the Planck response (second term) and the TOA radiative response to changes in feedback variables (third99

term). There are at least two more specific approaches that can be used to diagnose the radiative forcings and100

feedbacks from Eq. 5.101

102

1) In the case where tropospheric adjustments to CO2 are not taken into account, but rather included in103

the feedback response (e.g., in Soden and Held, 2006), the changes in feedback variables X only depend on surface104

temperature Ts, while the dependency to CO2 is neglected: ∆X ≡ ∆X(Ts) ≈
∂X

∂Ts
∆Ts.105

Eq. 5 can then be re-written as:106

∆R(CO2, Ts, X(Ts)) ≈
∂R

∂CO2

˛̨̨̨
Ts,X

∆CO2 +

"
∂R

∂Ts

˛̨̨̨
CO2,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

#
∆Ts (6)
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2) In the case where we recognize the existence of tropospheric adjustments to CO2 while holding the SST107

fixed, but allowing the land surface temperature to adjust, ∆Ts can be decomposed as:108

∆Ts = ∆Ts,0 + ∆Ts,∆SST (7)

where ∆Ts,0 is the surface temperature change after CO2 quadrupling at fixed SST and ∆Ts,∆SST is the subsequent109

surface temperature change when the SST varies by ∆SST .110

The changes in the variables X now depend on both surface temperature and CO2 changes as follows:111

∆X ≡ ∆X(CO2, Ts) ≈
∂X

∂CO2

˛̨̨̨
Ts

∆CO2 +
∂X

∂Ts

˛̨̨̨
CO2

∆Ts,0 +
∂X

∂Ts

˛̨̨̨
CO2

∆Ts,∆SST (8)

This yields for Equation 5:112

∆R(CO2, Ts, X(CO2, Ts)) ≈

"
∂R

∂CO2

˛̨̨̨
Ts,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂CO2

˛̨̨̨
Ts

#
∆CO2

+

"
∂R

∂Ts

˛̨̨̨
CO2,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

˛̨̨̨
CO2

#
∆Ts,0

+

"
∂R

∂Ts

˛̨̨̨
CO2,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

˛̨̨̨
CO2

#
∆Ts,∆SST

(9)

The right hand side of this equation includes the stratosphere- and troposphere-adjusted forcing to CO2 (first113

row), the fast climate response to a change in land surface temperature (second row), and the climate response114

to the subsequent temperature change when the oceans warm (third row).115

In this present study, we follow this approach to diagnose the radiative forcings and feedbacks. The next section116

describes how we proceed, in practice, when we apply this methodology to CMIP5 model experiments.117

118

2.2 Using CMIP5 experiments to diagnose radiative forcings and feedbacks119

We analyze climate model outputs recently made available on the CMIP5 multi-model ensemble archive (http:120

//pcmdi3.llnl.gov/esgcet/home.htm). The list of models (and institutions) considered in this study is given in121

Table 1.122

123

Model outputs from a range of CMIP5 idealized experiments (described in Taylor et al, 2012) are analyzed:124

1. abrupt4xCO2, a fully-coupled ocean-atmosphere simulation in which the CO2 concentration is abruptly quadru-125

pled and then held fixed126

2. sstClim, a 30-year atmosphere-only experiment forced by a prescribed climatology of sea surface temperatures127

(SSTs) derived from fully-coupled pre-industrial simulation (piControl)128
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Model acronym Institution Climate sensitivity

for 2×CO2 (in K)

1 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.9

2 NorESM1-M Norwegian Climate Center, Norway 2.7

3 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 3.7

4 INMCM4 Institute for Numerical Mathematics, Russia 1.9

5 HadGEM2-ES Met Office Hadley Centre, United Kingdom 4.4

6 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 3.7

7 MIROC5 Japan Agency for Marine-Earth Science and Technology, Japan 2.8

8 CCSM4 National Center for Atmospheric Research, United States 2.3

9 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China 4.1

10 FGOALS-s2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, 4.1

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

11 MRI-CGCM3 Meteorological Research Institute, Japan 2.6

Table 1 Institute, model name and climate sensitivity (computed from Eqs. 22-29) of the 11 CMIP5 Global Climate Models
(GCMs) considered in this study.

3. sstClim4xCO2, the same experiment as sstClim, except that the CO2 concentration is abruptly quadrupled129

and maintained fixed for 30 years.130

We compute monthly-resolved seasonal cycle using the 30-year periods of the sstClim and sstClim4xCO2131

experiments and a 10-year period centered around the 130th year after the CO2 quadrupling in abrup4xCO2. For132

the 3D fields, we use the data on pressure levels.133

134

The framework described in the previous section provides the possibility of isolating the role of CO2 and surface135

warming in the radiative changes associated with clouds, water vapor, albedo and temperature (Eq. 9).136

Technically, however, it is not possible, using this set of experiments, to separate the climate response to land137

surface warming (second row in Eq. 9) from the tropospheric adjustments to CO2 (first row in Eq. 9).138

In the sstClim4xCO2 experiment, the atmosphere and land surface are free to respond to the change in CO2139

concentration. However, the climate feedbacks, which by definition are mediated by the global mean surface140

temperature change, are prevented from evolving, since the fixed-SST condition implies that ∆Ts ' 0 (actually,141

the small change in Ts resulting from the warming of land surfaces, ∆Ts,0, is of the order of 0.5 K). Therefore,142

the fixed-SST experiments we dispose, only allow us to consider the adjustments to CO2 and land surface143

warming together. According to Eq. 1, the atmosphere-adjusted radiative forcing F ′, as defined in Eq. 12, is144

simply the change in the net TOA radiation fluxes between the 30-year average climate of sstClim4xCO2 and145

sstClim experiments (i.e., F ′ = ∆R).146

As for the radiative feedbacks (third row in Eq. 9), they are investigated between the sstClim4xCO2 and147

abrupt4xCO2 experiments, where the CO2 concentration is now held fixed, but the surface temperature is148

allowed to change as the ocean warms.149

150

Some previous studies have attempted to consider the radiative changes due to land surface warming as part of151

the climate response rather than of the forcings (Hansen et al, 2005; Mauritsen et al, submitted). This was done152

by assuming that the global climate feedback parameter is the same in a fixed-SST experiment as in a transient153

experiment (i.e.,
∂R

∂Ts

˛̨̨̨
CO2,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

˛̨̨̨
CO2

in Eq. 9 is constant). This is very unlikely since, as explained154

previously, in a fixed-SST experiment most feedbacks (if not all) are largely inhibited over the oceans. But the155

main reason why it is not appropriate to make this assumption here is that although the global climate feedback156
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parameter might be independent of climate state at first order, this is not necessarily true regionally nor for157

individual feedbacks (Boer and Yu, 2003).158

We therefore diagnose the radiative forcing by permitting the stratospheric temperature, the troposphere and the159

land surface temperatures to adjust to the increased CO2 concentration. And since the climate feedbacks are160

delayed by century time-scales because of the ocean’s thermal inertia, it is not unreasonable to include “fast161

processes”, such as land and sea-ice surface warming, withing the forcing rather than in the long-term climate162

response.163

164

Hereafter, and to ensure clarity throughout this paper, the different terms in Equation 9 are defined as:165

the stratosphere-adjusted forcing to CO2:

F =
∂R

∂CO2

˛̨̨̨
Ts,X

∆CO2

(10)

the tropospheric adjustments to CO2 forcing and land surface warming:

Fadj =
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂CO2
∆CO2 +

"
∂R

∂Ts

˛̨̨̨
CO2,X

+
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

#
∆Ts,0

(11)

the atmosphere-adjusted forcing to CO2 and land surface warming:

F ′ = F + Fadj

(12)

the Planck response:

λp =
∂R

∂Ts

˛̨̨̨
CO2,X

(13)

the feedback parameter including the Planck response:

λ′ = λp +
∂R

∂X

˛̨̨̨
Ts,CO2

∂X

∂Ts

(14)

166

167

In the following sections 2.3, 2.4 and 2.6, we describe how the tropospheric adjustments to CO2 (Eq. 11) and the168

feedbacks (Eq. 18) are computed using the radiative kernel approach, and how the climate sensitivities (in Table169

1) are estimated within that framework.170

171
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2.3 Estimate of adjustments172

Here, the tropospheric adjustments to CO2 and land surface warming arise, to first order, from173

changes in temperature (t), water vapor (wv), surface albedo (alb) and cloud (cl), which are induced174

by increased CO2 and land surface warming, but without any change in sea surface temperature:175

Fadj =
P

x Fx + Ref = Ft + Fwv + Falb + Fcl + Ref (Eq. 11), where Ref is a residual term, usually neglected for176

sufficiently small climate prertubations (e.g., Soden et al, 2008). However, in large forcing experiments (e.g.,177

4 × CO2), this residual term is sometimes too large to be ignored; this drawback of the kernel technique is178

discussed in more details in section 2.5.179

180

Following the same approach as for the feedback estimation (in section 2.4 - see also in Soden et al, 2008), all181

clear- and all-sky adjustment terms (except clouds) are derived using the radiative kernel technique as follow:182

Fx =
∂R

∂x
∆x = Kx∆x, (15)

where Kx is the radiative kernel (in Wm−2 by unit of x). We use the same kernels as in Shell et al (2008), the183

National Center for Atmospheric Research (NCAR) model’s kernels for water vapor, temperature and albedo,184

which are made available at http://people.oregonstate.edu/~shellk/kernel.html. Each kernel, Kx, is obtained185

by perturbing the climate base state (with pre-industrial CO2 concentration) by a standard anomaly δx of the186

corresponding climate variable x at each grid point and model level and by measuring the resulting change in187

TOA radiative fluxes (with separate consideration of the all- and clear-sky LW and SW radiation fluxes). See188

Soden et al (2008) and Shell et al (2008) for more details on the kernel technique.189

∆x is the climate response of each variable, computed by difference between the 30-year model predicted climate190

in sstClim4xCO2 and the 30-year climate of the sstClim simulation (refer to section 2.2 for details on the191

experiments). Both Kx and ∆x are functions of longitude, latitude, pressure level and are monthly means. To192

obtain tropospheric averages, the water vapor and temperature adjustments are vertically integrated (by193

summing over mass-weighted model levels) up to the tropopause level, which varies linearly between 300 hPa at194

the poles and 100 hPa at the equator. As commonly done in feedback studies, the temperature radiative response195

is further separated into the Planck response to land surface warming (Fp) and the lapse rate (Flr).196

197

The cloud adjustment is estimated by the changes in cloud radiative effect (CRE) and corrected for changes in198

non-cloud variables that can alter the change in CRE and lead to a biased estimate of the cloud adjustment.199

Fcl = ∆R−∆R0 −

"X
x

(Fx − F 0
x ) + (G−G0)

#
, (16)

where the exponent 0 indicates clear-sky variables, and ∆R is computed with the same experiments as ∆x (i.e.,200

between sstClim4xCO2 and sstClim). G and G0 are the all-sky and clear-sky stratosphere-adjusted forcing201
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computed at the tropaupose, for a quadrupling CO2 , using the Laboratoire de Météorologie Dynamique (LMDz)202

radiation code and control climate state. G − G0 is the cloud masking effect arising from changes in CO2203

concentration only, estimated at about −1.24 Wm−2. This yields a proportionality of cloud masking of204

G−G0

G
∼ −0.16, which is consistent with that reported in Soden et al (2008).205

206

Finally, the magnitude of the residual term Ref (in Wm−2, reported for each model in Table 2) is computed207

for clear-sky conditions (by construction, it is the same for all-sky conditions) by differencing the clear-sky TOA208

radiative fluxes from the sum of the clear-sky adjustment terms and clear-sky CO2 forcing:209

Ref = ∆R0 − (
X
x

F 0
x + G0) = ∆R0 − (F 0

t + F 0
wv + F 0

alb + G0) (17)

In this paper, we often express this quantity in percent as: %Ref =

˛̨̨̨
˛ Ref

∆R0

˛̨̨̨
˛ × 100 (also reported in Table 2 into210

brackets).211

212

Vertically-integrated, global and annual mean tropospheric adjustments to CO2 and land surface warming are213

shown in Table 2 for each model; multi-model ensemble-mean maps also are presented in Fig. 2. We find a214

relatively large negative contribution from the temperature associated with land surface warming (Fp). Clouds215

constitute the second most important tropospheric adjustment to CO2; it is positive for most models, dominated216

by the shortwave component (Fclsw) and stronger over land than over the ocean (Fig. 2d and f). However, the217

cloud adjustment is negative over the storm track regions (Fig. 2f, and as reported in Block and Mauritsen,218

submitted), with a greater contribution arising from the longwave component (Fig. 2e). Additional analyzes219

using aquaplanet experiments (‘aquaControl’ and ‘aqua4xCO2’ - not presented in the paper) show that the220

positive contribution from the lapse rate (over land - not shown), the water vapor (over land, Fig. 2b) and the221

albedo (over sea-ice, northern continental areas and semi-arid regions, Fig. 2c) are due to land surface warming222

rather than tropospheric adjustments to CO2. On the other hand, cloud changes partly reflect changes in the223

large-scale circulation induced by the direct effect of CO2, especially the weakening of large-scale ascending224

motions over ocean (Bony et al, submitted).225

226

These adjustment estimates may be compared with values reported in previous studies. For instance, Gregory227

and Webb (2008)’s estimates of global cloud adjustments, obtained from the y-intercept of the regression line for228

∆CRE against ∆Ts, are −1.7± 0.42 Wm−2 and 0.98± 0.82 Wm−2 for the LW and SW components, respectively,229

of an ensemble of mixed layer ocean models (note that the original 2× CO2 results have been doubled for ease of230

comparison with 4× CO2 results of this study). While Gregory and Webb (2008)’s and the present estimates are231

relatively similar for the SW component, substantial differences arise for the LW cloud adjustment. This can232

largely be explained by the cloud-masking effect of non-cloud variables, which is not taken into account in233

Gregory and Webb (2008)’s study. Our multi-model mean estimates of the adjustments in CRE (i.e., without the234

cloud-masking correction -
ˆP

x(Fx − F 0
x ) + (G−G0)

˜
in Eq. 16) are −1.42 ± 0.49 Wm−2 and 0.93 ± 0.88 Wm−2

235
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Fp Flr Fwv Falb Fclsw Fcllw Fcl
P

x Fx F ′ Ref (%Ref )

IPSL-CM5A-LR -1.64 -0.12 0.54 0.18 2.15 -1.33 0.81 -0.21 6.48 -0.77 (10.96)

NorESM1-M -1.72 -0.04 0.38 0.19 1.61 -0.49 1.09 -0.07 6.95 -0.49 (6.79)

MPI-ESM-LR -1.58 0.07 0.35 0.15 1.89 -0.43 1.44 0.45 8.63 0.71 (8.39)

INMCM4 -1.45 -0.06 0.55 0.12 -0.32 0.42 0.09 -0.72 6.24 -0.54 (7.26)

HadGEM2 -1.56 0.00 0.28 0.09 1.34 -0.27 1.06 -0.12 6.99 -0.39 (5.50)

CanESM2 -1.52 -0.18 0.40 0.05 1.13 -0.04 1.07 -0.15 7.34 0.02 (0.34)

MIROC5 -1.40 -0.09 0.33 0.16 1.56 -0.66 0.89 -0.09 7.94 0.52 (6.28)

CCSM4 -1.97 0.06 0.39 0.21 1.65 -0.25 1.39 0.11 8.84 1.21 (13.80)

BNU-ESM -1.37 -0.23 0.56 0.53 1.03 0.07 1.08 0.59 7.87 -0.21 (2.51)

FGOALS-s2 -1.15 -0.33 0.56 0.11 -0.64 0.23 -0.42 -1.22 8.05 1.80 (18.20)

MRI-CGCM3 -1.22 -0.06 0.41 0.16 0.50 0.00 0.49 -0.20 7.19 -0.10 (1.18)

For all models:

Multi-model mean -1.51 -0.09 0.43 0.18 1.08 -0.25 0.82 -0.15 7.50 0.16 (7.38)

Inter-model std dev 0.23 0.12 0.10 0.13 0.89 0.48 0.56 0.50 0.84 0.81 (5.38)

For the 8 models that exhibit a linear behavior (i.e., %Ref < 10):

Multi-model mean -1.48 -0.07 0.41 0.18 1.09 -0.17 0.90 -0.04 7.39 -0.06 (4.78)

Inter-model std dev 0.15 0.09 0.10 0.15 0.71 0.35 0.42 0.40 0.74 0.46 (3.02)

Table 2 Vertically-integrated (up to tropopause), global and annual mean of adjustments to CO2 forcing and land surface warming
(in Wm−2) estimated using the NCAR model’s radiative kernels, for the 11 CMIP5 models used in this study, their multi-model
mean and inter-model standard deviation. Also shown are the multi-model mean and inter-model standard deviation for the 8
models that exhibit a linear behavior in the forcing period (for which %Ref < 10; see also in Section 2.5). From left to right
are the contributions from the Planck response to land surface warming (Fp), lapse rate (Flr), water vapor (Fwv), albedo (Falb),
shortwave, longwave and net cloud components (Fclsw, Fcllw and Fcl, respectively), the sum of all adjustments to CO2 and land
surface warming (

P
x Fx), the total adjusted forcing (F ′) and the residual term (Ref , expressed in Wm−2 and %Ref into brackets,

expressed in %).

Fig. 2 Multimodel ensemble-mean maps of the tropospheric adjustments associated with temperature (a), water vapor (b), albedo
(c) and clouds: shortwave (d), longwave (e) and net component (f) estimated using the NCAR model’s radiative kernels and the
sstClim and sstClim4xCO2 experiments. Units in Wm−2.

for the LW and SW components, respectively, which are now very similar to Gregory and Webb (2008)’s236

estimates. Quantitative differences can also be found by comparing our results with those reported in Colman237

and McAvaney (2011). Using the “Partial Radiative Perturbation” technique, Colman and McAvaney (2011)238

found that the SW cloud adjustment, estimated at ∼ 1.5 Wm−2 (scaled by 2 for comparison with 4×CO2 results239

of this study), is the only significant response to CO2, while the linear regression highlights additional240
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contributions from the LW cloud adjustment (∼ −0.2 Wm−2, scaled by 2) and water vapor (∼ −0.6 Wm−2,241

scaled by 2). The different results found by these studies highlight the sensitivity of adjustments to CO2 to the242

methodology employed. Having said that, previous studies’ estimates and ours remain qualitatively consistent.243

244

2.4 Estimate of feedbacks245

At first order, by neglecting interactions between variables, the feedback parameter, previously defined in Eq. 1246

and Eq. 18, is commonly split as the sum of the temperature (t), water vapor (wv), surface albedo (alb) and247

cloud (cl) feedback parameters (Bony et al, 2006; Soden et al, 2008), with a longwave (LW) and (SW) radiation248

contribution for the water vapor and cloud feedbacks. In addition, here, we consider a residual term Reλ, which249

reflects nonlinearities in the relationship between the TOA radiative flux changes and the climate responses (as250

for the adjustments in section 2.3): λ =
P

x λx + Reλ = λt + λwv + λalb + λcl + Reλ.251

252

As for the adjustments, all clear- and all-sky feedbacks (except the cloud feedback) are computed using the radiative253

kernel technique as follow:254

λx =
∂R

∂x

∆x

∆Ts,∆sst
(18)

where ∆x and ∆Ts,∆sst are computed by differencing the 10-year average (centered around the 130th year) model255

predicted climate in abrup4xCO2 from the 30-year climate of the sstClim4xCO2 simulation. By only considering256

the period between the abrupt4xCO2 and sstClim4xCO2 experiments, feedbacks are separated from tropospheric257

adjustments to CO2, and only depend on the surface temperature change when the oceans warm.258

To obtain tropospheric averages, the water vapor and temperature feedbacks are vertically integrated in the259

same way as for the tropospheric adjustments (see Section 2.3). We also separate the temperature feedback into260

the lapse rate component (λlr) and the Planck response (λp).261

262

As for the cloud feedback, we use the same approach as in Soden et al (2008), by estimating the changes in CRE263

and correcting for non-cloud feedbacks.264

∆CRE

∆Ts,∆sst
=

∆R−∆R0

∆Ts,∆sst
(19)

λcl =
∆CRE

∆Ts,∆sst
−

X
x

(λx − λ0
x), (20)

∆R and ∆R0 are with the same experiments as λx (i.e., between abrupt4xCO2 and sstClim4xCO2), and the265

exponent 0 indicates clear-sky variables. As there is no change in forcing between these experiments, the forcing266
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λp λlr λwv λwv+lr λalb λclsw λcllw λcl λwv+lr+alb+cl Reλ (%Reλ)

IPSL-CM5A-LR

GFDL -3.29 -0.97 1.86 0.89 0.18 0.81 0.38 1.18 2.23 0.03 (1.92)

NCAR -3.27 -0.97 1.94 0.97 0.16 0.89 0.32 1.21 2.32 -0.03 (1.57)

Diff 0.01 0.01 0.08 0.08 0.02 0.08 0.06 0.03 0.08 0.06

NorESM1-M

GFDL -3.19 -0.47 1.54 1.07 0.30 -0.14 0.29 0.14 1.47 0.16 (12.67)

NCAR -3.16 -0.46 1.59 1.13 0.26 -0.04 0.23 0.18 1.53 0.07 (5.45)

Diff 0.04 0.01 0.05 0.05 0.04 0.10 0.06 0.04 0.05 0.09

MPI-ESM-LR

GFDL -3.27 -0.88 1.76 0.89 0.29 0.01 0.46 0.45 1.61 0.28 (22.11)

NCAR -3.24 -0.87 1.83 0.96 0.25 0.12 0.40 0.51 1.68 0.18 (13.88)

Diff 0.03 0.00 0.07 0.07 0.05 0.11 0.06 0.05 0.08 0.11

INMCM4

GFDL -3.24 -0.67 1.62 0.95 0.33 -0.20 0.16 -0.05 1.20 0.06 (4.24)

NCAR -3.20 -0.66 1.68 1.02 0.29 -0.09 0.10 0.00 1.28 -0.05 (3.22)

Diff 0.04 0.01 0.06 0.07 0.05 0.10 0.06 0.05 0.07 0.11

HadGEM2

GFDL -3.18 -0.55 1.49 0.94 0.29 0.00 0.41 0.39 1.57 0.51 (51.98)

NCAR -3.14 -0.54 1.58 1.04 0.25 0.11 0.33 0.42 1.65 0.42 (43.00)

Diff 0.04 0.01 0.09 0.09 0.05 0.11 0.07 0.04 0.08 0.09

CanESM2

GFDL -3.23 -0.64 1.67 1.03 0.32 -0.21 0.74 0.52 1.83 0.19 (15.18)

NCAR -3.18 -0.64 1.72 1.07 0.26 -0.10 0.68 0.57 1.87 0.10 (8.38)

Diff 0.04 0.01 0.05 0.04 0.05 0.11 0.06 0.05 0.04 0.08

MIROC5

GFDL -3.22 -0.66 1.68 1.02 0.36 -0.22 0.28 0.04 1.38 0.10 (8.50)

NCAR -3.21 -0.63 1.74 1.11 0.33 -0.11 0.21 0.08 1.47 0.03 (2.36)

Diff 0.01 0.03 0.07 0.09 0.04 0.11 0.07 0.04 0.09 0.07

CCSM4

GFDL -3.18 -0.44 1.48 1.05 0.40 -0.27 -0.14 -0.42 1.00 -0.26 (18.51)

NCAR -3.14 -0.44 1.55 1.11 0.32 -0.13 -0.22 -0.36 1.04 -0.31 (21.85)

Diff 0.05 0.00 0.07 0.06 0.08 0.15 0.09 0.06 0.04 0.05

BNU-ESM

GFDL -3.15 -0.22 1.39 1.17 0.48 -0.17 0.28 0.09 1.70 0.28 (39.76)

NCAR -3.10 -0.23 1.43 1.20 0.39 -0.02 0.22 0.18 1.73 0.20 (28.58)

Diff 0.05 0.01 0.04 0.03 0.09 0.15 0.06 0.09 0.03 0.08

FGOALS-s2

GFDL -3.20 -0.53 1.73 1.20 0.37 -0.37 0.28 -0.10 1.43 0.60 (122.58)

NCAR -3.16 -0.52 1.77 1.25 0.32 -0.26 0.21 -0.06 1.47 0.53 (108.70)

Diff 0.04 0.01 0.04 0.05 0.06 0.11 0.07 0.05 0.03 0.07

MRI-CGCM3

GFDL -3.22 -0.61 1.53 0.92 0.37 0.21 -0.00 0.21 1.46 0.11 (8.72)

NCAR -3.17 -0.60 1.60 1.00 0.32 0.32 -0.09 0.23 1.51 0.06 (4.83)

Diff 0.05 0.01 0.07 0.07 0.05 0.11 0.09 0.02 0.04 0.05

Multimodel mean and intermodel standard deviation

GFDL -3.22 (0.04) -0.60 (0.21) 1.61 (0.14) 1.01 (0.11) 0.34 (0.08) -0.05 (0.33) 0.28 (0.23) 0.22 (0.42) 1.54 (0.32) 0.19 (0.23)

NCAR -3.18 (0.05) -0.60 (0.20) 1.68 (0.14) 1.08 (0.09) 0.28 (0.06) 0.06 (0.32) 0.22 (0.24) 0.27 (0.41) 1.59 (0.33) 0.11 (0.23)

Diff 0.04 0.00 0.06 0.07 0.05 0.11 0.07 0.05 0.06 0.08

Multi-model mean and inter-model standard deviation for the 6 models that exhibit a linear behavior (i.e., %Reλ < 10)

GFDL -3.23 (0.03) -0.67 (0.17) 1.65 (0.12) 0.98 (0.07) 0.31 (0.07) 0.04 (0.41) 0.31 (0.25) 0.34 (0.45) 1.60 (0.37) 0.11 (0.06)

NCAR -3.20 (0.04) -0.66 (0.17) 1.71 (0.13) 1.05 (0.06) 0.27 (0.06) 0.14 (0.40) 0.24 (0.26) 0.38 (0.45) 1.66 (0.37) 0.03 (0.06)

Diff 0.03 0.01 0.06 0.07 0.04 0.10 0.07 0.04 0.06 0.08

Table 3 Vertically-integrated (up to tropopause), global and annual mean of feedbacks parameters (in Wm2K−1) estimated using
both the GFDL and NCAR models’ radiative kernels, and their multi-model mean and inter-model standard deviation. Also shown
for each model, with the same units, is the difference in feedbacks’ strength between the two models’ kernels. The magnitude
of the residual term is also presented (Reλ, expressed in Wm−2K−1 and %Reλ into brackets, expressed in %), as well as the
multi-model mean and inter-model standard deviation for the 6 models that exhibit a linear behavior in the feedback period (for
which %Reλ < 10; see also in Section 2.5). Note that the multi-model means and inter-model standard deviations of the residual
term is only expressed in Wm−2K−1.
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terms in Eq. 23 to 25 of Soden et al (2008) are not included in the cloud feedback calculation. Note that in Eq.267

23 of Soden et al (2008), the change in CRE is constructed from the TOA flux change residual of the clear-sky268

feedback factors. In doing so, they assume that the clear-sky change in TOA flux (∆R0) can be decomposed into269

the sum of clear-sky responses (i.e.,
∆R0

∆Ts,∆sst
=

P
x λ0

x). This might be true for small perturbations, but it is not270

necessarily the case when the system is forced beyond 2×CO2 (Jonko et al, 2012; see also in Table 3 and Section271

2.5). Therefore, here, we compute the difference between these two terms as the residual term Reλ, which is used272

to measure the accuracy for the kernel approximation of model-derived clear-sky flux changes for the273

abrupt4xCO2 experiment.274

275

Reλ =
∆R0

∆Ts,∆sst
−

X
x

λ0
x (21)

As for the adjustments, we also express this quantity in percent, which is defined as:276

%Reλ =

˛̨̨̨
˛ Reλ

∆R0/∆Ts,∆sst

˛̨̨̨
˛× 100 (values into brackets in Table 3).277

278

Vertically-integrated, global and annual mean feedback parameters are shown in Table 3 for each model. For279

comparison, and to assess the robustness of our results, the feedbacks have also been computed using the280

Geophysical Fluid Dynamics Laboratory (GFDL 1) (Soden et al, 2008) models’ kernels. Both the GFDL and281

NCAR estimates, as well as their differences are shown in Table 3. On average over the set of models considered282

in this study, the two feedback calculations agree to within ±0.1 Wm−2K−1, and the inter-model spread is the283

same for both models’ radiative kernels. Larger uncertainties arise for the cloud components, but these are284

relatively small compared to the inter-model differences. These results indicate that the use of an alternative285

model’s kernel does not alter significantly the feedback strength nor its inter-model differences. However,286

according to the values of the residual term Reλ (last column in Table 3), the NCAR models’ kernels reproduce287

the TOA flux changes more accurately (i.e., Reλ
NCAR < Reλ

GFDL). In the remaining of the paper, all results are288

therefore presented for the NCAR models’ kernels only.289

290

2.5 Clear-sky linearity test291

The radiative kernel technique assumes a linear relationship between TOA radiative changes and the associated292

climate responses (i.e., Kx is constant, independent of models and climate states). The applicability of this293

method was verified for model responses to forcings of up to 2×CO2 (Jonko et al, 2012; Shell et al, 2008), but its294

adequacy seems reduced when the system is forced by 4 × CO2 and beyond (Block and Mauritsen, submitted;295

Jonko et al, 2012). In fact it has been recently shown that the radiative kernels are dependent on the control296

state climate and on the magnitude of the forcing (Block and Mauritsen, submitted; Jonko et al, 2012).297

298

1 the GFDL model’s kernels are available at http://metofis.rsmas.miami.edu/~bsoden/data/kernels.html
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Adjustments to CO2: all models

Adjustments to CO2: 8 models that exhibit a linear behavior

Fig. 3 Multi-model mean (solid lines) and inter-model standard deviation (shading) for the change in clear-sky TOA fluxes as
derived from model output (∆R0, in black), and for the sum of clear-sky adjustments and forcings derived from the NCAR model’s
kernels (

P
x F 0

x + G0, in red). Zonally-averaged fluxes in Wm−2. Panels (a)-(c) show the SW, LW and NET components for all

models. (d)-(f) is for the 8 models that exhibit a linear behavior (for %Ref < 10 in Table 2).

Feedbacks: all models

Feedbacks: 6 models that exhibit a linear behavior

Fig. 4 Same as Figure 3 but for the feedbacks. TOA flux changes derived from model output have been normalized by ∆Ts,∆SST

for comparison with the feedbacks. Units are Wm−2K−1. (a)-(c) is the SW, LW and NET components for all models, and (d)-(f)
is for the 6 models that exhibit a linear behavior (for %Ref < 10 in Table 3).

Here, we test the applicability of the kernel method on our range of climate models, by comparing the changes in299

clear-sky TOA radiative fluxes derived from the model simulations and the sum of clear-sky fluxes approximated300

by the kernels. This analysis is performed for the zonally-averaged SW, LW and NET components of the301

adjustments and forcings (Fig. 3) and the feedbacks (Fig. 4), in addition of the global-averaged residual terms302

computed for the adjustments (%Ref , Table 2) and the feedbacks (%Reλ, Table 3).303

The linear kernels are considered to be a useful tool for analyzes of feedbacks when the residual term is304
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comparable to or less than 10% relative to the simulated values (Jonko et al, 2012; Shell et al, 2008). We also use305

that criterion to test the ability of the kernels to reproduce the global-averaged simulated flux changes in the306

fixed-SST and the abrupt4xCO2 experiments.307

308

For both the adjustments and the feedbacks, there is a good agreement in the spatial structure of the309

multi-model mean simulated changes in clear-sky fluxes (black lines) compared to those estimated using the310

kernels (red lines). However, the magnitude and the inter-model spread of model-derived flux changes are not311

always well reproduced by the kernels.312

For the adjustments (top part of Fig. 3a-c), the NET TOA clear-sky radiative imbalance is positive everywhere313

and dominated by the LW forcings. A small positive contribution also arises from the SW component between314

60◦N and 90◦N, where there are surface albedo changes due to melting snow and sea-ice as land surfaces warm315

(Fig. 2c). Values of the residual term for the adjustments, reported for each model in Table 2 (%Ref ), tend to be316

relatively small, except for three models for which %Ref is just above 10% (IPSL-CM5A-LR, CCSM4 and317

FGOALS-s2). The ability of the kernels to reproduce the global averaged model-derived flux changes, arises,318

however, from hemispheric compensating errors in the LW component: the kernels systematically overestimate319

the model-derived flux changes between 60◦S and 90◦S, while over the Arctic the simulated flux changes are320

slightly underestimated (Fig. 3b).321

For the feedbacks (top part of Fig. 4a-c), the NET clear-sky flux changes are negative everywhere and dominated322

by the LW component, except over the Arctic and Southern Ocean because of strong SW flux changes associated323

with decreased surface albedo. There is a systematic difference over the poles, where the net radiative changes,324

computed using the kernels, are overestimated, while elsewhere they rather tend to be slightly underestimated325

(Fig. 4c). In most models the kernels overestimate the model-derived SW flux change over the Arctic and326

Southern Ocean (Fig. 4a). As for the changes in LW flux, the kernels generally underestimate the model-derived327

values between 30◦S and 30◦N (Fig. 4b), while no clear tendency emerges at middle and high latitudes because328

of a large inter-model spread in the differences between the kernel- and the model-derived changes (not shown).329

We find that the linear kernel analysis is applicable to six models only for the feedback calculation, namely330

IPSL-CM5A-LR, NorESM1-M, INMCM4, CanESM2, MIROC5 and MRI-CGCM3 (for which %Reλ < 10 in331

Table 3).332

333

The results presented in Fig. 3 and Fig. 4 also show that the kernel method tends to underestimate the334

inter-model standard deviation of the changes in clear-sky fluxes (compare the red and grey shadings). The bias335

introduced by the kernel method essentially affects the clear-sky LW component over the tropics and the336

mid-latitudes (Fig. 3b and 4b).337

We repeated the calculations shown in Fig. 3a-c and 4a-c, but by only using the models that behave linearly, for338

which %Ref < 10 and %Reλ < 10, respectively, and we find that the inter-model spread of kernel-derived339

clear-sky flux changes is now in good agreement with that of model-derived values (bottom part of Fig. 3d-f and340

Fig. 4d-f).341

342
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Finally, large deviations from linearity are found in the feedbacks for MPI-ESM-LR (14%), HadGEM2 (43%),343

CCSM4 (22%), BNU-ESM (29%), FGOALS-s2 (109%), and in the forcings for IPSL-CM5A-LR (11%), CCSM4344

(14%) and FGOALS-s2 (18%), which call into question the robustness of the linear assumption in the calculation345

of feedbacks and forcings for those models. Given the results presented in this section, the kernel method might346

have quantitative limitations for these models that exhibit a nonlinear behavior, but is qualitatively consistent347

with model-derived analysis. In the remaining of the paper, we therefore present our analysis using all models,348

but to ensure robustness in our interpretations, we verify our conclusions by restricting our analysis to the349

models that exhibit a linear behavior in the forcing or feedback period.350

351

2.6 Relative contributions of feedbacks and adjustments to climate sensitivity352

Here, we follow the methodology employed in Dufresne and Bony (2008) to decompose the contributions of the353

different feedbacks and adjustments to the equilibrium global temperature change ∆T e
s .354

The energy balance in Eq. 9, combined with Eqs. 10-21, separating the Planck feedback from the non-Planck355

feedbacks and normalizing by the Planck feedback, can be rewritten as:356

∆Ts,∆sst =
−1

λp

24F + Fadj −∆R +

0@X
x6=p

λx + Reλ

1A ∆Ts,∆sst

35 (22)

At equilibrium, when ∆R = 0, it becomes:357

358

∆T e
s,∆sst =

−1

λp

24F + Fadj +

0@X
x6=p

λx + Reλ

1A ∆T e
s,∆sst

35 (23)

with ∆T e
s,∆sst =

F ′

λ′
(by substituting F and λ for F ′ and λ′ in Eq. 2).359

Finally, because we consider the radiative changes due to land surface warming as part of the forcings rather than360

of the feedbacks (which therefore act to reduce the effective forcing - see Fig. 1), we must add to the equilibrium361

global temperature change when the ocean warms in Eq. 23 the contribution from the warming of land surfaces362

∆Ts,0. Therefore, the total equilibrium global temperature change is defined as:363

∆T e
s =

−1

λp

24F + Fadj +

0@X
x6=p

λx + Reλ

1A ∆T e
s,∆sst

35 + ∆Ts,0 = ∆T e
s,∆sst + ∆Ts,0 (24)

From Eq. 24, we define:364

365

the Planck response associated with the stratosphere-adjusted forcing (F ):366
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∆Ts,F = − F

λp
, as in Eq. 4 of Dufresne and Bony (2008) (25)

the Planck response associated with all the tropospheric adjustments to CO2 forcing and land surface warming:367

∆Ts,Fadj
= −

Fadj

λp
+ ∆Ts,0 (26)

More explicitely, this term includes direct adjustments to CO2 and adjustments to land surface warming368

associated with temperature, water vapor, albedo and clouds, the residual for the forcings (Ref ), and the actual369

small warming of land surfaces (∆Ts,0, largely compensated by the radiative cooling of the Planck component370

Fp).371

372

the temperature change associated with each feedback parameter x, in response to the atmosphere-adjusted forcing373

F ′:374

∆Ts,x = −λx

λp
∆T e

s,∆sst (27)

and the temperature change associated with the feedback residual term Reλ:375

∆Ts,Re = −Reλ

λp
∆T e

s,∆sst (28)

such that:376

∆T e
s = ∆Ts,F + ∆Ts,Fadj

+
X

x6=p,adj

∆Ts,x + ∆Ts,Re, (29)

3 Decomposition of climate sensitivity estimates from CMIP5 models377

The climate sensitivity estimates of the 11 models considered in this study (as computed from Eqs. 22-29 and378

reported in Table 1) range between 1.9 and 4.4 degrees for a doubling of CO2 concentration. This range is similar379

(although slightly lower) to that of CMIP3 (Randall et al, 2007) and to that of CMIP5 diagnosed by Andrews380

et al (2012) using a different methodology. Actually, the differences between Andrews et al (2012)’s estimates381

and ours remain within ±5% for 7 models that are analyzed in both studies, while one model only (INMCM4)382

exhibits a larger difference between the two methodologies (9.5% difference). These results are therefore rather383

promising given all the uncertainties involved in estimating the climate sensitivity of models, and the very384

different nature of the two methodologies.385

386



18 Jessica Vial et al.

We now analyze the decomposition of equilibrium temperature changes into forcing and feedback terms, as387

described in section 2.6, for the 11 models (in Table 1). In addition, each contribution to the equilibrium388

temperature change is separated into three different regions: the tropics (between 30◦S and 30◦N), the389

mid-latitudes (between 30◦ and 60◦ in each hemisphere) and the poles (between 60◦ and 90◦ in each390

hemisphere). Each regional contribution is weighted by its respective surface area, so that the sum of all regions391

equals the global value.392

393

3.1 Multi-model mean analysis394

The multi-model mean of the equilibrium temperature change ∆Ts, decomposed into regional contributions,395

feedbacks and into the Planck response of stratosphere-adjusted forcing and adjustments, is shown in Figure 5a.396

On average over the set of models considered in this study, about 43% of the global warming is associated with397

the direct response to CO2 forcing (∼36% for the stratosphere-adjusted forcing and ∼7% for the adjustments),398

and 57% from the feedbacks: ∼32% of the warming arises from the combined water vapor + lapse rate (hereafter,399

WV+LR), ∼10% from clouds, ∼8% from surface albedo and ∼7% from the feedback residual term. When we400

restrict our analysis to the 6 models for which the residual term is lower than 10% (in Table 3), the contribution401

to ∆Ts arising from clouds increases up to 14% and that of the residual term becomes less than 3%, while the402

contribution from the other components changes by at most 2% (not shown). This suggests that errors of403

nonlinearity introduced by the radiative kernels in the calculation of feedbacks mainly affect the temperature404

change resulting from the cloud feedback.405

406

These results are qualitatively similar to those reported by Dufresne and Bony (2008). However, quantitative407

differences may arise from the fact that cloud adjustments are now included in the forcing term rather than in408

the feedback term. Indeed, the cloud feedback is found to be 33% weaker on average when the adjustments are409

considered as part of the forcings rather than of the feedbacks (see section 4.2, where different measures of the410

cloud feedback are compared). As demonstrated in section 2.1, if the climate sensitivity is not affected by the411

methodology (this is verified with an uncertainty to within ±3%), the feedback parameter, however, is (according412

to the relation in Eq. 4 and Fig. 1). The total feedback parameter is about 11% stronger (not shown) compared413

to the previous methodology (Eq. 6).414

It is interesting to mention that the differences between the adjusted feedback parameters (calculated between415

sstClim4xCO2 and abrupt4xCO2) and the non-adjusted feedbacks (calculated between sstClim and416

abrupt4xCO2) - not shown - are rather small for the non-cloud feedbacks (2% difference for the temperature and417

albedo feedbacks and 6% difference for the water vapor feedback) and for the feedback residual term (5%418

difference). This suggests that the positive cloud adjustment (as reported in Table 2) is the main component that419

can alter the feedback parameter, and that the non-cloud adjustments (associated with temperature, water vapor420

and albedo) seem to be better understood as responses to land surface warming.421

422



On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates 19

It appears in Figure 5a (left bar) that each latitude belt contributes to global ∆Ts in proportion of its area: the423

tropical contribution (between 30◦S and 30◦N) is ∼50%, ∼35% arises from the mid-latitudes (between 30◦ and424

60◦ in each hemisphere) and ∼15% from polar regions (between 60◦ and 90◦ in each hemisphere). Note however425

that regional contributions to the inter-model spread are not necessarily proportional to their area extent.426

427

3.2 Feedback parameters428

The amplitude of ∆Ts associated with the Planck response (i.e., of stratosphere-adjusted forcing + adjustments,429

obtained by summing Eq. 25 and 26) and the feedbacks is shown in Figure 5b. The contributions from the430

different regions is also represented for each component, and the sum of all regions (represented by the black431

dots) corresponds to the global climate sensitivity estimate (also reported in Table 1).432

For all models, the contribution to ∆Ts from the Planck response to forcing is the greatest in the tropics (light433

grey) and the smallest over the poles (dark grey). A similar tendency is observed for the clouds (in red), the434

residual term (in purple) and the combined water vapor + lapse rate feedback (in blue). However, as expected435

from sea-ice loss and snow melt with rising temperatures, the albedo feedback is the largest over polar regions436

(green shading).437

438

Inter-model differences occur for each feedback, but those associated with cloud feedbacks are the largest (Fig.439

5b). As a result, the spread of climate sensitivity (black dots) is primarily driven by the spread of cloud440

feedbacks, especially tropical cloud feedbacks (light red). This is confirmed by the comparison of the normalized441

inter-model standard deviation associated with each feedback and each region (Fig. 6a for all models and Fig. 7a442

for the 6 models with %Reλ < 10), and by the inter-model regression of the feedbacks against the global mean443

temperature change (Fig. 8). These maps of regression slopes indicate the feedbacks and the regions the most444

strongly associated with the inter-model spread in climate sensitivity. Figure 8f shows that high sensitivity445

models tend to have strong positive cloud feedbacks in the tropics (with contributions from the SW component446

in subsidence zones - Fig. 8d, and from the LW component in convective regions - Fig. 8e), but also over the447

oceanic basins in the mid-latitudes (because of reduced cloud-albedo effect in the storm track regions - Fig. 8d).448

Inter-model differences in cloud feedbacks represent about 55% the standard deviation of climate sensitivity in449

Fig. 6a. This estimate is substantially reduced as compared to the “70%” reported by Dufresne and Bony (2008),450

and this is not due to the fact that tropospheric adjustments to CO2 are now included in the forcing term rather451

than in the feedback term. It is, however, highly sensitive to the feedback residual term (which contributes for452

34% to the inter-model standard deviation in ∆Ts in Fig. 6). When we restrict our analysis to the 6 models that453

have a small residual term (i.e., %Reλ < 10 in Table 3), its contribution to the inter-model standard deviation in454

∆Ts drops to only 10%, while that of the cloud feedbacks increases up to 70% (Fig. 7a). The tropics is clearly the455

region where the spread in cloud feedbacks is the largest (∼48%), followed by the mid-latitudes (∼23%) and the456

poles (∼3%).457

The contribution of WV+LR to the inter-model spread in climate sensitivity, which is the second most458

important source of spread in ∆Ts, is lower for the models that have a small residual term (∼30% in Fig. 7a)459
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than when all models are considered (∼40% in Fig. 7a). For this component, the spread also primarily originates460

from the tropics, and is mainly driven by the water vapor feedback (Fig. 8b), while the lapse rate feedback tends461

to be more strongly associated with the temperature spread over the middle and high latitudes (Fig. 8a).462

The spread of climate sensitivity arising from the direct response to CO2 (i.e., stratosphere-adjusted forcing +463

adjustments) is less than 15% in Fig. 7a, with the largest contributions in the tropics and the mid-latitudes464

(∼ 6% of ∆Ts in each region). The temperature spread resulting from the surface albedo is the smallest (< 10%465

in Fig. 7a), with the largest contribution over polar regions (see also in Fig. 8c).466

467

3.3 Adjustments to CO2 forcing and land surface warming468

A similar analysis is performed for the Planck response to tropospheric adjustments associated with water vapor,469

lapse rate, surface albedo, clouds, and the residual for forcings (Fig. 5c, 6b and 7b). Recall also from Eq. 26 that470

there is a contribution from surface temperature, which includes the actual warming of land surfaces (∆Ts,0) and471

the Planck response (Fp). We consider those two components together rather than each term individually,472

because they are strongly correlated and largely offset each other (Fp + ∆Ts,0, in Fig. 5c).473

474

The sum of all adjustments produces a small warming (∆Ts,Fadj
), ranging betwenn 0.04 K and 0.54 K (black475

dots in Fig. 5c). No correlation appears between the spread associated with adjustments and that associated476

with feedbacks. On average over the 11 models, the largest adjustment arises from the clouds (53% of ∆Ts,Fadj
),477

followed by the WV+LR (22%), the albedo (11%), the residual term (8%) and the contribution from land surface478

warming (6%). When we only consider the 8 models that have a small residual term (i.e., %Ref < 10 in Table 2),479

there is an increased contribution from the clouds (up to 64% of ∆Ts,Fadj
), which tends to be compensated by a480

decreased contribution from the residual term, while the other components remain fairly similar (as also seen in481

Table 2). Therefore, similarly to the feedbacks, it seems that the residual term essentially affects the temperature482

change associated with cloud adjustments.483

484

Although the multi-model mean of the cloud response is the greatest, the residual term constitutes the largest485

spread in the amplitude and in the sign of the adjustments (Fig. 5c). The contribution of Ref to the inter-model486

standard deviation in ∆Ts is also the largest among all adjustments, especially in the tropics (Fig. 6b), and this487

result remains robust when we restrict the analysis to the 8 models with Ref < 10 (Fig. 7b). Having said that,488

the residual term for the forcings only contribute for about 9% of the temperature spread in Fig. 7b, which is489

weaker than for any feedback parameter in Fig. 7a. And therefore, the inter-model spread of climate sensitivity490

arises primarily from the spread of feedbacks rather than adjustments.491

492

The spread resulting from the cloud adjustment is nearly 8% of the inter-model difference in ∆Ts (Fig. 7b). The493

tropics contribute the most to the global response in clouds (35% of the multi-model mean for the 8 models with494

%Ref < 10), but it is not the principal source of spread. The tropics and the mid-latitudes contribute almost495

equally to the temperature spread (Fig. 7b), while the polar regions constitute the smallest spread.496
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The WV+LR response is weaker than that of the net cloud adjustment (Fig. 5c), with polar regions contributing497

the most to the global response because of a positive lapse rate response associated with a larger surface warming in498

these areas, and a relatively small water vapor response in warm regions. Over the tropics and the mid-latitudes the499

WV+LR adjustment is similar, with a weak but positive (negative) WV (LR) response consistent with the slight500

land and tropospheric warmings associated with increased CO2 concentration. Although the greatest WV+LR501

adjustment is over polar regions, the largest spread is, as for the feedbacks, over the tropics (in Fig. 6b and Fig.502

7b).503

The amplitude of adjustment associated with the surface albedo is small, each region contributing equally to the504

global response, but its contribution to the spread in ∆Ts is comparable to that of the WV+LR adjustment (in505

Fig. 6b and Fig. 7b), although slightly greater in the tropics and the mid-latitudes. The high tropical surface albedo506

response (e.g., for models 1 and 9 in Fig. 6b) arises from semi-arid land regions (e.g., over Central Australia, the507

Sahel - see the multi-model mean in Fig. 2). The adjustment in surface albedo has been further analyzed (not shown)508

by separating the contribution from the change in incoming SW radiation and the change in reflected SW radiation509

at the surface, under clear-sky and all-sky conditions. It is found that the incoming flux depends, as expected, on510

the cloud cover (i.e., with an increase in incoming solar radiation at the surface when the cloud cover decreases,511

and vice versa), while the reflected flux (which decreases over continental regions in the Northern Hemisphere,512

the Sahel and central Australia) is the same under clear- and all-sky conditions. This potentially suggests a link513

between direct or indirect CO2-induced changes in vegetation, in turn impacting the surface reflectance (Denman514

et al, 2007).515

The multi-model mean and inter-model spread resulting from land surface warming (Fp + ∆Ts,0) is the smallest516

in Fig. 5c, 6b and 7b.517

3.4 Summary518

Considering climate adjustments to CO2 does not alter climate sensitivity estimates, but does affect the quantifi-519

cation of feedbacks. Indeed, the multi-model mean cloud feedback is reduced by about 33%. However, it does not520

affect the spread of feedbacks. Cloud feedbacks remain the main contribution to the spread of climate sensitivity,521

especially the tropical cloud feedbacks. To a lesser extent, the tropical WV+LR feedback also contributes to the522

spread of climate sensitivity estimates. The tropical cloud and WV+LR feedbacks are analyzed further in the next523

section.524

Finally, our results point to a substantial role of the residual term in the calculation of adjustments and feedbacks525

for the interpretation of inter-model spread in climate sensitivity estimates, and caution against the use of methods526

that include the residual term into one of the linear components (e.g., the cloud feedback of Soden and Held, 2006).527
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4 Analysis of the spread of climate feedbacks in the tropics528

4.1 The combined water vapor + lapse rate feedbacks529

In this section we analyze the role of relative humidity (RH) changes to understand the amplitude and the530

spread of the tropically-averaged WV+LR feedback seen in Fig. 5 and 6. This is done by following the method531

proposed by Soden et al (2008), whereby the water vapor feedback is recomputed by multiplying the water vapor532

kernel with the simulated change in atmospheric temperature and assuming no change in simulated RH (see Eq.533

20 and 21 of Soden et al (2008) for more details). Hereafter, we refer to this feedback as the fixed-RH WV534

feedback (see also Held and Shell, 2012 for an alternative feedback decomposition using relative humidity).535

Figure 9 shows the tropically-averaged, annual-mean vertical profiles of the WV+LR (a), WV (b) and LR (c)536

feedbacks, as well as the fixed-RH WV+LR (d) and WV (e) feedbacks, and the contribution of RH changes to537

the WV feedback (computed as the differences: λwv − fixed-RH λwv; this quantity is referred hereafter to as λ̃wv,538

and is shown in f). As already reported in Soden and Held (2006) and Soden et al (2008), the strength of the539

WV feedback is weaker by about 5% than that computed under the assumption of fixed-RH (difference between540

the two vertically-integrated global-mean, annual-mean feedbacks - not shown). This difference arises primarily541

from the upper troposphere (above 400 hPa - compare Fig. 9b and e), and is consistent with a reduction in542

upper-tropospheric relative humidity in all models (as seen in Fig. 9f by negative values of λ̃wv). This feature is543

robust over the set of models considered in this study. The spread of the WV+LR feedback computed with the544

assumption of fixed-RH is considerably reduced throughout the troposphere (Fig. 9d), which confirms that the545

spread in WV+LR is mainly controlled by departures from constant relative humidity as simulated by climate546

models, and that changes in relative humidity alter the radiative coupling between the water vapor and lapse rate547

feedback (Bony et al, 2006). Indeed, the spread of the WV+LR feedback closely follows that of λ̃wv (compare548

Fig. 9a and 9f): models with high WV+LR feedback have large increase in RH (and vice versa). This appears549

also clearly when we consider the WV+LR feedback plotted as a function λ̃wv over the tropics (Fig. 10): these550

two components are well correlated over the tropics, and the spread in WV+LR feedback in this region can be551

explained by different changes in RH simulated by the models. Note however that no clear relation arises in the552

mid-latitudes, and no change in RH over the poles occur (not shown). The spread of the WV+LR feedback in the553

mid-latitudes and the poles can however be explained by inter-model differences in LR feedbacks (not shown).554

Water vapor in the upper troposphere is recognized as playing a key role in the water vapor feedback (Held and555

Soden, 2000). The present results show however that the upper-tropospheric WV and LR feedbacks largely offset556

each other, with even a tendency for a greater contribution from the lapse rate resulting in a negative WV+LR557

feedback between 300 hPa and 200 hPa (Fig. 9a). Below 300 hPa, however, the contribution from the positive558

WV feedback increases up to a maximum near 700 hPa. These results therefore suggest that the positive559

WV+LR feedback arises mostly from the mid-troposphere between 500 hPa and 900 hPa.560

561
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4.2 Cloud feedbacks562

About 70% of the inter-model spread in climate sensitivity estimates arises from differing cloud feedbacks563

(section 3). Although many areas contribute to these differences, the tropics play a prominent role in the spread564

of global cloud feedbacks (Figure 7a). In this section, we analyze further the origin of this spread.565

566

Historically, two main approaches have been used commonly to analyze the response of clouds to climate change:567

the diagnostic of cloud feedbacks through Partial Radiative Perturbation (PRP) or kernel approaches (Soden and568

Held, 2006; Wetherald and Manabe, 1988), and the change in CRE at the top of the atmosphere (∆CRE)569

between control and perturbed climate states (Cess et al, 1990), which constitutes a much simpler diagnostic. It570

is recognized that owing to cloud-masking effects, the sign of ∆CRE can differ from that of the cloud feedback (a571

negative ∆CRE being generally associated with a neutral or weakly positive cloud feedback) and that both572

measures differ by an offset of about 0.3 Wm−2K−1 (Soden and Held, 2006; Soden et al, 2004). Besides573

cloud-masking effects, how do cloud adjustments to CO2 alter the relationship between ∆CRE and cloud574

feedbacks?575

576

Figure 11 shows that excluding cloud adjustments from the definition of cloud feedbacks also affects the577

magnitude of cloud feedback estimates (compare the star and triangle symbols in Fig. 11). On average over the578

set of models considered, the magnitude of the NET cloud feedback is reduced by about 33% when the cloud579

adjustments are considered as part of forcing rather than of feedbacks. In addition, cloud feedbacks remain580

strongly correlated with the basic ∆CRE (i.e. the ∆CRE not corrected for cloud-masking effects and581

adjustments to CO2), both at the global scale (Fig. 11) and at the tropical scale (Fig. 12). Any of these582

diagnostics may thus be considered for analyzing the spread of cloud feedbacks amongst models.583

584

In the tropics, 6 models predict a positive or neutral cloud feedback (Fig. 12). To understand why some models585

have a larger cloud feedback than others, we use the methodology proposed by Bony et al (2004) whereby the586

cloud feedback (or CRE sensitivity to surface temperature change,
∆CRE

Ts
) is composited into different587

dynamical regimes defined from the large-scale mid-tropospheric (500 hPa) vertical velocity (ω). By using this588

variable as a proxy of the large-scale tropical circulation (between 30◦S and 30◦N), we discretize the tropical589

geographical pattern into regions of subsidence and ascendance for positive and negative values of ω, respectively.590

591

Using this method, the tropically-averaged CRE (C̄, in Wm−2K−1) can be expressed as:

C̄ =
X
ω

PωCω, (30)

where Pω is the probability of occurrence of regime ω and Cω is the CRE sensitivity in the regime ω.592

Now, following Eq. 30, the cloud feedback or CRE sensitivity (∆̄C) is written as:

∆̄C =
X
ω

Cω∆Pω +
X
ω

Pω∆Cω +
X
ω

∆Cω∆Pω, (31)
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where ∆Cω and ∆Pω are the changes in Cω and Pω, respectively.593

594

The first two terms of Eq. 31 quantify CRE changes that arise from large-scale circulation changes (referred to as595

the dynamical component), and changes in cloud-radiative properties which are not primarily related to596

dynamical changes (referred to as the thermodynamical component), respectively. The third term, which arises597

from the co-variation of dynamical and thermodynamical components, is much weaker than the two other terms.598

For this reason, the following analysis will be focusing on the dynamical and thermodynamical components.599

As done by Bony and Dufresne (2005), we group the 11 models into two categories (5 high-sensitivity models and600

6 low-sensitivity models) according to their tropically-averaged NET cloud feedbacks or ∆CRE/∆Ts601

(high-sensitivity models are in red in Fig. 12). Then, the multi-model mean and inter-model spread of the602

dynamical and thermodynamical components of the tropical cloud feedback or ∆CRE/∆Ts are computed for603

each group. The results being very similar for both measures, and when considering land+ocean regions or ocean604

regions only, hereafter we present only the results for the cloud feedback over tropical oceans.605

Inter-model differences in tropical NET cloud feedbacks primarily arise from the SW component. Figure 13606

shows that it is the SW thermodynamical component of the feedback which best discriminates the two groups of607

models. All dynamical regimes, from deep convective to subsidence regimes, contribute to these differences.608

However, the regimes of weak subsidence and of moderate large-scale rising motion (from -10 to +30 hPa/day)609

have a predominant role in the spread, both because these regimes are associated with a larger contrast between610

the two groups of models (Fig. 13 left panels), and because of the large statistical weight of these regimes in the611

tropics (PDF of ω500, Fig. 13 middle panels).612

613

To facilitate the comparison between these results and those associated with CMIP3 models, we also compute614

the change in CRE predicted by the two groups of models, normalized by the surface temperature change615

predicted within each dynamical regime as done by Bony and Dufresne (2005) (Figure 14). As in climate change616

the tropical SST does not rise uniformly, the sensitivity of the SW CRE to local rather than global surface617

temperature changes is slightly enhanced (reduced) in subsidence (convective) regimes. The comparison of618

Figures 13 and 14 also shows the offset of the LW component, and then of the NET ∆CRE, when cloud-masking619

effects are not accounted for. Differences in the SW component between the low and high sensitivity groups of620

models remain roughly similar, however, although more pronounced in regimes of subsidence.621

622

Compared to CMIP3, the spread of tropical cloud feedbacks among CMIP5 models thus arises from a larger range623

of dynamical regimes, ranging from weak large-scale rising motions to subsidence regimes. Given the predominance624

of shallow cumulus and stratocumulus clouds in these regimes, it is likely that the responses of boundary-layer625

processes and shallow convection to climate change, and of the different clouds associated with them, constitute626

a critical component of the climate sensitivity uncertainty. Although local feedback processes might explain part627

of inter-model differences (Zhang and co authors, submitted), the possibility that inter-model differences in cloud-628

radiative responses in these regimes be driven by remote responses of deep convection can not be ruled out and629

will have to be investigated.630
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5 Conclusion631

In this paper, we propose an alternative approach to diagnose the radiative forcing, fast adjustments, feedbacks632

and the climate sensitivity in CMIP5 climate models. We use the NCAR model’s radiative kernels (Shell et al,633

2008) to analyze the different feedbacks and adjustments, by considering tropospheric adjustments to CO2 and634

land surface warming as part of forcings rather than feedbacks. The amplitude and inter-model spread of climate635

sensitivity is quantified, and decomposed into different contributions related to individual adjustments and636

feedbacks, and into regional contributions. We show that in climate model simulations with large forcing (e.g.,637

4 × CO2), nonlinearities in the calculation of adjustments and feedbacks play a non-negligible role for the638

interpretation of inter-model spread in climate sensitivity estimates (also consistent with Jonko et al, 2012’s639

findings). We therefore caution against the use of methods in which nonlinearities are assumed minor and640

included into one of the linear components (e.g., the cloud feedback of Soden and Held, 2006).641

Taking into account the tropospheric adjustments to CO2 does not affect the estimate of climate sensitivities.642

For a doubling of CO2 concentration, the equilibrium global-mean temperature change estimates range from 1.9643

to 4.4 degrees. This range is similar to that of CMIP3 (Randall et al, 2007) and to that diagnosed by Andrews644

et al (2012) for CMIP5 models using a different methodology. On the other hand, considering tropospheric645

adjustments to CO2 does alter the quantification of feedbacks. The total feedback parameter is increased by646

about 11% compared to the previous methodology in which the adjustments to CO2 were included in the647

feedbacks rather than in the forcing. The cloud feedback is the most affected, with a reduction of about 33%648

relative to the previous method’s estimates, while the non-cloud adjustments (associated with temperature,649

water vapor and albedo) seem to be better understood as responses to land surface warming. The effect of cloud650

adjustments on feedbacks is qualitatively consistent but quantitatively weaker than found by Andrews and651

Forster (2008) using a different methodology to diagnose feedbacks. Moreover, and unlike Andrews and Forster652

(2008), the consideration of the adjustments to CO2 does not reduce the inter-model spread of feedbacks653

amongst CMIP5 models. Cloud feedbacks remain the main contributors to the spread of climate sensitivity,654

especially tropical cloud feedbacks. The tropical combined water vapor + lapse rate feedback also contributes655

substantially to the spread of climate sensitivity, although to a lesser extent.656

Further analysis of the tropical combined water vapor + lapse rate feedback shows that changes in relative657

humidity, as simulated by climate models, affect the radiative coupling between the water vapor and lapse rate658

feedback. The spread of the tropical combined water vapor + lapse rate feedback is entirely due to different659

simulated changes in relative humidity throughout the troposphere.660

Like in CMIP3, the spread of tropical cloud feedbacks primarily arises from differing changes in the shortwave661

cloud-radiative properties in regions of shallow convection (where shallow cumulus and stratocumulus clouds662

prevail), which in turn result from changes in the thermodynamic structure of the tropical atmosphere.663

Interpreting this spread in terms of local and remote physical processes and using observations to assess the664

relative reliability of the different model responses clearly remains a scientific challenge for the years to come.665

However, the wealth of CMIP5 experiments and output now available constitutes a wonderful opportunity to666

make progress on that matter.667

668
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Fig. 5 (a) multi-model mean of the climate sensitivity estimate ∆Ts, separated into regional contributions from the tropics
(between 30◦S and 30◦N), the mid-latitudes (between 30◦and 60◦ in each hemisphere) and the poles (between 60◦and 90◦ in each
hemisphere) (left) and into its different components, including the Planck response to stratosphere-adjusted forcing (F, Eq. 25), the
Planck response to the adjustments to CO2 forcing and land surface warming (ADJ, Eq. 26), the combined water vapor + lapse rate
(WV+LR), the albedo (ALB), the cloud (CL) feedbacks (Eq. 27) and the feedback residual term (Reλ, Eq. 28) (right). (b) climate
sensitivity estimates (as indicated by the black dots) associated with the Planck response to the stratosphere-adjusted forcing and
the adjustments (F’, in grey - obtained by summing Eq. 25 and Eq. 26), the combined water vapor + lapse rate feedback (WV+LR,
in blue), the albedo feedback (ALB, in green), the net could feedback (CL, in red) and the feedback residual term (Re, in purple),
computed for each of the 11 models listed in table 1. ∆Ts,F + ∆Ts,Fadj

, ∆Ts,x and ∆Ts,Re’s are also decomposed into the three

different regions: the tropics (light shading), the mid-latitudes (medium shading) and the poles (dark shading). (c) global mean
surface temperature change (as indicated by the black dots) associated with the Planck response to land surface warming (Fp) +
∆Ts,0 (grey), the adjustments for the combined water vapor + lapse rate (blue), the albedo (green), the net could adjustments (red)
and the residual term (purple). The models are sorted according to increasing ∆Ts, and model numbers correspond to the listing
in Table 1. The last column (M) in panels (b) and (c) correspond to the multi-model mean for the feedbacks and adjustments,
respectively. Note the different scales of the temperature change (y-axis) among each panel.
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All models:

Fig. 6 (a) Inter-model standard deviation of climate sensitivity estimates associated with the atmosphere-adjusted forcing (which
includes the Planck response to the stratosphere-adjusted forcing and to the adjustments) and the feedbacks in each region,
normalized by the inter-model standard deviation of ∆Ts (no units). Note that for this metrics, the contributions from the different
regions are not additive, and the normalized inter-model standard deviation of ∆Ts over the globe is reported as black dots. (b) same
as (a), but for the Planck response to the adjustments only. (c) Inter-model standard deviation of climate sensitivity estimates (in
Kelvin) associated with the atmosphere-adjusted forcing (which includes the Planck response to the stratosphere-adjusted forcing
and to the adjustments) and the feedbacks (λ). The last bar (TOTAL) is the inter-model standard deviation of ∆Ts associated
with both the forcing and the feedbacks. Note the different scales and units on the y-axis among each panel. Note also that, unlike
it appears in panel (c), the regional contributions to the inter-model standard deviation are not necessarily proportional to their
area extent.

6 models with %Reλ < 10: 8 models with %Ref < 10:

Fig. 7 (a) Same as Figure 6a, but for the 6 models for which the residual for the feedbacks %Reλ < 10 (see Table 3). (b) Same
as Figure 6b, but for the 8 models for which the residual for the adjustments %Ref < 10 (see Table 2).
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Fig. 8 Inter-model regression slopes of the lapse rate (a), water vapor (b), albedo (c) and cloud (SW in d; LW in e; NET in f)
feedbacks against the global mean surface temperature change for the 11 models considered in this study and reported in Table
1. Large values indicate the regions where the feedbacks are the most strongly associated with the inter-model spread in climate
sensitivity.
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Fig. 9 Tropically-averaged, annual-mean vertical profile of the WV+LR (a), WV (b), LR (c), WV+LR (assuming fixed RH, d),
WV (assuming fixed RH, e) feedbacks and the contribution of the WV feedback arising from changes in RH (f).
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Fig. 10 Vertically-integrated, tropically-averaged, annual mean WV+LR feedback for the 11 models plotted as a function of the
vertically-integrated, tropically-averaged, annual mean contribution of RH changes to the WV feedback.

Fig. 11 Global and annual mean of three cloud sensitivity measures for the SW, LW and NET components computed for the set
of models considered: the cloud feedback computed, using the NCAR model’s radiative kernels, by considering the adjustments to
CO2 as part of the forcing rather than the feedbacks (stars), the cloud feedbacks that include the adjustments to CO2 (triangles),
and the changes in CRE, normalized by ∆Ts, that include the adjustments to CO2 and that are not corrected for cloud-masking
effects (circles).

Fig. 12 Tropically-averaged cloud feedback parameter (estimated using the NCAR kernels) plotted as a function of the change
in cloud radiative effect (i.e., including cloud adjustments, and without correction of the cloud-masking effect) normalized by the
global mean surface temperature change over the tropics. Models that predicts a greater tropically-averaged NET cloud sensitivity
(i.e., cloud feedback or change in CRE) than the tropically-averaged multi-model mean NET cloud sensitivity are shown in red (5
models), and those predicting a lower cloud sensitivity than the multi-model mean are in black (6 models)
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Fig. 13 SW (top), LW (middle) and NET (bottom) cloud feedback (∆̄C) composited in each dynamical regime (left), the con-
tribution from the thermodynamic component (Pω∆Cω , middle) and from the dynamic component (Cω∆Pω , right). Results are
presented for two groups of models: models that predicts a greater tropically-averaged NET cloud feedback than the tropically-
averaged multi-model mean NET cloud feedback (in red, 5 models), and those with a lower cloud sensitivity than the multi-model
mean (in blue, 6 models). Vertical bars show the inter-model standard deviation in each group. Cloud feedbacks are estimated using
the NCAR model’s radiative kernels.

Fig. 14 Same as the left panel of Figure 13, but for the change in CRE, normalized by the mean surface temperature change in
the regime ω. The models that predict a greater change in the tropically-averaged NET CRE than its multi-model mean are in red
(i.e., multi-model mean for this group), and models that predict a lower change are in blue.


