Climate Modeling of Ice Supersaturation and Haze at Dome C, Antarctica

J.-B. Madeleine^{1*}, H. Gallée², R. Forbes³, D. Veron⁴, C. Genthon², F. Hourdin¹, F. Lemonnier¹, L. Piard²

* jean-baptiste.madeleine@lmd.jussieu.fr
¹ LMD (Paris, FR), ² IGE (Grenoble, FR),
³ ECMWF (Reading, UK), ⁴ University of Delaware (USA)

With results from the CALVA* & APRES3** projects * CALibration and VAlidation of climate models and satellite retrievals ** Antarctic Precipitation, REmote Sensing from Surface and Space

19 - 23 June 2018

SCAR/IASC Open Science Conference

Ice supersaturation

Supersaturation at global scale

Instruments

Modified HMP:

- •1: Fan
- •2: Heating tube
- •3: Heated air
- •4: HMP155
- $(p_{vap} \text{ and } T^{\circ}C)$
- •5: Unheated air
- •6: PT100 (T°C)
- •7: Shaded inlet

Inexpensive, compact and light, measures down to -80°C.

See Genthon et al. talk on Thursday, 11AM, session AC-1g, room C Sanada I

View from the top of the tower

Selected period – Dome C obs.

Concordia video 2015-12-22 00:22:39

Concordia video 2015-12-22 01:21:01

Concordia video 2015-12-22 02:32:58

Concordia video 2015-12-22 03:16:32

Concordia video 2015-12-22 10:02:44

Ice haze formation

Model intercomparison

 IPSL-CM (global, zoom) : no supersaturation → ice condenses when RH_i=100%

and Cloud liquid fraction = $\left(\frac{T - T_{\min}}{T_{\max} - T_{\min}}\right)^n$

- IFS (global, high resolution) : microphysical scheme → crystal growth by deposition for T > -38°C and homogeneous freezing for T < -38°C
- MAR (limited area model) : microphysical scheme and blowing snow, 6 prognostic equations

Sensitivity to nIR (1.19 - 4 μ m) albedo

Results without supersaturation

IFS results (includes supersaturation)

MAR results (40 km resolution)

Vapor partial pressure along the mast

 \rightarrow Turbulent diffusion in the boundary layer can be validated using the multiple hygrometers along the mast (gives access to the water vapor turbulent fluxes)

Conclusions

- Model BL schemes and snow properties need to be tuned to reach a good agreement with the observed temperatures (especially high sensitivity to near-infrared albedo)
- IPSL-CM temperatures are in good agreement with the observations but underestimate haze opacity
- IFS shows good agreement with both the observed humidities and haze opacities despite a cold bias
- MAR overestimates supersaturation and haze opacity → fails to dissipate the haze → cold bias

These microphysical observations at Dome C are very promising → work is underway to further constrain microphysics (amount of ice nuclei, microphysical properties of the fog)