UE 10 - Climat de la planète Mars

Cycle de l'eau et

paléoclimat

Jean-Baptiste Madeleine
(jmadeleine@Imd.ipsl.fr)

Sorbonne Université

Labo. de Météo. Dynamique

Avec les contributions de François Forget
(CNRS/LMD) et
Aymeric Spiga
(SU/LMD)

Un système climatique riche

Trois cycles principaux:

- Cycle des poussières :
 fort contrôle de la
 température. Tempêtes
 locales et globales.
 Couplage avec le cycle de
 l'eau (noyaux de
 condensation des
 nuages) ;
- Cycle de l'eau : Calottes permanentes et saisonnières, nuages de glace d'eau, ères glaciaires dans le passé ;
- Cycle du CO2 : Composé principal de l'atmosphère, peut condenser aux pôles en hiver (cycle saisonnier).

Plan du cours

- Partie 1 : Localisation et propriétés des réservoirs d'eau
- Partie 2 : Le cycle de l'eau actuel de Mars
- Partie 3 : Le cycle de l'eau des dernières centaines de Ma
- Partie 4: Le cycle passé du CO₂

L'eau sur Mars de nos jours

Pole nord Équateur Pole sud

Glace en interaction avec l'atmosphère

CO2

Regolite sec en contact diffusif avec l'atmosphere

Calotte permanente Nord

Au pôle nord : couche de glace "fraiche" et relativement pure en interaction avec l'atmosphère (diamètre : 1000 km)

Stratigraphie de la calotte Nord

Radars MARSIS sur Mars Express et SHARAD sur Mars Reconnaissance Orbiter

L'eau sur Mars de nos jours

CO₂

Pole nord Equateur Pole sud

Glace en interaction avec l'atmosphère

Sédiments polaires : glace + poussière

NPLD: ρ~1000 kg/m³ (5% dust 95% H2O-ice) [Malin, 1986]

BU: ρ ~2000 kg/m³ (55 ± 25% H2O-ice, ~1.5-m global equivalent

layer of water) [Ojha, 2019]

Regolite sec en contact diffusif avec l'atmosphere

Différences pôle Nord / pôle Sud

Au pôle Sud, de la glace d'eau permanente est recouverte par quelques mètres de glace carbonique

Blue: Perennial H₂O ice White Perennial CO2 ice

Bibring et al. 2004

L'eau sur Mars de nos jours

Cartographie du pergélisol

Glace d'eau dans le sous-sol

Polygones de sublimation

Géomorphologie façonnée par la glace (60°-90° latitude) (cf. cours A. Séjourné)

Glace d'eau observée par Phoenix

Un vaste manteau de ice / dust

L'eau sur Mars de nos jours

Partie 2 : Le cycle de l'eau actuel de Mars

Modèle de climat global

Mécanismes à l'oeuvre

- Sublimation of the north polar cap during northern summer;
- Advection into the overturning Hadley cell;
- Formation of the aphelion cloud belt;
- Beginning of southern summer, formation of the north polar hood.

605

Cloud season

180 Solar longitude L_s

Dissymétrie Nord-Sud (effet « Clancy »)

En moyenne annuelle, le transport de l'eau entre les deux hémisphères sur Mars est dissymétrique. La ceinture équatoriale de nuages impose des phénomènes de sédimentation/évaporation localisés aux tropiques s'opposant au transport de la vapeur d'eau vers l'hémisphère sud.

Distribution spatiale de la vapeur d'eau

Colonne précipitable de vapeur d'eau (pr.um, contours) et vents à 3 km Valeurs moyennées sur 30° de Ls

Propriétés des nuages « grande échelle »

Clouds form when saturated air is cooled 2 Major cloud structure:

The "aphelion cloud belt"

- Air cooled in the ascending branch of the Hadley cell.
- Locally air cooled on large volcanoes
- Ice particle radius ~ 5-8 microns (Clancy and Wolff, TES data)

The "polar hood"

- Warm air meet cold polar air
- Ice particle radii ~ 2-3 microns

Ceinture de nuages d'aphélie

Nuages locaux

(d) -114 -113 **Cumulus clouds**

Nighttime and morning fog

[Möhlmann et al. 2009, Madeleine et al. 2012, Michaels et al. 2004]

Givre de glace d'eau en surface

Calotte saisonnière au printemps

Stabilité de la glace en surface

Gamme de pressions partielles de vapeur d'eau typique actuelle (équilibre liquidevapeur autour de 200 K)

- Le diagramme de phase de l'eau montre toujours la pression partielle de vapeur d'eau en ordonnée et la température de la surface d'eau liquide (solide) à évaporer (sublimer)
- La sublimation est contrôlée par l'écart entre la pression de vapeur saturante à la température du condensat et la pression de vapeur de l'air environnant (l'évaporation se moque de la pression totale!)
- Exemple: 100 μm précipitables de vapeur d'eau correspondent à 1 Pa de pression de vapeur. La température pour laquelle p_{sat} vaut 1 Pa est d'environ 210 K. Donc dans ces conditions, la glace n'est stable qu'en dessous de 210 K (appelée T_{sat}). ²⁷

Stabilité de la glace du sous-sol

Stabilité de la glace du sous-sol

Subsurface Ice in equilibrium with the atmosphere

Stabilité de la glace du sous-sol

Figure 8. Color indicates depth to the ice table in g cm⁻² when ice is in equilibrium with the atmospheric water vapor. Ground ice is unstable in the white area. Black segments indicate finite burial depths larger than 150 g cm⁻². Missing data points are shown in gray. Assumed volume fraction of ice is 40%, but the geographic boundary between icy and ice-free soil is independent of the ice fraction. Solid contours indicate water-equivalent hydrogen content in percent determined from neutron spectroscopy [Feldman et al., 2004]. The dotted lines are 200 J m⁻²K⁻¹s^{-1/2} contours of thermal inertia.

Équiv. à 1m

Résumé stabilité de la glace

Basic facts learned from present-day water cycle observations and modelling:

- 1. A « closed » water cycle
- 2. Surface water ice cannot accumulate outside the polar regions
- 3. Subsurface water ice can be stable down to ~55° latitude (on flat surface)

What about surface liquid water ?

Ne pas confondre évaporation et ébullition!

L'ébullition est contrôlée par l'écart entre la pression de vapeur saturante à la température du liquide et la pression partielle **au sein du liquide**

Cette pression partielle au sein du liquide est proche de la **pression atmosphérique**

Exemple sur Terre: la pression partielle d'eau au sein d'une flaque est d'un bar. La température pour laquelle p_{sat} vaut 1 bar est de 100°C. Donc dans ces conditions, la flaque n'est stable qu'en dessous de 100°C.

Exemple sur Mars: en-dessous de 610 Pa, l'eau liquide est impossible (point triple). Si la pression partielle de la flaque est de 800 Pa, la température pour laquelle p_{sat} vaut 800 Pa est de 4°C. Donc dans ces conditions, la flaque n'est stable qu'en dessous de 4°C. En dessous de 0°C elle gèle et se sublime. Maintenir de l'eau liquide (pure) sur Mars est donc quasi impossible

Recurring Slope Lineae

L_s 302°

L_s 312°

Warm slopes during southern spring and summer

Flowing brines ? (saumures)

McEwen et al., 2011 Ojha et al., 2015 OR

Dry dust-wind origin? (plus probable!)
Vincendon et al. 2019

Partie 3 : Le cycle de l'eau des dernières centaines de Ma

Repères temporels

Amazonien Supérieur (< 250 – 700 Myr)

[head 2006]

Définitions

• Obliquity (θ): angle between spin axis and ecliptic plane. (25.19°)

• Eccentricity (ε): the amount by which an orbit deviates from circularity. (0.093)

• Argument of Perihelion (L_{sp}): the orbital location at which Mars is closest to the Sun. (250.87°)

Evolution des paramètres orbitaux

0 - 1 Myr

Laskar et al. 2004

Evolution des paramètres orbitaux

Mean insolation (W m⁻²)

To first order, obliquity does not change total insolation, only its distribution

Moyenne annuelle de l'insolation

Insolation normalized to the solar constant at Mars mean distance from the Sun.

Record of climate variations in the polar layered terrain?

Zonal mean temperature (K) Obliquity = 0°

Haberle et al. 2003 , NASA Ames model

Zonal mean temperature (K) Obliquity = 45°

Haberle et al. 2003

Impact de l'obliquité sur la dynamique

Formation du Latitude Dependent Mantle

[Schon et al. 2008]

Vestiges de structures glaciaires en dehors des pôles

Head et al. (2005, 2008)

Les glaciers tropicaux

Tropical mountain glaciers (8): mountain glacial systems, episodes of advance and retreat;

Variation du cycle de l'eau

LMD GCM Simulations:

Water vapor column

(precipitable –microns)

On present-day Mars:

Same, but 45° Obliquity (Circular orbit)

Comparaison à la géologie

Accumulation de glace (mm/an) (simulation numérique)

Forget et al. 2005

Geological evidence for past glaciers

(Head et al. 2003, 2005)

Fan shaped deposits, drop moraines, rock glaciers...

Mécanisme de formation

At high obliquity: Ice accumulation by ice precipitation on windward slope

Résumé

La glaciation des moyennes latitudes

Northern mid-latitudes (3,4,5,6,7): valley glaciers and plateau glaciation, km thicknesses;

Modélisation avec le LMD/GCM

(Madeleine et al. 2009)

Le manteau des hautes latitudes

- The latitude dependent mantle (1): m thick layered deposits, above 50° (Head et al., 2003); 70°N-2. Cold-based glacial crater fill 60°N-50°N: 3. Concentric Crater Fill 4/5. LVF / LDA 30°N-A = 3120m A' = 3050m Culling and Viscou Mantle Deposition 10. DOR Regolith riche en glace [schon_2008]

Formation du Latitude Dependent Mantle

OSIRIS/Rosetta

Head et al., 2003

Une vision en accord avec les « nouveaux » modèles climatiques

submitted]

Ravines (« gullies »)

Résumé : climat de l'Amazonien supérieur

- ~10-700 Myr: Glaciers tropicaux et glaciation grande échelle dans les moyennes latitudes;
- ~0.1-10 Myr (?): Couverture par le manteau des hautes latitudes, érosion du manteau, écoulements sous forme de ravines et structures visqueuses petite échelle;
- ~Aujourd'hui 5 Myr (?): Formation de la calotte polaire Nord (sédiments de glace).

Partie 4 : Le cycle passé du CO₂

Perennial CO₂ ice cap near the south pole (300 km across)

Seasonal variation of the mean pressure (assuming present-day atmosphere)

Higher obliquity = more massive seasonal CO2 ice caps

Total Atmospheric mass depends on the permanent CO2 ice cap temperature (unless exhausted)

CO₂ inventory at high obliquity

- Average insolation at the pole is proportional to the sine of the obliquity: strong warming.
 - Sublimation of the relatively thin south surface residual polar caps: < 0.2 mbar [Thomas et al., 2009]
 - 6-8 mbar deposit inside SPLD discovered by radar. [Phillips et al., 2011]
 - Desorbed CO₂ from the high latitude ground (30 mbars? e.g. *Zent et al.* 1992): less likely with all the H₂O ice detected by Mars Odyssey? < 20 mbar mixed with H2O ice in the PLD?

At low obliquity: Atmospheric collapse?

- Average insolation at the pole is proportional to the sine of the obliquity: massive permanent CO2 ice cap?.
 - Preferential accumulation on steep pole-facing slopes at ~ 70°-80° latitude rather than at the pôles ? [Kreslavsky and Head, 2005]

Moraines left by CO_2 glaciers in Mars polar northern slopes?

3 km

Kreslavsky and Head, 2010

Below the south residual cap: a thick, buried CO₂ ice deposits discovered by Radar (Philipps et al. 2011, Bierson et al. 2016)

Total mass = ~present-day atmosphere (6 mbar)

Impact des variations d'obliquités sur le climat martien (considérations théoriques)

Obliquité basse

Obliquité haute

