# UE 10 - Climat de la planète Mars



Cycle de l'eau et paléoclimat Jean-Baptiste Madeleine (jmadeleine@Imd.ipsl.fr) Sorbonne Université Labo. de Météo. Dynamique

Avec les contributions de **François Forget** (CNRS/LMD) et **Aymeric Spiga** (SU/LMD)



June 26, 2001

# Un système climatique riche

Trois cycles principaux :

#### Cycle des poussières :

fort contrôle de la température. Tempêtes locales et globales. Couplage avec le cycle de l'eau (noyaux de condensation des nuages) ;

#### • Cycle de l'eau : Calottes

permanentes et saisonnières, nuages de glace d'eau, ères glaciaires dans le passé ;

Cycle du CO2 : Composé principal de l'atmosphère, peut condenser aux pôles en hiver (cycle saisonnier). **Partie 1 :** Localisation et propriétés des réservoirs d'eau **Partie 2 :** Le cycle de l'eau actuel de Mars **Partie 3 :** Le cycle de l'eau des dernières centaines de Ma Partie 4 : Le cycle passé du CO<sub>2</sub>



83.7N 235.8E





# L'eau sur Mars de nos jours



## **Calotte permanente Nord**

Au pôle nord : couche de glace "fraiche" et relativement pure en interaction avec l'atmosphère (diamètre : 1000 km)





# Stratigraphie de la calotte Nord

#### Radars MARSIS sur Mars Express et SHARAD sur Mars Reconnaissance Orbiter





# L'eau sur Mars de nos jours



# Différences pôle Nord / pôle Sud

Au pôle Sud, de la glace d'eau permanente est recouverte par quelques mètres de glace carbonique

Blue: Perennial H<sub>2</sub>O ice White Perennial CO2 ice



Bibring et al. 2004



# L'eau sur Mars de nos jours



# Cartographie du pergélisol

# Spectromètre Neutron, NASA Mars Odyssey, 2001 Rayons Pour le principe de la mesure, voir partie 2 cosmiques de Boynton et al. 2004, The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite Moins de **Neutrons** glace

## Glace d'eau dans le sous-sol



# **Polygones de sublimation**



# Glace d'eau observée par Phoenix



# Un vaste manteau de ice / dust



Plusieurs indices suggèrent que le manteau de glace est présent jusqu'à 40° voire 30° latitude

# L'eau sur Mars de nos jours





Partie 2 : Le cycle de l'eau actuel de Mars

# Modèle de climat global



# Mécanismes à l'oeuvre

- Sublimation of the north polar cap during northern summer;
- Advection into the overturning Hadley cell;
- 3 Formation of the aphelion cloud belt;
- Beginning of southern summer, formation of the north polar hood.



#### Water vapor column (2 PM, pr. $\mu$ m)

## **Dissymétrie Nord-Sud (effet « Clancy »)**

En moyenne annuelle, le transport de l'eau entre les deux hémisphères sur Mars est dissymétrique. La ceinture équatoriale de nuages impose des phénomènes de sédimentation/évaporation localisés aux tropiques s'opposant au transport de la vapeur d'eau vers l'hémisphère sud.



## Distribution spatiale de la vapeur d'eau

Ls 270° to 300°



Valeurs moyennées sur 30° de Ls

[Montmessin et al. 2013]

#### Propriétés des nuages « grande échelle »

### Clouds form when saturated air is cooled 2 Major cloud structure :

## The "aphelion cloud belt"

- Air cooled in the ascending branch of the Hadley cell.
- Locally air cooled on large volcanoes
- Ice particle radius ~ 5-8 microns (Clancy and Wolff, TES data)

## The "polar hood"

- Warm air meet cold polar air
- Ice particle radii ~ 2-3 microns

# Ceinture de nuages d'aphélie



# **Nuages locaux**



[Möhlmann et al. 2009, Madeleine et al. 2012, Michaels et al. 2004]

# Givre de glace d'eau en surface



## Calotte saisonnière au printemps



# Stabilité de la glace en surface



Gamme de pressions partielles de vapeur d'eau typique actuelle (équilibre liquidevapeur autour de 200 K)

- Le diagramme de phase de l'eau montre toujours la pression partielle de vapeur d'eau en ordonnée et la température de la surface d'eau liquide (solide) à évaporer (sublimer)
- La sublimation est contrôlée par l'écart entre la pression de vapeur saturante à la température du condensat et la pression de vapeur de l'air environnant (l'évaporation se moque de la pression totale !)
- Exemple : 100 µm précipitables de vapeur d'eau correspondent à 1 Pa de pression de vapeur. La température pour laquelle p<sub>sat</sub> vaut 1 Pa est d'environ 210 K. Donc dans ces conditions, la glace n'est stable qu'en dessous de 210 K (appelée T<sub>sat</sub>). 27

# Stabilité de la glace du sous-sol

<Tsat> - <Tsurf>



Forget et al. 2007 <T> température moyenne annuelle  $\simeq$  température subsurface <sup>28</sup>

# Stabilité de la glace du sous-sol



Subsurface Ice in equilibrium with the atmosphere

# Stabilité de la glace du sous-sol



Figure 8. Color indicates depth to the ice table in g cm<sup>-2</sup> when ice is in equilibrium with the atmospheric water vapor. Ground ice is unstable in the white area. Black segments indicate finite burial depths larger than 150 g cm<sup>-2</sup>. Missing data points are shown in gray. Assumed volume fraction of ice is 40%, but the geographic boundary between icy and ice-free soil is independent of the ice fraction. Solid contours indicate water-equivalent hydrogen content in percent determined from neutron spectroscopy [*Feldman et al.*, 2004]. The dotted lines are 200 J m<sup>-2</sup>K<sup>-1</sup>s<sup>-1/2</sup> contours of thermal inertia.

à 1m

# Résumé stabilité de la glace

#### Basic facts learned from present-day water cycle observations and modelling :

- 1. A « closed » water cycle
- 2. Surface water ice cannot accumulate outside the polar regions
- 3. Subsurface water ice can be stable down to  $\sim$ 55° latitude (on flat surface)

What about surface liquid water ?

#### Ne pas confondre évaporation et ébullition !



- L'ébullition est contrôlée par l'écart entre la pression de vapeur saturante à la température du liquide et la pression partielle **au sein du liquide**
- Cette pression partielle au sein du liquide est proche de la **pression atmosphérique**

**Exemple sur Terre :** la pression partielle d'eau au sein d'une flaque est d'un bar. La température pour laquelle  $p_{sat}$  vaut 1 bar est de 100°C. Donc dans ces conditions, la flaque n'est stable qu'en dessous de 100°C.

**Exemple sur Mars :** en-dessous de 610 Pa, l'eau liquide est impossible (point triple). Si la pression partielle de la flaque est de 800 Pa, la température pour laquelle  $p_{sat}$  vaut 800 Pa est de 4°C. Donc dans ces conditions, la flaque n'est stable qu'en dessous de 4°C. En dessous de 0°C elle gèle et se sublime. Maintenir de l'eau liquide (pure) sur Mars est donc quasi impossible

# **Recurring Slope Lineae**





Warm slopes during southern spring and summer

Flowing brines ? (saumures)

OR

McEwen et al., 2011 Ojha et al., 2015 Dry dust-wind origin ? (plus probable !) Vincendon et al. 2019



..... IET OF A

## Partie 3 : Le cycle de l'eau des dernières centaines de Ma

# **Repères temporels**



# Définitions

- Obliquity ( $\theta$ ): angle between spin axis and ecliptic plane. (25.19°)
- Eccentricity ( $\varepsilon$ ): the amount by which an orbit deviates from circularity. (0.093)

• Argument of Perihelion  $(L_{sp})$ : the orbital location at which Mars is closest to the Sun. (250.87°)

# **Evolution des paramètres orbitaux**

0 - 1 Myr

Laskar et al. 2004



37

# **Evolution des paramètres orbitaux**



# Mean insolation (W m<sup>-2</sup>)

To first order, obliquity does not change total insolation, only its distribution



# Moyenne annuelle de l'insolation



Ward et al. 1974  $_{40}$ 



Record of climate variations in the polar layered terrain?

#### North Polar Layers in Same Trough



#### Zonal mean temperature (K) Obliquity = 0°

#### Haberle et al. 2003, NASA Ames model

Zonal Mean Surface Temperatures: Obl=00 Max=230.71 Min=144.40



#### Zonal mean temperature (K) Obliquity = 45°

Haberle et al. 2003



Zonal Mean Surface Temperatures: Obl=45 Max=290.74 Min=140.99

#### Impact de l'obliquité sur la dynamique







#### **Formation du Latitude Dependent Mantle**



[Schon et al. 2008]

# Vestiges de structures glaciaires en dehors des pôles



Head et al. (2005, 2008)

# Les glaciers tropicaux



Tropical mountain glaciers (8): mountain glacial systems, episodes of advance and retreat;

Head et al. (2005, 2008)

# Variation du cycle de l'eau

#### LMD GCM Simulations:

Water vapor column

(precipitable --microns)

**On present-day Mars :** 

Same, but 45° Obliquity (Circular orbit )



# Comparaison à la géologie



# Mécanisme de formation



At high obliquity: Ice accumulation by ice precipitation on windward slope

# Résumé



# La glaciation des moyennes latitudes

170°W 140°W 110°W 90°W 70°W 50°W 30°W 10°W 10°E 30°E 50°E 70°E 90°E 110°E 130°E 150°E 170°E Northern mid-latitudes (3,4,5,6,7): valley glaciers and plateau glaciation, km thicknesses;



# Modélisation avec le LMD/GCM



# Le manteau des hautes latitudes

- The latitude dependent mantle (1): m thick layered deposits, above 50° (Head et al., 2003);



#### **Formation du Latitude Dependent Mantle**



OSIRIS/Rosetta



Head et al., 2003



# Une vision en accord avec les « nouveaux » modèles climatiques

Northern hemisphere ( $\epsilon = 35^{\circ}$ , SPC, dust peak at L<sub>s</sub> = 90°)



# **Ravines (« gullies »)**



# Résumé : climat de l'Amazonien supérieur

- ~10-700 Myr: Glaciers tropicaux et glaciation grande échelle dans les moyennes latitudes;
  ~0.1-10 Myr (?): Couverture par le manteau des hautes latitudes, érosion du manteau, écoulements sous forme de ravines et structures visqueuses petite échelle;
  ~Aujourd'hui - 5 Myr (?): Formation de la
  - calotte polaire Nord (sédiments de glace).



Partie 4 : Le cycle passé du CO<sub>2</sub>

> Perennial CO<sub>2</sub> ice cap near the south pole (300 km across)

Seasonal variation of the mean pressure (assuming present-day atmosphere) Higher obliquity = more massive seasonal CO2 ice caps

![](_page_61_Figure_1.jpeg)

# Total Atmospheric mass depends on the permanent CO2 ice cap temperature (unless exhausted)

![](_page_62_Figure_1.jpeg)

Condensation temperature (K)

# CO<sub>2</sub> inventory at high obliquity

- Average insolation at the pole is proportional to the sine of the obliquity: strong warming.
  - Sublimation of the relatively thin south surface residual polar caps: < 0.2 mbar [Thomas et al., 2009]
  - 6-8 mbar deposit inside SPLD discovered by radar. [Phillips et al., 2011]
  - Desorbed CO<sub>2</sub> from the high latitude ground (30 mbars ? e.g. Zent et al. 1992): less likely with all the H<sub>2</sub>O ice detected by Mars Odyssey ? < 20 mbar – mixed with H2O ice in the PLD ?

# At low obliquity: Atmospheric collapse ?

- Average insolation at the pole is proportional to the sine of the obliquity: massive permanent CO2 ice cap ? .
  - Preferential accumulation on steep pole-facing slopes at ~ 70°-80° latitude rather than at the pôles ? [Kreslavsky and Head, 2005]

![](_page_64_Figure_3.jpeg)

Moraines left by CO<sub>2</sub> glaciers in Mars polar northern slopes?

![](_page_65_Picture_1.jpeg)

Kreslavsky and Head, 2010

![](_page_66_Picture_0.jpeg)

a

Below the south residual cap: a thick, buried CO<sub>2</sub> ice deposits discovered by Radar (Philipps et al. 2011, Bierson et al. 2016)

![](_page_66_Figure_2.jpeg)

# Impact des variations d'obliquités sur le climat martien (considérations théoriques)

#### **Obliquité basse**

#### **Obliquité haute**

![](_page_67_Figure_3.jpeg)