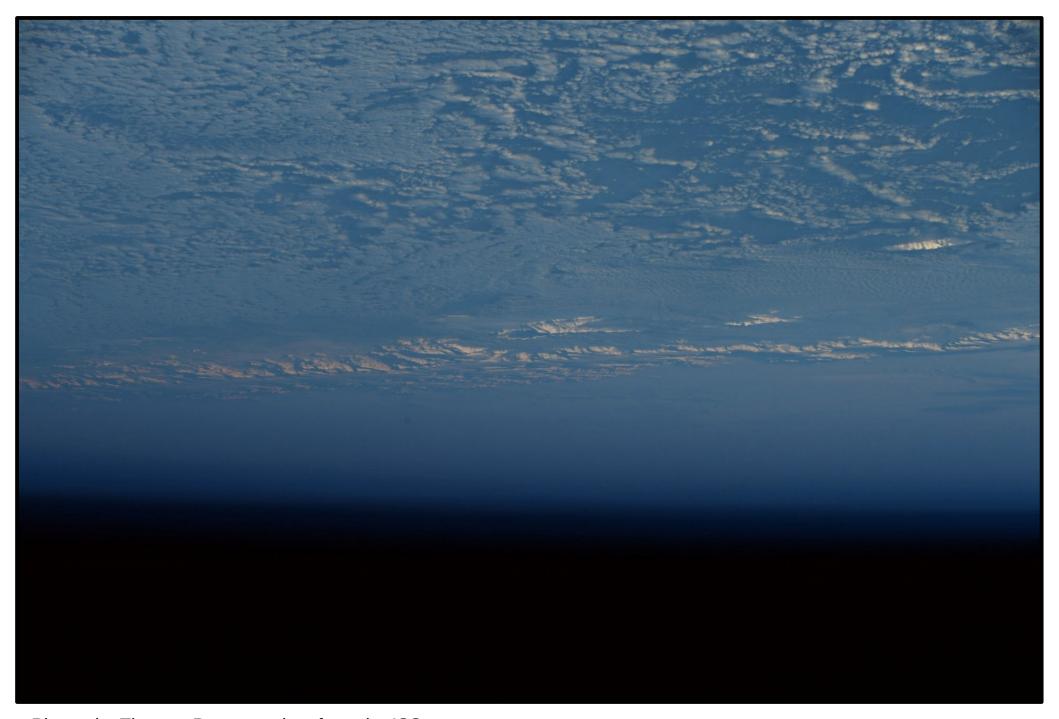
Model physics part II Convective and large-scale clouds

LMDz Training – January 2024 J-B Madeleine and the LMDZ team

Picture by Oleg Artemyev taken from the ISS



Picture by Thomas Pesquet taken from the ISS

Some useful animations:

- Satellite animation using the SEVIRI instrument: http://pmm.nasa.gov/education/videos/water-vapor-animation
- Animations of updrafts and triggering of deep convection over the mountains of Arizona : https://animations.atmos.uw.edu, 15.1 and 16.5
- Animation of the cloud field in high resolution LMDZ simulations :

https://lmdz.lmd.jussieu.fr/pub/Training/Presentations/LMDZ animation-highres.mp4

How to visualize clouds in LMDZ

prw (2D) : Precipitable water (kg/m²)

pluc/plul (2D): Convective/Isc rainfall (kg/m²/s)

snow (2D) = surface snowfall $(kg/m^2/s)$

lwp (2D): Cloud liquid water path (kg/m²)

iwp (2D): Cloud ice water path (kg/m²)

ovap (3D): water vapor content (kg/kg)

oliq (3D): cloud liquid water content (kg/kg)

ocond (3D): cloud liq+ice water content (kg/kg)

pr_lsc_l (3D) : lsc rain mass fluxes (kg/m²/s)

pr_lsc_i (3D): lsc snow mass fluxes (kg/m²/s)

rneb (3D): cloud fraction (%)

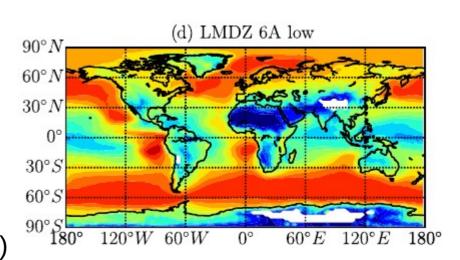
cldh (2D): High-level cloud cover (%)

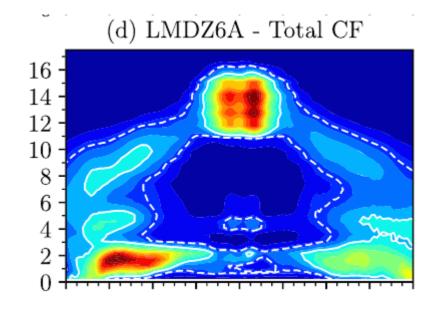
cldm (2D): Mid-level cloud cover (%)

cldl (2D): Low-level cloud **cover** (%)

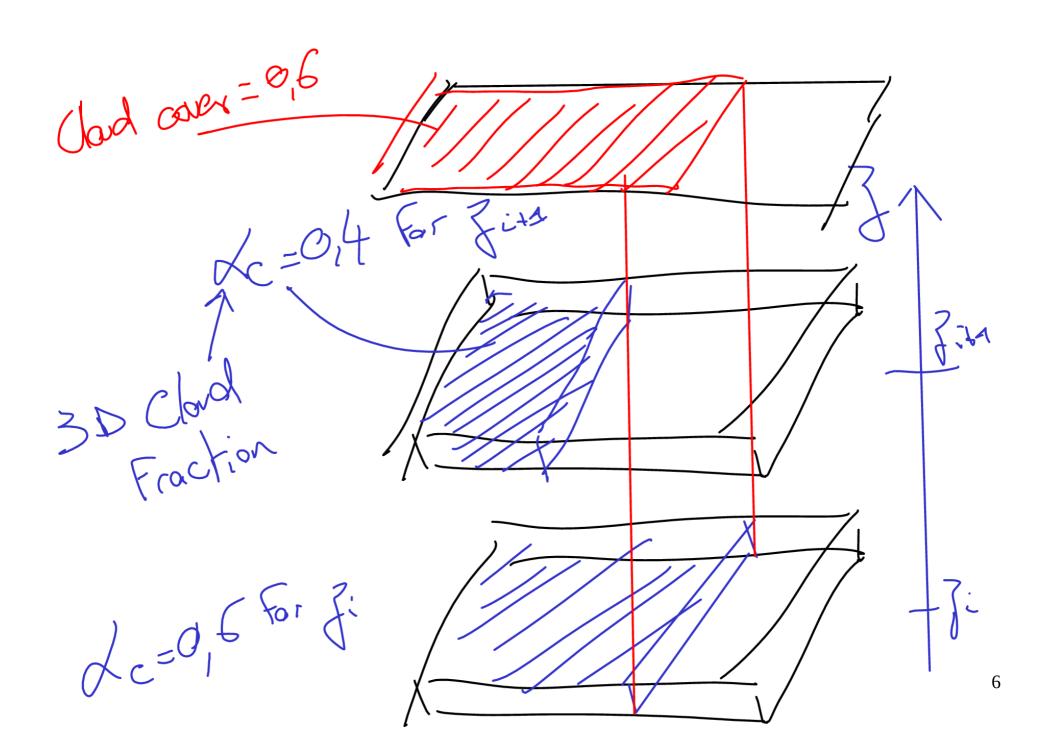
cldt (2D): Total cloud cover (%)

low-level clouds = below 680 hPa or ~3 km mid-level clouds = between 680 and 440 hPa high-level clouds = above 440 hPa or ~6.5 km





DO NOT MIX UP CLOUD FRACTION AND CLOUD COVER ;-)



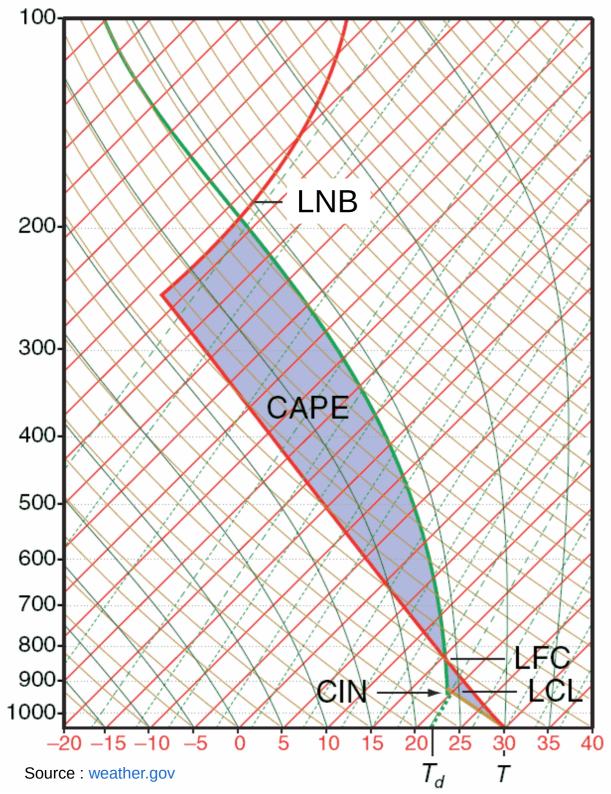
Convective clouds

For more detail, see Grandpeix et al., 2004 :

https://doi.org/10.1256/qj.03.144

as well as Rio et al., 2009:

https://doi.org/10.1029/2008GL036779



Theory

Main variables shown on a skew-T diagram :

Red profile: Environment

Green profile: Adiabatic ascent

LCL : Lifted Condensation Level LFC : Level of Free Convection

CIN: Convective INhibition CAPE: Convective Available Potential Energy

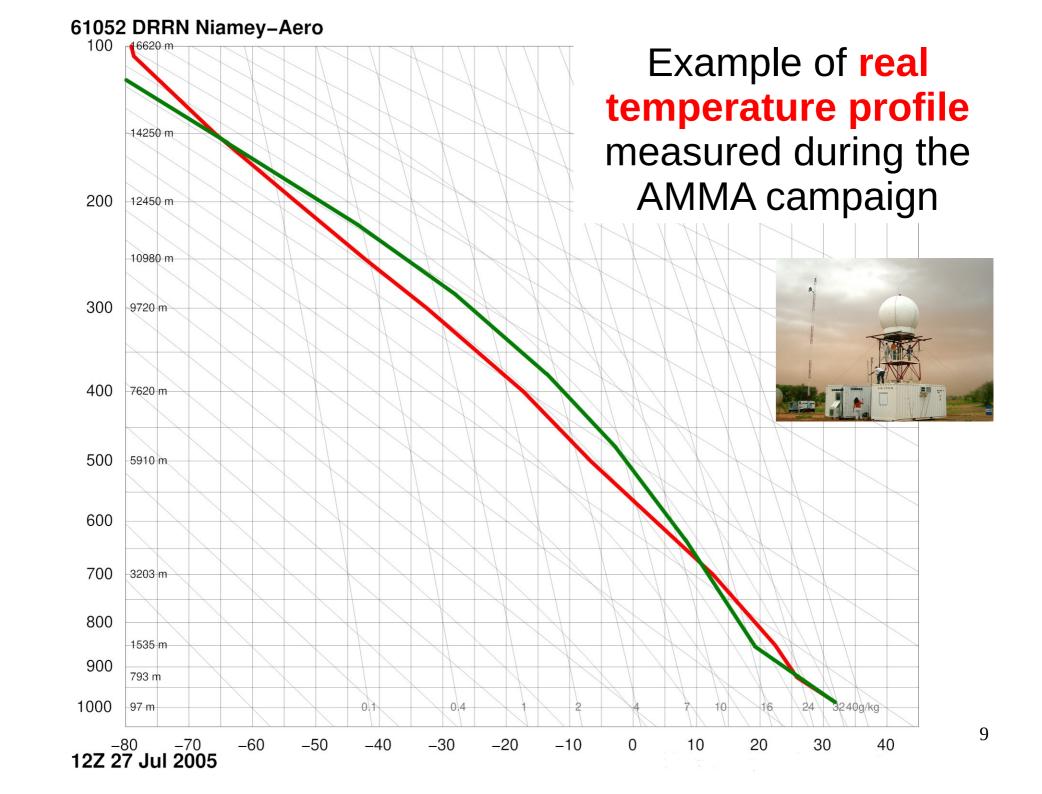
CAPE =
$$\int_{z_{LFC}}^{z_{LNB}} g(\frac{T}{T_{env}} - 1) \cdot dz$$

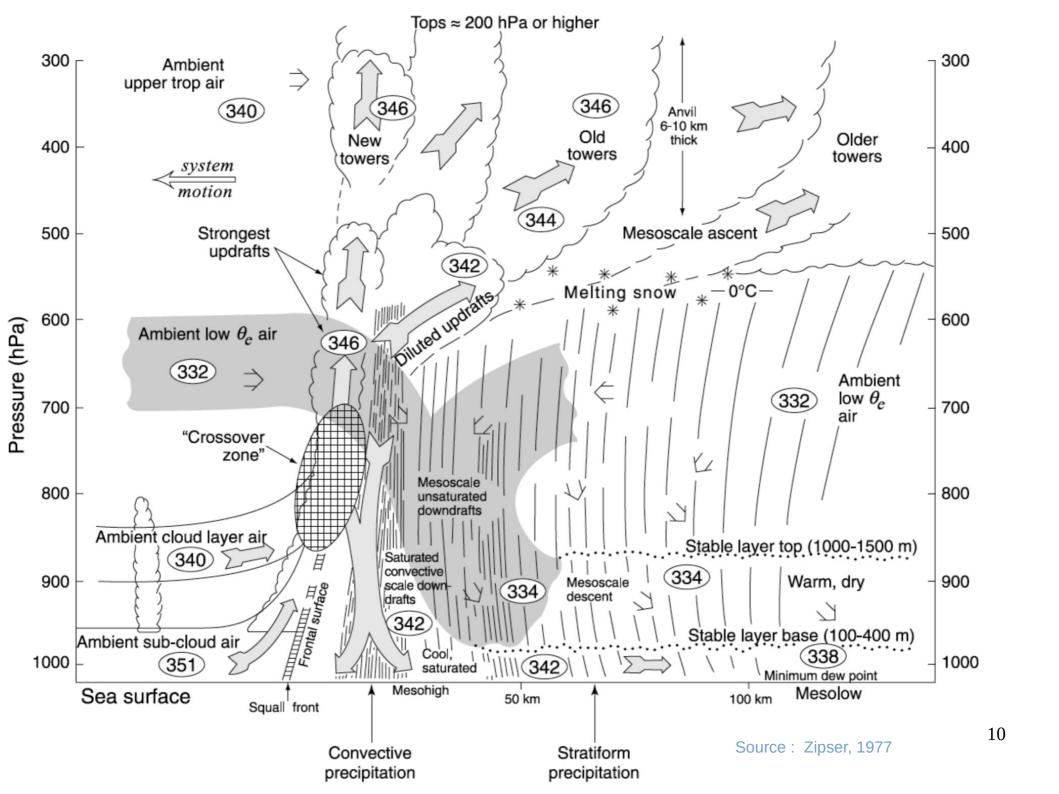
Buoyancy (N/kg)

$$E_c = \frac{1}{2} \cdot w^2$$
 and therefore :

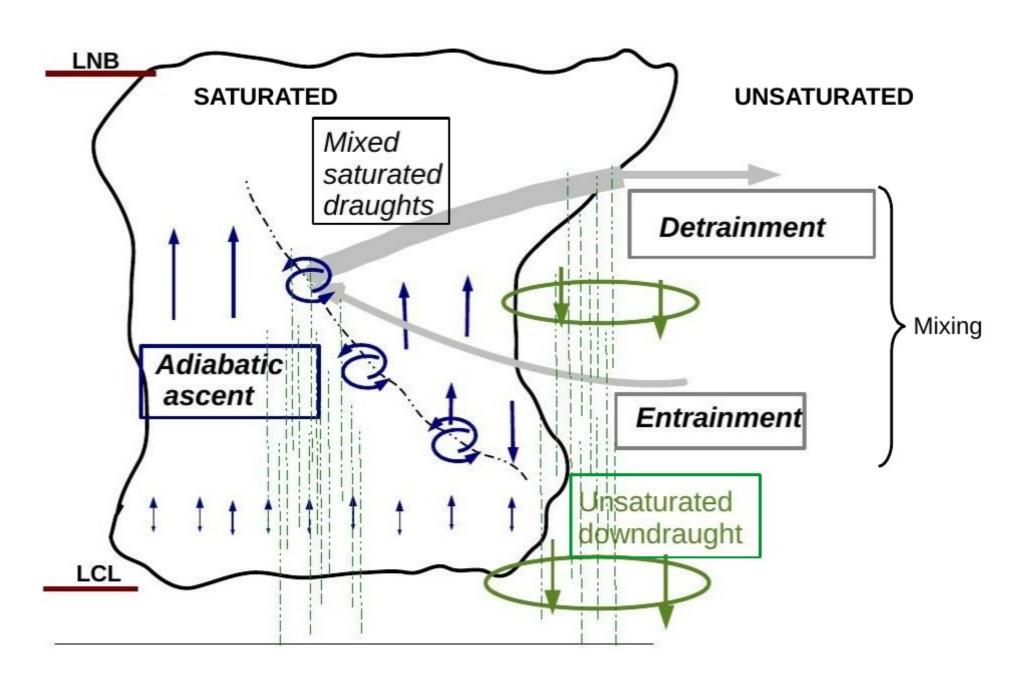
CAPE =
$$\Delta_{LFC \to LNB} E_c$$

8

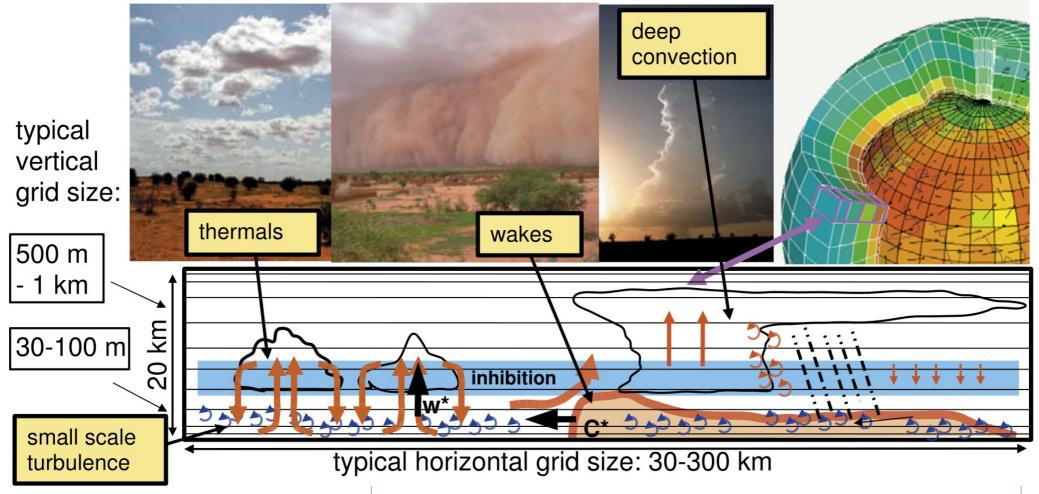




Emanuel scheme (1991)



LMDZ framework



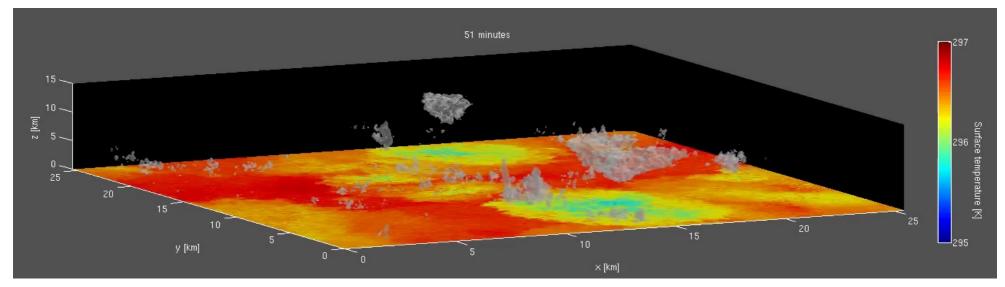
$$ALE^{th} = w_*^2/2$$

$$ALE^{wk} \simeq C_*^2$$

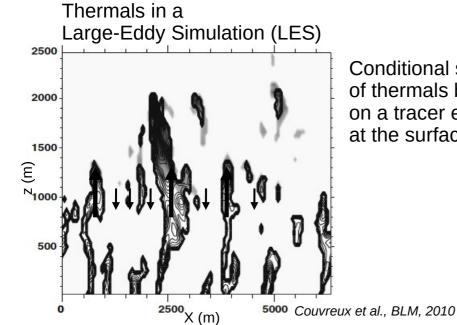
Deep convection is triggered if:

- \longrightarrow max(ALEth, ALE^{wk}) > |CIN|
- at least one cloud reaches a given threshold size (stochastic triggering scheme, Rochetin et al., 2014)

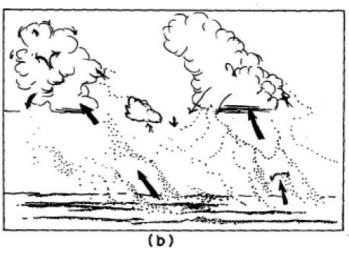
Many processes in one grid cell



Around 8 hours of simulation by a **Cloud Resolving Model (CRM)** – C. Muller, LMD



Conditional sampling of thermals based on a tracer emitted at the surface.



Lemone et Pennell, MWR, 1976

Fundamental process

Clausius-Clapeyron equation :

$$\frac{1}{e_{\text{sat}}} \frac{\mathrm{d}e_{\text{sat}}}{\mathrm{d}T} = \frac{L}{R_{\text{vap}}T^2}$$

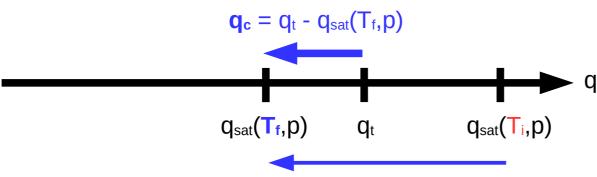
$$\begin{array}{ccc} T & 0^{\circ}C & 20^{\circ}C \\ \\ e_{sat} & 6.1 \; hPa & 23.4 \; hPa \end{array}$$

Saturation mass mixing ratio :

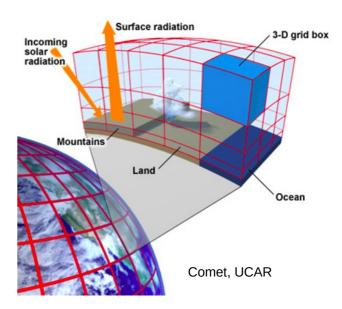
$$q_{sat}$$
 3.7 g kg⁻¹ 14.4 g kg⁻¹

 $q_{sat}(T,p) \simeq 0.622 \ \frac{e_{sat}(T)}{n}$, where e_sat(T) grows exponentially with temperature

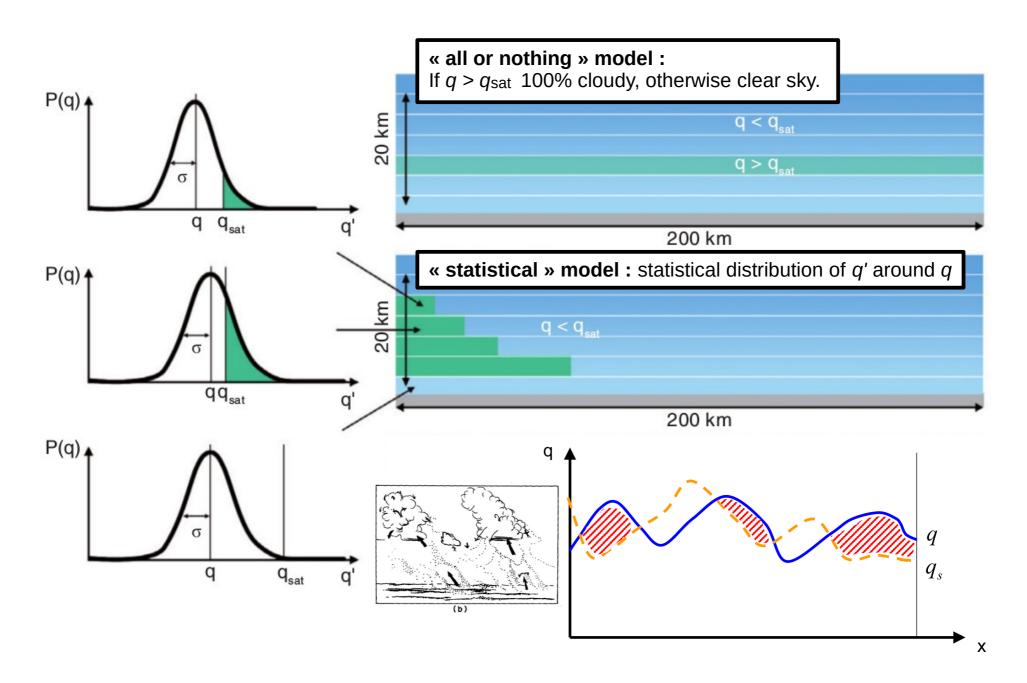
Clouds form when an air parcel is cooled :

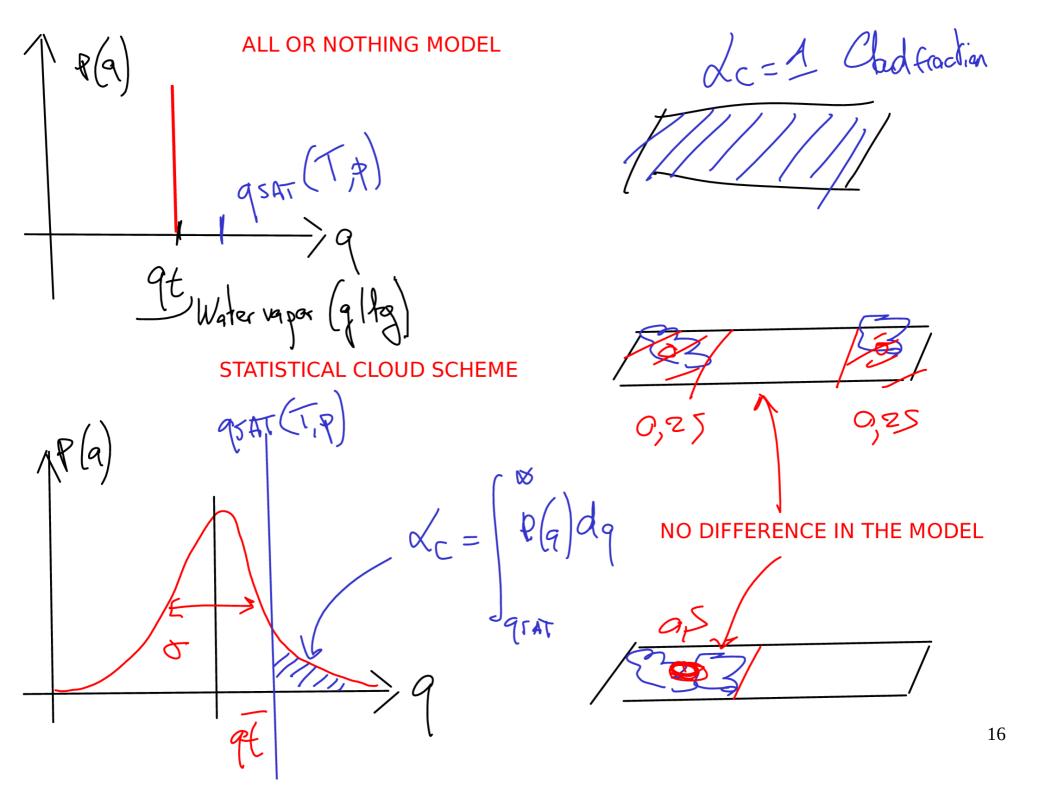


• But clouds do not look like that :

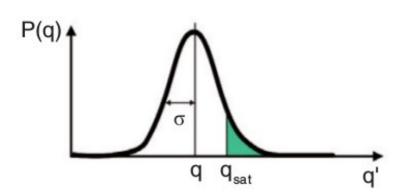


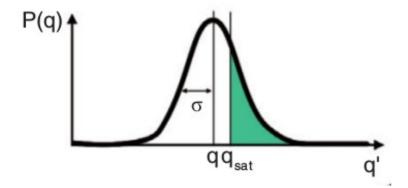
Statistical cloud scheme 1/2





Statistical cloud scheme 2/2





The goal of a cloud scheme is therefore to compute qcin and the cloud fraction based on the different physical parameterizations.

Mean total water content:

$$\bar{q} = \int_0^\infty q \ P(q) \ dq$$

Domain-averaged condensed water content:

$$q_c = \int\limits_{q_{sat}}^{\infty} (q - q_{sat}) P(q) dq$$

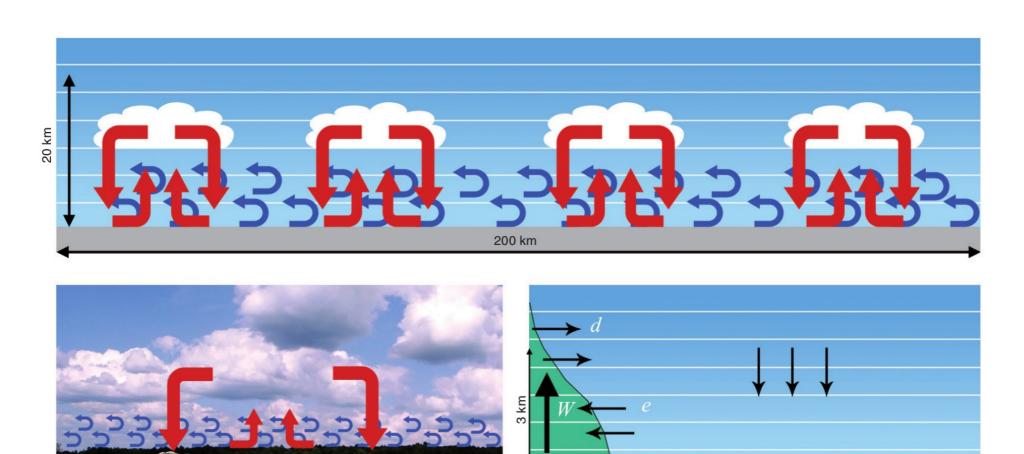
Cloud fraction:

$$lpha_c = \int\limits_{q_{sat}}^{\infty} P(q) dq$$

In-cloud condensed water content:

$$q_c^{in} = \frac{q_c}{\alpha_c}$$

Shallow convection 1/2



200 km

Shallow convection 2/2

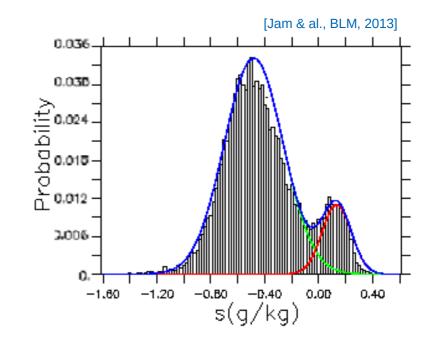
Bi-Gaussian distribution of saturation deficit s:

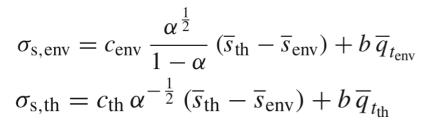
$$Q(s) = (1 - \alpha_{th})f(s, s_{env}, \sigma_{env}) + \alpha_{th}f(s, s_{th}, \sigma_{th})$$

One mode for thermals : s_{th} , σ_{th}

One mode for their environment : $\boldsymbol{s}_{\text{env}}$, $\boldsymbol{\sigma}_{\text{env}}$

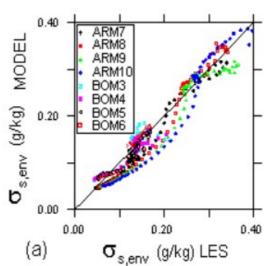
 S_{env} , s_{th} , and α are given by the shallow convection scheme, and the distribution's variances are parameterized following :

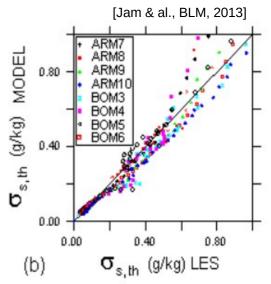




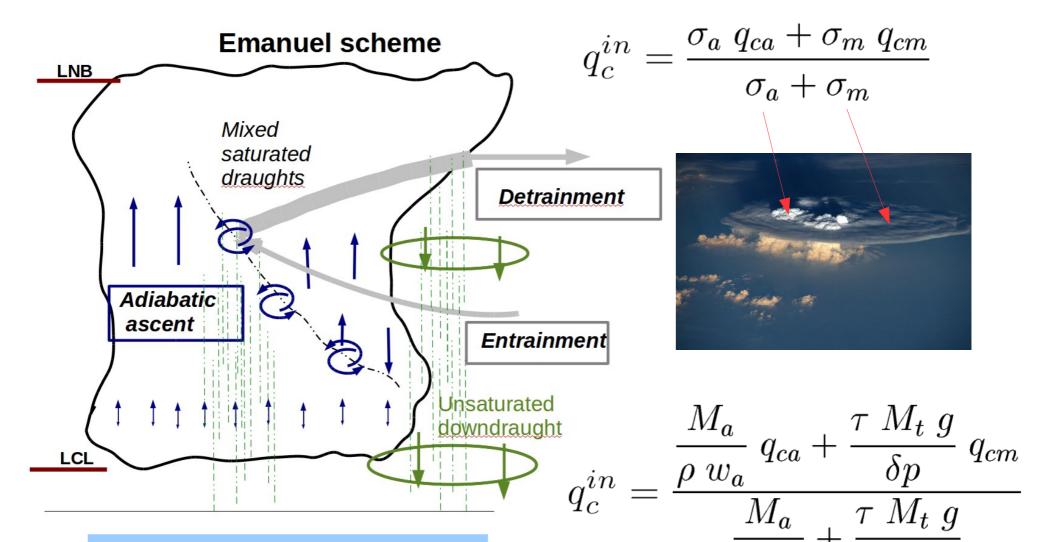
q_cⁱⁿ and the cloud fraction can be computed following:

$$q_c^{in} = \int_0^\infty s \, Q(s) \, ds \;\;\; lpha_c = \int_0^\infty Q(s) \, ds$$





Deep convection cloud scheme



 q_c^{in} is computed by the deep convection scheme and \bar{q} is known \rightarrow cloud fraction is found

Large-scale clouds

For more detail, see Madeleine et al. 2020 :

https://doi.org/10.1029/2020MS002046

You can also have a look at the data, available at:

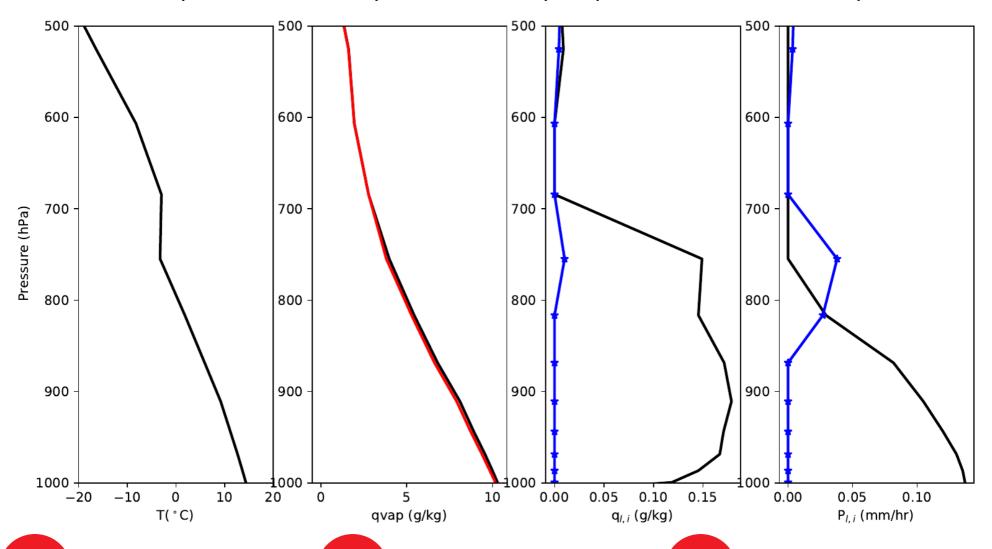
https://zenodo.org/record/3942031

Architecture of the physical scheme

Procedure / Subsection	Input variables	Other outputs
	O Updated variables	CAREFUL : clouds are evaporated/sublimated at the beginning of
2.1. Evaporation	$\theta \ q_v \ q_l \ q_i$ $\circlearrowleft \ \theta \ q_t \ (q_l = q_i = 0)$	each time step (~15 min), but vapor, droplets and crystals are prognostic variables. In other words, clouds can move but can't last for
2.2. Local turbulent mixing	$ heta \; q_t \; (q_t = q_t = 0)$	more than one timestep (meaning that for example, crystals can't grow over multiple timesteps).
2.3. Deep convection	$\theta \ q_t \ ALE \ ALP$	$q_c^{in,cv}$ $P_{l,i}^{cv}$ $d\theta_{dw}^{cv}$ $dq_{t,dw}^{cv}$
2.4. Deep convection PDF	$q_t \; q_c^{in,cv}$	$lpha_c^{cv}$
2.5. Cold pools (wakes)	$\theta \ q_t \ d\theta^{cv}_{dw} \ dq^{cv}_{t,dw}$ $\circlearrowleft \ \theta \ q_t$	$ALE^{wk} \ ALP^{wk} \ \theta^{wk}_{env} \ q^{wk}_{t,env}$
2.6. Shallow convection	$ heta_{env}^{wk} \ q_{t,env}^{wk}$ $ heta_{env}^{wk} \ \theta \ q_t$	$(s_{th} \ \sigma_{th} \ s_{env} \ \sigma_{env})^{th} \ ALE^{th} \ ALP^{th}$
2.7. Large-scale condensation	$\theta \ q_t \ (s_{th} \ \sigma_{th} \ s_{env} \ \sigma_{env})^{th}$	$q_c^{in,lsc} \; \alpha_c^{lsc} \; P_{l,i}^{lsc}$
2.8. Radiative transfer	$q_c^{in,lsc} \; lpha_c^{lsc} \; q_c^{in,cv} \; lpha_c^{cv} \;$	
	<u></u>	

Large scale condensation 1/3

Temperature, water vapor, clouds and precipitation over one timestep



Large scale condensation 2/3

- Rain/snow is partly evaporated in the grid below (parameter) controlling the evaporation rate):
- **REEVAPORATION**

 $\frac{\partial P}{\partial z} = \beta [1 - q/q_{sat}] \sqrt{P}$

CLOUD FORMATION

If there is shallow convection

q_cin and the cloud fraction can be computed following:

If there is no shallow convection

$$q_c^{in} = \int_0^\infty s \, Q(s) \, ds \quad \alpha_c = \int_0^\infty Q(s) \, ds$$

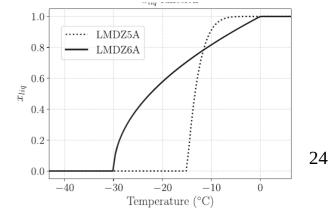
q_cin and the cloud fraction can be computed following:

$$q_c = \int_{q_{sat}}^{\infty} (q - q_{sat}) P(q) dq$$
 $\alpha_c = \int_{q_{sat}}^{\infty} P(q) dq$

Log-normal distribution of total water q_t using a prescribed variance $\sigma = \xi q_{t}$

In both cases, cloud phase is parameterized $x_{liq} = \left(\frac{T - T_{min}}{T_{max} - T_{min}}\right)$ using a simple function

of temperature:



Large scale condensation 3/3

PRECIPITATION

- A fraction of the condensate falls as rain (parameters controlling the maximum water) content of clouds and the auto-conversion rate)

• For clouds, it corresponds to a sink term written as :
$$\frac{dq_{lw}}{dt} = -\frac{q_{lw}}{\tau_{convers}} \Big[1 - e^{-(q_{lw}/clw)^2} \Big]$$

[Kessler 1969, Sundqvist 1988]

- Another fraction is converted to snow; the corresponding sink term for ice clouds depends on the divergence of the ice crystal mass flux:
- This fraction depends on the same temperature function as clouds → rain can be created below freezing
- When this occurs, the resulting liquid precipitation is converted to ice.
- When freezing, rain releases latent heat, which can potentially bring the temperature back to above freezing. If this is the case, a small amount of rain remains liqui stay below freezing.

$$\frac{dq_{iw}}{dt} = \frac{1}{\rho} \frac{\partial}{\partial z} (\rho w_{iw} q_{iw})$$

$$w_{iw} = \gamma_{iw} w_0$$

$$w_0 = 3.29 (\rho q_{iw})^{0.16}$$

[Heymsfield, 1977; Heymsfield & Donner, 1990]

Growth of an ice crystal at the expense of surrounding supercooled water drops [Wallace, 2005]

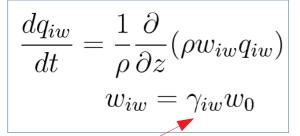
Tuning parameters

$$\frac{\partial P}{\partial z} = \beta [1 - q/q_{sat}] \sqrt{P}$$

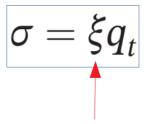
coef_eva=0.0001

$$\frac{dq_{lw}}{dt} = -\frac{q_{lw}}{\tau_{convers}} \left[1 - e^{-(q_{lw}/clw)^2} \right]$$

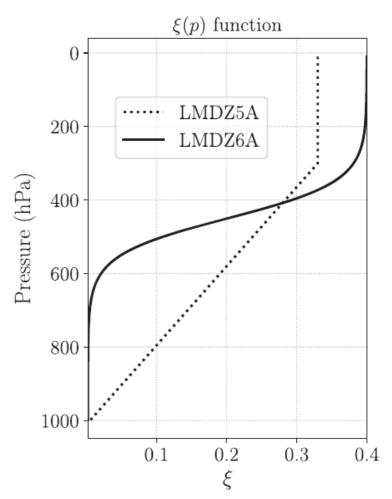
cld_lc_lsc=0.00065 cld_tau_lsc=900



ffallv_lsc=0.8



ratqsp0=45000 ratqsdp=10000 ratqsbas=0.002 ratqshaut=0.4



Radiative transfer

Radiative transfer equation:

$$-\mu \frac{\partial I_{\lambda}}{\partial \tau_{\lambda}}(\tau_{\lambda}, \mu, \Phi) = -I_{\lambda}(\tau_{\lambda}, \mu, \Phi) + S_{\lambda}(\tau_{\lambda}, \mu, \Phi)$$

$$+ \frac{w_{0_{\lambda}}}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} P_{\lambda}(\mu, \mu', \Phi, \Phi') I_{\lambda}(\tau_{\lambda}, \mu', \Phi') d\mu' d\Phi'$$

 $\leftarrow \tau_{\lambda}(s_1,s) \rightarrow$

Solving the radiative transfer equation requires :

- q_{rad} to compute the optical depth;
- Cloud droplet and crystal sizes to compute the optical properties;
- The cloud fraction α to compute the heating rates in the clear-sky (1- α) and cloudy (α) columns.

$$q_{rad} = q_c^{in,\ cv} lpha_c^{cv} + q_c^{in,\ lsc} lpha_c^{lsc} \ lpha_c = \min(lpha_c^{cv} + lpha_c^{lsc},\ 1)$$

Optical properties of liquid clouds

(see O. Boucher's talk)

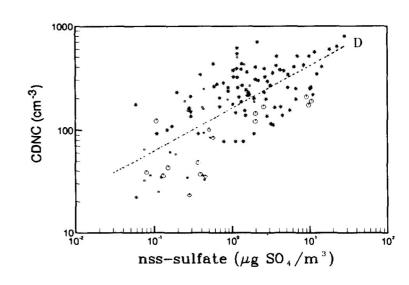
$$CDNC = 10^{1.3 + 0.2 \log(m_{aer})}$$

Link cloud droplet number concentration to soluble aerosol mass concentration (Boucher and Lohmann, Tellus, 1995)

$$N = CDNC$$

$$r_3 = \left(\frac{l \,\rho_{\rm air}}{(4/3) \,\pi \rho_{\rm water} N}\right)^{1/3}$$

Size-dependent computation of cloud optical properties (Fouquart [1988] in the SW, Smith and Shi [1992] in the LW)



$$r_{\rm e} = \frac{\int r^3 n(r) \, \mathrm{d}r}{\int r^2 n(r) \, \mathrm{d}r}$$

$$r_{\rm e} = 1.1 \ r_{\rm 3}$$

Optical properties of ice clouds

Optical properties are computed using Ebert and Curry [1992], based on the computed crystal sizes.

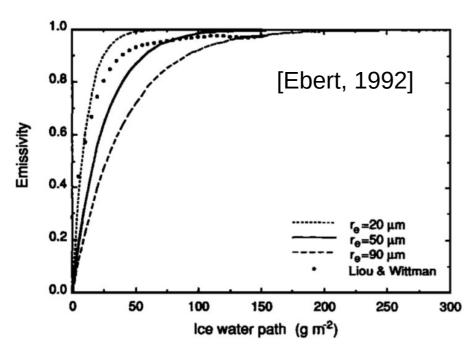
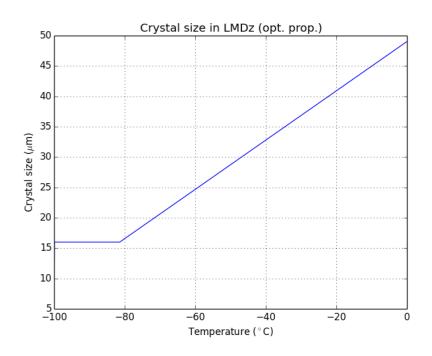
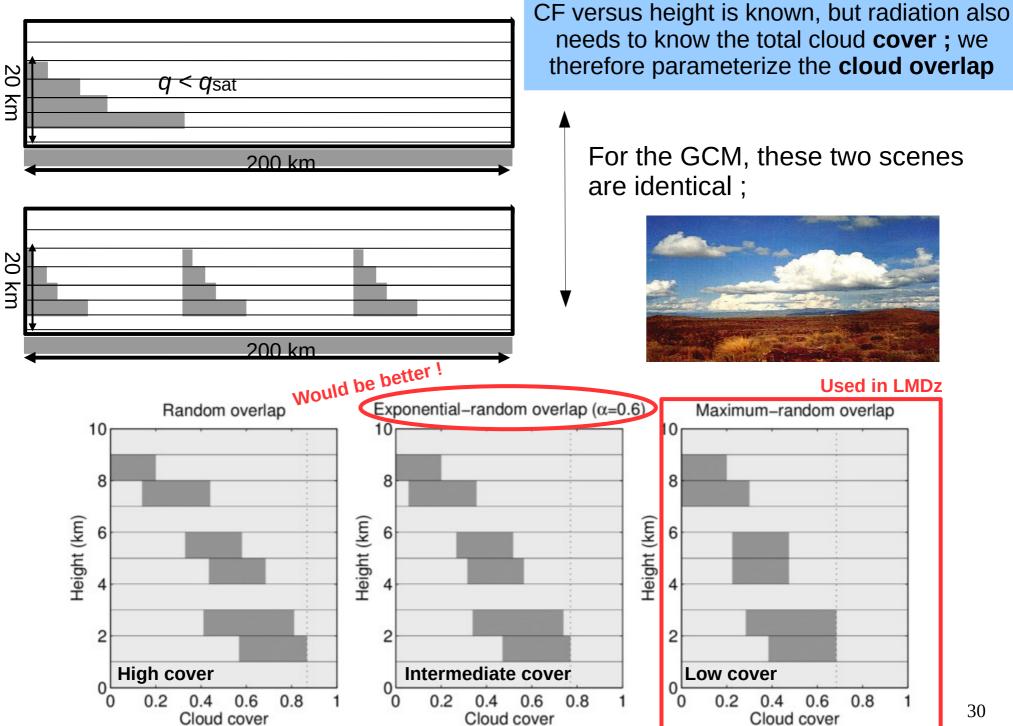


Fig. 5. Cirrus infrared emissivity for $r_e = 20$, 50, and 90 μ m as a function of ice water path. The solid circles represent values computed using the parameterization of *Liou and Wittman* [1979].



Crystal sizes follow r = 0.71T + 61.29 in μ m [lacobellis et Somerville 2000] with $r_{min} \sim 10 \ \mu$ m (tuneable)

for T < -81.4°C [Heymsfield et al. 1986]



Radiative forcing

LW radiative forcing

Positive: clouds reduce the LW outgoing radiation

Annual mean: +29 W m⁻²

SW radiative forcing

Negative: clouds reflect the incoming SW radiation

Annual mean: -47 W m⁻²

Net forcing: Cooling

Annual mean: -18 W m⁻²

