Polar Clouds Microphysics, observed properties and representation in global climate models

Jean-Baptiste Madeleine

Associate Professor, Department of Earth Sciences Dynamic Meteorology Lab, IPSL Climate Modeling Center Sorbonne University

Spring School on Cloud Dynamics and Modeling May 28th - June 1st, 2018

Arctic and Antarctic clouds

Link to animation

Arctic environment

Arctic in late June, 2010 [MODIS image]

Antarctic environment

Cold cloud microphysics and macrophysics

Water saturation

• Clausius-Clapeyron equation :

$$\frac{1}{e_{\text{sat}}} \frac{\mathrm{d}e_{\text{sat}}}{\mathrm{d}T} = \frac{L}{R_{\text{vap}}T^2} \qquad \qquad \begin{array}{ccc} \mathrm{T} & 0^{\circ}\mathrm{C} & 20^{\circ}\mathrm{C} \\ & \\ \mathrm{e_{sat}} & 6.1 \text{ hPa} & 23.4 \text{ hPa} \\ & \\ \mathrm{Saturation\ mass\ mixing\ ratio}: & \qquad \begin{array}{ccc} \mathrm{q_{sat}} & 3.7 \text{ g kg}^{-1} & 14.4 \text{ g kg}^{-1} \end{array}$$

• Saturation mass mixing ratio : q_{sat} 5.7 g kg 14.4 g kg $q_{sat}(T,p) \simeq 0.622 \ \frac{e_{sat}(T)}{p}$, where $e_{sat}(T)$ grows exponentially with temperature

• Clouds form when an air parcel is cooled :

Saturation vapor pressure

7

Supersaturation with respect to ice (wri)

Cold clouds : Microphysical processes

I Deposition Auctous ICE NUCLEATION Ice nuclei Treezing nucleus 12 Contact nucleus GLACIATION TERSITION (from lapor phase) (From liquid phase) (P=1 for TK-35c) (Impossible) (most common) HOMOGENEOUS HETEROGENEOUS HOMOGENEOUS HETEROGENEOUS (::->)))>)) nucleation (in liquid autor) $\rightarrow \overset{(2)}{\searrow}$ $\Rightarrow \Rightarrow \square$ also called honogeneous nucleation / in liquid nater) water uppr CONTACT JUMERSON O supercooled droplet NUCLEATION NUCLEATION its crystal

Deposition nuclei

Silver iodide (red), lead iodide (blue), methaldehyde (purple), and kaolinite (green)

Homogeneous / Heterogeneous nucleation

Supersaturation w.r.i. at Dome C, Antarctica

Wegener-Bergeron-Findeisen process

Growth of an ice crystal at the expense of surrounding supercooled water drops [Wallace, 2005]

Fallstreak hole (also known as hole punch clouds), Rhode Island, USA

Microphysical variety

[Wallace, 2005]

Typical timescales

Process	Timescale	Conditions
Homogeneous/hetero- genous nucleation	Seconds - minutes	
Deposition	30 minutes (example given to show that riming is way more efficient ; 30min deposition would not occur in real world !)	Hexagonal plate, -5°C, r=0.5mm
Riming	Few minutes	Plane plate of r=0.5mm in 0,5g/m ³ liquid droplets \rightarrow r=0.5mm graupel
Aggregation	~30 minutes	$r=0.5mm \rightarrow r=0.5cm$ for 1g/m ³ of ice
Sedimentation	~1 m/s	Snow of r=0.5cm

Whole precipitation process ~ 40 min

Polar clouds observed by CloudSat-CALIPSO

Polar clouds observed by CloudSat-CALIPSO

Annual evolution – clouds and surface fluxes

18

Main polar cloud types

- <u>Arctic :</u>
 - Summertime stratus clouds
 - Clear-sky ice crystal clouds : ubiquitous at wintertime. Radiative cooling → growing of ice crystals → sedimentation
 - Clouds associated with leads : large temperature difference between air and water over leads in winter → convection → formation of ice clouds
- <u>Antarctic :</u>
 - Coastal stratus clouds → low-pressure systems reaching the coast
 - Cold-air outbreaks
 - Ice-sheet cirrus clouds, altostratus (oceanic air intrusions), and summer cumulus clouds (rare)
 - Diamond dust

Arctic summertime stratus clouds

[Morrison et al., 2011]

 Large scale advection of water vapor over sea ice → Cloud-top radiative cooling → Convection and vertical condensation growth of supercooled droplets → Bergeron effect and ice precipitation Most of the year, cloud

(warming effect)

radiative forcing is positive

Antarctic cold-air outbreaks

b)

DIS CLOUD PH. Terra 2011 033 0056

WATER

ICE

[Bromwich, 2012]

MIXED PHASE

UNCERTAIN

Antarctic infrared satellite composite from 20 January 2011 at 15:00 UTC showing clouds over the Antarctic and adjacent Southern Ocean. [AMRC/SSEC/UW-Madison]

Animation roaring 40's

Antarctic cold-air outbreaks

Mixed clouds over the southern ocean

Absorbed Shortwave Radiation Mean Error - CMIP5

Observed phase as a function of temperature

24

Other antarctic clouds (Concordia, Dome C)

Modeling of polar clouds

	Modeling period				
	1960/70s	1970/80s	1980/90s	Now and beyond	
Condensation (nonconvective)	$ar{m{q}} > ar{m{q}}_{ extsf{s}}$	$ar{m{q}} > ar{m{q}}_{\sf s}$	l prognostic function of outcome of	/ prognostic function of the processes	
	(with I t	he condensate content)	processes	themselves	
		_		[Jakob & Miller, 200	

- Separation is often made in GCMs between :
 - Processes occurring on the model grid scale (« macrophysics », « bulk microphysics »);
 - **Processes occurring on the sub-grid scale** (« physical parameterizations », which compute *the statistical effects on the grid box mean state of subgrid scale processes*. See for example the statistical cloud schemes developed for cumulus clouds).
- We also distinguish two main types of schemes :
 - Diagnostic cloud schemes : cloud parameters (cloud fraction, amount, particle sizes) are diagnosed using the grid-averaged quantities (example : cloud fraction is often parameterized as a function of RH)
 - Prognostic cloud schemes : the time evolution of the cloud condensate and cloud fraction are described using prognostic equations →

 $\frac{\partial l}{\partial t} = A(l) + S(l) - D(l)$

(where A=advection, S=source, D=dissipation/sink)

IPSL Climate Model

→ Dynamical "core" Primitive hydrostatic equations of meteorology

→ Radiative transfer model

RT equations (plane-parallel approximation) → Physical "parameterizations" Processes not resolved by the model grid (turbulence, clouds and precipitation, convection)

Statistical cloud scheme

Statistical cloud scheme : basic equations

The goal of a cloud scheme is to compute **the in-cloud water content** \mathbf{q}_{c}^{in} **and cloud fraction** based on different physical parameterizations Mean total water content :

 $\sim \sim$

$$\bar{q} = \int_0^\infty q \ P(q) \ dq$$

Domain-averaged amount of condensate :

$$q_c = \int_{q_{sat}}^{\infty} (q - q_{sat}) P(q) dq$$

Cloud fraction :

$$\alpha_c = \int_{q_{sat}}^{\infty} P(q) dq$$

In-cloud condensed water content :

$$q_c^{in} = \frac{q_c}{\alpha_c}$$

Bi-gaussian PDF for shallow convective clouds

$$S = a_1 (q_t - q_{sat}(T))$$

- One mode associated with thermals

s $S_{env}^{env}, \sigma_{env}^{env}$

 $s_{th}^{}, \sigma_{th}^{}$

- One mode associated with their environment: $\boldsymbol{s}_{_{env}},\,\boldsymbol{\sigma}_{_{env}}$

We know:

Mean state: s

Thermal properties: s_{th} , α

Parameterization of the variances:

$$\sigma_{\rm s,th} = c_{\rm th} \, \alpha^{-\frac{1}{2}} \, (\overline{s}_{\rm th} - \overline{s}_{\rm env}) + b \, \overline{q}_{t_{\rm th}}$$
$$\sigma_{\rm s,env} = c_{\rm env} \, \frac{\alpha^{\frac{1}{2}}}{1 - \alpha} \, (\overline{s}_{\rm th} - \overline{s}_{\rm env}) + b \, \overline{q}_{t_{\rm env}}$$

q_cⁱⁿ is deduced from the mean water content of the environment and thermals and the parameterized spreads of the two gaussian distributions

Shallow convection

[Jam et al., BLM, 2012]

Large-scale condensation scheme

More complex schemes : ECMWF IFS (Cy41r1)

 9 10 mg m⁻³

MAR (Modèle Atmosphérique Régional)

Conclusion

Understanding and predicting the future evolution of polar clouds is crucial :

- In the Arctic, where sea-ice evolution is strongly dependent on clouds and their LW effect ;
- In the Antarctic :
 - Sea-surface temperatures are strongly dependent on mixed-phase clouds in the southern ocean ;
 - Snowfall and the long-term evolution of the ice-sheet also depends on future cloud properties.

SORBONNE-UNIVERSITE.FR

Polar feedbacks

[[]Goosse et al., 2018]