

Climate and Climate Changes : The physical basis

<u>Dr. Jessica Vial</u>

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace (centre de modélisation climatique)

AXA Climate Paris, January 16th 2020

Plan

Climate and weather: The basis

Understanding climate change

<u>Recent changes:</u> What has been measured

Brief history of climate science

The future: Modeling, scenarios and projections

A Simple definition

Ensemble of <u>weather parameters or phenomena</u> measured over <u>large</u> <u>geographical regions</u> and a <u>long period of time</u>

A Simple definition

Ensemble of <u>weather parameters or phenomena</u> measured over <u>large</u> <u>geographical regions</u> and a <u>long period of time</u>

Weather forecasts are only valid locally and over short time periods !

Temperature climatology at the Earth surface:

Average annual temperature from 1961 to 1990

Data sources: CRU land surface temperature (New et al. 2002) ; NOAA OISST sea surface temperature (Reynolds et al. 2002) ; NCEP/NCAR Reanalysis (Kalnay et al. 1996)

The sun, our climate driver !

- Solar radiation warms up the Earth. It's the **solar energy** (in Watt/ m^2)
- The incoming solar energy is unevenly distributed over the Earth surface: warming is larger over the tropics than the poles (by unit of surface).

« Climate » comes from the Greek « klima » that means « tilt » \rightarrow The tilt of the Earth with respect to the sun (~ 23.5°)

The tilt of the Earth axis : at the origin of the seasons

For the Northern hemisphere:

The circulation: winds and ocean currents

They redistribute heat accross the globe,

... from the warmest regions to the coldest

The Oceans

93% of the heat is stored in the ocean

« Thermohaline circulation » or « overturning meridional circulation »

The circulation: winds and ocean currents

They redistribute heat accross the globe,

... from the warmest regions to the coldest

The atmosphere

General circulation of the atmosphere

A myriad of factors influence the Climate system

Understanding climate change...

... means understanding what controls the Earth temperature

Solar radiation

Energy exchange between the Earth and space:

- The Earth absorbs solar radiation ; it warms up

- The Earth emits infrared radiation ; it cools down

... until an equilibrium is reached:

Solar radiation absorbed by the Earth = Infrared radiation Emitted back to space

What is the Earth temperature under this « radiative equilibrium » ?

... means understanding what controls the Earth temperature

- Radiative Equilibrium temperature at the Earth surface: -18°C
- Measured température: +15°C
- The difference comes from **the greenhouse effect**

Greenhouse effect on Earth

Greenhouse effect on Earth

A natural phenomenon

The atmosphere is composed of a mix of gases that absorb infrared radiations

What is the main greenhouse gas ?

Greenhouse effect on Earth

A natural phenomenon

The atmosphere is composed of a mix of gases that absorb infrared radiations

Human emissions of greenhouse gases

Sources: BP statistical Review 2009 pour les consommations de combustibles fossiles ; IPCC AR4 WG 3 (2007) pour la production de ciment et les gaz hors CO₂; Houghton, The Woods Hole Research Center pour le CO₂ du à la déforestation.

Evolution of CO₂ emissions by source

Half of the CO_2 emissions is absorbed by vegetation and oceans. The other half builds up in the atmosphere.

Evolution of CO₂ concentration in the atmosphere

Measurements at the Mauna Loa observatory (Hawaii)

An increase of 50 % compared to the pre-industrial era (277 ppm en 1750)

Source: NOAA-ESRL ; Scripps Institution of Oceanography

Evolution of CO₂ concentration in the atmosphere

Jessica Vial, Jan. 2020

Source : NOAA-ESRL ; Scripps Institution of Oceanography

Evolution of water vapor concentration

Water vapor is not the driver of climate change, ... but it certainly has an **amplifying effect**

→ Clausius-Clapeyron's law

Rudolf Clausius

Benoît Clapeyron

A warmer atmopshere can hold more water vapor

Figure: Bohren & Albrecht

Evolution of water vapor concentration

Ice albedo feedback

Recent changes

What has been measured

Temperature changes at the Earth surface

• Planetary warming

 \rightarrow 1,1°C since 1850 (industrial revolution)

Temperature changes at the Earth surface

• Planetary warming

 \rightarrow 1,1°C since 1850 (industrial revolution)

• « Internal variability » of climate

 \rightarrow Geographic disparity

 \rightarrow One single year can be locally colder !

Temperature changes at the Earth surface

Average over France

- 2002-2011 has been the warmest decade: warming over 1°C!
- 2010: relatively cold year, while at planetary scale, it was one of the warmest of the past 130 years! It's the <u>internal variability.</u>

Evolution of sea level rise

- Stable level until the 1900, then +1-3 mm / year
- Mean increase of <u>3,34 mm / year</u> since 1992

What are the causes?

Causes of sea level rise

Thermal expansion:

 \rightarrow When temperature increases,

water expands (dilatation): $1,1 (\pm 0,3) \text{ mm / year}$

Continental ice sheet:

- \rightarrow Mountain glaciers melting: <u>0,8 (± 0,4) mm / year</u>
- \rightarrow Polar ice caps loosing mass:

Greenland: <u>0,33 (± 0,08) mm/year</u>

West Antarctica: $0,27 (\pm 0,11) \text{ mm/year}$

The melting of icebergs do not lead to sea level rise!

Other factors: ground subsidence, groundwater pumping, dams, coastal urbanism, ocean currents,...

Evolution of sea level rise

Average evolution from 1992 to 2018

Heat is not spread uniformly over the ocean

 \rightarrow Water level is rising faster in some regions than others

Evolution of continental ice sheet

Glacier of Ossoue (Pyrénées)

-59% of it's surface in 100 years -1,80 m / year thickness since 2001

Evolution of continental ice sheet

Source: Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE)

Sea ice melting in the Arctic

Evolution of sea ice extent in summer

-12.8% per decade

Jessica Vial, Jan. 2020

[GIEC, 2013]

ÉVOLUTION DES DATES DE VENDANGES

Evolution of grape harvesting date

Sources : Inter-Rhône, ENITA Bordeaux, Inra, CICV, Inter-Rhône

Distribution changes of Zenopsis conchifer Progression de la distribution de *Zenopsis conchifer*

Source : Quero,

fremer

Climate science:

from the XIX century to the present day

Questions around climate sciences and climate change have been tackled before changes started occuring

The 1980's decade: when we almost stopped climate change

Nathanael Rich, New York Times: "Losing Earth: The decade we almost stopped climate change" A very interesting article!

• In the US, in 79-89, climate change due to human activities was taken very seriously by:

- Scientists
- Politicians

An unprecedented union!

- Activists
- Major oil companies

• A real awakening to this imminent danger:

- Effort to quantify climate risk
- Production of assessment reports ("*The Charney report*" en 1979, amazingly prescient!)
- Meetings: alternative energy planning projects (renewable energies)

• George Bush's election as president (1989-1993) marks the end of that period:

- Gulf war: oil energy supply is number one concern of the government
- Oil companies launch a "doubt propaganda" that has a major impact on public opinion

1988 \rightarrow today: IPCC (GIEC in French)

- IPCC: Intergovernmental panel on climate change, created in 1988 by the World Meteorological Organization (WMO) and the United Nation Environmental Programme (UNEP). Has currently 195 member countries.
- Its mission: Evaluate the state of the art of scientific, technical and socio-economic knowledge around climate change
 - > Does not perform research; summarizes the work of worldwide scientific community
 - > Does not prescribe political recommendations: "policy relevant, not policy prescriptive"
- Three working groups:
 - I- Physical science basis of climate change
 - II- Impacts, adaptation and vulnerability to climate change
 - III- Attenuation of climate change

2013 report: 1500 pages 14 chapters 259 authors and 600 contributors 9200 cited publications 54,677 comments from 1089 experts

... next report in 2021

COP, What is it ?

- The United Nations Framework Convention on Climate Change (UNNFCC); adopted during the Earth Summit in Rio de Janeiro in 1992 (ratified by 189 countries)
- Its mission: setting climate commitments, relying on the IPCC conclusions

 \rightarrow **Conference of parties** (COP). Composed of member states, it meets every year.

1997: COP 3. Signature of the **Kyoto protocol**. Limit the increase in greenhouse gas emissions by industrialized countries for the period 2005-2012.

2009: Failure of the Copenhagen conference (COP 15) goal to reach a global agreement

2015: COP 21 Paris climate conference; reach an agreement to limit global warming to 2 degrees and, if possible, to 1.5°C

The 1.5° report: this target requires -7% emissions of greenhouse gases every year to reach:
-45 % emissions in 2030 and 0 net emissions en 2050

The future :

Modeling, scenarios and projections

Climate modeling

Images from a movie describing climate modeling. Copyright CEA https://www.youtube.com/watch?v=S5f5dJyvezY

- 3D representation of the atmosphere, ocean, sea ice and continental surface (coupling between the different modules)
- Based on physics laws and equations (radiative transfer, fluid dynamics, ...)
- Climate model: a **tool** to **understand** and **"predict"** climate

Using climate models to understand :

Are climate variations linked to human activities or to natural climate variability ?

Using climate models for projections: IPCC greenhouse gas emission scenarios

 \rightarrow Hypotheses on the evolution of demography and economic growth worldwide

[GIEC, 2013]

Temperature change projections

[GIEC, 2013]

Temperature change projections over France

Sea level rise projections

Jessica Vial, Jan. 2020

GIEC, 2013

Projections de l'extension de la glace de mer

1986-2005

2081-2100

RCP2.6

GIEC, 2013

Projections haven't changed over the past 40 years !

Surface warming projections **performed in 1980**

Use of a very simple climate model:

- no ocean circulation
- no biogeochimical cycle
- partial representation of processes
- (nuages, précipitations,...)
- etc...

Warming range between 3 and 4.5°C until 2100 for the worse case scenario (*"fast growth"*).

In comparison, IPCC estimations in 2013 range between 3 and 5.5°C for the worse case scenario (RCP 8.5)

Projections haven't changed over the past 40 years !

Surface warming projections **performed in 1980**

Use of a very simple climate model:

- no ocean circulation
- no biogeochimical cycle
- partial representation of processes
- (nuages, précipitations,...)
- etc...

Warming range between 3 and 4.5°C until 2100 for the worse case scenario (*"fast growth"*).

In comparison, IPCC estimations in 2013 range between 3 and 5.5°C for the worse case scenario (RCP 8.5)

Warming projections until 2018 are very close to the observed tendencies (in red)

Conclusions

Global warming is **unequivocal**, and **human influence** is **clearly established**.

Since the **1950s**, a lot of **observed changes** are **unprecedented** since centuries, even milleniums.

Climate projections show that these **changes** could **continue** and sometimes **amplify** by **the end of the century**.

Limiting warming to 1,5 or 2°C requires **a radical reduction** in the **emissions of CO**₂.