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| Global climate modeling and cloud processes
- From General Circulation Models to « Earth System »
- Cloud process studies and the use of high resolution explicit models
- Key issues for cloud parameterizations

Il The LMDZ « New Physics »

- Thermal plumes and clouds

— From 1D to 3D and the question of model tuning

- Deep convection and wakes

- Impact on climate variability and sensitivity to greenhouse gases

IIl Current issues in climate modeling and clouds
- Observations of cloud processes: global (satellites) and local (field campaigns)
- Global Cloud Resolving Models and super-parametrizations
- “Stochastic physics”



1.1 From General Circulation Models to “Earth System”

Dynamical core : discretized version of the equations of fluid mechanics
" Conservation de lamasse
Dp /Dt + pdivU = 0O
" Conservation de latempérature potentielle
D8 /Dt = Q/Cp (po/p)
" Conservation de la quantité de mouvement
DU/Dt+ (Up) gradp-g+2Q2 W= FE
*  Conservation des composants secondaires
Da/Dt =&

General Circulation Models

Developed in the 60s for the purpose of weather forecast

Based on a discretized version of the « primitive equations of meteorology »

On the Earth but also very rapidly (70s) on other planets (Mars, Venus, ...)

Coupling with surface hydrology, ocean, chemistry ... — Earth System models (80s-present)
A number of important process are subgrid scale and must be parameterized
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1.1 From General Circulation Models to “Earth System”
Dynamical core : discretized version of the equations of fluid mechanics

" Conservation de lamasse

DaADt + pdivU = 0
" Conservation de latempérature potentielle

D6 /Dt = Q/Cp (po/p)«
" Conservation de la quantité de mouvement

DU/Dt + (U/p) gradp-g+ 2 QU= F
" Conservation des composants secondaires

Dg/Dt =g

Radiation and sub-grid scale physics : « PARAMETERIZED »

- Approximate.

- Based on physical principles not derived from fundamental laws
- Statistical on the horizontal and partly explicit on the vertical
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1.1 From General Circulation Models to “Earth System”
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Priority given to model complexification

Motivated by long term climate variations and
CO2 cycle

carban carbon/
nIlmages
. cvele
Easier to promote new Components than
improvements of « as usual business » dustf dust/
sea spray/ maneral)| | sea sprayd mineral
acrosals aerosols

Not much improvement on model physics while :
— strong biases persist

— atmospheric physics (in particular clouds) are
of first order for climate sensitivity to greenhouse
gases

- all the other components depend crucially on

the good representation of atmospheric physics
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Biases in sea surface temperature (K, contours) and rainfall (mm/day, colors) in coupled
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1.2 Cloud process studies and the use of high resolution explicit models

Explicit models for turbulent and convective processes

Non hydrostatic on the vertical
« Cloud Resolving Models » : grid cells of 1-3 km, domains 100-1000 km
- Boundary layer processes parameterized
— Deep convection and associated clouds are explicitely resolved
« Large Eddy simulations » : grid cells of 10-200 m, domains 10-200 km
- Small scale turbulence parameterized
- Cumulus and boundary layer organized structures (large eddies) explicit
« Direct Numerical Simulations » : grid cells of 1mm, domain 1-10 m
- All the turbulence explicit
- No use

The GCSS approach (Gewex Cloud System Study)
following Eucrem, Eurocs and others, From 1990

- The goal of GCSS is to improve the parameterization of cloud systems in GCMs (global climate
models) and NWP (numerical weather prediction) models through improved physical understanding of
cloud system processes.

- The main tool of GCSS is the cloud-resolving model (CRM), which is a numerical model that
resolves cloud-scale (and mesoscale) circulations in either two or three spatial dimensions. The large-
eddy simulation (LES) model is closely related to the 3D CRM, but resolves the large turbulent eddies.

- The primary approach of GCSS is to use single-column models (SCMs), which contain the physics
parameterizations of GCMs and NWP models, in conjunction with CRMs, LES models, and integrated, high-
quality observational datasets, to evaluate and improve cloud system parameterizations.

- Integrated, high-quality observational datasets are required to run the models and to evaluate
their results. GCSS and collaborating programs (such as DOE ARM) produce these valuable datasets,
which are available from GCSS-DIME (Data Integration for Model Evaluation) (http://gcss-
dime.giss.nasa.gov).

In addition, GCSS has recently begun to lead diagnostic studies of the representation of cloud processes
in GCMs.



1.2 Cloud process studies and the use of high resolution explicit models0

Explicit simulations, Grid cell, 20-100 m
Evaluation « Large scale »

conditions

imposed

Climate model, parameterizations, « single-column » mode

— Parameterizations are evaluated against other models _‘
— Can be done for realistic test cases but also with more idealized forC|
(check the response of the parameterization to perturbations)



1.3 Key issues for cloud and convective parameterizations

— strong biases persist in climate models (in particular in coupled atmosphere/ocean
models)

— Underestimation of cumulus and strato-cumulus clouds

— Bad representation of convection diurnal cycle and intra-seasonal variability of
tropical rainfall

— Important processes like sensitivity of the convection to tropospheric humidity,
propagation of convective systems, role of convective organization are not or badly
accounted for.



(D

> by &= NI Y = s ~ |17 ~\ i N ol aY Yolalalales
| Global climate morlelmg and clouds processes
—. From General Circulation Models to « Earth System »
— Cloud process studies and the use of high resolution explicit models
or

— ¥ey issues for cloud parameterizations

Il The LMDZ « New Physics »

- Thermal plumes and clouds

— From 1D to 3D and the question of model tuning

- Deep convection and wakes

- Impact on climate variability and sensitivity to greenhouse gases

IIl Current issues in climate modeling and clouds
- Observations of cloud processes: global (satellites) and local (field campaigns)
- r‘Io'oml Cloud r<%olvlru Models and super-parametrizations
— “Stochastic physics



1.1 Thermal plumes and clouds

W 0c

'‘One modd column

Classical approach :

— « Turbulent mixing » or diffusion
Mixing by small scale random motion
Analogous to molecular diffusion

0 0a
Dg/Dt =Sg  avec SQ-'_( KZ_)
07 07

— Computation of Kz : a field of research

Kz = f (dU/dz d@ /dze,..)
New eguations, new parameters ...



1.1 Thermal plumes and clouds

Explicit simulation, ARM continental case

1. Clouds \

—
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0 Ao Trgcer emitted at surface
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Turbulent diffusion :

for isotropic small scale turbulence
Atmospheric turbulence :
“meso-scale”, organized and anistrop

— « Thermal plume model »
Each atmospheric column is divided in 2 :
* plume of air rising from the surface

* air subsiding around the plume

A « mean plume » is represented, at the
top of which a « mean cumulus » can
appeatr.
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1.1 Thermal plumes and clouds

Turbulent diffusion :

for isotropic small scale turbulence
Atmospheric turbulence :
“meso-scale”, organized and anistrop

— « Thermal plume model »
Each atmospheric column is divided in 2 :
* plume of air rising from the surface

* air subsiding around the plume

A « mean plume » is represented, at the
top of which a « mean cumulus » can
appeatr.




1.1 Thermal plumes and clouds
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1.1 Thermal plumes and clouds

Genesis of the thermal plume approach

Mass flux schemes

— mass flux schemes already used but essentially
for clouds and deep convection

- dry convective boundary layer were given a
weaker priority

Origin of the LMD thermal plume model (2002) :
-~ motivated by the Martian climate : Mars is a
global desert with very strong and frequent dry
convection

— Inspired by air plane observations during the Trac
campaign (Paris area)

Other origins :

— First paper proposing the combination of a
diffusive approach and mass flux scheme for the
convective boundary layer (Chatfield, 1985)

- Independent parameterization issued from the
GCSS and eurocs community (Siebesma and
collaborators, 2004)




1.2 From 1D to 3D and the question of model tuning
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1.2 From 1D to 3D and the question of model tuning

Mean latitudinal distribution of low level Sp -
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A new paradigm for model
development

1. Development and evaluation of
cloud parameterizations in single
column configuration based on LES
simulations of a series of relevant and
“representative” test cases.

2. First tuning of internal parameters
with respect to LES

3. Activation in the full 3D GCM :

must be computationally efficient,
numerically reliable, applicable to a
large variety of situations

4. Final tuning of the free parameters
in the 3D model so as to fit
observations of the “global climate”,
under the constraint of test cases.

New =

Starting to be used systematically as
a methodology for model physics
improvement in climate models.

Time constant : 10 years
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Time and duration

Boundary J: | Effect of surface
layer Dry thermal scheme loudy thermal Heterogeneities
development development | (breeze) . . ..
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Mass flux scheme
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1.3 Deep convection and wakes

.

GuUst front
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1.3 Deep convection and wakes

Comparison between LMDZ SCM and Meso-NH CRM
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I1.4 lllustration with the LMDZ climate model : robust improvements

Diurnal cycle of rainfall
Directly linked to the change in convection schemes

Local time of maximum convection
Lxmzm (SP) July

1D tests compared with
Cloud resolving models (mesh of ~1km)
Continental convection in Oklaoma

Local Time (hours)
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1.4 lllustration with the LMDZ climate model : biases

Slight bias reduction for
Annual mean rainfall (mm/day)

10 12 15 20

Large positive impact on the
Intraseasonnal rainfall variability
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Standard deviation of daily rainfall

anomalies (mm/day) of the a) GPCP
dataset (1996-2009), b) IPSL-CM5A

and c) IPSL-CM5B preindustrial
simulations, for the winter season
(November to April - NDJFMA)



I1.4 lllustration with the LMDZ climate model : Climate change projections

6 | | | | | | | | | |
| = CM4-96x71 CI\III IP3 | I | | i
-—— CM4-96x71B |Tuning surface albedo (+ 1K control)
5 CM4-96x95 Refining the horizontal grid —
— (CM4-144x142 |Refining again
i CMS5A-LR CMIP5 (strato+96x95) |
4 H — CM5SA-MR Refining the horiz. grid 3.8k
— CMS5B-LR New cloud physics -
Q3 -
=
S _
o
2 _— —
1 . L —
Climate change projections
1% increase in CO2 concentration / year
0 4 Global mean 2m air temperature —
] | ] | | | ] | | | ] | ] | |

80
Time (Yr)

100 120 140

160



I1.4 lllustration with the LMDZ climate model : Climate change projections

Change in surface temperature (K)  Change in annual mean rainfall (mm/day)

(for a 3K averaged change) IPSL.CM5A (for a 3K averaged change)

80°M
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lll-1 Global observation of cloud processes:
Satellites and parametrizations

Up to now satellite observations and GCM simulations are compared at the
global and plurianual scales. CRMs, LES and parametrization developments
do not use satellite data.

At smaller scale GCM are too far from satellite observations.

What is keeping satellite observations and parametrization results so far away?

In most GCMs:

Bad diurnal cycle of deep convection over land.

Poor low cloud simulation (Cumulus and stratocumulus).

Poor anvil simulation or lack of anvil representation.

Lack of autonomy of deep convection (there are no convective systems).
Lack of convection propagation.

Progress made in LMDZ:
« Density current parametrization together with PBL thermal parametrization ==> better
representation of deep convection diurnal cycle and better simulation of low clouds. Deep
convection becomes autonomous.

Huge problems remain:
« Still no proper anvil representation.
« Still no representation of the propagation of deep convection.



lll-1 Global observation of cloud processes:
Satellites and parametrizations

Major changes in the near future:
« Large domain CRMs and LES are coming ==> use of satellite data.

« Satellites like Megha-Tropiques will make it possible to analyse the
life cycle of convective systems.



lll-1 Local observation of cloud processes:
Field campaigns and parametrizations
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l1l-2 Global Cloud Resolving Models and super-parameterizations

Arakawa (1974, 2004): Convective parametrizations are based on Quasi-Equilibrium

Bretherton, Neelin, Randall and others (2005,2008, 2011): Quasi-Equilibrium entails
an exceedingly low variability.

==> In th US :super-parametrizations (one 2D CRM in each GCM grid cell).
==> |n Europe stochastic physics

The other solution is global CRM.



llI-3 Stochastic physics: o 18000
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IV Conclusions

Scientific results :

 New model with a much better representation of cloud and convective processes.

* A new (starting to be really at work in the modeling groups) methodology : 1D
versus explicit 3D simulations on test cases.

* Robust improvements = both in 1D and 3D + we improve what we wanted to
improve (!)

» Free parameter tuning is an essential step of climate change modeling, often
hidden aspect.

« Some mean biases increased (question of tuning or non compensation of errors)

2 model versions that

1. differ only by the representation of clouds physics and free parameter tuning

2. contrasted response to greenhouse gas increase (global temperature and rainfall
distribution), quite similar to CMIP3 multi-model dispersion

How to reduce uncertainty in future projections ?

— None of the development or tuning was done to adjust the climate sensitivity
(response to greenhouse gas increase).

- What weight must be given to the mean biases, robust improvements

or physics content ?

— How to asses the models response ?



l. Uncertainties in climate change projection : dispersion of results

Projected Patterns of Precipitation Changes

multi- model . A1B

20 10 -9 5 10 20

Evolution of cumulated ranfall over monsson region : unknown (even the sign)

FIGURE SPM-6. Relative changes in precipitation (in percent) for the period 2090-2099, relative to
1980-1999. Values are multi-model averages based on the SRES A1B scenario for December to February
(left) and June to August (right). White areas are where less than 66% of the models agree in the sign of
the change and stippled areas are where more than 90% of the models agree in the sign of the change.

{Flgme 1{]-9} Source: GIEC 2007



Il lllustration with the LMDZ climate model : robust improvements

Test of 2 version of the IPSL climate model (atmospheric component
LMDZ)

1. IPSL-CMb5A : standard version SP. Physics already used in CMIP3

2. IPSL-CM5B : « new physics » NP
parameterizations of convection, turbulence and clouds based on new

concept (10-year reasearch). Includes the thermal plume model + new
parameterizations of cold pools created below



apparences

théories (physique, chimie, biologie, économie)

mathématique

numerique

informatique

Les mathématiques constituent un langage commun.

La modélisation concerne I'ensemble de ces couches.
[l faut toujours essayer de mettre en évidence les liens avec les couches supérieures.

Il faut en méme temps étre capable de bien séparer ces différentes couches (savoir dans
laquelle on se trouve).



l. Uncertainties in climate change projection : biases in the representation
of the present day climate

Results from control experiments with the IPSL-CM5A model used in CMIP3
- Good in view of the fact that it is a fully consistent model based on physics
— But large biases

Annual mean rainfall (mm/day)
_ GpCP (Observations

g e % i

=

Sea surface temperature bias (K)
10-year mean

. IPSL-CM5A
P S T

™ i p‘

20%H — . !

0"

4D'5:_
P

100w ae 100°E

. B

|
10 -5 -4 -3-2-1-05051 23 4 5 10 051 2 3 4 6 8 10 12 15 20



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

