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Differential treatment of the PBL between inner and
outer regions of cold pools; II: over land
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Key Points:

« Thanks to the adaptation of surface temperature to cold pool temperature, sen-
sible heat flux difference between inner and outer regions of cold pools is weaker
than in the ocean case, which allows stronger cold pools.

» A negative feedback loop due radiation and to sensible and latent heat fluxes damp-
ens the surface temperature adaptation.

e The difference of behaviour of cold pools over land when compared to ocean changes
the land-ocean contrast of precipitation.
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Abstract
bla bla bla

1 Introduction

The difference between the land case and the ocean case is twofold:

1. Over land the surface temperature depends on the boundary layer temperature
and humidity. Hence one may expect surface temperature and humidity to dif-
fer between the wake and the off-wake regions. Moreover these differences may feed-
back on the cold pool state so that they cannot be considered as prescribed as they
were in the ocean case : in the land case, the surface and moisture differences are
internal variables of the system. Some new model will have to be provided to rep-
resent the processes that drive these differences.

2. Over land the soil surface may be partially saturated: this is described thanks to
the aridity factor 8 which is the fraction of the soil surface which is saturated, the
rest of the surface beeing perfectly dry. Then the surface average humidities ¢
and g% over each of the regions (w) and (x) no longer coincide with the satura-
tion humidities gsat (T2) and gsat (7). The link between the PBL variables, ¢
and ¢%, and the surface variables, 5, gsat(T2) and gsat(T7), will also require some
new equations.

2 The merging equations
Atmospheric boundary layer

The surface as seen by each of the two atmospheric columns is described by the en-
thalpy and moisture mean fluxes, ¢ and ¢, and the surface temperature and humidity,
T, and gs. Turbulent vertical diffusion equations relate mean surface fluxes with mean
surface temperature and humidity; they are identical to those of the ocean case. They
are composed of two sets:

First, the surface flux equations express the mean fluxes in terms of the surface vari-
ables T and g¢s:

CpK(T7" — T¢")
C,K*(TF — TF)

S

(1)

{ ov = K¢t — a¥) { 9"
Go= K - L

Second, the boundary layer equations describe the link between enthalpy and hu-
midity at first level and the surface fluxes:

{ qil)
qf

Atmosphere/soil interface

(A:w + BiAw?AwAt) Ople = (Aw + Bw(bwAt) (2)
(A + BT¢rAt) C,Tf = (A* + B*¢"At)

At this stage, the link between ¢¥ and T2 is unknown (on ocean it would be ¢¥ =
Gsat (T2)). The surface evaporation is represented by the aridity coefﬁcjent B , that is the
ratio of the evaporation to the potential evaporation. Consenquently ¢¥ = K j3[g}’—

Gsat (Tsw)]

From ¢ = K“(q¥ — ¢¥) and ¢* = K"B[q¥ — geat(T)] one gets an expres-
sion of the mean surface humidity:

¢¢ = (1=0)at" + Bgsar(T5")
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In order to deal with variables meaningfull even when 8 = 0, the following variable will
be used:

Gsat,s = ﬁqsat (Ts) (3)
The surface flux equations become:

¢:w = I:{w(ﬂq’iu - q:;t,s) { d)w = CpKw(le - Tsw> (4)
¢ = K*(Bqi — qGars) ¢* = GE(IT —- 1)

On the soil side, the interface is made of a single column. The equations relate the do-
main averages of the fluxes with the domain averages of the surface variables Ty and g, o

é* = Ka(ﬁqa - CI:at,s) ¢t = K*(h* - OpT:)
(5)
¢“ = Aa + Baé*At ht = A® 4+ Ba¢*At

where ¢* and h" are apparent atmospheric moisture and enthalpy, K® and K® are ap-
parent exchange coefficients, and A¢, A%, B, and B* describe the sensitivities of ¢* and
h® to the mean fluxes ¢* and ¢*.

The problem of determining expressions for these coefficients in terms of the co-
efficients within each column will be called the merging problem. The problem of deter-
mining the fluxes in each column once the domain average fluxes are known will be called
the splitting problem.

Effective exchange coefficients

Eliminating variables ¢; and T} in equations (4) and (2) yields new surface flux equa-

tions: . » A ,
go o= K(phe —qn) [ e = KA - )
b= RUBA — i) | ¢ = K547 — T

where K o K’z , K /“}, and K’ are the effective exchange coefficients, that is exchange
coefficients accounting for the boundary layer feedbacks:

(6)

- Kwv w
KY = ———————— K,w — 7K
1— BRvBwAt 1— KvBwAL
A . 7)
Ke 'y
K* = —— K* = oy
1— BK*BrAt 1 — K*BAt

Ezxpression of the domain average flures

Applying the second product identity to K ” (b’fl — gsat,s) and their product gfg
(and similarly for ¢) yields expressions of the domain average fluxes:

9" = K" (BA" — qlyrs) + 0wou0K”" (B6A — 5qsats)
(8)
¢ = K"™(A* = C,T) + 0,0.0K'(6A — C,0Ty)

In section (4) will be introduced a model of surface temperature difference. Then it will
be proved in sections (4.2) and (4.3) that the moisture difference dgsat s and the temper-
ature difference 67T, are affine functions of the surface fluxes:

5ant,S = M + N(i)* Cp(sTs = M + N¢* (9)

where M, N, M, N are the coefficients that will be determined in sections (4.2) and
(4.3). They represent the feedbacks of the surface fluxes onto the temperature difference



73

74

75

76

7

78

79

80

81

82

83

0T, and on the humidity difference d¢;. Then the domain average fluxes read:
(14 0,0,0K"N)¢* = BK"*A* + 0,0,0K"(B6A — M) — K" gy
(14 0o, 0K'N)¢p* = K"A* + 0,0,0K' (64— M) — K*C,T* 1
Mixed boundary conditions for the surface model
Similarly to the ocean case, the boundary conditions for the surface model read:
0" =i = Mis ¢ =p - NIT (11)

Comparison with equations (10) yields:

. ﬁf(”*z‘i* + O’wO'm(SIA(”((Sﬁf%) B K™*A* + Uu,Ux5K/(5A7M)
m= 1+ 0,0, 0K"N o= 1+ 0,0, 0K'N

R K?a* B CPK/*

A= = A = T oo KN

1+ 0,0,0K"N
(12)
Mized boundary conditions in terms of A%, B*, A*, and B“
Eliminating ¢* and h* in equations (5) yields:
K A K®

Pr = ——————(BA" — qsat,s) ¢" = m(fl

— — C,T; 13
N wT3) (13)

Comparison of these equations with equations (11) yields:

. BEK®A® B Ko Aa
1 — BKeBeAt b= T KAt
(14)
. Ko N = CpK*
o 1— BXaBaAt 1 — K*BaAt
from which one gets the expressions of A%, A%, B%, and B® in terms of L, f, A\, and \:
i 1p p
Ar = - = A = =
B A
1.1 C (15)
A 1 .1 1
BY = —|— — = B* = —[— - £
BAt[Ka )\] At[K‘L A ]

General formulas for A®, B*, A*, and B®

Substituting in the last equation the expressions of fi, u, 5\, and A given by equations(12)
yields expressions for A%, B* A% and B® in terms of K% and K“:

ia i SK” , . M SK'

A = A + UwUxE(CSA— F) A = A* + O'wa'wﬁ(aA—M)

g _ L1 140uondK'N pe = L L _ 1+ouwndK'N,
= AGe T T e ALK K

(16)
Demanding continuity for ¢* towards q; when o0, — 0 yields:

Ka:K* K® = K*
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hence the general formulas for Ae, Be, A, and B*:

fe _ gao _ Tw0os 0K7 o . w0 5K’
A=A 3 e A = AT = owoe e M
(17)
R R : o . SK' 1
where:

N ~ 6K” “ SK'

AaO == A* +0'w0'zﬁ614 A(lO = A* +JWUZW5A

Beo _ owK"K"BY + 0,K*K"*B= B _ 0wK"K"BY + 0,K*K'*B*

K+ 7+ K*K'"
(18)
where the B and B expressions have been determined by the same argument as in
the ocean paper.

3 The Splitting equations

From the values of the variables A%, B* and K (and similarly for moisture) the
surface model determines the domain average of the surface heat and evaporation fluxes.
Then, boundary conditions for the atmosphere boundary layer model require surface fluxes
within each of the (w) and (x) regions (Equations 2).

The third product identity applied to: (i) K>, (5A—qsat,s) and their product ¢,
(ii) K', (A — C,Ts) and their product ¢, yields:

K"*6¢ — 6K ¢* = k”/zf(’,’w(/aafi — Gsats) (19)
K"*6¢p —0K'¢* = K K "“(6A — CpoTs)
Whence the expressions of the flux differences d¢ and ¢
R 5kn R f(”zf(”w .
5 == ~ * + ~ 5A - 5 sat,s
¢ K”* K77* (ﬁ q t’ )
(20)
K’ ., K*K'™
dop = o o + 7(514 — CpoTy)
Then the surface fluxes in the (w) and the (x) regions read:
gv = " +ou09 [ ¢ = O +0u0¢
(21)

T = ¢* — 0,00 P = ¢ — 0,00

4 Coupling with the soil model
4.1 Model of surface temperature difference

In this section we build a simple model of the surface temperature difference be-
tween the (w) and (x) regions. The model is based on the relation imposed by soil in-
ertia between the amplitudes of heat flux and temperature variations.

The idea is that the movements of cold pools or of their gust fronts at the land sur-
face induces a variation of the soil surface heat flux d¢, during a characteristic time 7,
which induces a variation d7; of the surface temperature given by:

0T VT

= Y56, (22)
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where I is the soil thermal inertia. The time 7 is estimated as the time it takes to travel
a distance equal to the radius of the cold pools at the spreading speed C, of the pools.

. 2 )
Since o, = @wr<D,,, T reads:

1 Ow
T = —

C,\| 7D,

0¢g decomposition: The flux ¢, is related with the sensible heat flux ¢, the evap-
oration flux ¢, and the net radiation flux R,, by:

¢g = ¢ + Lup + Ry
hence its difference d¢ between regions (w) and (x) reads:

Sy = 6¢ + Luo¢ + R, (23)

Temperature difference 0Ts expression: The substitution of (22) in (23) yields the
surface temperature difference equation:

5T, = Y(5p + Lydb + 0R,] (24)

4.2 Enthalpy coupling equations

The purpose of this section is to express each of the flux differences §¢, 5A¢, and IR,
as linear combinations of 67 and ¢*. Non-linearities will be (partly) accounted for by
using two distinct linearizations of ggat(Ts) and Ry, (Ts) in the vicinity of T9% and T®.

In the following we shall write equations relating average values of fields over the
(w) or the (x) region, these relations being valid equally over the two regions. For the
sake of simplicity, the relations wiil be written only once, with average values of the fields
written with a '+’ character as a superscript in lieu of the 'w’ or ’x’ superscript.

0R, expression

The net radiation R,, at the surface is the sum of the net short wave radiation Rg,
and of the net long wave radiation Rpy:

Rn = RSn + RLn

hence:
0R,, = 0Rsy, + 0Ri,

We assume that §Rs, ~ 0. Then 0R,, reduces to d Rry.

The net long wave radiative flux is the difference between the downwelling long wave
radiation Rpq and the flux emitted by the surface:

Rran = Rﬁ_d - U(Tj)4

We approximate Rfd by the radiation field from a grey body, with emissivity €1, at the
temperature T;" of the first model layer:

Ry = ero(T})*
T;" may be expressed in terms of T by combining equations (1) and (2):
o = CpKw(Tfr - 1)) At — C,KBT AT
Cp(l1 — K+BTAY)

= Ty = (25)

C,Tit = (AY + BtotAt)
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Definition of the reference state

We define the reference state by the initial surface temperatures T>'* from which
one may define:

0, ,
qsaj::s = ﬂqsat(TSO +)

Then the reference fluxes ¢0+, ¢+, RO* read:

POt = K,JF(AJF*CstO’ﬂ
POt = K'H(BAT — %) (26)
RYF — RV RO
where: o 044
BT = eo(Ty7)
Ryt = o(T)F)

and where the reference temperature T{"" reads:

AT — C,K+ BT AT
= Cr : (28)
Cy(1 — KTBTAt)

Linearization
The saturation humidity is linearized following the formulas:
0,+ ,
qstxt,s = qsat,s + BaquJerlt (Tj - TSO +) (29)

where
aqu-zt = aTQSat(TSO’+) (30)

The radiation fluxes from the surface are linearized thanks to:

o(TH) = oI + RN — 1)) (31)
with: )
RS = 4o(I)7)° (32)
The radiation fluxes from the first level of the atmosphere are linearized thanks to:
ao(Ti)' = ao(@™)' + R(TF 1) (33)
with: )
R = dejo(T))? (34)

Expressions of the fluxes

The expression of ¢* in terms of the reference flux ¢>* and the reference tem-
perature T+ comes directly from:
¢+ = K/+(A+ - Cij) (35)
POt = K'*(A* —C,TO)
yielding: )
¢* = "t — K T(T] — 1) (36)

The expression of ¢+ in terms of the reference flux ¢%* and the reference tem-
perature T+ comes from:

¢r = K T(BAY — gl
OOF = KTH(BAT —qy)

sat,s

(37)



combined with the linearization equation (29), yielding:

¢t = ¢OF — BR T Orgl (T — TOT) (38)

The expression of R]'fn in terms of the refernce flux R%; and the reference tem-
perature T+ comes from:

Rf, = Rf — R}
R = RY" + RN (T — 1)) (39)
RY = RYF 4+ (T — TO%)
combined with the expression of 7" given by equation (28) and the expression for T}
given by equation (25), yielding:

R} = R — ROt — (RK'*BYAt + R)(TF — TO) (40)

General flux expressions

After linearization, each of the fluxes ¢, QSA* and R;}" may be expressed in the gen-

eral form:
Yt = 0t — HI(TF -T))

where 1 stands of any of the fluxes ¢, g% and R, and H ;; stands for one of:
. H; CPAK +
* H;r = BK +5qu+at
- Hfy = RYK'*B*At + R}

Then, the first product identity yields for each of the three fluxes:
5 = 690 — [Hj + (04 — 0w)0Hy|(6Ts — 0TY) — 6Hy(Ty — T7%)
and the second product identity yields for the sensible flux:
¢* = ¢*F — 00 0Hy (6T, — 6TY) — Hy(T: — 1)

Thanks to this last equation it is possible to express T —T * in terms of ¢* and 67—
STY:

—1
T: - T = —
H

Substituting this expression in the 1 equation yields the sought for expressions of 4,
d¢ and §R,, in terms of §T, and ¢*:

[0* — ¢ + 0,0, 0H,(0Ts — 0T2)]

H,0H H
M]@Ts_(g;@ + 0Hy

_ 0 _ * _ _
o) = o [Hy, + (02 — 0w)0Hy — 040 7 7

(6" — ™)
(41)

4.2.1 Final formulas for the enthalpy

The substitution in equation(24) of the expressions of d@, (5A¢ and JR,, given by equa-
tion (41) yields:
T

0T, = Y=[64" + L,6¢° + 6RO]

oH
—?[H; + LUH:; + Hp, + (02 — 0w —UwUx?f)(5H¢ + L,0Hy + 6Hpg,)|(6T —6T?)
¢

\/’F * 0,%
+?I{;[5H¢ + LU(;Hd; + 0HRg, |(¢* — ¢”")
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Setting:

STyims = ?[&;50 + L5090 + 0R)
g = —FlH; + LH + Hj + (00— ou —JwazH—(;)(éHd) + Ly,0H; + 6Hp,)]
\/;
r¢e = +7 [0Hy + L,0H; + 6Hg,]
(43)
equation (42) becomes:
(1 — g)(0Ty — 01Y) = 0Tujns — OTO + T9(¢" — ¢°%) (44)
4.2.2 A® and B® coefficients
Equation (44) is similar to equation (9) with M = C,[6T2 + (0Txins — 612 —
%¢%*)/(1 — g)) and N = C,I'?/(1 — g). Then coefficients A® and B® are given by
equation (17):
Cp6K' 6T ins — 6TO — T2¢0)
_ 0 s,ins s 0
AC = AN — 5,0, ;{,* [ 1—g +(5Ts]
(45)
SK' CI? 1

Be = BaO _ oo
TwIe e 1—g At

4.3 Moisture coupling equation

For moisture, the boundary conditions for the surface model (11) relate ¢Z,, ; and
¢*. Hence the purpose of the present section is to translate the surface temperature dif-
ference equation (24) into an equation relating g%, ¢ and ¢*. First the temperature dif-
ference 67 will be expressed in terms of the moisture difference dgsat,s. Second the flux
differences 09, (5A¢, and dR,, will be expressed as linear combinations of dgsat,s and <Z;*

Expressing 015 in terms of 0gsat s

The temperature T may be expressed in terms of q:at’s thanks to the lineariza-
tion equation (29):
0 0,+
B(T:_ - Ts 7+) = Q+ (qs—:w,s - qsat,s)

Qt = ! (46)

aqut»t

where we have set:

The first product identity yields:
B((STS - 5Tso) = [Q* + (UI - Uw)éQ]((quat,s - (ngat,s) + 6Q(q:at,s - QSOBZ:,S) (47)

The surface temperature difference equation in terms of 0qsat s

Multiplying both sides of equation (24) by 8 and using equation (47) yields:
* * Sk T J
[Q + (afb - Uw)éQ] (5(]Sat,s - 5qgat,s) + 5Q(qsat,s - qgat,s) = B% [6¢+ Lv5¢+ 5Rn] - BéTso
(48)
After some reordering and division by @Q* one gets the surface moisture difference equa-
tion:

0Q

B
5qsat7576qgat,s = 7(017071))@(5(153‘?7575(123‘5,8) -

Q*

\/F
1Q*

~ 1)
1866+ LBS6 B Rn] — 22 (g8 o—a)
(s}

ST +
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Similarly to the enthalpy case, the method will consist in expressing first the flux dif-
ferences ¢, fd¢ and BOR,, in terms of dgsats — 5qgat7s and gl s — qgg’s and express-
ing in turn q;;t’s — qg;t’s in terms of dqsat,s — (quoat’S and ¢* — ¢¥*.

General flux expressions

Similarly to the enthalpy case, the linearized flux expressions read:
3 0,
5¢+ = 5¢0’+ - HJ(q;-;t s qba:rs)

where 1 stands of any of the fluxes ¢, g% and R,, and H ;; stands for one of:

) HJ - CPAK QT
. H; = BK”"’

« O} = (RFK'*B*At + RV)Q*
Then, the first product identity yields for each of the three fluxes:

55¢ = ﬁ6¢o - [‘E[:/FJ + (UCE - Uw)éﬁw]@%at,s - (ngat,s) - 6H¢(q:at,s - qu;:,s)

and the second product identity yields for the latent flux:
7 x 70,% 2 Tk [k 0,%
B(b = B¢07 - Uan;(SHJ)((Sant’S - 6qgat,s> - H({) (qsat,s - qsat,s)

Thanks to this last equation it is possible to express g, qSat s in terms of ¢* and Oqsat,s—
6QSat ,S°

-8 - 20 5ff 0
= = - = OwOgx—= o sat,s -6 sat,s
O T s =)

Substituting this expression in the 61> equation yields the sought for expressions of 5d¢,
Bégb and BOR,, in terms of dgsat s and (;5*

* 0%
Gsat )8 Gsat ,S

SH 6 H; SH,

i = B0 = U o = )bl = ol = O] + P (6=
¢

E (50)

4.3.1 Final formulas for moisture

The substitution in equation(49) of the expressions of d@, 5;1) and JR,, given by equa-
tion (50) yields:

BVT i< 0 0 B sro
S0satys — 0@t 10" [06° + L,0¢° + SR%) — Q*§Ts
5Q 5Q 0,
—(Or — Ow)—=" — OwOy ~

VT e e e 5,

_|_7
1Q* *
@ ¢

5@ 5 ﬂ\/;— 2 T 2 Tk 00,%

~10—

U+ Lo - Hi, (00 = 0 = 0005 2) (0 o LodH 38R, ) (s~

5qgat,s)



183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Setting:

5qsats,ins = ﬁﬁ [5¢0 + Lv(s&)O + 5R?1}
Q*I
j (02— 002 — 6,0, 22 8K
= {(op — 0w — OO — —
Q" Q K
\/F {7 (7% 7% 6K” 2 2 2
: 16Q | 1 J7 ., : ;
re = — +-———(0Hy + L,0H; + 6H
T R.)
(52)
equation (51) becomes:
(1 - g)((sant,s - &Igat,s) = 5qsats,ins - QB* 6T£ + Fq&(‘& - 507*) (53)
where we have used: 5
H; §K7 1
Aj = e nd 18 = oo
¢ ¢
4.8.2 A® and B® coefficients
Equation (53) is similar to equation (9) with M = cSanmS + (0¢gsats,ins — ngso -
[?¢%*) /(1 —§) and N =T%/(1— §). Then coefficients A* and B* are given by equa-
tion (17):
9 . B sT0 _ 1é10,%
Aa — jao _ OOy (SA[( (5QSats,1ns o (Y:r’s [?¢?) —‘,—(ngat S]
B K”* 1— g B
(54)
- - SK” T 1
B = B _ wfii
B K7x1—gAt
5 1D simulations
6 Conclusion
A: The three product identities
a, b and p being three fields such that p* = a“b" and p* = a*b", the three
product identities read:
dp= a" b+ b"da+ (0, — 0y)dadd (A1)
p* = a*b* + 0,0,0adb (A.2)
a*dp — p*da = a®a" ob (A.3)

When using any of these identities for the fields a, b and p, we shall say: ”applying the
first (or second, or third) product identity to the fields a, b and their product p ...”. This
is unambiguous for the first two identities, since a and b play identical roles. For the third
one we use the convention that the field appearing solely on the right hand side is the
second field.
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