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Key Points:6

• Thanks to the adaptation of surface temperature to cold pool temperature, sen-7

sible heat flux difference between inner and outer regions of cold pools is weaker8

than in the ocean case, which allows stronger cold pools.9

• A negative feedback loop due radiation and to sensible and latent heat fluxes damp-10

ens the surface temperature adaptation.11

• The difference of behaviour of cold pools over land when compared to ocean changes12

the land-ocean contrast of precipitation.13
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Abstract14

bla bla bla15

1 Introduction16

The difference between the land case and the ocean case is twofold:17

1. Over land the surface temperature depends on the boundary layer temperature18

and humidity. Hence one may expect surface temperature and humidity to dif-19

fer between the wake and the off-wake regions. Moreover these differences may feed-20

back on the cold pool state so that they cannot be considered as prescribed as they21

were in the ocean case : in the land case, the surface and moisture differences are22

internal variables of the system. Some new model will have to be provided to rep-23

resent the processes that drive these differences.24

2. Over land the soil surface may be partially saturated: this is described thanks to25

the aridity factor β which is the fraction of the soil surface which is saturated, the26

rest of the surface beeing perfectly dry. Then the surface average humidities qws27

and qxs over each of the regions (w) and (x) no longer coincide with the satura-28

tion humidities qsat(T
w
s ) and qsat(T

x
s ). The link between the PBL variables, qws29

and qxs , and the surface variables, β, qsat(T
w
s ) and qsat(T

x
s ), will also require some30

new equations.31

2 The merging equations32

Atmospheric boundary layer33

The surface as seen by each of the two atmospheric columns is described by the en-34

thalpy and moisture mean fluxes, φ and φ̂, and the surface temperature and humidity,35

Ts and qs. Turbulent vertical diffusion equations relate mean surface fluxes with mean36

surface temperature and humidity; they are identical to those of the ocean case. They37

are composed of two sets:38

First, the surface flux equations express the mean fluxes in terms of the surface vari-39

ables Ts and qs:40

{

φ̂w = K̂w(qw1 − qws )

φ̂x = K̂x(qx1 − qxs )

{

φw = CpK
w(Tw1 − Tws )

φx = CpK
x(T x1 − T xs )

(1)

Second, the boundary layer equations describe the link between enthalpy and hu-41

midity at first level and the surface fluxes:42

{

qw1 = (Âw + B̂wφ̂w∆t)

qx1 = (Âx + B̂xφ̂x∆t)

{

CpT
w
1 = (Aw + Bwφw∆t)

CpT
x
1 = (Ax + Bxφx∆t)

(2)

Atmosphere/soil interface43

At this stage, the link between qws and Tws is unknown (on ocean it would be qws =44

qsat(T
w
s )). The surface evaporation is represented by the aridity coefficient β, that is the45

ratio of the evaporation to the potential evaporation. Consenquently φ̂w = K̂wβ[qw1 −46

qsat(T
w
s )].47

From φ̂w = K̂w(qw1 − qws ) and φ̂
w = K̂wβ[qw1 − qsat(T

w
s )] one gets an expres-

sion of the mean surface humidity:

qws = (1− β)qw1 + βqsat(T
w
s )
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In order to deal with variables meaningfull even when β = 0, the following variable will48

be used:49

qsat,s = βqsat(Ts) (3)

The surface flux equations become:50

{

φ̂w = K̂w(βqw1 − qwsat,s)

φ̂x = K̂x(βqx1 − qxsat,s)

{

φw = CpK
w(Tw1 − Tws )

φx = CpK
x(T x1 − T xs )

(4)

On the soil side, the interface is made of a single column. The equations relate the do-51

main averages of the fluxes with the domain averages of the surface variables T ∗

s and q∗sat,s:52







φ̂∗ = K̂a(βqa − q∗sat,s)

qa = Âa + B̂aφ̂∗∆t







φ∗ = Ka(ha − CpT
∗

s )

ha = Aa + Baφ∗∆t
(5)

where qa and ha are apparent atmospheric moisture and enthalpy, K̂a and Ka are ap-53

parent exchange coefficients, and Âa, Aa, B̂a, and Ba describe the sensitivities of qa and54

ha to the mean fluxes φ̂∗ and φ∗.55

The problem of determining expressions for these coefficients in terms of the co-56

efficients within each column will be called the merging problem. The problem of deter-57

mining the fluxes in each column once the domain average fluxes are known will be called58

the splitting problem.59

Effective exchange coefficients60

Eliminating variables q1 and T1 in equations (4) and (2) yields new surface flux equa-61

tions:62 {

φ̂w = K̂”w(βÂw − qwsat,s)

φ̂x = K̂”x(βÂx − qxsat,s)

{

φw = K
′w(Aw − CpT

w
s )

φx = K
′x(Ax − CpT

x
s )

(6)

where K̂”w, K̂”x, K
′w, and K

′x are the effective exchange coefficients, that is exchange63

coefficients accounting for the boundary layer feedbacks:64



























K̂”w =
K̂w

1− βK̂wB̂w∆t

K̂”x =
K̂x

1− βK̂xB̂x∆t



















K
′w =

Kw

1−KwBw∆t

K
′x =

Kx

1−KxBx∆t

(7)

Expression of the domain average fluxes65

Applying the second product identity to K̂”, (βÂ − qsat,s) and their product φ̂66

(and similarly for φ) yields expressions of the domain average fluxes:67

φ̂∗ = K̂”∗(βÂ∗ − q∗sat,s) + σwσxδK̂”(βδÂ− δqsat,s)

φ∗ = K ′∗(A∗ − CpT
∗

s ) + σwσxδK
′(δA− CpδTs)

(8)

In section (4) will be introduced a model of surface temperature difference. Then it will68

be proved in sections (4.2) and (4.3) that the moisture difference δqsat,s and the temper-69

ature difference δTs are affine functions of the surface fluxes:70

δqsat,s = M̂ + N̂ φ̂∗ CpδTs = M + Nφ∗ (9)

where M, N, M̂, N̂ are the coefficients that will be determined in sections (4.2) and71

(4.3). They represent the feedbacks of the surface fluxes onto the temperature difference72
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δTs and on the humidity difference δqs. Then the domain average fluxes read:73

(1 + σwσxδK̂”N̂)φ̂∗ = βK̂”∗Â∗ + σwσxδK̂”(βδÂ− M̂) − K̂”∗q∗sat,s

(1 + σwσxδK
′N)φ∗ = K ′∗A∗ + σwσxδK

′(δA−M) − K ′∗CpT
∗

s

(10)

Mixed boundary conditions for the surface model74

Similarly to the ocean case, the boundary conditions for the surface model read:75

φ̂∗ = µ̂ − λ̂q∗sat,s φ∗ = µ − λT ∗

s (11)

Comparison with equations (10) yields:76



























µ̂ = β
K̂”∗Â∗ + σwσxδK̂”(δÂ− M̂

β
)

1 + σwσxδK̂”N̂

λ̂ =
K̂”∗

1 + σwσxδK̂”N̂



















µ =
K ′∗A∗ + σwσxδK

′(δA−M)

1 + σwσxδK ′N

λ =
CpK

′∗

1 + σwσxδK ′N

(12)

Mixed boundary conditions in terms of Âa, B̂a, Aa, and Ba77

Eliminating qa and ha in equations (5) yields:78

φ̂∗ =
K̂a

1− βK̂aB̂a∆t
(βÂa − q∗sat,s) φ∗ =

Ka

1−KaBa∆t
(Aa − CpT

∗

s ) (13)

Comparison of these equations with equations (11) yields:79



























µ̂ =
βK̂aÂa

1− βK̂aB̂a∆t

λ̂ =
K̂a

1− βK̂aB̂a∆t



















µ =
KaAa

1−KaBa∆t

λ =
CpK

a

1−KaBa∆t

(14)

from which one gets the expressions of Âa, Aa, B̂a, and Ba in terms of µ̂, µ, λ̂, and λ:80



















Âa =
1

β

µ̂

λ̂

B̂a =
1

β∆t
[
1

K̂a
− 1

λ̂
]















Aa =
µ

λ

Ba =
1

∆t
[
1

Ka
− Cp

λ
]

(15)

General formulas for Âa, B̂a, Aa, and Ba81

Substituting in the last equation the expressions of µ̂, µ, λ̂, and λ given by equations(12)82

yields expressions for Âa, B̂a, Aa, and Ba in terms of K̂a and Ka:83























Âa = Â∗ + σwσx
δK̂”

K̂”∗
(δÂ− M̂

β
)

B̂a =
1

β∆t
[
1

K̂a
− 1 + σwσxδK̂”N̂

K̂”∗
]



















Aa = A∗ + σwσx
δK ′

K ′∗
(δA−M)

Ba =
1

∆t
[
1

Ka
− 1 + σwσxδK

′N

K ′∗
]

(16)
Demanding continuity for qa towards q1 when σwσx −→ 0 yields:

K̂a = K̂∗ Ka = K∗
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hence the general formulas for Âa, B̂a, Aa, and Ba:84























Âa = Âa0 − σwσx
β

δK̂”

K̂”∗
M̂

B̂a = B̂a0 − σwσx
β

δK̂”

K̂”∗
N̂

1

∆t



















Aa = Aa0 − σwσx
δK ′

K ′∗
M

Ba = Ba0 − σwσx
δK ′

K ′∗
N

1

∆t

(17)

where:85























Âa0 = Â∗ + σwσx
δK̂”

K̂”∗
δÂ

B̂a0 =
σwK̂

wK̂”wB̂w + σxK̂
xK̂”xB̂x

K̂∗K̂”∗



















Aa0 = A∗ + σwσx
δK ′

K ′∗
δA

Ba0 =
σwK

wK
′wBw + σxK

xK
′xBx

K∗K ′∗

(18)
where the B̂a0 and Ba0 expressions have been determined by the same argument as in86

the ocean paper.87

3 The Splitting equations88

From the values of the variables Aa, Ba and Ka (and similarly for moisture) the89

surface model determines the domain average of the surface heat and evaporation fluxes.90

Then, boundary conditions for the atmosphere boundary layer model require surface fluxes91

within each of the (w) and (x) regions (Equations 2).92

The third product identity applied to: (i) K̂”, (βÂ−qsat,s) and their product φ̂,93

(ii) K ′, (A− CpTs) and their product φ, yields:94

{

K̂”∗δ̂φ− δK̂”φ̂∗ = K̂”xK̂”w(βδÂ− δqsat,s)

K ′∗δφ− δK ′φ∗ = K
′xK

′w(δA− CpδTs)
(19)

Whence the expressions of the flux differences δ̂φ and δφ:95























δ̂φ =
δK̂”

K̂”∗
φ̂∗ +

K̂”xK̂”w

K̂”∗
(βδÂ− δqsat,s)

δφ =
δK ′

K ′∗
φ∗ +

K
′xK

′w

K ′∗
(δA− CpδTs)

(20)

Then the surface fluxes in the (w) and the (x) regions read:96







φ̂w = φ̂∗ + σxδ̂φ

φ̂x = φ̂∗ − σw δ̂φ







φw = φ∗ + σxδφ

φx = φ∗ − σwδφ
(21)

4 Coupling with the soil model97

4.1 Model of surface temperature difference98

In this section we build a simple model of the surface temperature difference be-99

tween the (w) and (x) regions. The model is based on the relation imposed by soil in-100

ertia between the amplitudes of heat flux and temperature variations.101

The idea is that the movements of cold pools or of their gust fronts at the land sur-102

face induces a variation of the soil surface heat flux δφg during a characteristic time τ ,103

which induces a variation δTs of the surface temperature given by:104

δTs =

√
τ

I
δφg (22)
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where I is the soil thermal inertia. The time τ is estimated as the time it takes to travel
a distance equal to the radius of the cold pools at the spreading speed C∗ of the pools.
Since σw = πr2Dw, τ reads:

τ =
1

C∗

√

σw
πDw

δφg decomposition: The flux φg is related with the sensible heat flux φ, the evap-
oration flux φ̂, and the net radiation flux Rn by:

φg = φ + Lvφ̂ + Rn

hence its difference δφ between regions (w) and (x) reads:105

δφg = δφ + Lv δ̂φ + δRn (23)

Temperature difference δTs expression: The substitution of (22) in (23) yields the106

surface temperature difference equation:107

δTs =

√
τ

I
[δφ + Lv δ̂φ + δRn] (24)

4.2 Enthalpy coupling equations108

The purpose of this section is to express each of the flux differences δφ, δ̂φ, and δRn109

as linear combinations of δTs and φ∗. Non-linearities will be (partly) accounted for by110

using two distinct linearizations of qsat(Ts) and RLu(Ts) in the vicinity of T 0,w
s and T 0,x

s .111

In the following we shall write equations relating average values of fields over the112

(w) or the (x) region, these relations being valid equally over the two regions. For the113

sake of simplicity, the relations wiil be written only once, with average values of the fields114

written with a ’+’ character as a superscript in lieu of the ’w’ or ’x’ superscript.115

δRn expression116

The net radiation Rn at the surface is the sum of the net short wave radiation RSn

and of the net long wave radiation RLn:

Rn = RSn + RLn

hence:
δRn = δRSn + δRLn

We assume that δRSn ≃ 0. Then δRn reduces to δRLn.117

The net long wave radiative flux is the difference between the downwelling long wave
radiation RLd and the flux emitted by the surface:

R+

Ln
= R+

Ld
− σ(T+

s )4

We approximate R+

Ld
by the radiation field from a grey body, with emissivity ǫ1, at the

temperature T+
1 of the first model layer:

R+

Ld
= ǫ1σ(T

+
1 )4

T+
1 may be expressed in terms of T+

s by combining equations (1) and (2):118







φ+ = CpK
w(T+

1 − T+
s )

CpT
+
1 = (A+ + B+φ+∆t)







=⇒ T+
1 =

A+ − CpKB
+∆tT+

s

Cp(1 − K+B+∆t)
(25)
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Definition of the reference state119

We define the reference state by the initial surface temperatures T 0,+
s from which

one may define:
q0,+sat,s = βqsat(T

0,+
s )

Then the reference fluxes φ0,+, φ̂0,+, R0+
n read:120

φ0,+ = K
′
+(A+ − CpT

0,+
s )

φ̂0,+ = K̂”+(βÂ+ − q0,+sat,s)

R0,+
Ln

= R0+
1 −R0+

s

(26)

where:121

R0+
1 = ǫ1σ(T

0,+
1 )4

R0+
s = σ(T 0,+

s )4
(27)

and where the reference temperature T 0,+
1 reads:122

T 0,+
1 =

A+ − CpK
+B+∆tT 0,+

s

Cp(1−K+B+∆t)
(28)

Linearization123

The saturation humidity is linearized following the formulas:124

q+sat,s = q0,+sat,s + β∂T q
+
sat(T

+
s − T 0,+

s ) (29)

where125

∂T q
+
sat = ∂T qsat(T

0,+
s ) (30)

The radiation fluxes from the surface are linearized thanks to:126

σ(T+
s )4 = σ(T 0,+

s )4 + R
′
+
s (T+

s − T 0,+
s ) (31)

with:127

R
′
+
s = 4σ(T 0,+

s )3 (32)

The radiation fluxes from the first level of the atmosphere are linearized thanks to:128

ǫ1σ(T
+
1 )4 = ǫ1σ(T

0,+
1 )4 + R

′
+
1 (T+

1 − T 0,+
1 ) (33)

with:129

R
′
+
1 = 4ǫ1σ(T

0,+
1 )3 (34)

Expressions of the fluxes130

The expression of φ+ in terms of the reference flux φ0,+ and the reference tem-131

perature T 0,+
s comes directly from:132

φ+ = K
′
+(A+ − CpT

+
s )

φ0,+ = K
′
+(A+ − CpT

0,+
s )

(35)

yielding:133

φ+ = φ0,+ − CpK
′
+(T+

s − T 0,+
s ) (36)

The expression of φ̂+ in terms of the reference flux φ̂0,+ and the reference tem-134

perature T 0,+
s comes from:135

φ̂+ = K̂”+(βÂ+ − q+sat,s)

φ̂0,+ = K̂”+(βÂ+ − q0,+sat,s)
(37)

–7–
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combined with the linearization equation (29), yielding:136

φ̂+ = φ̂0,+ − βK̂”+∂T q
+
sat(T

+
s − T 0,+

s ) (38)

The expression of R+

Ln
in terms of the refernce flux R0,+

Ln
and the reference tem-137

perature T 0,+
s comes from:138

R+

Ln
= R+

1 −R+
s

R+
1 = R0+

1 +R
′
+
1 (T+

1 − T 0,+
1 )

R+
s = R0+

s +R
′
+
s (T+

s − T 0,+
s )

(39)

combined with the expression of T 0,+
1 given by equation (28) and the expression for T+

1139

given by equation (25), yielding:140

R+
n = R0+

1 −R0+
s − (R

′
+
1 K

′
+B+∆t+R

′
+
s )(T+

s − T 0,+
s ) (40)

General flux expressions141

After linearization, each of the fluxes φ+, φ̂+ and R+
n may be expressed in the gen-

eral form:
ψ+ = ψ0,+ − H+

ψ (T
+
s − T 0,+

s )

where ψ stands of any of the fluxes φ, φ̂ and Rn and H+

ψ stands for one of:142

• H+

φ = CpK
′
+

143

• H+

φ̂
= βK̂”+∂T q

+
sat144

• H+

Rn

= R
′
+
1 K

′
+B+∆t + R

′
+
s145

Then, the first product identity yields for each of the three fluxes:

δψ = δψ0 − [H∗

ψ + (σx − σw)δHψ](δTs − δT 0
s ) − δHψ(T

∗

s − T 0,∗
s )

and the second product identity yields for the sensible flux:

φ∗ = φ0,∗ − σwσxδHφ(δTs − δT 0
s ) − H∗

φ(T
∗

s − T 0,∗
s )

Thanks to this last equation it is possible to express T ∗

s−T 0,∗
s in terms of φ∗ and δTs−

δT 0
s :

T ∗

s − T 0,∗
s =

−1

H∗

φ

[φ∗ − φ0,∗ + σwσxδHφ(δTs − δT 0
s )]

Substituting this expression in the δψ equation yields the sought for expressions of δφ,146

δ̂φ and δRn in terms of δTs and φ∗:147

δψ = δψ0 − [H∗

ψ + (σx − σw)δHψ − σwσx
δHψδHφ

H∗

φ

](δTs − δT 0
s ) +

δHψ

H∗

φ

(φ∗ − φ0,∗)

(41)

4.2.1 Final formulas for the enthalpy148

The substitution in equation(24) of the expressions of δφ, δ̂φ and δRn given by equa-149

tion (41) yields:150

δTs =

√
τ

I
[δφ0 + Lv ˆδφ0 + δR0

n]

−
√
τ

I
[H∗

φ + LvH
∗

φ̂
+ H∗

Rn

+ (σx − σw − σwσx
δHφ

H∗

φ

)(δHφ + LvδHφ̂
+ δHRn

)](δTs − δT 0
s )

+

√
τ

IH∗

φ

[δHφ + LvδHφ̂
+ δHRn

](φ∗ − φ0,∗)

(42)
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Setting:151















































δTs,ins =

√
τ

I
[δφ0 + Lv ˆδφ0 + δR0

n]

g = −
√
τ

I
[H∗

φ + LvH
∗

φ̂
+ H∗

Rn

+ (σx − σw − σwσx
δHφ

H∗

φ

)(δHφ + LvδHφ̂
+ δHRn

)]

Γφ = +

√
τ

IH∗

φ

[δHφ + LvδHφ̂
+ δHRn

]

(43)
equation (42) becomes:152

(1 − g)(δTs − δT 0
s ) = δTs,ins − δT 0

s + Γφ(φ∗ − φ0,∗) (44)

4.2.2 Aa and Ba coefficients153

Equation (44) is similar to equation (9) with M = Cp[δT
0
s + (δTs,ins − δT 0

s −154

Γφφ0,∗)/(1 − g)] and N = CpΓ
φ/(1 − g). Then coefficients Aa and Ba are given by155

equation (17):156























Aa = Aa0 − σwσx
CpδK

′

K ′∗
[
δTs,ins − δT 0

s − Γφφ0,∗)

1− g
+ δT 0

s ]

Ba = Ba0 − σwσx
δK ′

K ′∗

CpΓ
φ

1− g

1

∆t

(45)

4.3 Moisture coupling equation157

For moisture, the boundary conditions for the surface model (11) relate q∗sat,s and158

φ̂∗. Hence the purpose of the present section is to translate the surface temperature dif-159

ference equation (24) into an equation relating q∗sat,s and φ̂
∗. First the temperature dif-160

ference δTs will be expressed in terms of the moisture difference δqsat,s. Second the flux161

differences δφ, δ̂φ, and δRn will be expressed as linear combinations of δqsat,s and φ̂
∗.162

Expressing δTs in terms of δqsat,s163

The temperature T+
s may be expressed in terms of q+sat,s thanks to the lineariza-

tion equation (29):
β(T+

s − T 0,+
s ) = Q+(q+sat,s − q0,+sat,s)

where we have set:164

Q+ =
1

∂T q
+
sat

(46)

The first product identity yields:165

β(δTs − δT 0
s ) = [Q∗ + (σx − σw)δQ](δqsat,s − δq0sat,s) + δQ(q∗sat,s − q0,∗sat,s) (47)

The surface temperature difference equation in terms of δqsat,s166

Multiplying both sides of equation (24) by β and using equation (47) yields:167

[Q∗+(σx−σw)δQ](δqsat,s−δq0sat,s) + δQ(q∗sat,s−q0,∗sat,s) = β

√
τ

I
[δφ+Lv δ̂φ+δRn] − βδT 0

s

(48)
After some reordering and division by Q∗ one gets the surface moisture difference equa-168

tion:169

δqsat,s−δq0sat,s = −(σx−σw)
δQ

Q∗
(δqsat,s−δq0sat,s) −

β

Q∗
δT 0

s +

√
τ

IQ∗
[βδφ+Lvβδ̂φ+βδRn] −

δQ

Q∗
(q∗sat,s−q0,∗sat,s)

(49)
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Similarly to the enthalpy case, the method will consist in expressing first the flux dif-170

ferences βδφ, βδ̂φ and βδRn in terms of δqsat,s− δq0sat,s and q∗sat,s− q0,∗sat,s and express-171

ing in turn q∗sat,s − q0,∗sat,s in terms of δqsat,s − δq0sat,s and φ̂
∗ − φ̂0,∗.172

General flux expressions173

Similarly to the enthalpy case, the linearized flux expressions read:

βψ+ = βψ0,+ − Ĥ+

ψ (q
+
sat,s − q0,+sat,s)

where ψ stands of any of the fluxes φ, φ̂ and Rn and Ĥ+

ψ stands for one of:174

• Ĥ+

φ = CpK
′
+Q+

175

• Ĥ+

φ̂
= βK̂”+

176

• Ĥ+

Rn

= (R
′
+
1 K

′
+B+∆t + R

′
+
s )Q+

177

Then, the first product identity yields for each of the three fluxes:

βδψ = βδψ0 − [Ĥ∗

ψ + (σx − σw)δĤψ](δqsat,s − δq0sat,s) − δĤψ(q
∗

sat,s − q0,∗sat,s)

and the second product identity yields for the latent flux:

βφ̂∗ = βφ̂0,∗ − σwσxδĤφ̂
(δqsat,s − δq0sat,s) − Ĥ∗

φ̂
(q∗sat,s − q0,∗sat,s)

Thanks to this last equation it is possible to express q∗sat,s−q0,∗sat,s in terms of φ̂∗ and δqsat,s−
δq0sat,s:

q∗sat,s − q0,∗sat,s =
−β
Ĥ∗

φ̂

[φ̂∗ − φ̂0,∗] − σwσx
δĤ

φ̂

Ĥ∗

φ̂

(δqsat,s − δq0sat,s)

Substituting this expression in the δψ equation yields the sought for expressions of βδφ,178

βδ̂φ and βδRn in terms of δqsat,s and φ̂
∗:179

βδψ = βδψ0 − [Ĥ∗

ψ + (σx − σw)δĤψ − σwσx
δĤψδĤφ̂

Ĥ∗

φ̂

](δqsat,s − δq0sat,s) + β
δĤψ

Ĥ∗

φ̂

(φ̂∗ − φ̂0,∗)

(50)

4.3.1 Final formulas for moisture180

The substitution in equation(49) of the expressions of δφ, δ̂φ and δRn given by equa-181

tion (50) yields:182

δqsat,s − δq0sat,s =
β
√
τ

IQ∗
[δφ0 + Lv ˆδφ0 + δR0

n]−
β

Q∗
δT 0

s

−[(σx − σw)
δQ

Q∗
− σwσx

δQ

Q∗

δĤ
φ̂

Ĥ∗

φ̂

+

√
τ

IQ∗
[Ĥ∗

φ + LvĤ
∗

φ̂
+ Ĥ∗

Rn

+ (σx − σw − σwσx
δĤ

φ̂

Ĥ∗

φ̂

)(δĤφ + LvδĤφ̂
+ δĤRn

)]](δqsat,s − δq0sat,s)

δQ

Q∗

β

Ĥ∗

φ̂

+ [
β
√
τ

IQ∗Ĥ∗

φ̂

(δĤφ + LvδĤφ̂
+ δĤRn

)](φ̂∗ − φ̂0,∗)

(51)
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Setting:183







































































δqsats,ins =
β
√
τ

Q∗I
[δφ0 + Lv ˆδφ0 + δR0

n]

ĝ = −{(σx − σw)
δQ

Q∗
− σwσx

δQ

Q∗

δK̂”

K̂”∗

+

√
τ

Q∗I
[Ĥ∗

φ + LvĤ
∗

φ̂
+ Ĥ∗

Rn

+ (σx − σw − σwσx
δK̂”

K̂”∗
)(δĤφ + LvδĤφ̂

+ δĤRn
)]}

Γφ̂ =
1

Q∗

δQ

K̂”∗
+

1

Q∗

√
τ

IK̂”∗
(δĤφ + LvδĤφ̂

+ δĤRn
)

(52)
equation (51) becomes:184

(1 − ĝ)(δqsat,s − δq0sat,s) = δqsats,ins − β

Q∗
δT 0

s + Γφ̂(φ̂∗ − φ̂0,∗) (53)

where we have used:
δĤ

φ̂

Ĥ∗

φ̂

=
δK̂”

K̂”∗
and

β

Ĥ∗

φ̂

=
1

K̂”∗

.185

4.3.2 Âa and B̂a coefficients186

Equation (53) is similar to equation (9) with M̂ = δq0sat,s +(δqsats,ins − β
Q∗
δT 0

s −187

Γφ̂φ̂0,∗)/(1− ĝ) and N̂ = Γφ̂/(1− ĝ). Then coefficients Âa and B̂a are given by equa-188

tion (17):189



























Âa = Âa0 − σwσx
β

δK̂”

K̂”∗
[
(δqsats,ins − β

Q∗
δT 0

s − Γφ̂φ̂0,∗)

1− ĝ
+ δq0sat,s]

B̂a = B̂a0 − σwσx
β

δK̂”

K̂”∗
Γφ̂

1− ĝ

1

∆t

(54)

5 1D simulations190

6 Conclusion191

A: The three product identities192

a, b and p being three fields such that pw = awbw and px = axbx, the three193

product identities read:194

δp = a∗ δb+ b∗ δa+ (σx − σw)δa δb (A.1)

195

p∗ = a∗b∗ + σwσxδa δb (A.2)
196

a∗ δp − p∗ δa = axaw δb (A.3)

When using any of these identities for the fields a, b and p, we shall say: ”applying the197

first (or second, or third) product identity to the fields a, b and their product p ...”. This198

is unambiguous for the first two identities, since a and b play identical roles. For the third199

one we use the convention that the field appearing solely on the right hand side is the200

second field.201
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