
THE ENGINEER GRAPPLES WITH NONLINEAR PROBLEMS1 

THEODORE VON KARMAN 

I do not believe that one could connect justly the name of Gibbs 
with practical applications of applied mathematics, for his main in
terest was certainly centered on basic conceptions of mathematical 
physics. Nevertheless, for example, his beautiful work on graphical 
methods in thermodynamics is a brilliant example of the presentation 
of theoretical relations in a form which appeals to the engineer. 

This lecture is intended as an effort to improve the convergence be
tween the viewpoints of mathematics and engineering. Thus, I feel 
it is not inappropriate to dedicate it to the memory of Josiah Willard 
Gibbs. 

Engineering mathematics is generally considered as a collection of 
mathematical methods adapted for the solution of relatively simple 
problems. These problems often might require lengthy numerical cal
culations or graphical constructions, but supposedly can be worked 
out without the use of advanced methods of mathematical analysis. 
This description was perhaps correct some decades ago ; today a large 
group of scientific workers is engaged in applying various methods of 
classical and modern analysis to problems in electrical, civil, mechani
cal, aeronautical and also chemical engineering. It is not possible to 
give an exhaustive list of all types of problems which require the ap
plications of advanced analytical methods. In the following table 
merely some of the most important engineering problems and the 
mathematical concepts and methods involved in their treatment are 
indicated : 

ASSOCIATED TOPICS OF ENGINEERING AND MATHEMATICS 

Mathematical topics 

Vector algebra, systems of linear 
equations. Tensors and matrices. Alge
braic equations. Ordinary differential 
equations with given initial conditions. 
Elementary operational calculus. 

Ordinary differential equations and 
their boundary problems. Eigenvalues 
and eigenfunctions. Expansion in or-

Engineering problems 

Engine dynamics, vibration of sys
tems with a finite number of degrees of 
freedom, Rotating electric machinery. 

Equilibrium, buckling and harmonic 
vibrations of beams. Critical frequencies 
and speeds. One-dimensional problems 

1 The fifteenth Josiah Willard Gibbs Lecture, delivered at Columbus, Ohio, De
cember 27, 1939, under the auspices of the American Mathematical Society with the 
cooperation of the American Association for the Advancement of Science. 
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Mathematical topics 

thogonal functions. Calculus of varia
tions of simple integrals. 

Functions of complex variables. Con-
formal transformation. Logarithmic po
tential. 

Vector and tensor analysis. Partial 
differential equations of the elliptic type 
and their boundary problems. Expansion 
in orthogonal functions. Integral equa
tions. Calculus of variations of multiple 
integrals. 

Partial differential equations of the 
parabolic and hyperbolic type. Advanced 
operational calculus. 

Engineering problems 

of stationary flow of matter, ele tricity 
and heat. 

Two-dimensional velocity, electro
magnetic and temperature fields. 

Stress distribution in elastic bodies; 
equilibrium, buckling and harmonic vi
bration of plates and shells. Three-di
mensional flow and field problems. 

Transient phenomena of heat con
duction and wave propagation (variable 
flow in channels, water hammer in pipes, 
surges in cables, waves in solids and 
fluids, electromagnetic waves). 

Though most of the various branches of mathematical analysis ap
pear in this table, it does not follow that the engineer has to master, 
for example, the complete theory of linear differential and integral 
equations or the calculus of variations. He is mostly interested in 
methods of obtaining approximate solutions. However, it is interest
ing to note that the methods which are perhaps the most powerful 
tools of the mathematician for proofs of existence of solutions have 
been proved to be the most helpful in obtaining numerical approxima
tions, for example, step-by-step integration, iteration, successive ap
proximation, direct methods of finding maxima and minima. The 
iteration method is known to most engineers as the Stodola or 
Vianello method. The direct methods of the calculus of variations 
are known as the energy method, Rayleigh-Ritz method, Galerkin 
method, and so on. 

The problems listed in the above table provide a happy hunting 
ground to the mathematician who is interested in applying his science 
for practical purposes. We know that not all mathematicians have 
this interest; a great British mathematician is credited with the re
mark that his field—the theory of numbers—is the only field of 
mathematics that, fortunately, has not been prostituted by being 
useful to some practical end. Others believe that the engineering ap
plications of mathematics do not require ingenuity in the mathemati-
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cal sense; however, there are many engineering problems that are far 
from being an easy mark for the hunter. Most of the problems com
piled above are readily accessible to the methods of mathematical 
analysis because they are linear problems. In many cases the engineer 
can linearize his problem by means of simplifying assumptions and a 
mathematical text will easily supply him with all the help he needs. 
However, if the engineer has a real nonlinear problem, that is, one 
which loses its sense by linearization, very often he has to grapple 
with it by himself. 

In this paper the at tempt is made to give a review of nonlinear 
problems which are of practical interest and for whose solution meth
ods have been worked out or at least suggested by mathematicians, 
physicists or engineers. The review is not exhaustive, but it was at
tempted to include examples of the most typical problems. The ques
tion of existence and uniqueness of solutions is only superficially 
touched ; emphasis is laid on methods for obtaining approximate solu
tions. Many physicists and engineers have the feeling that so-called 
mathematical proofs of existence and uniqueness of solutions very 
often merely verify facts which are more or less evident from physical 
considerations. Unfortunately, in most nonlinear problems physical 
reasoning is not sufficient or not fully convincing, so that in these 
cases the questions of existence and uniqueness represent a real chal
lenge to the mathematician. Certain investigations of H. Poincaré 
and T. Levi-Civita can be mentioned as examples in which math
ematical reasoning has virtually extended the range of physical vi
sion. The modern methods of function spaces are likely to make 
essential contributions to the problem of existence and uniqueness 
of solutions of nonlinear equations and their boundary problems. 
Promising steps in this direction have already been made. However, 
the writer is afraid that this aspect of the subject is beyond his own 
competency and the scope of this paper. 

1. Nonlinear oscillations. General remarks. The theory of mechan
ical oscillations commonly used in engineering practice is based on 
the assumption that the restoring forces are proportional to the de
flections and the damping forces to the velocities, that is, to the first 
derivatives of the deflections with respect to time. If we assume con
stant masses, the equations of motion of an oscillating system are 
linear, containing as coefficients constant inertia, damping and spring 
factors. We obtain analogous equations for the oscillations of an elec
tric circuit by assuming constant impedances, that is, by assuming 
that the network contains only constant reactances, resistances and 



618 THEODORE VON KARMAN [August 

capacities. The oscillations governed by linear equations may be 
called "linear oscillations." 

Let us consider the oscillations of a single mass m assuming that 
the deflection x produces a restoring force — kx and the damping 
force is equal to — fix, where x=:dx/dt = v is the velocity of the mass. 
Then the equation of motion for the free oscillations of this mass is 

(1.1) mx + kx + fix = 0. 

Introducing the natural frequency co of the undamped oscillations, 
that is, the frequency for the case fi = 0, we have 

fi 
(1.2) x + o)2x-\ x = 0. 

m 
We will generalize equation (1.2) in the form 

(1.3) x + œ2x = f(x, x). 

This general form of the equation of free oscillation includes the 
cases of nonlinear damping and nonlinear restoring force. Often the 
deviation from linearity causes only a small deviation of the linear 
oscillation without changing the general character of the motion. For 
example, the simple harmonic oscillation, which we would obtain in 
the linear case, will be accompanied by harmonics of small amplitude 
if the deviation from linearity is taken into account. However, in 
some cases the whole character of the oscillatory motion changes. 
Slight negative damping in the range of small deflections may cause 
"self-excited periodic oscillations," whose period is quite different 
from the period of the undamped harmonic oscillation. Nonlinearity 
of the spring factor may fundamentally change the resonance phe
nomena, that is, the response of the system to external periodic forces. 
In the case of a pure linear system the response to a periodic force 
consists of a forced oscillation whose period is equal to that of the 
force and of free oscillations, whose period is the natural period of the 
system. If the two frequencies coincide, resonance occurs. One can 
easily visualize that in a nonlinear case the periodic force will excite 
also higher harmonics, that is, oscillations whose frequencies are mul
tiples of its own frequency. It is more difficult to see offhand that in 
such a system an external force can also excite oscillations whose 
frequency is a fraction of its own frequency. This phenomenon is 
known as "subharmonic resonance." The mathematical analysis of 
the phenomena of self-excited oscillations and subharmonic resonance 
makes use of certain methods developed by H. Poincaré in connection 
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with his astronomical investigations and shall be discussed briefly in 
the next two sections. 

2. Self-excited nonlinear oscillations (relaxation oscillations). Let 
us assume that the function f(x, x) in equation (1.3) has the form 
f(x, x) =jjLcj>(x)Xj where /x is a positive constant parameter. It is seen 
that in this case the damping is proportional to the velocity v = £, but 
the magnitude of the damping factor is in general a function of the 
deflection. The equation (1.3) in this case takes the form 

(2.1) x + œ2x = ix<j>(x)x. 

Equation (2.1) can be reduced to a differential equation of the first 
order by considering x = v as function of x. We obtain 

dv x 
(2.2) — = - œ2 hM0(ff). 

dx v 

This equation can be solved by the method of isoclines. Consider first 
the case /z = 0. The integral curves of (2.2) are in this case concentric 
ellipses, given by 

(2.3) v2 + co2x2 = const. 

One of these ellipses is shown in Fig. la. Since dt = dx/v, we obtain 
the x, v values corresponding to the actual motion by proceeding 
clockwise along the integral curves. The corresponding motion is a 
harmonic oscillation with constant amplitude. 

Let us now assume that </>(x) = 1, that is, the damping factor is con
stant. I t is known that the resulting motion is a harmonic oscillation 
with decreasing amplitude if /x<0 and increasing amplitude if /x>0. 
We obtain logarithmic spirals, which in the stable case ( M < 0 ) con
verge toward the origin (Fig. lb) and in the unstable case ( M > 0 ) di
verge from the origin (Fig. lc). 

We shall now assume that </>(x) is variable and investigate the exist
ence of periodic solutions. In the x, v plane a periodic éolution ap
pears as a closed curve. Let us multiply both sides of equation (2.2) 
by vdx and integrate along the closed curve. Then we see that 
fx,f(l>(x)vdx — ix^4){x)v2dt — 0. Hence <fr(x) must change its sign during 
the motion. In other words, to obtain a periodic motion it is a neces
sary condition that the damping factor change its sign as function of 
the deflection. 

Van der Pol studied in detail an interesting special case assuming 
that (j)(x) = 1 — x2. I t is seen that for x < 1 we have negative damping 
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which becomes positive when x > l . Fig. 2 and Fig. 3 show integral 
curves in the x, v plane for JU = 0.1 and /x = 1.0 respectively. The in-

(b) (c) 

FIG. la, b, c 

tegral curves near the origin have the shape of logarithmic spirals, 
but instead of diverging to infinity they converge to a closed curve. 
The integral curves originating at infinity converge to the same closed 
curve, which represents a periodic motion with constant amplitude. 
For small values of M> for example, ju = 0.1, the closed curve is only 
slightly different from an ellipse, but its shape varies quite radically 
with increasing fx. The corresponding motions for ju = 0.1, 1.0 and 10 
are shown in Fig. 4 where the deflection is plotted as function of time. 
It is seen that for ^ = 0.1 the motion is very nearly harmonic, whereas 
for ju = 10 the oscillation is made up of sudden transitions between 
deflections of opposite sign. The period of the harmonic motion is de-
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termined by the spring factor and the mass. The period of the motion 
corresponding to fx = 10 is much larger and depends both on co and fx. 

v 

dx v 
F I G . 2 

From B. Van der Pol, Philosophical 
Magazine, vol. 2 (1926) 

For this reason Van der Pol calls this type of motion a relaxation 
oscillation. The term self-excited oscillation is also often used. The 
physically interesting point is that we obtain a periodically undamped 
oscillation in a damped mechanical or electrical system because the 
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damping coefficient is variable and for small deflections has a slight 
negative value. 

dv x 

— + M ( I - * 2 ) 
ax v 

F I G . 3 
From B. Van der Pol, Philosophical 

Magazine, vol. 2 (1926) 
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The stability of this type of motion can be investigated by the 
method of the "equations of variations." Let us assume that 

(2.4) V = $(X, XQ, VQ) 
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FIG. 4 
From B. Van der Pol, Philosophical 

Magazine, vol. 2 (1926) 

is a solution of (2.2) passing through the point x0, v0. Then we have 

(2.5) 
d / dv [dv\ d /dv\ d r 

dx\dx0/ dxo\dx/ d#o L 
co2 h M<KX) 

v 

or 

(2.6) 
_ / * X œ2x dv 

dx\dxo/ v2 dxo 

where v is substituted from equation (2.4) as function of x, x0 and v0. 
It is seen that by integrating between the limits X\ and x2 we have 

r dvix2 CX2 °°2x rx2 l dv rx2<i>(x) 
log = I dx = — I dx + fx I dx. 

L dx0JXl J Xl V2 J Xl V dx J xi V 
Applying this equation to a closed cycle, we obtain 

<2-7) i o g [ (sy(s , ]""/* ( * w ' -
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In a similar way we obtain 

<2-8) *[fö./W-'f «'» 
or 

(2-9) förOrW «•»)• 
Let us consider now an integral curve in the neighborhood of the 

closed cycle passing through the point Xo, Vo+ôv^ and denote the 
value of v obtained after completing one turn along the closed cycle 
byvo+8v2. 

Then according to (2.9) 

(2.10) ÔV2 = 8vi exp < M (p <j>(x)dt\. 

It is seen that if tf<l>(x)dt>0 the deviation of a neighboring integral 
curve from the closed cycle increases; if jf<t>(x)dt<0, decreases for 
each turn. We conclude that the motion corresponding to a periodic 
solution x(i) is stable if jf4>(x)dt<0. 

The most important applications of the theory of oscillations of 
systems with nonlinear damping sketched in this section are in the 
field of radio. Both the theory and its applications have been treated 
by several authors. An extensive list of references is given in the paper 
of Van der Pol mentioned in the Bibliography at the end of this paper 
[5]. Van der Pol pointed out that in addition to oscillations in me
chanical and electrical systems many other periodic phenomena have 
the character of relaxation oscillations. He found that differential 
equations similar to those of the relaxation oscillation describe with 
fair approximation various periodic biological processes, for example, 
the "struggle for life" of certain animal groups investigated mathe
matically by A. J. Lotka and Vito Vol terra. Van der Pol believes that 
even periodic business cycles show a certain analogy to the relaxa
tion oscillation of a physical system. The essential condition for such 
oscillations is negative damping for small deviations and a rather 
rapidly increasing positive damping for large deviations from the 
equilibrium position. The psychological response of certain groups of 
people to changing business conditions shows doubtless some anal
ogy to the behaviour of mechanical systems capable of relaxation 
oscillations. 
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3. Subharmonic resonance. Let us now assume that the function 
ƒ(#, x) in equation (1.3) has the form/(x, x) = — fi[x+\f/(x)]; that is, 
the system has linear damping but the elastic restoring force is a 
nonlinear function of the deflection. The center of interest is the re
sponse of the system to the action of a periodic force; as we men
tioned, it was observed that in many cases the oscillations of the 
natural frequency co of the system are excited by a periodic force 
whose frequency is a multiple of co. This curious phenomenon is called 
"subharmonic resonance." 

If we consider first the linear system corresponding to JU = 0 and 
assume that a periodic force a sin noot is applied to the system, the 
general solution of the equation of motion is 

(3.1) a<°> = c(0) sin (cat - aw) H sin neat. 
co2(l — n2) 

The first term on the right side represents a free oscillation of the 
system with an arbitrary amplitude c(0) and phase angle a{0\ and 
the second term a forced oscillation whose frequency is equal to the 
frequency of the impressed force. If we introduce slight constant 
damping [ju = const., \[/(x)=0] the free oscillation dies out and the 
forced vibration remains with a slightly modified amplitude. Let us 
now assume that \[/(x)y^0. Several authors reached the conclusion 
that in this case the solution consists of higher harmonics with the 
frequencies 2nca, 3wco, • • • . In fact, if one would start from the forced 
oscillation 

a 
x(0) = sin neat 

ca2(l - n2) 
and determine a next approximation by substituting x{0) in \[/(x)t it 
is easily seen that one would obtain forced oscillations whose fre
quencies are multiples of nca. However, there is a fallacy in this con
clusion because in order to obtain the most general type of periodic 
motion we have to start with the complete solution (3.1) and put 

(3.2) x = x^ + fjLX^ + M2*(2) + • • • . 

The function x(0) has two undetermined constants c° and a0. They 
must be chosen in such a way that x is a periodic function of / with 
the period T=2ir/œ. Substituting (3.2) in the differential equation 

(3.3) x + o)2x = (JL/(X, X) + a sin neat 

and equating terms of the order JU on both sides of the equation, we 
obtain 



626 THEODORE VON KARMAN [August 

(3.4) x™ + œ2x^ = ƒ(*«», x<0)). 

The solution of (3.4) that satisfies the initial conditions xa)=xa) = 0 
f or / = 0 is given by 

(3.5) *<*> = f /[*<0)(r), *<°>(T)] sino>(* - T)JT. 
J o 

This solution corresponds to a periodic motion with the period 2x/co, if 

/[X<0>(T), *<°>(T)] sin cordr = 0, 
o 

(3.6) 

ƒ• 2 T 

/ |> (0 )0"), *<°>(r)] COS corJr = 0. 
o 

Equations (3.6) are two equations for the undetermined parame
ters c(0) and a(0). Since x(0)(t) and x(0)(t) are periodic functions of t 
with the period 27r/co, we can expand ƒ[#l0)(0> xK0)(t)] in a Fourier 
series of the form 2^wan sin nœt+^2nbn cos nœt. According to equations 
(3.6) the coefficients a,\ and b\ vanish. Therefore, the solution of equa
tion (3.4) will have the form 

* sin nœt bo 
*<» = C™ Sin [«/ - «<«] + X a*— + -

(3 j , n=2 C02(1 - fi2) CO2 

* cos wco£ 

S co2(i - »*) 

Substituting x = x(0)+jjLXa) and x = x(0)+jux(1) into f(x, x) in equa
tion (3.3), we obtain an equation for x(2) and two equations analogous 
to equations (3.6). If we neglect higher powers of /x, we have two lin
ear equations for c(1) and a(1). Thus we are able to determine x as 
function of / to any desired accuracy by successive approximations. 

I t is seen that the final solution will contain a harmonic oscillation 
with the frequency co. This oscillation is called the subharmonic reso
nance. I t has a definite amplitude c and phase a, which can be de
termined by the method of successive approximations described 
above. Subharmonic resonance occurs if the equations (3.6) have real 
roots c(0) and a(0). Also it is necessary that the determinant of the 
linear equations for c(l) and a(1) be different from zero. 

The physical meaning of the conditions (3.6) is the following. The 
expression /JLJ(X{Q), X ( 0 )) is an approximate expression for the force re
sulting from damping and elastic restraint. If the conditions (3.6) 
are satisfied, that is, the harmonic components of the force with the 
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frequency co are zero, the work done by this force on the deflection 
c(0) sin (cot—a^0)) vanishes. 

The problem of subharmonic resonance was treated by a great 
number of authors. The most important papers are mentioned in the 
bibliography appended at the end of this lecture. Tuckerman also 
constructed a simple and ingenious model for the demonstration of 
subharmonic resonance.2 His attention was called to the problem by 
the fact that certain parts of an airplane can be excited to violent 
oscillation by an engine running with a number of revolutions 
much larger than the natural frequency of the oscillating parts. 

The method of this section can be applied to forced oscillations of 
systems with nonlinear damping treated in §2. I t has been found that 
also in such systems a force of the frequency nœ can produce harmonic 
oscillations of the frequency co. This procedure in the radio-technique 
is called "frequency démultiplication." Frequency démultiplication 
can occur in systems with positive or negative damping for small de
flections, that is, also in such systems which are not capable of self-
excited relaxation oscillations. 

The mathematical problems outlined in §§2 and 3 represent simple 
cases of problems treated by H. Poincaré in his various researches. 
The mathematician will readily recognize in the closed curves shown 
in Figs. 2 and 3 the "cycles limites" studied by Poincaré in his paper, 
"Sur les courbes définies par une équation différentielle," Oeuvres, vol. 
1. The method used in this section is analogous to the methods of the 
perturbation theory given in the Méthodes nouvelles de la mécanique 
céleste. 

4. Nonlinear problems in the theory of elasticity. Large deflections. 
In the theory of elasticity usually two fundamental assumptions are 
made: small deflections and linear stress-strain relations (Hooke's 
law). Under these assumptions the problem of stress distribution in 
elastic systems is governed by linear partial differential equations. 
However, if we give up one or both of these assumptions, we obtain 
nonlinear equations. We consider in this section the case in which 
Hooke's law is assumed to be correct, that is, the stresses are linear 
functions of the strain components, but the deflections produced by 
external loads are so large that in the expressions for the strain com
ponents the squares and products of the deflections and their deriva
tives cannot be neglected. A classical example of this type is the 
problem of the "Elastica," that is, the bending and twisting of thin 

2 The author is indebted to Dr. Tuckerman for an extensive list of references and 
for a film shown during the presentation of this lecture. 
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rods. Many of the great mathematicians of the eighteenth and nine
teenth century, for example, James and Daniel Bernoulli, Euler, 
Lagrange and Kirchhoff, were interested in this problem. 

Let us consider a simple case: two equal and opposite forces of 
magnitude P , acting along the x axis, are applied to the endpointsof 
a uniform strut. The endpoints can move freely along the x axis, but 
are restrained to this axis. The strut can be deflected in the x, y 

P/Pi 

0.25 0.50 
• « W / / 

FIG. 5 

plane. Then we obtain for the deflection w in the y direction the non
linear differential equation 

d2w p r /dwyv'2 

(4.1) + — w\ 1 - ( ) = 0 
ds2 B I \ds J J 

where 5 is the length of the arc measured along the center line of the 
strut and B is its bending stiffness. We assume that a positive value 
of P corresponds to compression in the strut. 

For small deflections equation (4.1) becomes 

(4.2) 
d2w P 

1 w = o. 
ds2 B 

If we consider P as parameter in equations (4.1) and (4.2), the 
eigenvalues of (4.2) which comply with the boundary conditions w = 0 
for x = 0 and x = l (I the length of the strut) give us the points of 
bifurcation of the equilibrium (that is, the branch points of the solu-
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tions). These eigenvalues are equal to Pn — Bn2T2/l2, where n is a 
positive integer. The first characteristic value (n = l) determines the 
so-called buckling load, or "Euler-load," PE = TT2B/12 of the strut. The 
eigenfunction corresponding to PE gives the shape of the buckling 
column leaving the magnitude of the deflection undetermined. If we 
are interested in the force-deflection relation beyond the buckling 
load, we have to integrate equation (4.1), which can easily be done 
by use of elliptic functions. Fig. 5 shows the ratio between the force P 
and the buckling load PE as function of the ratio between the deflec
tion wmax of the midpoint and the length / of the beam. 

The analogous but much more complicated problem of the finite 
deflection of plates loaded beyond their buckling limits has great im
portance for the determination of the strength of certain aircraft 
structures. The so-called stressed skin (or monocoque) method of con
struction widely employed for metal airplane wings and fuselages is 
based on the idea of loading the thin metal skin beyond its buckling 
limit. In fact the skin in the buckled or "wave" state is able to carry 
stresses which in many cases are large multiples of the buckling stress. 
Then the maximum load is determined by the ultimate strength of 
the buckled skin and the aim of theory is the determination of the 
stress distribution and the maximum stress occurring in the wave 
state. 

To fix the idea let us assume that a plate of constant thickness t, 
which in the undeflected state is parallel to the x, y plane, is sup
ported freely along two parallel edges, y = ±b, and is subjected to 
uniformly distributed compressive forces acting normal to its other 
two edges, x— ±a. The problem is much more complicated than the 
problem of the Elastica for the following reason: In the case of the 
deflected thin rod, the resultant of the normal stresses in an arbitrary 
cross section is determined statically by the end loads. In the case of 
the deflected plate, the distribution of the resultant stresses acting 
in the plate depends on the distribution of the normal deflection 
w(x, y). Let us denote the components of the resultant stresses per 
unit length of the plate by aXy <ry and rxy. I t is known that these stresses 
are in equilibrium if they can be derived from a function F(x, y)— 
called Airy's function—by the relations 

d2F d2F d2F 
( 4 . 3 ) (J x = f <Ty = f T xy = * 

dy2 dx2 dxdy 
If the squares and products of the deflections and strain components 
are neglected, the function F(x, y) satisfies the linear differential equa
tion 
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(4.4) AAF = 0. 

On the other hand if no normal external load is applied to the plate, 
the normal deflection w(x, y) obeys the equation 

(4.5) BAAw = 0 

where B is the bending stiffness of the plate per unit length. However, 
if we take into account the quadratic terms in the deflections and 
strain components, we obtain the following two simultaneous equa
tions for the functions F(x, y) and w(x, y) : 

K d2w\2 d2w d2w~] 
) \> 

dxdy/ dx2 dy2J l\dxdy/ dx2 dy2 

(4.6) y y 

Yd2F d2w d2F d2w d2F d2wl 
BAAw = t\ H 2 . 

\_dy2 dx2 dx2 dy2 dxdy dxdyj 
These equations were first given by the present writer in 1910. 

Let us assume that in the undeflected state 

(Tx— " " I I , (Ty=TXy=z0. 

Then substituting these values in the second equation (4.6) we obtain 
the linearized equation for w(x, y) : 

d2w 
(4.7) BAAw + Ut = 0. 

dx2 

This equation has solutions different from w = 0 which satisfy homo
geneous boundary conditions for certain eigenvalues of the parame
ter n . 

For example, assuming hinged support at the edges x = ± a, y — ±b, 
the eigenvalues will be given by 

B 7T2a2/m2 n2\2 

(4.8) n = (—+ —) 
/ 4 m 2 \a 2 b2 ) 

where m and n are integers. These eigenvalues represent the branch 
points of the equilibrium for the plate. The lowest eigenvalue gives 
the buckling load II#. 

If the load II is only slightly higher than this lowest critical value 
IIJS?, the system of equations (4.6) can be solved by successive ap
proximations. However, if the stress applied is many times larger 
than the "Euler stress" II#, this method converges much too slowly 
for practical purposes. A satisfactory solution of equations (4.6) for 
large values of II /II^ has not as yet been given. The present author 
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in a joint paper with E. E. Sechler and L. H. Donnell attacked the 
problem with a somewhat crude approximation using the notion of 
the "effective width." The simplifying assumption was made that 
two narrow strips near the supported edges carry essentially the whole 
load. The computations of H. L. Cox, M. Yamamoto and K. Kondo, 
and K. Marguerre are more elaborate; however, they also are not 
devoid of arbitrary assumptions. Marguerre uses the Rayleigh-Ritz 
method for the approximate solution of equations (4.6). Since he re
tains only a few terms of a trigonometric series, his solution if IL/HE 
is very large does not approximate very well the shape of the deflected 
plate observed in the experiments. 

Recently K. Friedrichs and J. Stoker attacked the problem of stress 
distribution in a circular plate beyond the first buckling, assuming 
axial symmetry for the deflection. Due to this assumption, the prob
lem is simpler than that of the rectangular plate. They were able to 
integrate the system of equations (4.6) which in this case are reduced 
to ordinary differential equations. They investigated the solution for 
the whole range of values of the ratio U/ILE, where II is the radial 
stress per unit area applied on the circumference of the plate and II# 
is the first critical value of II. Below the buckling load, that is, for 
II <II#, the circumferential stress crc is uniformly distributed over the 
whole plate and is equal to II. If II exceeds the buckling stress, ac in
creases near the edge of the plate and decreases in the center part. 
For large values of II/UEy crc in the center part becomes negative; it 
changes from compression to tension, whereas the whole external load 
is practically carried by a narrow strip near the edge, which is analo
gous to the effective width introduced by the present writer in the 
theory of the rectangular plate mentioned above. In this limiting case 
the method of perturbations can be applied with success since the 
perturbation term contains the derivative of the highest order. This 
amounts to an asymptotic integration of the differential equations re
sulting from equations (4.6). Let us denote the average value of crc 

by p and the edge stress by pe. Then Friedrichs and Stoker obtained 
the following asymptotic approximation for the relation between p 
and pe 

(4.9) _jL__.73r_*_r 

where a is the radius of the plate. 
The same relation with a numerical factor of the same order of 

magnitude is easily obtained by the method which the present author 
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used in the case of rectangular plates. Hence, the analysis of Fried-
richs and Stoker can be considered as a verification of the authors' 
simplifying assumptions. 

The theory of large deflections of plates subjected to lateral loads 
requires the integration of the nonhomogeneous system of equations 

2 d2w d2w~\ 

dx2 dy2J 
v ' Fd2F d2w d2F d2w d2F d2w 

FAAw - t\ 1 2 
Ldy2 dx2 dx2 dy2 dxdy dxdy 

where p(x, y) is the lateral load per unit area. This system of equa 
tions can be solved by successive approximations. Denoting the solu
tion of the nonhomogeneous linear equation 

(4.11) AAw = p/B 

by Wo(x, y), we substitute this function in the first of the equations 
(4.10) and determine a first approximation of Fi(xy y); then, substi
tuting the derivatives of Fi in the second equation (4.10), we calcu
late the next approximation Wi(x, y), and so on. The system of 
equations (4.10) was solved for certain simple contours and loading 
conditions by S. Timoshenko and S. Way. 

The problem of large deflections of curved rods was treated by sev
eral authors. Thus R. Grammel investigated the deformation of a cir
cular ring by uniformly distributed moments along the circular ring 
axis, which tend to turn the cross sections of the ring around their 
centers. He found that at a critical value of the moment the ring 
jumps over into a new equilibrium position. 

Another interesting case is the deflection of a flat arch under lateral 
load where the deflection is of the same order of magnitude as the 
height of the arch. Let us assume, for example, that the two endpoints 
of a flat circular arch are pin-joined at two fixed points on the x axis 
and the arch is loaded by a uniform normal load p per unit length. 
If R is the radius of curvature of the arch, the uniform normal load 
produces a compressive force equal to pR and the first bifurcation 
point of the equilibrium is obtained approximately by Euler's equa
tion for a straight strut: 

(4.12) {pR)E = T T 2 -
r 

where B is the bending stiffness, assumed to be constant along the 

AAF = E 
L\oxdy/ 

J = ƒ>(*, y) 
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length and / is the length of the arch. The nonlinear equation, which 
takes into account the large deflections, is analogous to the equation 
of the Elastica mentioned before. However, whereas in the case of the 
originally straight Elastica the thrust to be applied increases with the 
deflection, in the case of the originally curved arch, we find that the 
load p which is necessary to keep the rod in the deflected shape can 
be smaller than the critical load corresponding to equation (4.12). 
Thus, as Fig. 5 shows, a straight beam under axial load has only one 
equilibrium position for values of the parameter P , which are smaller 
than the first eigenvalue PE, whereas the flat arch has several possible 
equilibrium positions for values p <pE as shown in Fig. 6. Hence the 

P/PE 

t 
1.0 

0.5 

0 

—^- «w// 

F I G . 6 

engineer is more interested in the smallest value of the parameter p, 
which is compatible with the existence of such equilibrium positions 
than in the value pE corresponding to the branch point of these solu
tions. To be sure a continuous transition from the unloaded position 
to such an equilibrium state is only possible if the load p first reaches 
the critical value ps. However, imperfectness of the structure and 
slight deviations from the uniform load distribution might cause a 
jump between equilibrium states along AB and BC, practically at 
any value p between pmin and pe. 

It seems to the writer that these considerations are of great im
portance for the explanation of certain systematic discrepancies 
found between the breakdown loads of curved shells observed ex
perimentally and computed analytically from the eigenvalues of line
arized equations. For example, the differential equation for the small 
deflections of a thin-walled spherical shell of constant thickness sub
jected to uniform external pressure was carefully investigated by sev-

.^D 
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eral authors, for example, R. Zoelly, E. Schwerin, and A. Van der 
Neut. The critical pressure corresponding to the smallest eigenvalue 
of the differential equation is found to be equal to 

(4.13) p = —El—) 
[3(1 - v 2 ) ] 1 ' 2 \R/ 

where E is Young's modulus, v Poisson's ratio, / the wall thickness, 
and R the radius of the spherical shell. The experiments show that 
the spherical shell collapses under a pressure that is only one-quarter 
to one-third of this value. Also, the shape of the buckled shell is very 
different from the wave form predicted by the theoretical eigenfunc-
tion that corresponds to the smallest eigenvalue. In a paper published 
jointly with H. S. Tsien the writer has shown by approximate calcula
tion of the large deflections the existence of more than one equilib
rium state at values of the parameter p which are much smaller than 
the value given by equation (4.13) and are of the order of the values 
observed experimentally. A similar discrepancy between the predic
tion of the linear theory and the experimental results in the case of 
the buckling of cylindrical shells under compression applied parallel 
to the cylinder axis probably can also be explained by analogous con
siderations. 

Let us finally consider the problem of large deformations of a three-
dimensional isotropic elastic continuum. This problem, although 
treated in great detail in the past by several authors, was more or 
less neglected until interest was stimulated by the possible applica
tion of tensor calculus as shown by recent publications of E. Trefftz, 
F. D. Murnaghan, and M. A. Biot. The first treatment is due to 
G. Kirchhoff (1852); later J. Boussinesq (1872), M. Brillouin (1891) 
and J. Finger (1894) were interested in the problem. An excellent 
presentation of the subject can be found in a review of E. and F. Cos-
serat (1896). The analysis of all these authors is based on the funda
mental assumption that the state of the matter at a point P , whose 
coordinates before the deformation are %%y is determined by the de
formation of the infinitesimal neighborhood of P , that is, by the co
efficients of the linear transformation 

dx ' 
(4.14) dxi = d(xi + £*•) = dxk 

dX]C 

where %i and x% are the coordinates of P before and after deformation. 
The vector whose components are x% x% = & is the displacement vec
tor. The transformation (4.14) has nine coefficients. However, a rigid 
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rotation does not produce stresses, and therefore the stresses can only 
depend on the coefficients of the square of the line element dxi. We 
write 

2 

(4.15) dxi = gikdxidxk 

where 
(4.16) gik = oLuaik 

and the as are the coefficients of the transformation (4.14). In the 
case of rigid rotation, gik=^l (that is, g»fc=l if i = k and gik = 0 if i^k). 
Hence, we conclude that the six quantities gik — at determine the pure 
deformation of an element. E. and F. Cosserat, and later E. Trefftz, 
defined these quantities as the components of the strain e^ and con
cluded that the stress-strain energy of an isotropic body must be a 
function of the invariants which can be constructed of the quanti
ties eik. If the form of the energy function is assumed, the components 
of the stress tensor are obtained by variation of the energy and ap
plication of the principle of virtual displacements. 

If the squares and products of the derivatives of the £/s are neg
lected, gik= ài+dÇi/dxk+dÇk/dxi. Hence, in this case the transforma
tion (4.14) can be split into two parts: 

(4.17) <& = — ( + —)dxk + —[ -)dxh. 
2 \dXk dxi/ 2 \dxk dxi/ 

The first term represents an infinitesimal pure deformation, the 
second term an infinitesimal rigid rotation. The quantities e^ 
= %(di;i/dxk+di;k/dxi) are known as components of the strain ten
sor. If Hooke's law is valid, the stress-strain energy is a homoge
neous quadratic form of the e^'s, and the components of the stress 
tensor are derivatives of this quadratic form with respect to the e^'s. 

If higher terms in the derivatives of the £*'s are taken into account, 
two difficulties arise: 

(a) The separation of the pure deformation from the rotation and 
the definition of the strain tensor becomes somewhat arbitrary. 

(b) One must differentiate between stresses referred to the surface 
elements of the undeformed and deformed system. 

M. A. Biot suggested the following definition of the rotation and 
the strain tensor: The linear transformation 

d& 
(4.18) Xi = Xi -\ Xk 

dXk 
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can be replaced by two successively applied linear transformations, 
where the first one: 

(4.19) xl = PikXk 

is an orthogonal transformation representing a finite rigid rotation 
and the coefficients of the second one : 

(4.20) Xi = yikx'k 

constitute a symmetrical matrix, that is, yik = 7kù Then the first 
transformation defines in a unique way the rotation and the second 
one the pure deformation. The strain tensor is defined by 

(4.21) eik = è (7<Jb- ôi). 

We notice that the 7^'s are equal to the ga's only in the first ap
proximation; they differ if higher terms in the derivatives of the £/s 
are taken into account. 

F. D. Murnaghan's definition of the strain tensor is based on the 
inverse transformation 

dx ' 
(4.22) dxi = —-dx k . 

dXk 

If we express the square of the line element dsi by dsi, we obtain an 
expression of the form 

2 

(4.23) dsi = hikdxidxk-

Then we can consider 

(4.24) eik = $ ( « * - hik) 

as the components of the strain tensor. 
Using different conceptions for the strain tensor, Hooke's general

ized law appears in different forms in the publications mentioned. 
Fortunately the question is of academic rather than practical impor
tance. With the exception of a few materials with large elastic exten
sion, such as rubber, the strain components are very small within the 
limit of elasticity, and the usual first approximation is entirely satis
factory. However, if at least one dimension of the body is small com
pared to the others, as in the case of plates, shells, and beams, it is 
possible that some of the nine derivatives d^i/dxk are large, although 
the six components of the strain tensor are small. This takes place in 
sonie of the problems mentioned before in this section. I t appears that 
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the most important task of the general transformation theory of finite 
deformations should be a systematic and exact verification of the 
differential equations for large deflection of beams, plates and shells. 
The present deduction of these equations is based on intuitive as
sumptions rather than on an exact application of the general equa
tions of elasticity for a three-dimensional continuum. 

5. Stress distribution in plastic and noncoherent masses. Let us 
drop now the assumption that the material obeys Hooke's law. Two 
types of nonlinear strain-stress relations have practical importance. 
First, in some materials, although there is a unique and reversible 
relation between stress and strain, the linear law does not approximate 
this relation with a sufficient accuracy. Second, we find that beyond 
a certain stress limit the deformation is no longer purely elastic] that 
is, after removing the load, we obtain a so-called permanent set. The 
nonreversible part of the deformation is known as plastic deformation 
or plastic flow) the stress limit beyond which plastic flow is obtained 
is called the yield point. In general if plastic flow takes place the yield 
point is raised, that is, additional plastic flow can only be produced by 
further increase of the load. This effect is called cold hardening of the 
material. Stress distribution in bodies with nonlinear elastic be
haviour and in materials undergoing cold hardening were treated 
analytically only incidentally. However, the limiting case in which 
cold hardening can be neglected is readily accessible to analytical 
treatment and has been the subject of quite a large number of in
genious investigations. 

A material that is capable of plastic deformation without cold hard
ening is called perfectly plastic. The experiments show that the yield 
condition of a perfectly plastic material is given by a constant differ
ence between the largest and smallest principal stress. This condition 
must be satisfied in the whole domain in which plastic flow takes 
place. Let us restrict ourselves to two-dimensional problems, assum
ing that the material flows in planes parallel to the x, y plane. In this 
case the value of the third principal stress, which is parallel to the 
z axis, necessarily lies between the values of the two other principal 
stresses. If we derive the stresses crx, <rv, rxy from the stress function 
F(x, y) by means of the relations 

d2F d2F d2F 
(5.1) <rx = — = /, a y = — = r, crxy = - —— = — s, 

oyl ox2, axoy 
the square of the difference of the principal stresses (7i and cr2 is equal 
to 



638 THEODORE VON KÂRMÂN [August 

(5.2) (cri - * , ) * = (f + tY - 4(f/ - *2). 

Hence, the yield condition can be written in the form 

(5.3) (r + t)2- 4(rt- s2) = K\ 

where K is a characteristic constant for the material. 
Equation (5.3) is a nonlinear partial differential equation of the 

F I G . 7 
From A. Nadai, Plasticity 

second order of the hyperbolic type. The equation of the characteris
tics is 

(5.4) 
dx 

or 

(5.5) 
dy 

dx j |__ \U/A// _J 2s 

Let us denote in an arbitrary point the angle between the tangents to 
the characteristic curves passing through this point and the positive 
x axis by 0\ and 82] then according to equation (5.5) 0\ and S2 satisfy 
the equation 

(5.6) tan 2d = 
r - t 

2s 

Now the angles 4>i and fa between the directions pf the principal 
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stresses <Xi and <Ji and the x axis are the roots of the equation 

(5.7) tan 20 = = 
G x ~ Vy T — t 

From (5.6) and (5.7) we obtain tan 2d tan 20 = 1. The curves which 
follow the direction of the principal stresses are known as isostatics. 
Hence, the characteristics are a system of orthogonal curves that in-

compression 

wfo^^ materiaI 

î î î t î Î f t 
F I G . 8 

From A. Nadai, Plasticity 

tersect the isostatics at 45° and are tangential to the direction of the 
maximum shearing stress. Now the plastic flow consists essentially 
of a gliding along the planes in which the maximum shearing stresses 
occur. Therefore the characteristics are the traces of the gliding sur
faces in the x, y plane. Sometimes they are visible on the surface of the 
body subjected to plastic flow without any artifice (Fig. 7) ; in other 
cases they can be brought out by etching (Fig. 8). 

The geometrical properties of the characteristics given by equation 
(5.5) and the integration of the differential equation (5.3) by means 
of Riemann's method were studied by H. Hencky, L. Prandtl, 
C. Carathéodory and E. Schmidt. Let us introduce the parameters of 
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the characteristics a and /3 as independent variables, the average nor
mal stess p = %(r+t), and the coefficients A and B of the line element 

(5.8) ds2 = Ada2 + Bdp2 

as unknown functions. Then we obtain the equations 

K 

2 

1 dB 

where f (a) and g(/3) are arbitrary functions of the parameters a and /3. 
To integrate the equations (5.9) and (5.10) we start from two given 
characteristic curves a = 0 and jö = 0 and choose the values of A (a, 0) 
and B(0t /3) along these curves, putting, for example, A (a, 0) =B(0, /3) 
= 1. Since the characteristic curves are orthogonal, 

1 ÔA dd 

B dp ~ da' 

where 6 is the angle between the x axis and the tangent of a curve 
j8 = const., the tangent being drawn in the direction of increasing a; 
similarly 

1 ÔB dd 

A da dp 

Hence, the functions ƒ (a) and g(fi) are known and the system of equa
tions (5.10) can be integrated by Riemann's method. If the network 
of characteristic curves is so determined, equation (5.9) gives the 
value of p. Then the magnitudes of the principal stresses can be cal
culated from |((7i+ö"2) =p and | cri — cT21 =K. The stresses are directed 
at every point parallel to the bisectors of the characteristic curves. 

The stress distribution in a mass of sand which is in the limiting 
state of equilibrium, that is, just about to collapse, can be determined 
in a similar manner. If the sand is under a large external load and the 
influence of its own weight can be neglected, the stress function 
F(x, y) satisfies the equation 

(5.11) (r + t)2 - - - - ( r f - s2) = 0 
1 - f2 

where ƒ is the coefficient of friction between the sand particles. This 
equation is identical to the fundamental equation of the theory of 

(5.9) 

and 

(5.10) 
1 dA 

B dp 

d2p 

dadp 

= ƒ(<*), 
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earth pressure developed by Rankine and can be applied to various 
problems in soil mechanics. However, in many applications gravity 
has to be taken into account. The differential equation of the stress 
function in this case is no longer homogeneous, but contains also 
terms which are linear in r, t and 5. Fortunately, in a few cases of 
practical importance the partial differential equation can be reduced 
to an ordinary equation ; such problems have been treated by several 
authors. 

Both in the theory of plastic and noncoherent masses, so far we 
have assumed that the stress distribution is two-dimensional. If we 
try to extend the theory to the three-dimensional case, the difficulty 
arises that the gliding conditions (5.3) and (5.11) involve only two 
principal stresses leaving the third principal stress undetermined. 
There are two ways of attacking the problem. First, one can consider 
the equilibrium of the whole system as a variation problem : the po
tential energy of the system has to be a minimum under the restric
tion that the yield condition is not violated at any point. Hence, we 
have to solve a variation problem, where the extremals satisfy an in
equality. The solution of this variation problem leads to the equation 
(5.3) or (5.11) for the largest and smallest principal stresses and to an 
additional equation for the median principal stress. 

The second method of dealing with the problems of three-dimen
sional stress distribution is to introduce certain empirical stress and 
rate of strain relations for the plastic deformation. One can assume, 
for example, proportionality between the stress tensor and the deriva
tive of the strain tensor with respect to time. This assumption replaces 
Hooke's law and furnishes the necessary compatibility equations for 
the determination of the third principal stress. The same two meth
ods can be applied to the practically quite important case in which 
one part of the body is in the elastic and another part in the plastic 
state. Both methods furnish a sufficient number of boundary condi
tions for the surface separating the elastic and plastic domains. How
ever, this surface is not a priori given and, therefore, the solution of 
the problem is in general very difficult. It has been worked out only 
in a few geometrically simple cases. 

6. Hydrodynamics of ideal incompressible fluids. In this and the 
following sections we will consider nonlinear problems occurring in 
fluid mechanics. In §§6 to 8 we assume a nonviscous and incompres
sible fluid; in §9 we shall take into account viscosity, and in §10 com
pressibility. 

The velocity distribution in an ideal incompressible fluid can be 
determined by the so-called Eulerian equations of motion. Denoting 
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the components of the velocity by Ui} the density of the fluid by p, 
the pressure by p and the components of the volume forces per unit 
mass by Fi, we have three equations for the dynamic equilibrium : 

dUi dU{ 1 dp 
(6.1) + M = ~L + Fi, 

dt docj p oXi 

and the kinematic equation of continuity: 

dUi 

(6.2) T - = °-
OXi 

The equations (6.1) are nonlinear in the w/s. However, if we assume 
that the flow is without vorticity, that is, the Ui's are derivatives of 
a velocity potential 0, and that the forces Fi are derivatives of a force 
potential V, the three equations (6.1) are satisfied by their first inteT 
gral 

d<t> 1 dct> d<j> p 
(6.3) — + + i - - F = const., 

dt 2 OXi OXi p 

and the equation of continuity becomes 

(6.4) A0 = 0. 

Hence, in the case of irrotational motion the problem of determin
ing the velocity distribution is reduced to finding solutions of La
place's equation (6.4) that satisfy certain boundary conditions. These 
boundary conditions are in certain cases linear. For example, if the 
flow takes place between solid boundaries, the component of the 
velocity normal to these boundaries vanishes, and, therefore, d<j>/dn 
= 0. Hence, in this case the problem of finding the velocity distribu
tion is reduced to a well known linear boundary problem of the po
tential theory. 

If the fluid is bounded by a free surface, that is, by another fluid of 
negligible specific gravity which is at rest, the boundary condition has 
to express that the pressure p is constant along the free boundary. 
Hence, we have from equation (6.3) 

d(j) 1 d 0 d<f> 
1 y = Const. 

dt 2 OXi dxi 

Assuming that gravity is the only force acting on the fluid, we substi
tute V= —gxz, where g is the acceleration of gravity directed parallel 
to the negative x3 axis, and obtain 
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d<j) 1 d<t> d<j> 

(6.5) ^ + T7"7 + ^ = c o n s t 

at 2 oXi oXi 

The difficulty of solving flow problems with free boundary arises not 
only from the nonlinear character of the boundary condition (6.5), 
but also from the fact that the boundary itself is unknown. Three-
dimensional problems of this type have been solved only in a few 
cases; hence, we shall restrict ourselves to two-dimensional flow in the 
Xi, Xz plane. We also assume that the flow is stationary, that is, <j> is 
independent of time and therefore dcj>/dt = 0» 

Replacing the coordinates Xi and x$ by x and y, we have at a free 
surface the boundary condition 

(6'6) T[©,+ 0 ] + CT-COMt 

Let us introduce the complex variable z = x+iy and two analytical 
functions of 3, namely, f=(j>+pp1 where <j> is the velocity potential 
and \p the stream function, and œ = d+i log q, where 6 is the angle be
tween the velocity vector and the x axis, and q the magnitude of the 
velocity vector. The components of the velocity of flow in the x and y 
direction are equal to u = dc/>/dx and v = d(j>/dy respectively. Hence, 
u—iv = df/dz and, therefore, o) = i log {u — iv). Then Ö = tan~ ! v/u and 

log? = l o g U - i , | = è l o g [ Q + (|)] 

are harmonic functions of x and y and also of 0 and x//. Putting 
T = log q, we write the boundary condition (6.6) in the form 

(6.7) | e 2 r + gy — const. 

or, by differentiating with respect to the arc along the free boundary, 

dr by 
(6.8) e2' h g — = 0. 

ds ds 

Taking into account that the free boundary is a streamline {yp = const.) 

dr dr dr 

ds d(j> d<t> 

On the other hand, d;y/ds = sin 6 and, therefore, we obtain from (6.8) 

1 d 
(6.9) (e3r) = - g sin 0. 

3 d<t> 
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We now consider <j> and yp as independent variables; then we have to 
satisfy the boundary (6.9) condition along a horizontal straight line 
yp = const, in the <£, ^ plane, where A0 = O and Ar = 0. We remember 
that 0 and r are the real and imaginary parts of an analytical function 
of <t>+i\(/. 

The nonlinear boundary condition (6.9) can be linearized in the fol
lowing two cases : 

(a) If the effect of gravity is negligible and the fixed boundaries are 
plane surfaces, then we obtain for the free boundary, from (6.9), 

(6.10) £_„ 

The fixed boundaries being plane surfaces, their traces in the x, y 
plane are straight lines, that is, along such boundaries 0 is constant, 
and we have therefore 

d$ 
(6.11) — = 0. 

d<j> 

This case was treated in great detail by G. Kirchhoff, H. Helm-
holtz, Lord Rayleigh and others, and has been applied to many prac
tical problems such as the vena contracta, the flow of water over a 
weir, the air resistance of an inclined flat plate, the planing of a flat 
plate over a water surface, and so on. 

(b) If gravity is taken into account and the motion is only slightly 
different from a uniform parallel flow with the velocity Uf we can as
sume that 6 is small and r — T+u/U, where 7" = log U. Neglecting the 
squares and products of 0, u and v, we have from equation (6.9) 

du 
(6.12) u*-=-g8 

o<p 

o r 

dd 
(6.13) u*- + gd = 0. 

o\f/ 

Let us assume that ^ = 0 corresponds to the free surface, yp= — oo to 
the infinite depth of the water mass. We also assume that 6, u and v 
disappear at infinite depth. Then 

(6.14) 6 = d0e-W sin\tf> 

satisfies the equation A9 = 0 and the boundary condition for \f/ = — oo. 
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We still have to satisfy the boundary condition (6.13) for ^ = 0. Sub
stituting (6.14) into equation (6.13), we have 

(6.15) - U*\ + g = 0 

and, therefore, 

(6.16) 6 = e0er'*w* sin gé/ Uz. 

Let us denote the equation of the free surface by rj = r}(x). With the 

y 

t 

A_ 

direction 

B ^ 

c^p 
W 

— > £ / 

free boundary 

_ _ 
wake 

^free boundary 

FIG. 9 

approximation used here we can replace <t> by Ux and dy/dx by 0. 
Hence, we obtain 

(6.17) 7} = ?7o COS 
oog 

u2 

where r;0= —60U
2/g. 

If we consider the flow relative to a coordinate system moving from 
right to left with the velocity Uy the surface (6.17) represents a wave 
progressing with the velocity U on the surface of a water mass which 
is at rest at infinite depth. The wave length L is equal to 2irU2/g. 

The solution of waves of small amplitude outlined here is the classi
cal solution of Airy and Stokes. In the next two sections we drop the 
restrictions that made the linearization of the boundary conditions 
possible and consider the resulting nonlinear problems. 

7. Fluid jets. T. Levi-Civita was the first to extend the theory of 
Kirchhoff and Helmholtz to jets bounded by curved survaces. In a 
paper published in the Rendiconti del Circolo Matematico di Palermo 
in 1907, he treated the problem of the wake behind a blunt cylindrical 
body (Fig. 9). Let us assume that the fluid follows the curved surfaces 
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AB and AC, and that behind the body a dead fluid region, the so-
called wake, is bounded by free surfaces which extend from B and C 
to infinity. If we consider cj> and \p as independent variables, and 6 
and r = log a as two harmonic functions of <j> and \p, the boundary con
dition for the free surfaces is r = const. To find the boundary condi
tion for a fixed curved surface it is convenient to use so-called natural 
equations. For example, we can express the inclination 6 as function 
of the length of arc s. Then the curvature dd/ds is also a known func
tion of 0, say dd/ds = kK(6), where k is a numerical parameter. Now 
the trace of the fixed surface is a streamline, and, therefore, 

de de d(/> dd 

ds d<j> ds dcj) 

Hence, we obtain the boundary condition 

dd 
(7.1) — = ke-TK(6). 

d<f) 

I t is seen that for plane surfaces K(6) = 0. Then we have the special 
case treated by Kirchhoff, Helmholtz and Lord Rayleigh and equa
tion (7.1) is reduced to equation (6.11). 

Levi-Civita, by use of convenient transformations of the variables, 
reduced the problem to the following: 

To find an analytic function 6+ir of a complex variable r = £+^?, 
which is zero for f = 0, regular in the half of the unit circle above the 
real axis, and whose real and imaginary parts satisfy the following 
boundary conditions: 

(a) on the circumference of the unit half circle 

dd 
= kf(a)e-TK(e) 

da 

where a is the argument of f on the unit circle and f (a) is a known 
function of <r. 

(b) on the diameter along the real axis r = 0. 
The problem can be solved by successive approximations or by ex
pansion in a series of powers of the parameter k. 

The theory of Levi-Civita was further developed by S. Brodetzky, 
C. Schmieden, S. Bergmann, V. Valcovici, R. Thirry, L. Rosenhead 
and others. An interesting aspect of this theory is that the point of 
separation, that is, the point at which the free boundary begins, is 
undetermined between certain limiting values. These limiting values 
are determined by the conditions that the free boundaries shall not 
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intersect either the fixed boundaries or each other. The question of 
existence and uniqueness of the solution for a given separation point 
was discussed by A. Weinstein, G. Hamel, H. Weyl and K. Friedrichs. 

If we take gravity into account and the fixed surfaces are curved, 
the boundary conditions are nonlinear both at the free and the fixed 
boundaries. The theory of such "heavy" jets has many important 
practical applications in the design of weirs, spillways, and so on. A 
spillway (Fig. 10) is a steep channel at the downstream face of a dam, 

FIG. 10 

designed for the smooth discharge of large quantities of water. The 
engineer has to design the spillway in such a way that the pressure 
does not sink below the atmospheric pressure at any point on the 
surface where the water is in contact with the spillway. If we com
pare the pressure at the points P and Q—that is, on the opposite sides 
of a cross section normal to the average flow direction—we see that 
the height difference between P and Q causes the pressure to be higher 
at Q whereas the centrifugal force causes the pressure to be higher 
at P . A correct design requires an approximate balance between these 
two opposite effects. If the pressure at Q is sub-atmospheric, air en
ters between the jet and the wall and might cause an unstable jump
ing of the jet between two possible flow patterns; one of them is a 
jet with two free boundaries and the other one a jet with one free and 
one fixed boundary. Cases are known in which the instability of the 
jet has caused such violent oscillations of the air that when the spill
way was in use windows were rattled within a radius of several miles 
around the damsite. Many engineers have "grappled" with the math
ematical solution of the spillway problem; however, the mathematical 
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analysis has not furnished sufficiently dependable information, so 
that spillway design is based mostly on the results of model experi
ments. 

8. Waves with finite amplitude. The theory of waves with infini-
testimally small amplitude sketched in §6 is due to G. B. Airy (1845) 
and G. G. Stokes (1847). Stokes himself, and later Lord Rayleigh, 
T. H. Havelock, A. G. M. Michell and several other authors gave 
further approximations to the exact shape of a wave of finite ampli
tude progressing without change (so-called wave of permanent type). 
However, the systematic treatment of the problem, including proofs 
for the existence and convergence of solutions, has been given only 
recently by T. Levi-Civita and his collaborators, D. J. Struik and 
A. Weinstein. 

The analytical problem involved in the theory of waves of finite 
amplitude progressing on the surface of a water mass of infinite depth 
can be formulated in the following way : 

To find all functions 0+ir of a complex variable Ç = peî(T that are 
holomorphic in the interior of the unit circle |f | = 1 , have the value 
zero at f = 0, and satisfy at the circumference of the unit circle the 
condition 

dr 
(8.1) — = pe-*T$>m6 

da 
where p = gL/2irU2 is a positive undetermined parameter. The sym
bols 0, g, L and V have the meaning given in §6 and r =log g/ U. The 
variable f is connected with the complex potential function ƒ = 0 + ^ 
used in §6 by the relation 

( 8 . 2 ) f = *2T»//17L 

If T and 0 are small, we have approximately dt/da=p0 or 

dd 
(8.3) p - = pe. 

dp 

The problem is in this case a linear eigenvalue problem; the solution is 

(8.4) 6 = 6opp sin p(a - a0) 

where p is an integer and 0Q and <TQ are arbitrary constants. However, 
it can be shown that physically the solutions corresponding to differ
ent integral values of p are all identical. If we choose, for example, 
p = n, this only means that we consider a group of n identical waves 
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with the wave length L as one wave of the wave length nL. Hence, 
it is sufficient to consider the case p = 1, which gives the relation 

(8.5) U> = ^ -
2w 

between the velocity of propagation V and the wave length L, in 

trough 

FIG. 11 

accordance with the result given in §6. The factor in equation (8.4) 
and, therefore, the height of the waves in this approximation remain 
undetermined. 

Levi-Civita has shown that if p < 1 but 1 — p is sufficiently small, a 
certain wave shape of definite height/length ratio corresponds to 
every value of p. He also obtained convergent series for the calcula
tion of the wave shape. He uses as a first approximation the solution 
of the linear problem for p = 1, namely, 

(8.6) 0 + ir = — itô = — W cos a + fip sin a 

where \x is a real constant. Then the solution which satisfies the exact 
boundary condition (8.1) can be written in the form 

00 

(8.7) B + ir = E «.(f)/»" 

where the cow(S*)'s are polynomials of the nth. degree in J*. Levi-Civita 
calculated numerically the polynomials con(£) up to n = 5. Fig. 11 
shows an example of the wave shape resulting from his computa
tions compared with the shape of an infinitesimally small wave of the 
same velocity of propagation. The limiting smallest value of p and 
the corresponding shape of the highest wave has not as yet been ex
actly determined. G. Stokes believed that the highest wave has a sharp 
edge at the crest with a vertex angle of 120°. 

D . J . Struik extended the investigations of Levi-Civita to waves of 
finite height in canals of finite depth. A. Weinstein investigated the 
interesting problem of the so-called "solitary wave," that is, a single 
elevation of the water level travelling with constant velocity and pre-
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serving the same shape along a canal of finite depth. This phenome
non was studied as early as 1844 by J. Scott Russel, who observed 
disturbances of this type generated by the motion of large barges in 

F I G . 12 

Courtesy of H. S. Bell, Soil 
Conservation Service 

relatively narrow canals. He followed them several miles on horse
back and measured in this way their velocity of propagation. 

Nonlinear problems of fluid motion in rivers and artificial channels 
were treated in the "hydraulic manner" by J. Boussinesq. The "hy
draulic manner" of dealing with flow problems consists essentially 
in replacing the partial differential equations for the velocity distribu
tion by an ordinary differential equation for the mean velocity aver
aged over a cross section. By combining this dynamical equation with 
the equation of continuity, one obtains an ordinary nonlinear differ
ential equation for the height of the water level. A great number of 
problems treated in this way can be found, for example, in P. Forch-
heimer's book Hydraulik, Teubner, 1930. 

Interesting nonlinear problems related analytically and physically 
to the problem of surface waves arise in the analysis of the flow in 
stratified fluid media. The stability of heavy fluids of different densi
ties flowing one above the other with different velocities was investi
gated by means of the method of small oscillations by H. Helmholtz; 
V. Bjerknes considered the small perturbations occurring along plane 
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surfaces of discontinuity between fluids of different densities for sev
eral combinations of density and velocity distribution. However, the 
exact shape of separating surfaces with large curvature has not yet 
been thoroughly investigated. 

F I G . 13 

A case of this type is, for example, the intrusion of a heavy fluid 
mass moving with constant velocity into a mass of lighter fluid, as 
illustrated by the meteorological phenomenon of a progressing cold 
front or by the intrusion of muddy water into a reservoir filled with 
clear water, or salt water into a mass of fresh water. Fig. 12 shows the 
shape of the surface separating muddy and clear water. The front of 
muddy water progresses with approximately constant speed and 
keeps its permanent shape. Hence, if we consider the flow relative to 
a coordinate system moving with the heavier fluid, the latter can be 
assumed to be at rest and the lighter fluid to be in stationary motion 
(Fig. 13). The pressure p must be equal on both sides of the discon
tinuity surface. Then, if the specific gravity of the heavier fluid is 71 
and that of the lighter fluid 72, the equilibrium condition for the 
heavy fluid yields the condition p/yi+y = const., and Bernoulli's 
equation applied to the lighter fluid leads to p/y2+y+q2/(2g) =const., 
where y is the height measured from the bottom and q is the velocity 
of the lighter fluid along the discontinuity surface. Taking into ac
count that, at the intersection of the discontinuity surface and the 
bottom, y = 0 and q = 0, we obtain the condition for the discontinuity 
surface : 
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(8.8) f -y = 0. 
H 72 

It is seen that (8.8) is a nonlinear boundary condition of the type of 
equation (6.6). The main interest is directed toward the determina
tion of the shape of the discontinuity surface. We can show—using a 
reasoning similar to that employed by G. G. Stokes for the determina
tion of the steepest slope occurring in waves of finite height—that if 
frictional effects are neglected the slope of the discontinuity surface at 
the intersection with the bottom must be equal to w/3. The complex 
velocity potential for the flow of the lighter fluid in the neighborhood 
of the intersection z = x+iy = 0 has the form 

(8.9) f=Cz« 

where ce and C are real, positive constants. Hence, the magnitude of 
the velocity is given by \df/dz\ = Ca^0 1 - 1! , and, therefore, q is 
proportional to ya~l and q2 to y2(a-v. Since, according to equation 
(8.8), q2 is proportional to y> we must have 2a — 2 = 1 or a = f . Hence, 
ƒ = Czzl2 or z=(f/C)2,z. Since the streamline \[/ = 0 consists of the bot
tom line and the trace of the discontinuity surface, and f=0 corre
sponds to the point of intersection, the angle between the two 
branches of the streamline \p = 0 is equal to the change in the value of 
the imaginary part of log 2 = f log (//C), when we pass from<£<0 to 
0 > O , that is, equal to 2TT/3 = 120° . 

In an actual experiment (Fig. 12) the friction on the bottom causes 
a certain distortion of the discontinuity surface; however, if this fric
tion is diminished by introducing a thin fluid layer at rest under the 
progressing muddy water, the slope obtained experimentally is in fair 
agreement with the calculated value. I t can also be shown analyti
cally that the front of the heavy fluid must have a so-called head, 
whose peak is considerably higher than the mean thickness of the 
heavy layer, which is equal to 

72 IP_ 

7i ~ 72 2g 

where U is the velocity of progression of the front. However, the 
shape of the discontinuity surface has not yet been determined ; it is 
not known whether a mathematical analysis would lead to a surface 
approaching the horizontal level asymptotically or to waves with de
creasing or constant amplitudes. 

Also, the nonlinear boundary problems resulting from the analysis 
of the motion of planing surfaces have not yet been attacked seri-
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ously. The shape of the free water surface behind a planing surface 
has been determined by H. Wagner, but he neglected the effect of 
gravity. The investigators who have taken into account gravity3 as
sumed small elevations and depressions of the water surface. The gap 
between these two first approximations ought to be filled by further 
investigations. 

9. Viscous fluids. The dynamical equations for the flow of a viscous 
incompressible fluid have the form: 

dUi dUi 1 dp 
(9.1) h uk = h vàUi 

dt dXk p dxi 
where i = 1, 2, 3, and v is the kinematic viscosity of the fluid; the con
tinuity equation is, in accordance with equation (6.2) 

dUi 
(9.2) T - = °-

OXi 

Equations (9.1) are known as the equations of Navier and Stokes. 
In the case of viscous fluids we have to assume that at fixed bound

aries not only the normal but also the tangential components of the 
velocity vanish. The equations (9.1) and (9.2) are to be integrated 
with these boundary conditions. 

There are a few cases in which this system of nonlinear equations 
can be exactly solved by known functions: 

(a) In some cases the solutions which satisfy the linear part of the 
equation make the nonlinear terms vanish identically. Thus the prob
lem is reduced to the integration of a system of linear equations. For 
example, if only one component of the velocity, for example, the com
ponent #1, is different from zero, from equation (9.2) it follows that 
U\ is a function of x2 and x% only. Let us consider stationary flow; then 
we have to conclude from equations (9.1) that dp/dx^ — dp/dxt^^ 
and 

/d2U! d2UX\ 1 

\ dx\ dx\ / p 

d2Ui d2Ui \ 1 dp 
= const. 

'2 '-'^s/ fJ Q/X\ 

The solution of this equation furnishes the velocity distribution in a 
cylindrical pipe. The boundary condition is &i = 0 at the wall. 

(b) Certain solutions of the equations for irrotational flow of non-
viscous fluids lead to exact solutions of the system of equations (9.1) 
and (9.2) if we assume that the streamlines remain unaltered, while 

1 Cf., for example, Lamb's Hydrodynamics, pp. 375-383. 
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the magnitude of the velocity changes. A typical flow of this type is 
the two-dimensional radial flow between two divergent or convergent 
walls. Writing equations (9.1) and (9.2) in polar coordinates and de
noting the radial velocity by ur, we obtain the dynamical equations 
for stationary flow in the form 

dur 1 dp ( d2 Id Id2 1 \ 
ur = 1- v ( 1 1 )ur, 

dr p dn \ dr2 r dr r2 dB2 r2 / 
(9.4) 

1 1 dp 2V dUr 

~~ p r dd r2 dd 

while the continuity equation is solved by 
(9.5) urr = f(d). 
We introduce ƒ(#) as the unknown function, substituting ur=f(d)/r 
in equations (9.4), and eliminate the pressure p from these two equa
tions. Then we obtain for f(d) the ordinary differential equation : 

1 
(9.6) ƒ" + 4 / + — f2 = const, 

v 
which can be integrated by use of elliptic functions. The boundary 
conditions are wr = 0 for 6= ±a, where a is half of the angle of con
vergence or divergence. The interesting feature of this problem is that 
if the flow is convergent, equation (9.6) has only one solution which 
satisfies the boundary conditions at the walls; however, if the flow is 
divergent and the total amount of fluid flowing through a cross sec
tion Q = rftaUrdd exceeds a certain value, the solution is no longer 
unique. For example, for the same value of Q, we may obtain a sym
metrical and two asymmetrical solutions. The symmetrical solution 
represents a flow in which the fluid shoots with high velocity through 
the center of the diverging channel and back flow takes place at both 
sides of the jet. The two asymmetrical solutions represent flow pat
terns with positive velocity near one wall and backflow in the neigh
borhood of the other wall. For very large values of Q the sign of the 
velocity changes many times between 0= — a and 6 = a. This solution 
was found and discussed by the present writer in collaboration with 
one of his Ph.D. candidates in 1913. The young man was killed at the 
beginning of the first world war and the investigation remained un
published. Shortly afterward the same solution was found by 
G. Hamel as a special case of a wider class of exact solutions of 
the Navier-Stokes equations. 

Methods for approximate integration of the differential equations 
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(9.1) are known for two limiting cases: namely, for very large and 
very small values of the parameter v. 

(A) If v is large, we obtain a first approximation by neglecting the 
quadratic terms, so that we have 

dUi 1 dp 
(9.7) = - + vAui. 

dt p dXi 

Eliminating p and using equation (9.2), we obtain three linear differ
ential equations for ui, u2 and u%. These equations were integrated for 
certain geometrically simple cases by G. G. Stokes. The second ap
proximation should be obtained by substituting the first approxima
tion in the quadratic terms. It is difficult to find a satisfactory justifi
cation for this method of approximation. As a matter of fact, it was 
shown by C. W. Oseen that in the case of a solid moving in a fluid, the 
solution of (9.7) represents a first approximation only in the neighbor
hood of the solid, no matter how large the parameter v may be. 

(B) From an engineering point of view the limiting case of small 
viscosity is more important. This topic is known as the theory of the 
laminar boundary layer in the engineering literature. The basic math
ematical idea of this theory is the approximate solution of the 
hydrodynamic equations by asymptotic integration. L. Prandtl 's 
fundamental paper On the theory of fluids with small viscosity was 
presented at the First International Congress for Mathematics in 1904 
in Heidelberg and drew very little attention from the mathematicians 
attending this congress who were much more concerned with the 
problems of George Cantor's Mengenlehre and other subjects of pure 
mathematics, on which interest was focused in those days, than in 
the speculations of a young professor of applied mechanics, whose 
presentation perhaps was not very clear from a purely mathematical 
point of view. Several years passed before the method was correctly 
understood. Nowadays it is widely used in the theory of skin friction 
and many other hydrodynamical, aerodynamical and meteorological 
phenomena in which inertia forces and viscous forces are of the same 
order of magnitude. 

Let us consider the following simple problem: An incompressible 
viscous fluid flows along a flat plate that extends along the positive 
x axis from x = 0 to x= <*> (Fig. 14). (We shall use the coordinates 
x, y y z instead of X\y X2y X3. ) No other boundaries exist; the velocity of 
flow at x = — 00 is directed parallel to the x axis and is equal to U. 
We assume two-dimensional stationary motion and introduce the 
stream function \[/(x, y) defined by the relations 
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dxf/ diP 

[August 

dyi v = 
dx 

which satisfy identically the continuity equation. Then the dynami
cal equations yield the following differential equation of fourth order 
for xp: 

(9.8) 
ty dAxP dx[/ dA$ 

= PAAI/ ' . 

dy dx dx dy 

If J> = 0 , the presence of the plate has no influence on the motion and 

FIG. 14 

we have u= V or \[/o= Uy; the only boundary condition at ^ = 0 is 
y = 0. However, if VT^O, no matter how small v may be, we have the 
additional boundary condition u = 0 for y = 0. 

To obtain an approximate solution for small values of v, we use the 
method of perturbations, starting from the solution for J> = 0. We no
tice that the perturbation term contains higher derivatives of \p than 
the differential equation (9.8) with J> = 0. I t is known that in such a 
case we have to change the independent variable by a substitution 
which contains the parameter v so that we write 

(9.9) yp = Uy + v^i{x, rj) 

where rj=ypP and a is positive. The exponents a and /3 are to be de
termined in such a way that u = d\l//dy is of the order of U and the 
largest terms on the left and right sides of equation (9.8) are of the 
same order. The first condition leads to ce+j3 = 0. Substituting the 
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expression (9.9) into equation (9.8) and putting /3 = — a, we find that 
the largest terms on the left side are 

= v-« ( U H 1 
dy dxdy2 \ drj / dxdrj2 

and 

dx dyz dx drjz 

the largest term on the right side is v d4\l//dyi = p1~z<xdSf/i/drji. These 
terms are of the same order if a = \. Hence equation (9.9) becomes 

(9.10) if = v^Uy + vl^i(x, V) 

where rj = y/v112. 
With this substitution, equation (9.8) takes the form 

fyi\ dhPt # i dVi #Vi 

drj / dxdrj2 dx drf drj4 

This equation can be integrated once with respect to rj : 

) — = h ƒ(*). 

Since dxpi/drj and dhpi/drj2 are zero for 97= 00, the arbitrary function 
ƒ(#) must be zero. We notice that the substitution \[/i(x, rj) = xll2f(rj/x112) 
reduces equation (9.12) to an ordinary differential equation for the 
f unction ƒ where f = rj/x112. In fact, we obtain 

(9.i3) -hm+f)f" = f". 

This differential equation has been integrated numerically for the 
boundary conditions / = 0 , ƒ' = — V at f = 0 and / ' = 0 at £*=<*>, by 
H. Blasius (1908) and more accurately by C. Töpfer (1912). The re
gion near the wall where ƒ or the stream function of the perturbation, 
$i(%i y)i is materially different from zero is called the "boundary 
layer." The order of magnitude of the extension of this region normal 
to the wall is (vx/U)ll2\ we say in engineering language that we have a 
boundary layer of the thickness 5, where S is of the order of (vx/ Z7)1/2. 
To fix ideas, S can be defined by the relation vll2J0

Md\pi/drjdrj = Uô. 
This value of S is called the displacement thickness, and is given by 
b — \.l2/(vx/U)112. The velocity distribution in the boundary layer 
is given by w= U+f. The calculated values of u/U are plotted in 

(9.11) 

(9.12) 
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Fig. 15 and compared with experiment. The solution of equation 
(9.13) determines also the skin friction, that is, the shearing stress 
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at the surface; its value per unit area of the plate is variable with x, 
that is, with the distance from the leading edge of the plate. At a dis
tance x, we have 

(9.14) 
/du\ 

\dy/y=:Q 
0.66414 

1 pU2 

2 (Ux/vyi2 

The dimensionless quantity Ux/v is called the Reynolds number of 
the plate extending from x = 0 to x = x. 

We have carried through this calculation in the manner of the cal
culus of perturbations. Prandtl considered the hydrodynamic equa
tions in the form given by (9.1) and (9.2) and determined the relative 
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orders of magnitude of the terms in these equations, assuming that 
the velocity component u changes from its value U to zero in a small 
range near the wall. Denoting the order of magnitude of this range 
by S, he concludes that S must be of the order v112 and du/dy, d2u/dy2 

of the order 1/*>1/2, 1/v respectively while du/dx is of standard order. 
Then from equations (9.1) it follows that the derivative of the pres
sure with respect to a coordinate normal to the wall is of the order 
vll2

y hence negligible in the approximation used in this theory. In this 
way we obtain, for example, in the case of uniform flow along a flat 
plate, the simplified equations: 

du du d2u du dv 
(9.15) u h v — = v ; h — = 0. 

dx dy dy2 dx dy 
The boundary conditions are u = v = 0 at the wall and u = U a t y =* 00 , 
where U is the velocity "outside of the boundary layer," that is, the 
velocity resulting for y = 0 from the solution of the equation A^o = 0 
for nonviscous fluids. 

If we have two-dimensional flow along a wall but the velocity U 
is not constant, equations (9.15) take the form: 

du du dU d2u du dv 
(9.16) u— + v — = U h v y —H = 0. 

dx dy dx dy2 dx dy 
Prandtl has shown that these equations can also be applied to the 
flow along a curved surface, provided the lines x = const, are normal 
to the surface, x is the length of arc measured at the surface and y 
is the normal distance from the surface. Equations (9.16) furnish a 
fair approximation if Ko and (dK/dx)è2 are sufficiently small, K the 
curvature of the wall and S the thickness of the boundary layer. 

The integration of the system of equations (9.16) has great impor
tance for many applications. Various attempts have been made to 
obtain approximative solutions. An excellent review of the methods 
applied is given in Modern Developments in Fluid Dynamics, edited by 
S. Goldstein. Here only a short account will be given: 

(a) S. Goldstein showed that equations (9.16) can be reduced to an 
ordinary differential equation if U(x) has the form const. xn or 
const. ex*. The case n = 0 leads to the case treated above ; n = 1 that 
is, £/ = const, x corresponds to a boundary layer starting from a stag
nation point of the main flow. This problem has been treated by 
Blasius, Hiemenz, Howarth and Bickley. The equation for arbitrary 
n has been studied by Falkner and Skan and by Hartree. Special 
cases were discussed by R. Mills. 
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(b) Let us assume that U{x) is given in the form of a power series 

(9.17) U = pix + fax2 + fotf3 + • • • . 

Then we put u = d^//dy1 v= —d\(//dx and 

(9.18) ^ = Fix + F2x
2 + Fzx* + • • • . 

By substituting (9.17) and (9.18) in equations (9.16) and equating 
the terms with the same power of x, we obtain systems of ordinary 
differential equations for the functions F\, F2, • • • of y. This method 
was used by Hiemenz, Howarth, Bickley and others. 

(c) We might start from an "initial velocity profile" at x = 0, as
suming, for example, 

y2 yZ 
(9.19) «(0, y) = axy + a2 — + az — + • : • 

and calculate the "next profile," that is, u(Ax, y). However, in general, 
that is, for arbitrary values of ai, a2l < • • , we obtain a singularity at 
x = y = 0. If the function U(dU/dx) has the form 

dU 
(9.20) U = Y i * + Y2*2 + 

dx 
the function \p(x, y) is regular only if certain relations between the 
coefficients ai, a2j • • • and 71, 72, • • • are satisfied. Hence, the appli
cation of a step-by-step method progressing in the ^-direction is 
rather difficult. 

(d) A method of obtaining approximate values of the thickness of 
the boundary layer and the skin friction as function of x has been 
proposed by the present writer and worked out in detail by Pohl-
hausen. By integrating the first equation of (9.16) between y=0 and 
an arbitrary fixed value of y and using the condition of continuity, 
we obtain 

dry r i y roui» d rv U2 

(9.21) - u2dy+ [uv]=v\- \+—\ —dy. 
dxJQ ° LoyJo dxJo 2 

Taking into account the second equation (9.16), the second term on 
the left side of (9.20) becomes — U{d/dx)jludx and we obtain 

dry dry rdul y 
(9.22) — I (U2 - u2)dy - U— I (U - u)dy = - v — . 

dx J 0 dx J 0 Ldyj 0 

Extending the integral to a value y = S, where U—u is negligible, that 
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is, over the whole cross section of the boundary layer, we can assume 
that du/dy = 0 for y = S and we have 

d rh d r8 /du\ 
(9.23) — (U2-u2)dy- U— (U - u)dy = vl — ) . 

dxJo dxJo \dy/o 

This equation, given first by the present writer, is an expression 
for the conservation of the momentum of the fluid involved in the 
boundary layer. Let us assume that the velocity distribution between 
y = 0 and y = ô can be expressed by a polynomial of the form 

p.24) „_._„[i_.2+,(2.y+e(2.y] 
where a, b and c are functions of x. Then from U—u = Q and du/dy = 0 
at y=ô follows: 1— a+b+c = 0 and — a + 2b + 3c = 0. For y = 0 we 
have, from the first equation of (9.16), v(d2u/dy2) + U(dU/dx) = 0; 
hence 

2bv dU 
+ = 0. 

d2 dx 
I t is seen that a, b and c are expressed by S and dU/dx. Therefore, if 
we substitute (9.24) into equation (9.23), we obtain an ordinary non
linear differential equation of first order for ô. 

This method was applied with success in many cases and gave fair 
approximations for engineering purposes. I t has the disadvantage 
that it is difficult to estimate the degree of approximation. If the ac
tual shape of the velocity distribution profile is very different from 
the assumed polynomial, the result can be misleading. 

(e) R. von Mises suggested a transformation of coordinates for 
equation (9.16), introducing x and \f/ as independent variables and 
Z= U2 — u2 as the unknown function. Then u(d/dx + (v/u)d/dy) has 
to be replaced by ud/dx and d/dy by ud/d\{/. We obtain in this way 

dZ d2Z 
(9.25) = vu 

dx d$2 

where u = (U2 — Z2)lf2 and U is a given function of x. If we compare 
this equation with equation (9.12) it is seen that its order is reduced 
from 3 to 2. However, an additional quadrature is necessary to obtain 
the velocity as function of x and y. von Mises suggested a step-by-
step method to solve equation (9.25). The difficulty caused by a sin
gularity at # = ^ = 0 mentioned under item (c) occurs also in this case. 

(f) If we introduce instead of x the variable $ = J l Udx (that is, the 
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value of the potential function obtained by solving the equation 
A^o = 0 for the nonviscous case), equation (9.25) can be written in the 
form 

dZ u d2Z 
(9.26) = v 

d<j> U # 2 

In the outer portion of the boundary layer, u/U is not very different 
from unity. Then we find that Z satisfies approximately the heat con
duction equation: 

ez d2z 
(9.27) = v 

dcj> d^2 

The boundary condition is Z = [U(x) ]2 for ^ = oo. The solution sat
isfying equation (9.27) a*nd this boundary condition might be called 
the "outer solution." We shall now calculate the "inner solution," 
that is, approximate values of Z for small values of <£, and the two 
solutions shall be joined. We choose as the point of junction the value 
of \p = ipj for which 

d2u u d2(u2) 

dy2 2 <ty2 

(inflexion point of the velocity profile). Since d2Z/d\p2= —d2(u2)/d\l/2, 
we obtain from equation (9.26) 

d\u2) _U dZ 

dip2 v d<j> 

To obtain a first approximation we will replace dZ/d<i> by a function 
of cj> and u; then we have to solve an ordinary differential equation 
for u, where the coefficients are functions of <j>. For \// = 0 

dZ d r , dU 
= _ [u2 - u2] = W ; 

d(j> dcj) d(j> 

for the point of junction, dZ/d<t> = 0. Hence, we replace dZ/d<j> by 

dU / u\ 
W ( 1 ), 

d4> \ Uj/ 

where Uj is the value of « = (— Z 2 + U2)112 obtained from the outer 
solution. 

This method was given by the writer and C. B. Millikan in a joint 
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paper and applied in detail to the case in which U is a linear function 
of x, that is, U= Z7o+ UiX, where Uo and U\ are constants. 

Other more or less laborious methods for obtaining approximate 
solutions of the boundary layer equations have been suggested by 
L. Howarth, Green, Falkner and Skan. The equations for nonstation-

F I G . 16 

From Prandtl-Tietjens, Hydro and Aeromechanics, vol. 2 

ary and for three-dimensional motion have been studied by several 
authors and integrated in certain special cases. 

One result of general importance is shown by all these investiga
tions: The flow pattern depends largely on the sign of the function 
U(dU/dx). If U(dU/dx) > 0 , which means that dp/dx<0, the thick
ness of the boundary layer decreases or increases slowly, and the solu
tion of equations (9.16) can be continued without difficulty for the 
whole range in which U(x) is given. However, if U(d U/dx) <0 , that is, 
dp/dx>0, we soon come to a point at the surface where du/dy = 0. 
Beyond this point the streamline \j/ = 0 has two branches; the flow 
separates from the surface and back flow takes place between the 
two branches of \[/ = 0. This point is known as the separation point. 
It can be clearly recognized in the flow pictures shown in Fig. 16 
which represent successive stages of an accelerated flow around a cy-
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lindrical body. Unfortunately, practically all the methods mentioned 
above converge very slowly, if at all, when we approach the separa
tion point, and, therefore, it is very difficult to discuss the mathe
matical character of the solution of the boundary layer equations in 
the neighborhood of this point. An additional difficulty is caused by 
the fact that by the separation of the flow from the surface vorticity 
is transported into the free stream and, therefore, the assumption of 
irrotational motion outside the boundary is no more valid. Hence, in 
such cases the perturbation method fails. 

Due to this failure of the method we do not get an answer for one 
of the fundamental questions of the hydrodynamics of real fluids, 
that is : What is the flow pattern of a real fluid around a submerged 
body in the limiting case J>—K)? As a matter of fact this problem is 
still not solved. Consider, for example, two-dimensional flow around 
a circular cylinder. We are not able to decide whether the flow pattern 
for v—>0 approaches the potential flow of a nonviscous fluid or a sta
tionary flow pattern consisting of a vortex-free region and a wake 
with continuously distributed vorticity, as suggested by Oseen, or a 
nonstationary flow pattern with concentrated vortex columns of al
ternating circulation, a flow pattern treated by the present author. 
I t seems that we have here an example in which the analytical meth
ods are not sufficient, at least at the present time, to solve a problem 
of purely analytical character.4 

10. Compressible fluids. In the previous sections the fluid was as
sumed to be incompressible, that is, the equation of continuity or 
conservation of matter was used in the form 

(10.1) T - = 0 -
axi 

If we drop this restriction and denote the variable density of the fluid 
by p, we have 

dp d(pUi) 

(io.2) J : + _ - ^ - = o. 
dt dX{ 

4 The reader may wonder why the turbulence problem has not been included in 
this review. This omission is due to the fact that the study of turbulent motion has 
not, as yet, led to a clear mathematical formulation of the fundamental laws for the 
mean motion. The problem of transition from laminar to turbulent motion has been 
discussed mathematically by several authors by means of linearized equations with
out reaching a satisfactory agreement with experiment. The adequate treatment of 
the nonlinear equations is bound to contribute essentially to the solution of this im
portant problem. 
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In this case we have five unknown quantities : the three velocity com
ponents, the density, and the pressure. To solve the problem properly 
we have to introduce thermodynamical concepts. We have to add the 
temperature as an additional unknown variable and two equations: 
the equation of state and the equation of the conservation of energy 
(mechanical plus thermal). However, in many cases the problem can 
be simplified by assuming a definite thermodynamic process, for ex
ample, adiabatic or isothermal change of state. This amounts to a 
known relation between p and p. Let us assume, for example, an ideal 
fluid undergoing an adiabatic change of state, then we have the rela
tion p = const. p \ Introducing the velocity of sound c defined by 
c2 = dp/dp, we obtain the following system of equations 

dui dUi c2 dp dp d(pUi) 
(10.3) + uk = - , — + — — - = 0. 

dt d%k p dXi dt dxi 

These nonlinear equations can be linearized in the following cases : 
(a) Assume that the velocity components Ui and the deviation of p 

from average value p0 are small. In this case we obtain 

dUi c2 dp dp dUi 
(10.4) = , — + PO = 0. 

dt po dxi dt dXi 
The velocity of sound can be considered as constant. Eliminating the 
velocity components Ui, we obtain for p the wave equation: 

1 d2p 

(.0.5) 7 ^ " i " 

(b) If the velocity components u% and Uz are small whereas u\ might 
be large but differs only slightly from a mean value U, it follows again 
that the deviation of the density p from a mean value po is small. 
Then putting Ui= U+u{, Uz — ul, u% = u% we obtain 

dui du' c2 dp dp dp dui 
(10.6) + U = , — + U + PO = 0. 

dt dxi po dXi dt dX\ dX{ 

The velocity of sound can again be considered constant, so that elimi
nating the velocity components ul we have 

1 ( d d\2 

Let us consider the stationary case, that is, dp/dt = 0. Then we have 
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/ U2\ d2p d2p d2p 
(10.8) ( 1 )—T + —~ + —r = 0. 

\ c2 ) dx\ dx\ dx\ 
It is evident that the linear differential equation (10.8) is of the ellip
tic type if U<c (subsonic flow) and of the hyperbolic type, if U>c 
(supersonic flow). In the first case equation (10.8) is reduced to La
place's equation by the affine transformation 

X\ 

(10.9) x{ = ————, xi = x29 xi = xz. 

If U>c, equation (10.8) is of the type of the wave equation and can 
be integrated by use of well known methods developed for the solu
tion of this equation. 

Equations (10.5) and (10.8) are often used for approximate solu
tion of the system of equations (10.3). However, in many cases these 
approximate solutions do not describe the physical picture closely 
enough and we are forced to search for methods of solving the non
linear equations. 

Let us consider stationary irrotational two-dimensional flow, using 
the symbols x and y for the coordinates, and u and v for the velocity 
components. Then denoting the potential function by <£(#, y) we ob
tain, by putting dp/dt = du/dt = dv/dt = 0 and eliminating p from 
equations (10.3), 

/ u2\ d2ct> vv d2<t> / v2\ d2<t> 
(10.10) ( 1 J — - 2 — + ( l ) — = 0. 

\ c2 / dx2 c2 dxdy \ c2/ dy2 

In this equation c2 is a given function of q2~u2-\-v2. Namely, accord
ing to the definition of the velocity of sound c2 is a given function 
of p; on the other hand, it follows from (10.3) that 

c2 

(10.11) d(u2 + v2) -\ dp = 0. 
P 

Let us apply Legendre's transformation introducing the velocity 
components u and v as independent variables and X = xu-jryv~4> a s 

the unknown function. We obtain 

u2\ d2X uv d2X / v2\ d2X 
— J + 2 + ( l ) = 0. 
c2 / dv2 c2 dudv \ c2 / du2 

If in the whole domain occupied by the fluid u2+v2>c2, equation 
(10.12) is of the hyperbolic type and has fixed real characteristics in 
the u, v plane. Therefore, in this case the integration of equation 

(10.12) 
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(10.12) can be achieved by the methods of characteristics. For the 
construction of the characteristics it is convenient to use the polar co
ordinates q — (u2+v2)112 and 0 = t a n - 1 v/u in the u, v plane. In these 
coordinates the differential equation of the characteristic curves be
comes 

f 0.13) 
dq 

dd (q2 _ ^2)1/2 

Since c is a function of q only, equation (10.13) is a differential 
equation of the first order for q(0). Its solution consists of two families 

F I G . 17 

of curves: one family corresponds to the positive, the other to the 
negative sign of the square root. If the isothermal process is assumed, 
c = const, and the characteristics are two families of involutes of the 
circle of the radius c covering the whole domain of the u, v plane out
side of this circle. If, according to the so-called polytropic law, p is 
proportional to pk, we obtain epicycloids which touch the two circles 
whose radii are equal to the minimum value of c and the maximum 
value of q respectively. The characteristic curves are indicated in 
Fig. 17. If the characteristics of (10.12) in the u, v plane are known, 
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the next step consists of constructing the corresponding characteristic 
curves of (10.10) in the x, y plane. L. Prandtl and A. Busemann have 
worked out graphical methods for this purpose. 

I t is a characteristic property of equation (10.10) that in the super
sonic range it can have discontinuous solutions. Both density and 
velocity change discontinuously at certain surfaces. Such discontinui
ties occurring in supersonic flow are known as shock waves ; they also 
can be considered as waves of finite amplitude if we look at the phe
nomenon from the standpoint of an observer moving with the fluid. 
B. Riemann was the first who pointed out (in 1860) that in a compres
sible fluid waves of finite amplitude can produce discontinuities. 
Later W. J. M. Rankine, H. Hugoniot, J. Hadamard, E. Jouguet, 
G. I. Taylor and others, worked out in detail the theory of the dis
continuous solutions. Engineering applications of the theory of shock 
waves were made by A. Stodola, L. Prandtl, and many other authors. 
Applications to the ballistic problem were made by E. Mach, 
C. Cranz, G. I. Taylor, J. W. Maccoll, and P. S. Epstein. 

If in the whole domain u2+v2 = q2<c2, the problem of integration 
of equation (10.10) can be attacked by the method of successive ap
proximations. Let us consider the classical example of the two-di
mensional flow of a compressible fluid around a circular cylinder. We 
assume that the velocity of the flow at large distance from the ob
stacle is parallel to the x axis and has the magnitude U. We denote 
the velocity of sound corresponding to the density and pressure pre
vailing in the undisturbed flow by c0 and the exponent of the poly-
tropic law by K. Then the velocity of sound at an arbitrary point, 
where the magnitude of the velocity is equal to g, is given by 

2 2 K — 1 2 2 

(10.14) c = Co + (U - ff). 

Introducing this relation into equation (10.10) and using polar co
ordinates r and 0, we obtain 

[ l -4dc- l )^»(^- l ) ]A* 
(10.15) 

1 M2 /d<t> dq2 1 d<t> dq2\ 

2 U2 \dr dr r2 dd dd ) 

where M = U/CQ is called Mach's number and 

q \dr) r*\dd)' 
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We assume that <j> can be developed in a series of ascending powers 
of M2: 

(10.16) <j> = 4>o + M*4>i + M402 + • • • . 

Obviously, we obtain from equation (10.15) 

(10.17) A0o = 0. 

I t is seen that 0o(r, 0) is the solution for incompressible fluid. We put 
the radius of the circle equal to unity. Then the boundary condition 
is d<f>o/dr = 0 for r = l , and we obtain: 

(10.18) 0o = (r + 1/r) cos 0. 

We also develop q2 in ascending powers of M2 by writing 

(10.19) q = ql + M\\ + M\\ + • • • . 

Substituting the expressions (10.16) and (10.19) in equation (10.15) 
and equating the terms multiplied by the same power of M, we have 
the following relations for <£i? $2, • • • 

2 2 

1 /d<£o dqo 1 d</>o öö-0\ 
A0i = ( 1 ), 

W2 \dr dr r2 dO dd / 

(10.20) 

1 2 

A02 = (k - l)(g0 - l)A0i 
2U2 

2 1 /^0o ^gi 1 d<£o dgA 

C72 \ dr dr r2 dd dd ) 
2 2 

1 /d0i dq0 1 <90i dg0\ 
21/2 \ ar dr r2 dd dd J' + 2 

The boundary conditions are dcj>/dr = 0 for r=l and dcfri/dr^dfa/dr 
= 0 f or r = 00. 

The method sketched here is essentially identical to that used by 
Lord Rayleigh, O. Janzen, L. Poggi, C. Kaplan, I. Ismai, K. Tamada 
and Y. Saito. The calculations of the Japanese authors are the most 
reliable ones; they corrected some numerical errors which occurred in 
previous publications. G. I. Taylor worked out an experimental 
method for solving the same problem by successive approximations. 
He employed an electric device analogous to that used for the experi
mental solution of Laplace's equation. 

Another method for solving problems of subsonic flow in compress-
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ible fluids was suggested by P. Molenbroek and A. Chaplygin. These 
authors use a transformation of independent variables which is analo
gous to the Legendre transformation mentioned before in this section. 
However, instead of using the potential <j)(x, y) and its Legendre 
transform X(u, v) as unknown functions they use <£(#, y) and the 
stream function \f/(x, y) which satisfies identically the continuity 
equation for stationary flow : 

d(pu) d(pv) 
(10.21) ^L± + ^JL = 0. 

dx dy 
We write pu — d\p/dy and pv= —d\J//dx. Then we have 

( 1 0 . 2 2 ) d<j) = udx + vdy, d\p = — pvdx + pudy. 

We resolve these equations for dx and dy and introduce as independ
ent variables polar coordinates in the u, v plane, namely, q = (u2+v2)*12 

and ö = tan _ 1 v/u. Substituting 

d<£ d\p d\p d\p 
d(j> = — da -\ dB, d\l/ = — dq -\ dB, u = q cos 0, v = q sin B 

dq dB dq ÔB 
into equations (10.22) and resolving them for dx and dy, we obtain 

/ c o s B d<t> s in B d\p\ / c o s B d<j> s in B dyp\ 

dx = ( T + ~)dq + l - + )d$, 
\ q dq qp dq) \ q dB qp dB/ 
/ sin B d<j> cos B d\p\ /sin B d<t> cos B d\//\ 

dy = l + j)dq-{ - + -)i». 
\ q dq qp dq/ \ q dB qp dB / 

The relations 
d 

dB \dq/ dq \dB/ ' dB \dq/ dq 

/dx\ d /dx\ d /dy\ d /dy\ 
1 \dq) "~ dq KdB/' dB \dq) ~" dq \dB/ 

furnish t h e following t w o re la t ions be tween t h e de r iva t ives d<j>/dq, 
dcl>/ddandd\l//dq,d\l//dd: 

d<t> 1 d\f/ cos B d<j> sin B / q dp\ d\p 
sin 6» 1 cos 6» — = ( 1 + ^ 1—, 

• ( • , 

(10 24) dq P dq q dd qp \ p dq/ 00 
d<t> 1 d\f> sin 0 d<t> cos 6 / q dp\ # 

-COSÖ— s i n e — = ( l + — — I -
( ' dq p dq q dB qp \ p dq/ dB 

Multiplying the first equation of (10.24) by cos 0 and the second 
by sin 0, we have by subtraction 
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1 fy 1 d<j> 
(10.25) = 

p dq q dd 
Multiplying the first equation by sin 0 and the second by cos 6, we ob
tain by addition 

dó 1 / q dp\ d\// 
(10-26) r = - ( 1 + T)^-

dq qp \ p dq/ dd 
F r o m equat ion (10.11) follows (q/p)dp/dq = — q2/c2\ hence, equa t ion 
(10.26) becomes 

d<f> 1 / q2\Ô\P 
(10.27) ^ Œ _ ( i _ A ) J ? . 

dq qp\ c2 / dd 
Eliminat ing, for example , 4> from equat ions (10.25) and (10.27), we 
obta in the following linear differential equat ion for \j/\ 

(10.28) -JUL- ^(±W)+ 0.^0, 
\p dq/ 

qp d_ (q_ ç A dV 

1 - q2/c2 dq\p dq) dB2 

where c is given as function of q by means of the relations c2 = dp/dp, 
dp/p+qdq = 0 and p=f(p). The last relation depends on the law of 
the change of state of the fluid. 

Chaplygin has shown that the differential equation (10.29) can be 
reduced to Laplace's equation by an appropriate choice of the rela
tion p^fip). Laplace's equation for the polar coordinates q and 6 has 
the form 

dq V dq) dd2 

Equation (10.29) is reduced to the form (10.29) if 

"Y / d\l/\ v/ Y 

(10.29) , _ ^ _ j + _ _ o . 

q a q qp 

where a is an arbitrary constant. Hence, we have to choose p=f(p) 
such that 

p2 - a2(l - q2/c2) 

or 

(10.31) q2 = c2 -
p V 
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Since d(q2)/dp — — 2c2/p, we obtain by differentiation of (10.31) the 
relation 

d(c2) c2 

(10.32) — - = - 2—« 
dp p 

From equation (10.32) follows c2 = dp/dp = B/p2 and 

B 
(10.33) p = A 

P 

Introducing the specific volume F = l /p , we can write equation 
(10.33) in the form 

(10.34) p - po = const. (VQ - V). 

It is seen that we obtain Laplace's equation for \[/ (and also for </>) if 
the polytropic curve in the p, V plane is replaced by a straight line. 

I t is obvious that if the density change is small the adiabatic or 
other polytropic curves can be approximated by straight lines. 
A. Chaplygin, D. Riabouchinsky, B. Demtschenko, J. Caius and 
A. Busemann applied this method of approximation to the slow mo
tion of a compressible fluid. I t seems to the writer that an application 
to the flow of a compressible fluid with a velocity which is comparable 
to the velocity of sound is of greater practical interest. Let us assume 
that the undisturbed velocity of the fluid is U (where U<c) and the 
density corresponding to the velocity is po= 1/VQ. If we assume that 
the change of the density is sufficiently small so that the pressure can 
be expanded as function of F— VQ and approximated by a linear 
term, it is possible to determine possible flow patterns, velocity and 
pressure distributions in compressible fluids by use of the methods 
of conformai transformation. By means of successive approximations, 
which require considerably less labor than Rayleigh's method men
tioned before in this section, it is also possible to determine the veloc
ity and pressure distribution around a given body. H. S. Tsien worked 
out this application of Chaplygin's method upon suggestion of the 
present writer. 

The problem of flow of a compressible fluid around a cylindrical 
body or a body of axial symmetry is of great practical importance in 
view of the increasing speed of aircraft, which already have flown 
faster than 2/3 of the velocity of sound. Experimental evidence seems 
to show that if the velocity at any point of the wing surface reaches 
the velocity of sound, a shock wave appears. However, G. I. Taylor 
calculated numerically with great patience an analogous flow prob-
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lem, namely, the flow of a compressible fluid through a nozzle, whose 
cross section decreases to a minimum value and again increases. He 
obtained a flow pattern, showing near the walls a velocity greater 
than that of sound, but no discontinuity. Another important case is 

FIG. 18a. Photograph of a bullet in flight. From G. I. Taylor and 
J. W. Maccoll, Aerodynamic Theory, vol. 3 

the motion of a blunt-shaped body at supersonic velocity. Observa
tions show that a curved discontinuity surface is created in front of 
the body; between this surface and the blunt nose of the body the 
flow is subsonic and the velocity becomes zero at the nose of the body. 
The same phenomenon occurs also in the case of a body with a 
pointed nose or leading edge at velocities slightly higher than the 
velocity of sound (Fig. 18a), whereas if the speed is sufficiently large, 
the shock wave starts from the pointed edge, or in the case of a body 
of rotation from the apex (Fig. 18b). This problem is important in 
ballistics; for example, the so-called terminal velocity of aerial bombs 
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dropped from large heights is in this range. Unfortunately, no method 
as yet is available for solving such mixed subsonic-supersonic prob-

F I G . 18b. Photograph of a conical headed projectile in flight. 
Photograph by T. Harris, British Ordnance Committee 

lems. The difficulty is that the differential equation for the potential 
or the stream function is of the elliptic type in one part of the domain 
and of the hyperbolic type in the other. I t seems to the writer that 
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the invention of methods for the solution of such mixed problems 
would be an achievement both from a practical and a mathematical 
point of view. 

An attempt was made in this paper to show the applications of 
analytical methods available for the solution of certain nonlinear 
problems in which the engineer is interested. Some gaps were shown 
and frontiers indicated beyond which the safe guidance of the mathe
matical analysis is for the time being lacking. I would consider this 
lecture a great success if it would induce mathematicians to volunteer 
for pioneering work in pushing those frontiers "farther west." 
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