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Laboratoire de Météorologie Dynamique, Paris, France

Jean-Philippe Lafore
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ABSTRACT

The aim of the present series of papers is to develop a density current parameterization for
global circulation models. This first paper is devoted to the presentation of this new wake
parameterization coupled with Emanuel’s convective scheme. The model represents a population
of identical circular cold pools (the wakes) with vertical frontiers. The wakes are cooled by the
precipitating downdrafts while the outside area is warmed by the subsidence induced by the
saturated drafts. The budget equations for mass, energy and water yield evolution equations
for the prognostic variables (the vertical profiles of the temperature and humidity differences
between the wakes and their exterior). They also provide additional terms for the equations of
the mean variables. The driving terms of the wake equations are the differential heating and
drying due to convective drafts. The action of the convection on the wakes is implemented by
splitting the convective tendency and attributing the effect of the precipitating downdrafts to
the wake region and the effect of the saturated drafts to their exterior. Conversely, the action
of the wakes on convection is implemented by introducing two new variables representing the
convergence at the leading edge of the wakes. The Available Lifting Energy (ALE) determines
the triggers of deep convection: convection occurs when ALE exceeds the convective inhibition.
The Available Lifting Power (ALP) determines the intensity of convection; it is equal to the
power input into the system by the collapse of the wakes. The ALE/ALP closure together with
the splitting of the convective heating and drying implement the full coupling between wake and
convection. The coupled wake/convection scheme thus created makes it possible to represent the
moist convective processes more realistically, to prepare the coupling of convection with bound-
ary layer and orographic processes and to consider simulating the propagation of convective systems .

1. Introduction

During the last 3-4 decades the understanding of con-
vective processes has improved dramatically. This success
is the result of a huge effort by the international atmo-
spheric convection community to patiently combine obser-
vation analysis, modeling and theory. Considerable progress
has been made in the description of propagative convection,
especially squall-lines and, more recently, unorganized con-
vection and the transition from shallow to deep convection.
These subjects are akin to some of the challenges met by
the representation of deep convection in Global Circulation
Models (GCM), namely the representation of convection
organization and propagation and of the diurnal cycle of
convection over land.

Fast-moving long-lasting squall-lines (SL) provide a con-
venient archetype of organized mesoscale convective sys-
tems (MCS), facilitating the elaboration of a conceptual
model with three components, viz a convective part, a

stratiform part and a density current (DC). This well ac-
cepted conceptual model is widely described in the litera-
ture and confirmed for different tropical and mid-latitude
regions. The SL appears as a self-maintained system with
a loop of interactions: convective cells generate precipita-
tion, which feeds downdrafts by evaporation, which feed a
DC, which spread at the surface, thus triggering new con-
vective cells ... The stratiform part stabilizes the system by
favoring mesoscale subsidence through evaporation of trail-
ing precipitation under the anvil, reinforcing the DC and
a rear-to-front mid-level flow and helping to maintain the
”jump updraft” (Montcrieff 1992) in the convective part.
From this conceptual model, there are at least three key
ingredients to define the degree of organization: i.e. the
profile of instability measured by the Convective Avail-
able Potential Energy (CAPE), the low-level shear, and
the DC fed by rain evaporation, which is strongly related
to the humidity vertical profile whose maximum potential
is measured by the DCAPE (Downdraft CAPE) concept
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(see Emanuel 1994 textbook). For instance GATE (Global
Atmospheric Research Program Atlantic Tropical Experi-
ment) observations revealed the strong link between the SL
propagation and the African Easterly Jet speed and dry-
ness (Barnes and Sieckman 1984). This link has been con-
firmed many times from observation and modeling studies,
and explained by complementary theories. In particular,
Rotunno et al (1988) explain the local matching between
the DC propagation and mid-level jet speed in terms of bal-
ance between the inflow shear and the vorticity generation
by the DC, but other ingredients need be considered, such
as SL upstream effect, detrainment from new convective
cells when the DC deepens and accelerates, acceleration of
the rear inflow (Smull and Houze 1987b, Lafore and Mon-
crieff, 1989), and synoptic scale effects (Thorpe et al 1982).
A central component of such organized systems is the DC,
the properties of which were first studied by Charba (1974)
and extensively analyzed by Moncrieff and So (1989).

Other types of MCSs, although less well organized, share
the same components and some characteristics of the SL.
They all exhibit DCs although their intensity can differ
greatly with weaker intensity and depth over oceanic ar-
eas, such as those observed during the Tropical Ocean
Global Atmosphere Coupled OceanAtmosphere Response
Experiment (TOGA-COARE) (Montmerle et al. 2000),
and greater intensity over continents, such as over the Sa-
hel (Redelsperger et al. 2002) or the US Great Plains
(Smull and Houze 1987a). Due to their intensity, exten-
sion, frequency and duration (up to 12-36 hr) MCSs have
a significant large-scale impact (Laing and Fritsch 1997).

Another theory has been developed to explain the or-
ganization of isolated convection. Through Cloud Resolv-
ing Model (CRM) simulations of storm development in an
idealized environment, Weisman and Klemp (1982) relate
the storm type: single cell/multicell/supercell, to a bulk
Richardson number as the ratio between convective insta-
bility and the low-level shear. It should be noted that, in
all these simulations, the surface gust front associated with
the DC leading edge is a key feature to explain the storm
organization and propagation.

Less organized and shallow convection regimes are much
more frequent, so they significantly contribute to heat and
moisture diabatic sources. Also, they represent a key stage
in the proper simulation of the diurnal cycle of convec-
tion and the preparation of the more organized and intense
stage of convection. Recent high-resolution simulations of
such regimes and of the shallow-to-deep transition high-
light the role played by DC in triggering new convective
cells and supporting the growth of deep clouds (Tompkins
2001; Khairoutdinov and Randall, 2006) through both dy-
namical and thermodynamical mechanisms depending on
the shear occurrence and intensity.

From the above brief overview of our knowledge of con-
vective processes, it appears that DCs play a key role in

convection self-maintenance (whether convection is orga-
nized or not) and in convection organization and propaga-
tion. In spite of this, DCs are rarely represented in current
large-scale models: to our knowledge, the pioneer work
by Qian et al (1998) (QYF hereafter) has been the only
parameterization to represent convective wakes in GCMs.
QYF aimed to represent squall lines and their life cycle,
but without representing their displacements through grid
cell boundaries. They pointed out that failure to represent
DCs led to an underestimation of the duration of deep con-
vection episodes, and also that it led to exceedingly weak
surface fluxes. Unfortunately, the test of this parameteri-
zation by Rozbicki et al. (1999) in a Single Column Model
(SCM) for 12 squall line cases, gave the result that ”the
modelled wakes were biased too shallow, too warm and too
moist” and that further development was necessary. Nev-
ertheless, these two papers proved the feasibility and the
relevance of wake models. They were the main incentive
to develop the model presented in this paper.

The propagation of deep convection from one grid cell
to another remains an unresolved question. This has im-
portant consequences for large-scale models, especially con-
cerning the simulation of the West African Monsoon: it
causes simulated deep convection to remain in the trough
of African Easterly Waves contrary to observations, where
SL generally propagate westward faster than the waves
(Barnes and Sieckman 1984). Hence, it leads to an er-
roneous simulation of the interaction between waves and
moist convection.

Piriou et al (2007) emphasized the role of DCs in the di-
urnal cycle of convection over land: after the initial phase
of shallow convection and the transition to deep convec-
tion, DCs generated by the evaporation of precipitation
grow gradually and, through the uplift of air at the gust
fronts, induce a gradual growth of deep convection, lead-
ing to a maximum in the afternoon or in the evening. Cur-
rent large-scale models, in contrast, simulate a maximum of
convection close to noon (Yang and Slingo 2001). This de-
ficiency appears to be (at least partially) linked to the lack
of parameterization of DCs: when the convection scheme
depends solely on large-scale variables, convection is max-
imum when the atmospheric instability is maximum, i.e.
about noon. It is only thanks to the DCs that convection
becomes self-sustaining, which enables it to behave inde-
pendently of the diurnal heating by the surface. This was
well illustrated by Rio et al (2009), where the simultaneous
use of a boundary layer scheme representing shallow con-
vection and of the wake scheme presented in the present
paper made it possible to simulate with a SCM a diur-
nal cycle of moist convection close to the one simulated
by CRMs. However, the analysis of the role of DCs in
the diurnal cycle of moist convection in GCM simulations
remains to be achieved.

The main idea of the present work is that some of the
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above GCM failures are partly rooted in the fact that the
wake subgrid feature and its role are not represented. Thus,
this series of papers aims to develop and test a new wake
parameterization. The overall structure of QYF’s scheme is
kept: (i) the domain is split into two regions, the wake and
the off-wake regions; (ii) the convective columns develop in
the off-wake region, while the precipitating downdrafts are
located in the wake region and cools it. However, our new
wake parameterization differs from QYF in two respects:
(i) while QYF considered a single wake inside the grid cell,
we consider a population of identical wakes; (ii) while QYF
assumed the wake to consist of a mixed layer capped by a
sharp inversion, we use a prognostic model of the vertical
profiles of the wake temperature and humidity deficits. In
order to express the effect on convection of the lifting at the
wake leading edge, much effort has been put into the design
of a new convective trigger and closure. We implemented
the new trigger and closure in Emanuel’s convective scheme
(Emanuel 1991 and 1993; Hourdin et al. 2006).

The present paper is devoted to the presentation of
this new wake parameterization coupled with the Emanuel
convective scheme, while its evaluation in a single column
framework is performed in a companion paper by compar-
ison with well documented convective case studies exhibit-
ing intense to weak wakes. The formulation of the wake
model is presented in section 2, while its set of equations
for mass, energy and momentum is derived in section 3.
Section 4 treats the question of the coupling of the wake
with the Emanuel convection scheme, which leads us to
implement a new trigger function and closure based on the
lifting energy and power concepts respectively. Finally we
summarize and discuss the main characteristics of this new
wake scheme and expected progress in section 5.

2. Wake model

a. Assumptions and conceptual model

Fig. 1 provides a schematic diagram to help the un-
derstanding of our wake model and its physical basis. We
consider a population of circular wakes with vertical fron-
tiers over an infinite plane containing the grid cell.

As depicted in Fig. 1, each grid cell is decomposed into
two regions : the wake region (w) (shaded) and the off-wake
region (outside the wakes) (x). The wakes are cooled by
the convective precipitating downdrafts, while the air out-
side the wakes feeds the convective saturated drafts. Wake
air being denser than off-wake air, wakes spread as density
currents. We assume that the wakes have a circular shape,
which agrees with observations and CRM simulations at
least for the early stage of their development (Fig. 7 of
Diongue et al. 2002). The wake shape becomes more ovoid
later for mature convective systems in a sheared environ-
ment. However we neglect this process, and we assume
that the wake geometrical changes with time are only due

to their mean movement relative to the ground (velocity
~Vw), to their spread (speed C∗), and to their coalescence.
All the wakes are assumed identical, i.e. they have the
same height (hw), radius (r) and vertical profiles of ther-
modynamical variables. The wake top corresponds to the
level at which wake and off-wake temperatures are equal.
Below this level, wakes are cold and subside. The verti-
cal profile of the subsiding motion results from the wake
spreading at the surface, and from the absence of hori-
zontal entrainment and detrainment below the wake top.
The temperature difference between the wake and the off-
wake regions is reduced by the mass adjustement by gravity
waves; this damping process is zero at the surface, where
gravity waves cannot occur, which permits the existence of
wakes. Above the surface, it grows with altitude.

The horizontal detrainment from the wakes is assumed
to be zero at all levels, and so is the entrainment level be-
low wake top. This can appear as a crude approximation,
but at this stage of the wake model development we wanted
to stay as simple as possible. However, we shall write gen-
eral equations including detrainment and entrainment pro-
cesses, which will make it possible to relax the assumptions.

The spatial distribution of wakes is described statisti-
cally by a wake density Dwk(x, y, t) of the wake center po-
sitions. Then, for a surface element with sufficiently small
area [δx, δy] around (x, y), the probability that there is
a wake center in the surface element is Dwk(x, y, t) δx δy.
We shall assume that a uniform density Dwk(t) (i.e. a den-
sity Dwk independent of x and y, but possibly dependent
on the grid cell) is sufficient to represent deep convective
processes in large scale models. Then, to the wake density
Dwk is associated an average wake spacing≈ 1/

√
Dwk, and,

assuming that wakes merge as soon as they are in contact,
a maximum radius ≈ 1/(2

√
Dwk).

A high density (Dwk ≈ a few 10−10 m−2, wake spacing
< 100 km, wake radius < 50 km) corresponds to several
wakes within a grid cell 100km to 300km long. It can de-
scribe scattered convection as well as the early stage of
organized propagating convection. The case of a low den-
sity (Dwk ≈ 10−12 m−2, wake spacing ≈ 1000 km, wake
radius < 500 km), corresponds to one wake for tens of grid
cells. It can describe organized convection, in particular
propagating squall lines. In that case, the wakes can be-
come larger than the grid cells after some time: they will no
longer be sugrid-scale objects. The processes occuring at
the gust front, however, are always subgrid-scale processes,
but occuring in a small proportion of grid cells.

Whatever the density, when the wake radius approaches
the maximum radius, coalescence occurs, and the wake
density Dwk drops. In the present series of papers, we
shall impose, somewhat arbitrarily, the density Dwk(t), and
leave for further studies the representation of the organiza-
tion of moist convection by means of models of the density
Dwk.
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Since wakes are randomly distributed, the number of
wakes included in the grid cell or intersecting the contour
of the cell will vary depending on the configuration. The
purpose of the parameterization is to determine the average
effect of these various situations on large-scale thermody-
namical variables.

Grid cell z

WAKE

WAKE

���������������������������������
���������������������������������
���������������������������������
���������������������������������

θe(z)

θex
θew

θe

δθ

θ”

x

θ∗x

hw

off-wake area

θ∗wθw

θ

θx ε

θ”

w

C∗

~Vw

Fig. 1. Sketch of the circular wake model (with one single
wake within the grid cell) and of the expected vertical pro-
files of equivalent potential temperature θe averaged over
the whole grid cell, the wake region and the off-wake region.

b. Notations and some basic formulas

• Generally, the overbar denotes the average over a hor-
izontal domain, whether it is the whole grid cell (e.g.
the average potential temperature at a given level
reads θ), the off-wake region (e.g. θx), or the wakes
(e.g. θw).

• The wake region is the region where θ is below θx − ε
(Fig. 1), ε being some minimum temperature deficit
(e. g. ε = 0.2K; but we shall use the limit ε −→ 0)).

• σw is the fractional area of the wakes; Sw, Sx, St are

the wake, the off-wake region and the grid cell areas
respectively: σw = Sw/St; 1 − σw = Sx/St. σw is
related to the wake radius r and to the wake density
Dwk by the relation:

σw = Dwk π r2

• For every field α, the restriction to the off-wake region
(wake region) is denoted αx (αw). Each of these fields
is decomposed into three terms :

αx = α + α∗
x + α”

x

αw = α + α∗
w + α”

w

(1)

where α∗
x is the average over the off-wake region of

αx − α, α∗
w is the average over the wake region of

αw−α and α”
x and α”

w are the small scale fluctuation
terms (Fig. 1).

• In addition the difference between the wake and the
off-wake region averages is denoted δα :

δα = α∗
w − α∗

x = αw − αx

We use Cartesian horizontal = (x, y) coordinates and pres-
sure = p in the vertical direction, so that the velocity hor-
izontal components are = (u, v) and = ω for the vertical.
In addition to the GCM state variables θ(p) (the average
potential temperature at level p), qv(p) (the average spe-
cific humidity at level p), the wake scheme introduces the
new state variables δθ(p), δqv(p) and σw.

The above definitions allows the following basic equa-
tions to be written:

α∗
x =

−σw

1 − σw

α∗
w

δα =
α∗

w

1− σw

=
−α∗

x

σw

α = σwαw + (1 − σw)αx

(2)

from which it is straightforward to derive a first evolution
equation at the grid cell scale:

∂tα = σw∂tαw + (1 − σw)∂tαx + δα ∂tσw (3)

c. Wake spreading and propagation

We make the approximation that the contour of each
wake follows the fluid in the lowest part of the Planetary
Boundary Layer (PBL). More precisely, we assume that

the contour velocity ~VΓ(M) at point M and the horizontal

fluid velocity ~V1(M) at M , averaged over the lowest layer of
the PBL, coincide. Above the low layer, the fluid velocity
and the contour velocity no longer coincide.

In the present paper we do not need to treat the wake
propagation speed ~Vw as our aim is wake validation in a

4



single column model. Nevertheless this speed will later al-
low the convection to be moved within each grid cell and
translated from one GCM column to an adjacent one when
the wake reaches the corresponding grid cell boundary. The
formulation of the wake propagation will account for the
mean wind and for the low level shear as learned from the
convection organization studies summarized in the intro-
duction. Here, the convection scheme is simply gradually
switched off in the original grid cell as soon as the wake
size reaches a threshold (σw = 0.8).

C∗ being the mean spreading speed of the wake lead-
ing edge (Fig. 1), the wake expansion rate is ∂tσw =
2 πrC∗Dwk, or, equivalently (since σw = Dwk π r2):

∂tσw = 2C∗

√
π Dwk σw (4)

The WAke Potential Energy (WAPE) is defined as the
mean potential energy deficit in the wake region:

WAPE = −g

∫ hw

0

δθv

θv

dz (5)

where θv is the virtual potential temperature and hw is the
mean wake depth (at which δθv vanishes). Following von
Karman (1940) the wake spreading speed is proportional
to the square root of this energy:

C∗ = k∗
√

2 WAPE (6)

Here k∗ is constant and has been estimated at 0.68 (Lafore
and Montcrieff 1989) and 0.33 (unpublished computation
by JP Lafore) from squall line CRM simulations in 2D and
3D respectively. It is consistent with the 0.5 value found by
Bryan et al. (2005) from observations of cold pools during
the Bow Echo and MCV (Mesoscale Convective Vortices)
Experiments (BAMEX) over the US great plains.

3. Prognostic equation derivations

We consider the part of a set of wakes which lies inside
the grid cell Σ as displayed by Fig. 2. The set of all wake
contours within Σ will be called Γin and the intersection
of the grid cell contour with the wakes Γ′

w. Thus, the
boundary of the wake region inside the cell is made up of
the inner contours Γin and the outer contours Γ′

w.
We shall write budget equations for an atmospheric

layer enclosed between the two isobaric surfaces at p and
p− δp. We use the hydrostatic approximation, so the mass
per unit area in the layer is assumed to be horizontally uni-
form. Explicit computations will concern the mass budget
equation and the energy budget equation for the wake and
the off-wake regions. We shall skip the computations rel-
ative to water budget equations (since they are similar to
the energy ones). This section often uses pairs of equations
(one for the (x) and one for the (w) region). The pairs will
be numbered and each equation will be referenced by the

(Σ)

~nw

Γ′

w

~n′

Γ′

x

Γin

Fig. 2. Notations for a field of wakes extending out of the
grid cell (Σ) with frontier (Γ′).

pair number and a subscript ’w’ or ’x’ (e.g., (7w) points
to the equation (7) relative to the mass budget of the (w)
region).

a. Mass budget equations

Using notations defined in section 2b, the mass budget
equations for the (w) and (x) regions at a given level p
read :





∂tSw = −
∫

Σw

∂p(ωw) dΣ +

∫

Γw,in

(~V − ~VΓ).~nw dΓ

+

∫

Γ′

w

~V .~n′ dΓ

∂tSx = −
∫

Σx

∂p(ωx) dΣ −
∫

Γw,in

(~V − ~VΓ).~nw dΓ

+

∫

Γ′

x

~V .~n′ dΓ

(7)
Each is the sum of three contributions: the vertical conver-
gence of mass, the mass transport through the wake ver-
tical walls and that through the grid cell boundaries into
wake (off-wake) regions. The second terms are of opposite
sign for the (w) and (x) regions as they correspond to their
common frontier Γin. Some assumptions must be made to
estimate the last term: i.e. the integral over the grid cell
boundary. Two opposite cases are considered here by using

5



a flag η:
(i) η = 0 for the confined case, where the wakes do

not intersect the grid cell boundary, so that the integral∫
Γ′

w

~V .~n′ dΓ is obviously zero.

(ii) η = 1 for the homogeneous case, where the dis-
tribution of wakes extends far outside the grid cell. We
assume that wake air and off-wake air enter the grid cell at
rates which are proportional to the wake area and the off-
wake area respectively. A heuristic probabilistic derivation
of this property is given in appendix A. The idea is that
if, say, σw = 2/3 and σx = 1/3, then the part Γ′

w of the
contour Γ′ will also be twice as long as Γ′

x, yielding feeding
rates twice as large for the wakes as for the off-wake region.
This relation reads:∫

Γ′

w

~V .~n′ dΓ = Sw ∂pω (8)

Using Eq. (8) and the η flag, the mass equation (7w)
becomes :

∂tSw = −
∫

Σw

∂p(ωw − ηω) dΣ +

∫

Γw,in

(~V − ~VΓ).~nw dΓ

(9)
The last integral of this equation represents the hori-

zontal exchange of mass between the regions (w) and (x).
It can be split into two parts, corresponding to the entrain-
ment into the wakes and the detrainment from the wakes:
let Γ+

in (resp. Γ−
in) be the part of the contour Γin where

(~V − ~VΓ).~nw is positive (resp. negative). The wake entrain-
ment and detrainment rates ew and dw are then defined by:

ew =
1

St

∫

Γ+

w,in

(~V − ~VΓ).~nw dΓ

and dw = − 1

St

∫

Γ−

w,in

(~V − ~VΓ).~nw dΓ

Using the notations of section 2b, Eq. (9) becomes:

∂tσw

σw

= −(1 − σw) ∂pδω − (1 − η) ∂pω +
ew − dw

σw

(10)

In this equation the effect of large-scale advection is entirely
represented by the ω term. This very simple form is due
to the assumption that the distribution of wakes is either
horizontally homogeneous or confined.

Since the large-scale vertical motion ω is known and
since the wake spreading rate ∂tσw is given by Eq. (4), Eq.
(10) provides a relation between the entrainment/detrainment
rates ew and dw and the vertical velocity difference δω be-
tween the wake and the off-wake regions. This relation will
be used in the following section, together with some simple
physical hypotheses, to determine ew, dw and δω.

b. Momentum equation: vertical velocity difference and entrain-
ment

Eq. (10) will be used in two different ways depending on
the level considered. Fig. 3 illustrates the partition of the

troposphere into three layers by two horizontal planes: (i)
the wake top (altitude hw, pressure pw) is the level at which
δθ reaches zero; (ii) the homogeneity level ph (here 0.6 ps,
where ps is the surface pressure) is the level above which
thermodynamic differences between w and x regions are
assumed negligible apart from the convective drafts (sat-
urated drafts in the x region, unsaturated downdrafts in
the w region). The existence of such a level is supported
by observations (LeMone and Zipser, 1980; Jorgensen and
LeMone, 1989); it can be explained by the fast mass ad-
justment by gravity waves in the free atmosphere especially
for the tropics.

z

p 0

δθ δω

δωw

δωh

δωcv

pw

ph hh

hw

ps

Fig. 3. δθ and δω expected vertical profiles in a case where
ew−dw = 0 below wake top. Both profiles are linear below
wake top (pressure pw); the δωcv profile is a sketch of the
vertical velocity difference due solely to the convective mass
fluxes.

Below hw, δθ is negative as we are within the wake
layer. Also the wake boundaries are expected to be nearly
impermeable as this ensures the existence of wakes. We
thus assume ew − dw = 0, which is at least true at the
surface due to the wake boundary definition. The vertical
integration of Eq. (10) provides the vertical profile of δω
within the wake layer:

(1 − σw)δω = (ps − p)
∂tσw

σw

− (1 − η)ω (11)

which increases linearly from ps to pw, at least for the
homogeneous case η = 1. It corresponds to the mesoscale
subsidence (Zipser, 1977) associated with the wake region
as its spreading rate ∂tσw is positive (Fig. 3).

Above hh, the difference δω between average vertical
velocities over w and x regions is equal to the velocity dif-
ference δωcv due to the sole convective draft mass fluxes (

6



the precipitating downdraft mass flux Mp within the wakes
and the net cloud mass flux Mc in the off-wake region):

δωcv = −g(
Mp

σw
− Mc

1−σw
). Since the two regions are alike,

entrainment and detrainment are irrelevant.
Between hw and hh, we are still in the mesoscale sub-

sidence fed by evaporation of trailing precipitation repre-
sented by the unsaturated downdrafts of the convection
scheme. We prescribe the δω profile as a linear interpola-
tion between the δωh = δωcv(ph) and δωw as previously
diagnosed at pw (Fig. 3). In consequence Eq. (10) provides
the net entrainment rate ew − dw which must be positive
in order to feed the expansion of the wakes. Owing to the
hypothesis that dw = 0 everywhere, Eq. (10) yields the
following expression for ew above the wake top:

ew

σw

= (1 − σw) ∂pδω + (1 − η) ∂pω +
∂tσw

σw

(12)

c. Energy budget equations

The rate of change of thermal energy of the wake is
the sum of the latent heating, the vertical convergence of
heat, the heat transport through the wake vertical walls
and the heat transport through the grid cell boundaries
into wakes. Similar reasoning applies to the off-wake area.
Thus the energy budget equations read :





∂t[

∫

Σw

θw dΣ] =

∫

Σw

θw

Tw

Hw

Cp

dΣ −
∫

Σw

∂p(ωwθw) dΣ

+

∫

Γw,in

(~V − ~VΓ).~nw θ dΓ

+

∫

Γ′

w

~V .~n′ θ dΓ

∂t[

∫

Σx

θx dΣ] =

∫

Σx

θx

Tx

Hx

Cp

dΣ −
∫

Σx

∂p(ωxθx) dΣ

−
∫

Γw,in

(~V − ~VΓ).~nw θ dΓ

+

∫

Γ′

x

~V .~n′ θ dΓ

(13)
where Hw and Hx represent the heat release (both la-

tent and sensible) in the wake and in the off-wake regions
respectively.

The rest of this section will be devoted to establish-
ing energy equations in an advective form, from which all
contour integrals will be removed.

Subtracting θw×(7w) from Eq. (13w) and θx×(7x) from
Eq. (13x) yields energy equations where the contour inte-
grals contain only temperature difference terms:





Sw∂tθw =

∫

Σw

θw

Tw

Hw

Cp

dΣ −
∫

Σw

[∂p(ωwθw) − θw∂pωw] dΣ

+

∫

Γw,in

(~V − ~VΓ).~nw (θ − θw) dΓ

+

∫

Γ′

w

~V .~n′ (θ − θw) dΓ

Sx∂tθx =

∫

Σx

θx

Tx

Hx

Cp

dΣ −
∫

Σx

[∂p(ωxθx) − θx∂pωx] dΣ

−
∫

Γw,in

(~V − ~VΓ).~nw (θ − θx) dΓ

+

∫

Γ′

x

~V .~n′ (θ − θx) dΓ

(14)
In order to compute the contour integrals we make the

following assumptions: (i) eddy terms are negligible in the
contour integrals, so θ can be replaced by its average value
in these integrals; (ii) average values of θ over Γ′

w and Γ′
x

are θw and θx respectively (so integrals over the grid cell
boundaries are zero); (iii) the average value of θ over Γ+

in

(resp. Γ−
in) is θx (resp. θw). This last hypothesis imple-

ments a very simple view of the wakes in which eddy effects
are neglected and the flow at wake boundaries either does
not cross the boundary or is composed of large adiabatic
drafts.

With these hypotheses, the integrals over the grid cell
contour Γ′ are zero as are the integrals over Γ+

in in the
θx equation and the integrals over Γ−

in in the θw equation.
Using Eq. (10) to express the integral over the contour Γin

and introducing the decompositions:

{
θw = θw + θ”

w

ωw = ωw + ω”
w

{
θx = θx + θ”

x

ωx = ωx + ω”
x

(15)

we obtain, after some elementary algebra, a first usable
form of the energy budget equations for the regions (x) and
(w):





σw ∂tθw =
1

St

∫

Σw

[
θw

Tw

Hw

Cp

− ∂p(ω
”
wθ”

w)] dΣ

−σw ωw ∂pθw − ewδθ

(1 − σw) ∂tθx =
1

St

∫

Σx

[
θx

Tx

Hx

Cp

− ∂p(ω
”
xθ”

x)] dΣ

−(1− σw) ωx ∂pθx + dwδθ
(16)

The two integrals of the right hand sides are the dia-
batic terms ; they comprise latent heating, radiation cool-
ing and eddy transport. We shall identify them with the

7



heat sources Q′
1,w and Q′

1,x obtained by decomposing into

two parts the apparent heat source Q′
1 = Qcv

1 + QR + Qbl
1

due to convection, radiation, boundary layer processes and
surface flux processes (the notation Q′

1 is used here so as
to keep the notation Q1 for the total apparent heat source,
including the source due to wakes):

Q′
1 =

1

St

(Sw Q′
1,w + Sx Q′

1,x)

Q′
1,w =

1

Sw

∫

Σw

[
θw

Tw

Hw − Cp ∂p(ω
”
wθ”

w)] dΣ

Q′
1,x =

1

Sx

∫

Σx

[
θx

Tx

Hx − Cp ∂p(ω
”
xθ”

x)] dΣ

(17)

Which yields the equations :




∂tθw =
Q′

1,w

Cp

− ωw ∂pθw − ew

σw

δθ

∂tθx =
Q′

1,x

Cp

− ωx ∂pθx +
dw

1 − σw

δθ

(18)

These two equations are the final equations giving the
evolutions of θw and θx, provided the apparent heat sources
Q′

1,w and Q′
1,x and the entrainment/detrainment rates ew

and dw are known. Thus it is sufficient to add equations
for ew and dw and the model is complete. However, θw and
θx cannot be used as state variables, since θ (= σwθw +(1−
σw)θx) is already a state variable of the model. We shall
use θ and δθ instead.

Applying Eq. (3) to θ and substituting the expressions
given by Eq. (18) for ∂tθw and ∂tθx yields the θ equation,
while taking the difference between the two (18) equations
yields the δθ equation (in which δQ′

1 = Q′
1,w − Q′

1,x):





∂tθ = −ω ∂pθ +
Q′

1 + Qwk
1

Cp

∂tδθ = −ω ∂pδθ +
δQ′

1 + δQwk
1

Cp

−kGW

τGW

δθ

(19)

where we have added a supplementary term to account for
the mass adjustment by gravity waves (GW) and intro-
duced, besides the heat source Q′

1 = QR + Qcv
1 + Qbl

1 , the
heat source Qwk

1 due to the wakes and the corresponding
differential source δQwk

1 :





Qwk
1

Cp

= +[∂tσw−(ew−dw)] δθ − δω σw(1 − σw) ∂pδθ

δQwk
1

Cp

= −(
ew

σw

+
dw

1−σw

) δθ − δω [∂pθ +(1−2σw)∂pδθ]

(20)

d. Discussion of the energy equations

These equations are independent of the assumptions
made for ew and dw. Five types of contributions may be

identified.
(i)The diabatic sources Q′

1 and δQ′
1 provided by the con-

vection, radiation and boundary layer schemes. The intro-
duction of wakes involved a new diabatic source δQ′

1 gen-
erating a temperature contrast δθ between the wake and
off-wake regions. This source will be detailed in section 4.
(ii)Large-scale vertical advection that acts both on large-
scale temperature and δθ.
(iii)The differential vertical advection by δω (the ∂pδθ and
∂pθ terms) can be explained with the support of the di-
agram in Fig. 4. It simply means that the the vertical
velocity difference δω between the wake ωw and off-wake
ωx regions induces a change of both the mean temperature
and the wake temperature deficit. Since the wake temper-
ature deficit decreases with altitude (i.e. ∂pδθ < 0) and δω
is downward (Fig. 3) this term raises the grid cell mean
temperature at the rate σw(1 − σw), which is maximum
at σw = 1/2 and vanishes at σw = 0 and 1. It is more
difficult to physically explain its effects on the wake tem-
perature deficit with the Eq. (20) formulation. It is better
to go back to its equivalent formulation as the difference of
vertical advection between the wake and the off-wake re-
gions: −δω[∂pθ+(1−2σw)∂pδθ] = ω∗

x∂pθx −ω∗
w∂pθw. From

Fig. 4 it is trivial to understand that subsidence in the
wake will heat it, whereas the upward motion due to mass
conservation will cool the off-wake region slightly, so that
the wake collapse will reduce its depth and its temperature
deficit except at the surface where no vertical advection
can occur.
(iv)Horizontal wake spread and entrainment/detrainment
at the vertical boundaries of the wake region (the δθ terms).
The wake spread acts only on the mean temperature as
a cooling source. The entrainment/detrainment also low-
ers (raises) the mean temperature where entrainment is
stronger (weaker) than detrainment. In contrast, entrain-
ment and detrainment act to damp the wake δθ, as their
sum weighted by the area is always positive.

(v)Damping by gravity waves −kGW

τGW

δθ, which acts only

on δθ. The damping time is estimated by: τGW =
LGW

CGW

;

CGW = 4zN is the velocity of gravity waves, N is the

Brunt-Väisälä frequency, LGW =

√√
σw(1−

√
σw)

√
Dwk

is an es-

timate of the distance that gravity waves have to span in
order to homogenize temperatures. τGW decreases with
altitude due to the GW speed depending on the stability
N and the maximum vertical wave length (4 z), both of
which increase in the vertical direction. kGW is a tunable
coefficient of the order of 1.

e. Final set of equations

The set of equations of the proposed wake parameteri-
zation is now complete. In short it consists of:
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Fig. 4. Diagram to explain the effect of wake collapse.

• four prognostic variables that are functions of the al-
titude (potential temperature (specific humidity) av-
erage θ(p) (qv(p)) and difference (w)-(x) δθ(p) (δqv(p)))
and corresponding equations (Eq. (19) and the anal-
ogous equations for specific humidity).

• a prognostic variable σw (Eq. (4)),

• two diagnostic variables that are functions of the al-
titude δω(p) (Eq. (11)) and ew(p) (Eq. (12)), and
we assume dw = 0 at all levels.

• three free parameters: the coefficient k∗ linking CAPE
and C∗, the density of wakes Dwk and the coefficient
η switching between the homogeneous case and the
confined case.

• The intermediate variables hw (or pw), WAPE and
C∗ are diagnosed from the profiles δθ(p), δqv(p) and
Eq. (5).

It should be noted that this set of equations is gen-
eral in the sense that it does not depend on the convective
scheme that is used. In contrast, section 4, below, treats
the coupling of the present scheme with a specific convec-
tive scheme, viz the Emanuel one. Therefore the proposed
solution and corresponding equations for the coupling de-
veloped in section 4 cannot be used for other convective
schemes without some adaptations specific to each scheme.

4. Coupling of the wake with the convection scheme

In order to implement the two way coupling between
wakes and deep convection, we first describe the action of
deep convection on wakes, which amounts to expressing the
source terms δQcv

1 and δQcv
2 (subsection a). Then we rep-

resent the action of wakes on convection. Our fundamental
hypothesis is that the dependence of convection on density
currents is twofold: (i) The presence of density currents
creates a dual environment for the convective drafts: the
convective saturated drafts lie in the unperturbed region
while the unsaturated downdrafts lie in the wake regions,

(ii) The lifting of air at the gust fronts controls the occur-
rence and the intensity of convection. Taking account of
the first item in the convective parameterization is straight-
forward (subsection b). Accounting for the lifting at the
gust front is more involved and requires the design of a new
trigger and closure (subsection c).

a. Wake feeding by the convection scheme

In Emanuel’s scheme, Qcv
1 is made up of 4 terms (equa-

tion 27 of Emanuel (1991)): (i) heating due to the sat-
urated draft compensating subsidence (QS

1 = −gMc∂pθ
where Mc is the net cloud mass flux) (ii) heating due to
detrainment from the cloud (QD

1 ) ; (iii) heating due to
turbulent fluxes associated with unsaturated downdrafts
(QT

1 = −g∂p[Mp(θp − θ)] where Mp and θp are the pre-
cipitating downdraft mass flux and potential temperature
respectively); (iv) latent heating due to precipitation melt-
ing and evaporation (QE

1 ). In the present configuration
the saturated drafts and their heating effects are located
within the x region, while the unsaturated downdrafts and
their effects are located within the w region. Thus Qcv

1 and
δQcv

1 are given by:

Qcv
1 = QS

1 + QD
1 + QT

1 + QE
1

QS
1 = −gMc∂pθx

QT
1 = −g∂p[Mp(θp − θw)]

(21)

Qcv
1 = σwQcv

1,w + (1 − σw)Qcv
1,x

σwQcv
1,w = QT

1 + QE
1

(1 − σw)Qcv
1,x = QS

1 + QD
1

δQcv
1 = Qcv

1,w − Qcv
1,x

(22)

b. A dual environment for the convection scheme

The effect of the dual environment is twofold. First,
the stability profile seen by saturated drafts and the water
vapor they entrain is shielded from the stabilizing effect
of the unsaturated downdrafts. Second, the unsaturated
downdrafts entrain air from the wake regions, which leads
to a subtle interplay between the wakes and the precipitat-
ing downdrafts: the wake temperature and humidity result
partly from the evaporative cooling and moistening by the
downdrafts; conversely, the strength of the downdrafts de-
pends on the relative humidity of the wake regions. This in-
terplay between wakes and downdrafts induces many feed-
backs which greatly influence the time for which convective
systems persist.

c. The closure and trigger modifications to account for the wake

In the standard version of LMDZ4 GCM (the GCM of
the Laboratoire de Météorologie Dynamique, with Zoom
capability; Hourdin et al. 2006), as in all GCMs we know
of, the convective trigger and closure are functions solely of
large-scale variables. Especially in LMDZ4 closure, which
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is similar to the closure of Emanuel (1993), the cloud-
base mass flux M is roughly a function of CAPE and
proportional to the square of the buoyancy B, at some
prescribed altitude above the Lifting Condensation Level
(LCL), of adiabatically lifted parcels from the first model
level. The trigger consists simply in B being larger than a
given threshold.

These formulations of trigger and closure are in ac-
cordance with the hypothesis that deep convection is in
quasi-equilibrium with the large-scale environment. How-
ever, in the presence of density currents and high Convec-
tive INhibition (CIN), the convection is no longer in quasi-
equilibrium with the large scale. This situation translates
into the impossibility of expressing convection as a function
of the large-scale variables alone. When |CIN | = 50 J/kg
for instance, convection may occur in the presence of den-
sity currents, while it is impossible otherwise, a contrasted
behaviour that cannot be represented in terms of large-
scale variables. Thus some extra variables have to be in-
troduced in order to represent the effect of density currents
on deep convection. As emphasized in the introduction and
by many authors (e.g. Emanuel 1997), the process to be
accounted for by these supplementary variables is the lift-
ing at the gust front.

We shall introduce two extra variables: (i) the Avail-
able Lifting Energy (ALE), which determines the occurence
of convection, and (ii) the Available Lifting Power (ALP),
which yields the intensity of convection. The necessity for
at least two variables can be understood from the analogy
with a pump feeding a water spout that has to reach a
given height (Fig. 5). The possibility of reaching the re-
quired height is controled by the velocity of the stream as
it leaves the nozzle, while the mass flow rate is a function
of the power of the pump. Similarly, we shall argue that
the possibility that some updrafts may overcome the con-
vective inhibition is controled by the kinetic energy of the
air impiging on the gust front (the ALE), while the cloud
base mass flux of deep convective updrafts is proportional
to the power input into the system by the wakes (the ALP).

1) Lifting energy and trigger

To express the lifting energy ALE provided by a density
current spreading at the surface, we only use the quite real-
istic steadiness assumption of the lifting process in the ref-
erence frame moving at the speed C of the density current
(C is a random variable whose mean value is C∗; its maxi-
mum value is estimated by: Cmax =

√
2WAPE). As shown

by Haman (1976) or Moncrieff (1981), the Bernouilli equa-
tion expressing the conservation of energy allows a con-
servative quantity to be introduced along each stream line
within an organized steady convection:

1

2
v2 +

p′

ρ
−

∫ z

z0

Bdz

as the sum of the kinetic energy (in the relative frame), the
fluctuation of pressure p′ from a hydrostatic reference state
(ρ is the air density) and the vertical integral (along the
stream line) of the buoyancy B from a reference level z0.
We apply this conservative property to a stream line of the
environmental air close to the surface entering the convec-
tive system at the relative speed C (Fig. 5b). At its entry
point E, as the environment is hydrostatic and there is al-
ready no buoyancy, the conservative variable is reduced to
the kinetic energy 1/2 C2. When this stream line reaches
the density current leading edge or gust point G, all the
above kinetic energy is converted into pressure fluctuation
p′. This pressure jump deflects the stream line and accel-
erates it upward to the Level of Free Convection (LFC)
against the CIN barrier. At this level, we consider that the
pressure is equal to that of the environment, so that the
energy conservation property written at these three points
E, G and at LFC reads:

1

2
C2 = p′ = KLFC + |CIN|

Since KLFC is positive, stream tubes reaching LFC are
possible if and only if 1

2 C2 > |CIN|. Now, considering
the whole range of C values, the condition for some lifted
drafts to reach LFC reads: 1

2 C2
max > |CIN|.

Hence, choosing ALEwk = WAPE yields the expected
form for the trigger condition, viz ALEwk > |CIN|.

2) Lifting power and closure

First we consider the average lifting power input into
their environment by the wakes; then we turn to the power
input by the wakes within the grid cell.

(i) Power input by the population of wakes

Each wake provides energy to the wake environment
through the relative movement of the wake leading edge
with respect to the wake environment. The rate of the
energy supply Uwk

in by a single wake is equal to the kinetic
energy flux of air impinging on the wake contour of length
L1 = 2 π r moving at velocity C∗ :

Uwk
in =

1

2
ρ C3

∗L1hw (23)

Thus the average power per unit area input into the en-
vironment by the population of wakes with density Dwk

reads :

Pwk
in = Uwk

in Dwk = ρ C3
∗ hw

√
π σw Dwk (24)

The power available for lifting (P wk
lift ) is a fraction Ewk

lift (the
wake lifting efficiency) of P wk

in :

Pwk
lift = Ewk

liftρ C3
∗ hw

√
π σw Dwk (25)
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CIN

Wake

(a) (b)

G
E

LFC

P

h

Pw

K = 1

2
V 2

θ(z)z

K = 1

2
C2

Fig. 5. Analogy between a pump having to feed a water spout and a density current enabling deep convection: (a) the

pump (power P ) yields a mass flow rate M with a kinetic energy K at the outlet; a fraction k (the engine efficiency)
of P is converted into the stream power M K. The shower is triggered when K > gh. The mass flow rate is given
by M = k P

K
. (b) the wakes provide a power Pw (the ALP, Eq. (25)) and lift air impinging on the gust front with

maximum kinetic energy K = 1
2C2

max (the ALE). Convection is triggered when K > |CIN |. The updraft mass flux is
given by Eq. (33), which is similar to the formula giving the mass flow rate for the spout, except for the denominator
which is a bit more complicated.

The lifting efficiency Ewk
lift represents several mechanisms

preventing the full conversion of the power provided by
the wakes into lifting power used by convection: (i) only a
part of the wake contours generates sufficient convergence
to feed the arc of convective cells; (ii) the wake constitutes
a non-rigid obstacle; (iii) a part of the power input by the
wakes is lost in dissipation and inhibition. The first two
processes depend strongly on the low level shear and on the
stability of the environment. From these three mechanisms
(especially from the first one) one expects the efficiency Ewk

lift

to be of the order of 1/4 or 1/3 when the shear is moderate
to strong, whereas the lifting efficiency decreases for weak
or null shear regimes. At this stage of the development of
the wake scheme (basic formulation and validation tests in
2D for present parts I and II) and to stay as simple as pos-
sible, we keep constant this efficiency. Later when testing
moving wakes in 3D, we will introduce a dependency on
the shear.

(ii) Power input by the wakes into the grid cell

If the statistics of the wakes is sufficient, i.e. if DwkSt >>
1, it can be assumed that the lifting power available for
deep convection within the grid cell is close to the ALP
provided by the whole population of wakes, viz P wk

lift . When
DwkSt < 1, a situation which occurs when a single squall

line is crossing the grid cell, P wk
lift is no longer relevant. In

that case we shall use expectation values conditioned on
the presence of a gust front within the grid cell.

The power per unit area provided by the wakes within
the grid cell along the length L̂Γ of the contour Γin (Fig.
2) reads:

P̂wk
in =

1

St

1

2
ρ C3

∗ L̂Γ hw (26)

The unconditional expectation value of L̂Γ is LΓ = L1DwkSt,
so taking the expectation value of Eq. (26) yields back
Eq. (24). Simple probabilistic computations (details in
Appendix B) yield the following expression for the expec-

tation value of L̂Γ conditioned on the presence of a gust
front within the grid cell:

L̃Γ =
LΓ

1 − exp(−Dwk SA(r))
(27)

where SA(r) is the area of the domain A composed of the
points that are at a distance r from at least one grid cell
point. SA(r) is a complicated function of r which depends
on the grid cell shape. We shall not attempt to write down
the full expression for SA(r) but give two simple asymptotic
limits:

• when πr2 << St, then A coincides with the grid cell

11



and SA(r) ≈ St. Then L̃Γ ≈ LΓ if DwkSt >> 1 and

L̃Γ ≈ 2 π r when DwkSt << 1.

• when πr2 >> St, then A is a ring of radius r and of
width

√
St; thus SA(r) ≈ 2 π r

√
St. Then necessarily

DwkSt << 1 and L̃Γ ≈
√

St.

Then, from L̃Γ, we obtain the expectation value of P̂wk
lift

conditioned on the presence of a gust front within the grid
cell:

P̃wk
lift = Ewk

lift

1

2
ρ C3

∗ hw L̃Γ (28)

P̃wk
lift will be used as the ALPwk.

(iii) Power used by the convective updraft

Following observations by airplanes flying through cu-
mulus clouds (Cruette et al., 2000), we assume that the
updrafts at the base of cumulonimbus clouds have a ho-
mogeneous liquid water potential temperature θl and total
water content qt, while their vertical velocity w shows large
spatial variability (which ensures the required strong mix-
ing within the updraft) (Fig. 6). The equations will be
written at two levels: (i) the first level is the condensa-
tion level LCL ; it will be called level A ; (ii) the second
level is a level close to the level of free convection LFC
but above it; it will be called level B. The updraft will
be considered free of entrainment and shedding between
levels A and B. Neglecting entrainment is a fundamental
hypothesis of Emanuel’s scheme. It may be justified by
saying that, for the convective column size (a few tens of
km) and height (1 or 2 km) considered here, entrainment
may concern only a thin outer layer of the updraft. Ne-
glecting shedding means that mixed drafts generated close
to LCL do not participate in the deep convection process:
the model is concerned only with those drafts that actually
reach LFC adiabatically. With these hypotheses, updraft
mass flux is constant between levels A and B ; its value
will be called M . Then, the fractionnal area of the updraft
varies with the altitude z; it will be called σ(z) and σA

(σB) its value at level A (B).
The vertical velocity within the updraft can be decom-

posed, at each level, into a column average component 〈w〉
and a fluctuation w′′′:

w(x, y, z) = 〈w〉z + w′′′(x, y, z)

(generally, 〈.〉z stands for the average over a horizontal sec-
tion of the updraft at level z ; in particular, 〈w〉B is the
average vertical velocity at level B).

The power carried by the updraft at level A is P cv
lift

and the power carried at level B is
1

2
ρBσB〈w3〉B . As-

suming steadiness and neglecting dissipation, the differ-
ence between these two powers is the (negative) power

M

(σB)

w

w
wA

wB

(A)

ρ

(B)

(σA)

LCL

LFC

Fig. 6. Convective updraft between cloud base (level A)
and level of free convection (level B)

Pbuoyprovided by buoyancy forces between levels A and
B:

Pbuoy =

∫ zB

zA

〈ρwg
θvu − θvx

θvx

〉zσ(z)dz

where θvu (θvx) is the virtual potential temperature of the
updraft (the off-wake region). Using the top hat approxi-
mation for θ and qv the power Pbuoyreads (since 〈ρw〉zσ(z) =
M independent of z):

Pbuoy =

∫ zB

zA

〈ρw〉zg
θvu − θvx

θvx

σ(z)dz

= MWbuoy

(29)

where Wbuoyis the work per unit mass of buoyancy forces
between levels A and B:

Wbuoy =

∫ zB

zA

g
θvu − θvx

θvx

dz (30)

Then, the energy budget of the updraft between A and
B is:

1

2
ρBσB〈w3〉B = P cv

lift + WbuoyM

Assuming isotropic turbulence within the updraft, we can
write:

〈w3〉B = 〈w〉3B + 3〈w〉B〈w′′′2〉B
hence :

1

2
M〈w〉2B +

3

2
M〈w′′′2〉B = P cv

lift + WbuoyM (31)

which yields a formula relating the convective mass flux M
and the power P cv

lift carried by the convective updraft at
cloud base :

M =
P cv

lift
1
2 (〈w〉2B + 3 〈w′′′2〉B) − Wbuoy

(32)
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This formula shows that, for a given power at cloud base,
the convective mass flux is controlled by three quantities:
(i) the average velocity of the convective updraft; (ii) the
turbulent kinetic energy within the convective updraft; and
(iii) the convective inhibition.

In agreement with wind retrieval of Doppler radar ob-
servations, 3D CRM simulations of squall lines reveal that
〈w′′′2〉 is of the order of 〈w〉2B (see Fig. 5 of Lafore et al
1988), stressing the highly turbulent character of convec-
tive flows. The intensity increases up to mid levels but
typical values of 〈w〉B at the LFC are in the range of 1
to 2 ms−1. Hence, we shall write the first term of the
denominator in Eq. (32):

1

2
(〈w〉2B + 3 〈w′′′2〉) ≈ 2 w2

B

where wB is a tunable parameter.

(iv) Matching the convective updraft with the wake lifting
power

Then, equating the power P cv
lift used by convective up-

drafts to cross inhibition with the available lifting power

P̃wk
lift (given by Eqs. 28 and 27) yields the ALP closure:

M =
P̃wk

lift

2 w2
B − Wbuoy

(33)

The two free parameters of the closure are :

• the fraction Ewk
lift of the available lifting power actually

used in the updrafts; Ewk
lift should be in the range of

0.1 to 0.5.

• the updraft vertical velocity wB at the free convection
level; typically, wB should be in the range of 1 to
2 m/s.

3) Interfacing with Emanuel’s scheme closure

Now that an ALP closure has been designed, it is neces-
sary to define a way to interface it with the CAPE closure
used in the version of Emanuel’s scheme implemented in
LMDZ4 GCM.

Consistently with the wake model, the convective model
will be considered as representing a population of identical
elementary convective systems (ECS). Then, of course, all
tendencies (such as (∂tT )cv(z)) and other extensive vari-
ables (such as the fractional area σd of precipitating down-
drafts) will be proportional to the density Dc of ECS. In
particular, for two situations with same ECS but different
densities Dc and D′

c the cloud-base mass fluxes are such
that: M/M ′ = Dc/D′

c.
The standard Emanuel closure of LMDZ4 provides an

instance of a population of ECS evolving in the considered
environment with a given fractional area of precipitating

downdrafts: σd,0 = 0.01. The corresponding cloud-base
mass flux and tendencies will be denoted M0, (∂tT )cv,0(z),
(∂tqv)cv,0(z) ... Then, assuming that the ECS are functions
only of the vertical profiles of T and qv and of ALE, the
actual tendencies will simply be obtained by scaling:

(∂tT )cv(z) =
M

M0
(∂tT )cv,0(z) · · · σd =

M

M0
σd,0

5. Discussion and conclusion

The aim of the present series of papers is the develop-
ment of a wake parameterization for GCMs. This subgrid
feature plays a major role in organizing the convection, so
when coupled with a convection scheme, it is expected to
improve it, in particular concerning the diurnal cycle, prop-
agation and duration. This first paper has been devoted
to the presentation of this new wake model coupled with
Emanuel’s convective scheme. We consider, here, a popula-
tion of circular wakes with the same characteristics (radius
and height). Their density Dwk can be homogeneous, and
extending to infinity, or confined to the grid cell; it is pre-
scribed in the present stage. A final set of wake equations
has been derived from the mass, water and energy bud-
get equations and from simple assumptions for the vertical
velocities. It results in two supplementary prognostic vari-
ables at each level p for the difference in temperature δθ(p)
and specific humidity δqv(p) between the wake and the off-
wake regions. The contributing terms are the diabatic term
provided by the convective scheme, the large-scale vertical
advection, the subgrid vertical advection due to the wake
subsidence, the effect of the wake spreading horizontally,
the entrainment/detrainment at the wake frontiers and the
damping effect of gravity waves on δθ. Including wakes
adds two new terms into the prognostic equations of the
mean variables due to the collapse and spread of the wakes.
The wakes are characterized by their fractional area σw

whose evolution is driven by a prognostic equation. Mass
conservation allows the entrainment ew and the difference
of vertical velocity δω between the wake and off-wake re-
gions to be diagnosed. Intermediate variables such as the
wake height hw and their deficit in potential energy WAPE
are diagnosed from the δθ(p) and δqv(p) profiles.

This wake model has been coupled with Emanuel’s con-
vection scheme. There is no general rule for coupling this
wake model with a convective scheme. Nevertheless, it is
possible only if the convective scheme considered represents
the unsaturated downdrafts that feed the wake through
precipitation evaporation. In that case, the diabatic con-
vective sources are partitioned into two parts: the ones as-
sociated with convective drafts fed by the off-wake region
and the others associated with the unsaturated downdrafts
feeding the wake region.

The wake model interacts strongly with the convection
scheme. As seen previously, it first adds diabatic terms.
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But its key role is in triggering and feeding new convective
cells through the convergence generated at the wake leading
edge. To account for these processes, we have introduced
the new concepts of Available Lifting Energy (ALE) and
Available Lifting Power (ALP) for the trigger and closure
respectively. The ALE is proportional to the wake deficit
of potential energy (WAPE). Triggering of new convective
cells is possible if ALE is stronger than the convective in-
hibition CIN and overcomes it. The available lifting power
corresponds to the work accomplished by the wake spread.
It allows us to derive a formulation of the vertical mass
flux at the level of free convection. Keeping the shape of
the vertical profile of vertical mass flux provided by the
original Emanuel convective scheme, it is possible to close
the system.

Emanuel’s convective scheme plays a central role in
this coupled model. However, the features that are impor-
tant for the wake/convection coupling are not specific to
Emanuel’s scheme. Any convection scheme in which a rep-
resentation of precipitating downdrafts is present can drive
the wake scheme. It should be possible, also, to implement
the ALP closure in convective schemes using a CAPE clo-
sure, by using the procedure described at the end of sec-
tion (4c). However, for schemes which do not use a CAPE
closure, such as Emanuel and Zivkǒvic-Rothman (1999),
further work is necessary. Implementing the ALE trigger
in other convective schemes might also be more involved;
it has to be studied specifically for each convective scheme.
Nevertheless, we expect the wake scheme to be coupled
with various convective schemes in the coming years.

In the companion paper, this wake model coupled with
Emanuel’s convective scheme is widely tested in a single
column framework for two opposite case studies, over the
Sahel in West Africa and over the West Pacific oceanic re-
gion of TOGA-COARE, which exhibit intense and weak
wakes respectively. The sensitivity to the basic parame-
ters of the parameterization is widely explored. A third
paper by Roehrig and Grandpeix (2009, manuscript sub-
mitted to J. Atmos. Sci.) describes the implementation of
the wake scheme within the LMDZ4 GCM and its testing.
The major issues addressed by the following papers are the
demonstration of the robustness of the wake model coupled
with Emanuel’s convective scheme and a verification of its
potential to improve the diurnal cycle of convection, its
duration and its maintenance during the night.

This effort to improve the convection parameterization
is a long-term task. Different questions need to be ad-
dressed in the current and further studies. Concerning the
implementation of this scheme in a GCM, the propagation
issue must be treated. After diagnosing the convection
propagation speed from wake intensity, shear and mean
wind information, we need to find how to move the wake
and the convection from one grid cell to the next one. Also
a formulation of the wake lifting efficiency Ewk

lift as a func-

tion of the low level shear will be introduced and tested
to account for the key role played by the shear to organize
the convection. Due to wind and thermodynamics differ-
ences between the wake and off-wake regions, we also need
to treat surface fluxes and PBL in the two regions differ-
ently. The resulting enhancement of fluxes by the convec-
tive wakes has been studied by Jabouille et al. (1996) and
parameterized (Redelsperger et al. 2000). The wake model
provides a new way to account for these processes and also
allows the wake intensity to be decreased at the surface. Up
to now, momentum transport by convection has not been
dealt with most of the time. The wake model allowing the
degree of convection organization to be identified can be
used in the future to treat momentum transport. Also, to
better feed the wake, it may be important to account for
the stratiform part.

The introduction of the ALE and ALP concepts could
be a major step towards better treatment of the trigger-
ing and closure of convection schemes. Nevertheless the
wake contribution to ALE and ALP is only one contribu-
tion among many others. So we need to introduce other
processes that contribute to ALE and ALP fields such as
PBL, surface heterogeneity, thermodynamical and dynam-
ical effects of orography and gravity waves. Current and
complementary research is underway to cast ALE and ALP
generated by the PBL and the orography. Recently, Rio et
al. (2009) coupled this wake model with a PBL scheme and
succeeded in simulating the diurnal cycle of convection for
an ARM (Atmospheric Radiation Measurement program)
case. It will be a decisive contribution allowing us to deter-
mine the ALE and ALP fields necessary to represent the
convection during its onset, before the wakes take the lead.
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Estimation of the large-scale terms in the mass

budget equations.

We want to compute the expectation value of

∫

Γ′

w

~V .~n′ dΓ.

We consider circular wakes with radius r and we make the
very crude assumption that the velocity field ~V is indepen-
dant of the wake positions. Let ~Ci represent the centers of
the wakes. The integral reads :

∫

Γ′

w

~V .~n′ dΓ =

∫

Γ′

dΓ( ~M) (~V .~n′)( ~M)

∑

i

I(
|| ~M − ~Ci||

r
)

where the function I is defined by : I(x) = 1 if 0 < x < 1
and I(x) = 0 otherwise.

The expectation value of the integral is :

〈
∫

Γ′

w

~V .~n′ dΓ〉 =

∫

Σ′

d2C D
w(~C)

∫

Γ′

dΓ( ~M)(
~V .~n′)( ~M) I(

|| ~M − ~C||
r

)

(A1)
where (Σ′ ) is a domain much larger than (Σ ).

In the particular case where D
w(~C) is uniform, the C

integration is trivial. One gets :

〈
∫

Γ′

w

~V .~n′ dΓ〉 = π r2 Dwk

∫

Γ′

~V .~n′ dΓ

= 〈Sw〉 ∂pω
(A2)

the last step stems form the fact that the integral
∫
Γ′

~V .~n′ dΓ
is equal to the large-scale convergence over the grid cell
St ∂pω and that St π r2 Dwk is equal to the expectation
value 〈Sw〉.

Then in the approximation where the integral

∫

Γ′

w

~V .~n′ dΓ

and Sw are equal to their expectation values, Eq. (8) is ob-
tained.

APPENDIX B

Expectation value L̃Γ of the wake contour length

L̂Γ, conditioned on the presence of some contour

within the grid box.

Let P0 be the probability that no wake contour inter-
sects the grid box. Then, the density of probability of L̂Γ

conditioned on the presence of some wake contour in the

grid box reads: P (L̂Γ, /L̂Γ 6= 0) =
P (L̂Γ)

1 − P0
. Integrating this

equality multiplied by L̂Γ yields a relation between the con-
ditional expectation value L̃Γ of L̂Γ and the unconditionnal
expectation LΓ:

L̃Γ =
LΓ

1 − P0
(B1)

Let A be the domain spanned by the centers of wakes
intersecting the grid box. P0 is simply the probability that
no wake center is in A. For a uniform distribution of the
wake centers with density Dwk, the number n of wake cen-
ters in A follows a Poisson Law with mean DwkSA, which
yields:

P0 = exp(−DwkSA) (B2)
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