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1 INTRODUCTION

Statistical analyses in weather and climate variabil-
ity studies have often been concerned with averages
of a random variable, such as mean precipitation or
temperature. However, the extremes of random vari-
ables are important to consider, and have become
increasingly studied in recent years (e.g., Wettstein
and Mearns (2002) (hereafter, WM), Brown and Katz
(1995), Zwiers and Kharin (1998), Kharin and Zwiers
(2000,2005), Jagger et al. (2001), Ekström et al.
(2005) and Fowler et al. (2005)). When studying
changes in the average of a distribution, the Cen-
tral Limit Theorem (CLT) indicates that the averages
are asymptotically normally distributed and therefore
is an appropriate assumption for modeling and infer-
ence. For extremes, there is a similar theorem to the
CLT called the Extremal Types Theorem, which gives
asymptotic justification for assuming the extreme data
(e.g., maxima, minima, etc.) follow one of three types
of distributions: Gumbel, Fréchet or Weibull (see e.g.,
Beirlant et al. (2004), Coles (2001), Embrechts et al.
(1997), Reiss and Thomas (2001) and Leadbetter et
al. (1983)). Furthermore, these three distributions
can be written in a single expression as a family of dis-
tributions referred to as the generalised extreme value
(GEV) distribution. Figure 1 shows an example from
having simulated means and maxima from 1,000 sam-
ples of standard normal distributions each of size 1,000.
The resulting histograms for the means and maxima
of these samples are displayed along with the best fit
normal and GEV distributions. In each case, either
distribution appears to be reasonable, but the normal
distribution (solid line) clearly provides a better fit for
the means and the GEV (dashed line) a better fit for
the maxima as the theory suggests. Figure 2 is similar
to Figure 1, but simulations are from a uniform distri-
bution on the range of -1 to 1. It is much easier to see
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Figure 1: One-thousand random samples each of
size 1,000 simulated from a normal distribution with
mean zero and unit standard deviation. The his-
tograms shown here are for the means (left) and
maxima (right) for each of these samples. The solid
lines show the best fit normal pdf and the dashed lines
show the best fit GEV (using maximum-likelihood es-
timation).

how the GEV distribution is a better fit in the case of
maxima from the uniform distribution, though for the
means the two are still similar to each other with the
normal capturing the overall shape slightly better than
the GEV.

In this paper, it will be demonstrated how extreme-
value statistical analysis can be employed for study-
ing extreme weather and climate variability incorporat-
ing seasonality and other covariates. Although several
software packages exist for performing such analyses
(Stephenson and Gilleland (2005)), the R (R Develop-
ment Core Team (2004)) package extRemes (Gilleland
and Katz (2005)) is used here because it is open source
(as is R) and particularly well suited for weather and
climate applications because of its extensive tutorial
aimed at such applications, and the ability to incorpo-
rate covariate information into parameter estimates.

The present paper analyzes the data of WM who also
employ extreme-value analysis and relate the behavior
of the extreme events to the mean and standard devi-



Figure 2: One thousand random samples each of size
1,000 simulated from a uniform distribution over the
range -1 to 1. The histograms shown here are for the
means (left) and maxima (right) for each of these
samples. The solid lines show the best fit normal pdf
and the dashed lines show the best fit GEV (using
maximum-likelihood estimation).

ation of the quantities of interest. It is demonstrated
here how such relations can be formalized directly in
the extreme-value analysis using extRemes.

First, some background for extreme-value statistics
is given in Section 2. Section 3 summarizes the ex-
treme temperature application analyzed in WM. Sec-
tion 4 provides analysis of these data. Some discussion
is presented in Section 5, and finally, some tutorial in-
struction for using extRemes to perform the analysis
described in Section 4 is given in the appendix.

2 BRIEF BACKGROUND FOR
EXTREME-VALUE ANALYSIS

Because much has been written about extreme-value
analysis, this section will be brief. For further reading
on the subject, Coles (2001) is a good introductory text
that is heavy on application, but still giving some the-
oretical development, and Beirlant et al. (2004) give
a more thorough discussion. Stephenson and Tawn
(2004) give a short, but particularly insightful intro-
duction. For a more in-depth theoretical discussion,
see Embrechts et al. (1997) and Leadbetter et al.
(1983). For a basic introduction, see Gilleland and
Katz (2005). Smith (2002) and Katz et al. (2002)
give a more terse applied introduction with enough de-
tail to satisfy a novice to extreme-value analysis.

There are two primary methods for analyzing ex-
treme values statistically. The first is to fit data to
a model using traditional statistical techniques, and
then look at the extreme quantiles typically by simu-
lating from the model (see e.g., Gilleland and Nychka
(2005) and Chandler (2005)); the second method is to
fit data to an extreme-value distribution. The former

method will not be discussed further here. The latter
method is carried out by two alternative approaches:
block maxima and peaks over threshold (POT). The
distributional theory is equivalent for either approach,
though the distributional forms may, at first glance, ap-
pear to be different. The extreme-value distributions
for each of these two approaches are introduced in Sec-
tion 2.1, and return levels (quantiles) are discussed in
Section 2.2 followed by an introduction to parameter
estimation in Section 2.3. As is usual in the literature,
only the upper tail extremes (e.g., maxima) are dis-
cussed because the lower tail extremes can be handled
by taking the negative transformation and simply ap-
plying the same techniques as for maxima. Finally, a
brief discussion is given on extending these univariate
analyses to a spatial setting in Section 2.4.

2.1 Extreme-Value Distributions

When data are taken to be the maxima (or minima)
over certain blocks of time (such as annual maximum
precipitation, monthly maximum/minimum tempera-
ture), then it is appropriate to use the GEV distribution
(1).

G(z;µ, σ, ξ) = exp
[
−{1 + ξ(z − µ)/σ}−1/ξ

+

]
, (1)

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞ are
the location, scale and shape parameters respectively,
and x+ = max(x, 0). The three extremal types are
determined by the sign of ξ arriving at the Weibull dis-
tribution for ξ < 0, the Gumbel distribution is obtained
in the limit as ξ −→ 0, and the Fréchet distribution for
ξ > 0. Each of the three types of distributions have
distinct forms of behavior in the tails. The Weibull is
bounded above, meaning that there is a finite value
which the maximum cannot exceed. The Gumbel dis-
tribution yields a light tail, meaning that although the
maximum can take on infinitely high values, the proba-
bility of obtaining such levels becomes small exponen-
tially. The Fréchet, a heavy tailed distribution, decays
polynomially so that higher values of the maximum are
obtained with greater probability than would be the
case with a lighter tail (see, e.g., Figure 3).

Note that some literature uses κ = −ξ in (1). With
such a parameterisation, positive and negative κ would
yield the Weibull and Fréchet respectively.

The approach leading to distribution (1) assumes
data are maxima from blocks, say of time. Ar-
guably, for some problems, taking maxima from large
blocks (e.g., annual maximum precipitation) discards
too much data. The POT approach allows for more
data to inform the analysis, but also increases the com-
plexity of the problem.



Figure 3: Example histograms of data simulated from
a GEV distribution with ξ < 0 (left), ξ = 0 (center)
and ξ > 0 (right).

For the POT approach, a threshold is first deter-
mined, and data above that threshold are fit to the
generalised Pareto distribution (GPD).

G(x; σ̃, ξ, u) = 1−
[
1 +

ξ(x− u)
σ̃

]−1/ξ

, (2)

where x−u > 0, 1+ ξ(x−u)
σ̃ > 0 and σ̃ = σ+ξ(u−µ).

The GPD (2) gives the probability of a random vari-
able exceeding a high value given that it already ex-
ceeds a high threshold, say u (i.e., Pr[X > x|X > u]).
Of course, the theoretical results that show the GPD
to be the asymptotic distribution appropriate for ex-
ceedances over a high threshold requires these ex-
ceedances to be independent and identically distributed
random variables.

Choice of threshold is critical to any POT analysis.
Too high of a threshold could discard too much data
leading to high variance of the estimate, but too low of
a threshold can lead to bias because (2) is an asymp-
totic result requiring a high threshold. Practitioners are
wont to using graphical tools in determining an appro-
priate threshold. One of the more popular approaches
is to fit the GPD using a range of thresholds, and then
graphing the parameter estimates along with their vari-
ability; an appropriate threshold being the lowest pos-
sible choice such that any higher threshold would result
in similar estimates. It should be noted that the dis-
tribution (2) is equivalent to (1) under an appropriate
transformation (see e.g., Katz et al. (2002) and Coles
(2001)).

Apart from threshold selection, an important as-
sumption for the GPD is that the threshold exceedances
are independent. Such an assumption is often unrea-
sonable for weather and climate data because high val-
ues of meteorological and climatological quantities are
often succeeded by high quantities (e.g., a high tem-

perature day is likely to be followed by another high
temperature day). One measure of dependency that
is frequently used is the extremal index, θ (e.g., Ferro
and Segers (2003), Coles (2001)). The case of com-
plete independence will yield a value of θ = 1, but it is
also possible to have dependent data where θ = 1.

An approach frequently employed to handle such de-
pendency is to decluster the data by identifying clusters
and utilizing only a summary of each cluster (e.g., the
maxima). Several such methods have been devised for
determining clusters (see, e.g., Ferro and Segers (2003)
and the references therein), and one of the simplest
and most widely used is runs declustering. With runs
declustering, a new cluster is formed once the value
of the quantity of interest exceeds the threshold after
having fallen below the threshold for a certain length
of time, called the run length (denoted here by r).

There is also a point-process characterisation for
the POT approach that allows for simulataneous fit-
ting of the rate at which values exceed the threshold
and the intensity of the exceedances (see, e.g., Coles
(2001) Chapter 7 and Smith (2002)). Again, the same
assumptions of a high threshold, common distribu-
tion, and independence are necessary for the model to
be theoretically valid. Furthermore, the point-process
model can be shown to be equivalent through appropri-
ate transformations (see e.g., Katz et al. (2002) and
Coles (2001) Section 7.4) to the GEV (1) and GPD
(2), and unlike the GPD explicitly includes the loca-
tion parameter, µ.

2.2 Return Levels (Quantiles)

Typically, when considering extreme values of a ran-
dom variable, one is interested in the return level of
an extreme event, defined as the value, zp, such that
there is a probability of p that zp is exceeded in any
given year, or alternatively, the level that is expected
to be exceeded on average once every 1/p years (1/p
is often referred to as the return period). For example,
if the 100-year return level for precipitation at a given
location is found to be 1.5 cm, then the probability
of precipitation exceeding 1.5 cm in any given year is
1/100 = 0.01.

The return level is derived from the distribution (ei-
ther (1) or (2)) by setting the cumulative distribution
function equal to the desired probability/quantile, 1−p;
and then solving for the return level. For example, for
the GEV distribution given in (1), the return level, zp,
is given by the following equation.

zp =
{

µ− σ
ξ [1− {− log(1− p)}−ξ], for ξ 6= 0

µ− σ log{− log(1− p)}, for ξ = 0



2.3 Estimation

There are different methods available for perform-
ing parameter estimation including: Method of Mo-
ments Estimation (MME), Probability Weighted Mo-
ments (PWM) or equivalently L-Moments (LM), Max-
imum Likelihood Estimation (MLE), and Bayesian
methods. For smaller sample sizes (n < 50), the
MLE is unstable and can give unrealistic estimates
for the shape parameter (e.g., Hosking and Wallis
(1997), Coles and Dixon (1999), and Martins and Ste-
dinger (2000,2001)). Madsen et al (1997) argue that
the MME quantile estimators have smaller root mean
square error when the true value of the shape parameter
is within a narrow range around zero. For weather and
climate applications, enough data are typically avail-
able to expect that MLE would be comparable in per-
formance, especially when blocks smaller than years
are used. Additionally, MLE allows one to easily incor-
porate covariate information into parameter estimates.
Furthermore, it is more straightforward to obtain er-
ror bounds for parameter estimates with MLE com-
pared with most alternative methods. Although work
on Bayesian estimation with respect to extreme-value
analysis has been sparse in the literature, good ex-
amples are available (see e.g., Stephenson and Tawn
(2004) and the references therein, Coles (2001, Sec-
tion 9.1), and Cooley et al. (2005a, 2005b)).

Obviously, one will never select the Gumbel when
fitting data to a GEV because the Gumbel is reduced
to a single point in a continuous parameter space. A
common approach is to perform an initial hypothesis
test to determine which of the three extremal types
(e.g., the Gumbel) is appropriate, and then fit data
only to that type. However, this approach does not
account for the uncertainty of the choice of extremal
type on the subsequent inference, which can be quite
large. Stephenson and Tawn (2004) suggest a Bayesian
approach to estimating these parameters that allows
for the Gumbel to be achieved with positive probability;
though results can be highly sensitive to choice of prior
distributions.

2.4 Spatial Extensions

So far, only univariate data has been considered. In
fact, incorporating spatial structure in the analysis of
extremes is an area of active research in statistics (e.g.,
Schlather and Tawn (2002, 2003), Heffernan and Tawn
(2004), Cooley et al. (2005a), Gilleland and Nychka
(2005), Gilleland et al. (2006)). Work is currently
underway to add spatial tools to extRemes, and the
beta version already has the capability of fitting data
to a GPD at several sites, and smoothing parameter
estimates by way of a thin plate spline. For simplicity,

Figure 4: Minimum temperatures (degrees celsius) at
Port Jervis, New York (top) and Sept-Iles, Québec
(bottom).

the focus here is only on univariate data.

3 EXTREME TEMPERATURE DATA
IN THE NORTHEAST UNITED
STATES AND CANADA

Data to be analyzed here are a subset from the study
carried out in WM; here summary description is given,
but for more detail please refer to WM and the R help
files for SEPTsp and PORTw included with the pack-
age extRemes. Here the focus centers on data from
the two locations given special attention in WM: Port
Jervis, New York and Sept-Iles, Québec. The Port
Jervis data cover the winters from 1927 through 1995,
and Sept-Iles cover the spring seasons 1945 through
1995 consisting of 68 and 51 monthly minima (i.e.,
block minima) derived from daily data respectively.
The subsets are chosen not as much to compare find-
ings with WM, but rather to demonstrate the statistical
techniques available in using extRemes for performing
such an analysis. Nevertheless, these two locations
were treated with special attention in WM largely be-
cause results tended to be more significant in these two
areas; and therefore make for a reasonable pedagogical
example.

Each dataset contains measurements of monthly
minimum (Figure 4) and maximum temperatures. Co-
variate information is also available, including: the as-
sociated Arctic Oscillation (AO) index, mean daily min-
ima (maxima) over the one-month period, and stan-
dard deviations of daily minima (maxima) for each pe-
riod.



Figure 5: Diagnostic plots from fitting the minimum
monthly temperature data at Sept-Iles, Québec to a
GEV distribution. Quantile and return-level graphs
are for the negative transformed minima. From up-
per left to lower right: probability, quantile, return
level, and histogram with fitted GEV density.

4 ANALYSIS OF SEASONAL EX-
TREME TEMPERATURE

In WM, it was found that for Sept-Iles in the spring,
lower mean minimum temperatures are coupled with
significant increases in the standard deviation of daily
minimum temperature, and that these minimum tem-
perature extremes become more severe as the AO in-
dex increases. For Port Jervis in the winter, it was
also found that increasing temperatures are associated
with increases in the AO index. Here, these features are
examined by modeling the extreme temperature data
without any covariates, and then making comparisons
with more complex extreme-value models that incor-
porate covariate information such as the AO index.

To fit the monthly minimum temperature to
a GEV distribution, the usual methods for max-
ima apply by realising that min{X1, . . . , Xn} =
−max{−X1, . . . ,−Xn}. That is, the negative trans-
formation of the data (Y1 = −X1, . . . , Yn = −Xn) is
fit to the GEV distribution. Here, results are presented
in terms of the untransformed minima except where
noted.

Maximum-likelihood fitted parameter values and
other information are summarized in Table 1 (a). In
WM, it is argued that the Gumbel (ξ = 0) distribution

Table 1: GEV parameter estimates from fitting
monthly minimum temperatures at (a) Sept-Iles,
Québec (spring) and (b) Port Jervis, New York (win-
ter).

Parameter Estimate Std. Error
Location (µ) 26.822 0.655

(a) Scale (σ) 4.030 0.483
Shape (ξ) -0.096 0.127

Negative log-likelihood: 149.12
Location (µ) -20.770 0.455

(b) Scale (σ) 3.346 0.324
Shape (ξ) -0.264 0.092

Negative log-likelihood: 179.56

is reasonable, and that fitting the data to the other
two possible extremal types would likely not be bet-
ter. Indeed, the estimate found here from fitting all
three extremal types simultaneously yields a value of
ξ that is close to zero (−0.096), being zero within
one standard error of the point estimate. However, as
noted in Section 2.3, fitting only to the Gumbel ignores
the uncertainty associated with the choice of extremal
types. For the monthly minimum temperature data
in the winter at Port Jervis, New York, the estimated
shape parameter is much farther (about three standard
errors) from zero at about −0.26 (Table 1 (b)); mak-
ing a much weaker case for constraining the fit a pri-
ori to the Gumbel. The 100-year return level for mini-
mum temperature at this location is about −29.68 with
95% confidence bounds (profile-likelihood) of about
(−33.333, −28.245), whereas the 100-year return level
assuming the Gumbel is estimated to be approximately
−35.23, which is beyond the lower limit of the 95%
confidence bounds for the bounded-tail Weibull. Al-
though this difference for such a long return level is
not considerable, the difference could have been much
greater had the estimate for ξ been positive instead
(i.e., the heavier tailed Fréchet distribution).

An initial glance at the probability and quantile
graphs of Figure 5 suggest that the underlying assump-
tions for the GEV distribution are reasonable for these
data. The return level plot is shown in the lower left
corner along with point-wise 95% confidence bounds
estimated by the delta method (the default). The
delta method assumes that the parameter estimates
are symmetric; which is typically not the case for the
shape parameter or extreme return levels. For exam-
ple, Figure 6 shows the profile likelihoods for the 100-
year return level (estimated to be about 11.83 degrees
celsius with 95% confidence interval of about (-2.566,
15.620)) and the shape parameter. In each case, there
is clearly asymmetry–especially for the 100-year return
level.



Figure 6: Profile likelihoods for the negative trans-
formed 100-year return level (top) and shape param-
eter (bottom) from having fit monthly minimum tem-
perature at Sept-Iles, Québec (spring) to the GEV
distribution.

Table 2: Estimated return levels and 95% confidence
intervals for several return periods from having fit
monthly minimum temperatures (degrees celsius) at
Sept-Iles, Québec (spring) to the GEV distribution.
Return Return Lower Upper
period level bound bound
5 21.19 19.142 22.836
10 18.66 15.227 20.568
15 17.32 12.654 19.437
25 15.72 9.100 18.188
50 13.70 3.666 16.769
75 12.59 0.124 16.067
100 11.83 -2.566 15.620
110 11.58 -3.492 15.481
125 11.26 -4.762 15.300
150 10.80 -6.629 15.055
200 10.09 -9.716 14.696
500 7.95 -20.809 13.751
1000 6.46 -30.647 13.204

Figure 7: Return-level graph of negative transformed
monthly minimum temperature (degrees celsius) cal-
culated from associated GEV distribution (solid line)
with 95% confidence intervals calculated from the
delta and profile-likelihood methods respectively for
Sept-Iles, Québec (spring).

It can be seen from both Table 2 and Figure 7 that
the return levels for minimum temperature gradually
decrease for higher and higher return periods. Clearly,
at least for these data, the delta method bounds favor
lower values of return levels whereas for return peri-
ods beyond about 10 years, the profile-likelihood has
a much tighter lower bound, and slightly higher upper
bound. Beyond about 100 years, both bounds are very
wide reflecting the inherent uncertainty associated with
making inferences far beyond the range of the data; but
the profile-likelihood method gives a more accurate pic-
ture for such longer return periods because it accounts
for the skewness in the parameter distributions.

Inclusion of the AO index as a covariate in the loca-
tion parameter (µ) of the GEV yields a significant (at
the 5% level) improvement over the fit without AO in-
dex (likelihood ratio test statistic is about 12, which is
much greater than the χ2

1,1−0.05 critical value of about
4). Specifically, the model obtained is summarized in
Table 3, where the location parameter is modeled as a
linear regression of the following form.

µ(x) = µ0 + µ1x, (3)

where x is the AO index.
Note that as the AO index increases, the values of

the location parameter become more and more nega-
tive indicating that the minimum temperature extremes



Table 3: GEV parameter estimates from fitting
monthly minimum temperature (degrees celsius)
recorded at Sept-Iles, Québec (spring) with AO index
incorporated as a covariate in the location parameter
as in Eq. (3).
Parameter Estimate Stand. Error
Location (µ0) -23.42 0.668
Location (µ1) -2.09 0.686
Scale (σ) 4.19 0.502
Shape (ξ) -0.368 0.117
Negative log-likelihood: 143.04

become more severe as the AO index increases. This
result is consistent with the findings of WM. It might
also be worth noting that the fitted distribution with
AO index as a covariate now has a more strongly neg-
ative shape parameter (≈ −0.4) that is about three
standard errors away from zero (Gumbel case).

It is also found in WM that this intensification of
the extreme temperatures is coupled with increases in
the standard deviation of daily minimum temperature
for this location in spring. Performing a similar fit with
a covariate in the location parameter as in Eq. (3),
but with x the standard deviation of daily minimum
temperatures, also results in a significant (5% level)
improvement over the no-covariate model. Further-
more, adding the standard deviation to the model with
AO index (i.e., µ(x) = µ0 + µ1x1 + µ2x2, where x1 is
the AO index and x2 is the standard deviation) results
in a significant improvement over the model with just
AO index (likelihood ratio test statistic of about 62).
On the other hand, the addition of AO index to the
model with only the standard deviation as a covariate
is not found to be significant. This result, however,
should not be surprising because the standard devia-
tion of daily minimum temperatures are derived from
the same data as the block maxima. Additionally, it
should be expected that data with greater variability
should also have more intense extremes. For these rea-
sons, using such a covariate in the model is mislead-
ing. Nevertheless, the AO index is not derived from
the same data as the dependent variable (i.e., monthly
minimum temperature), and is certainly an improve-
ment over the model without a covariate.

It is also possible to incorporate covariates into the
other parameters. In the case of the scale parameter,
it is important to ensure that σ > 0 for all possible
covariate values. This is easily attained by using the
log link function instead of the identity–the two choices
provided by extRemes. Results from trying such fits
were not found to be as significant as for the location
parameter for the Sept-Iles data. Typically, the diffi-
culty in estimating the shape parameter (with wildly

differing tail behavior for the three types of distribu-
tions) is enough to deter researchers from utilizing co-
variates in conjunction with this parameter, although
such analysis is allowed with extRemes.

In WM, it is found that minimum temperature ex-
tremes at Port Jervis during winter are not significantly
influenced by the AO index; and this is corroborated
when performing an analogous analysis as for the Sept-
Iles data.

5 DISCUSSION

Results found from analyzing two subsets of data from
WM show agreement with the results in WM, but using
a slightly more sophisticated analysis. A primary in-
tent of the paper is to demonstrate how easily such an
analysis can be perfomed using extRemes. It should be
noted that extRemes has much more capability than is
detailed here (see Gilleland and Katz (2005) for a more
thorough description of the capabilities of extRemes).
The inclusion of spatial tools is a much needed addi-
tion for a software package intended for weather and
climate applications, and such tools will be available in
the near future.

Naturally, a GUI-based software package will have
limitations as far as analyzing cutting-edge research
problems. The intention is for extRemes to serve as
an aid in shortening the learning curve associated with
using a possibly very new methodology.

APPENDIX

The Extremes Toolkit: Weather and Climate
Applications of Extreme Value Statistics

The extremes toolkit (extRemes) was developed at
NCAR to assist scientists, especially scientists inter-
ested in trends in weather and climate extremes or in
societal and ecological impacts of severe weather and
climate change, not familiar with extreme value statis-
tical techniques. The package is written in the open
source1 statistical computing language called R (R De-
velopment Core Team (2004)), but can be used with-
out any knowledge of R. extRemes provides a graph-
ical user interface (GUI) to another R package called
ismev–itself an R port of the S-Plus package written
by Stuart Coles (Coles (2001)). However, extRemes
does provide some additional functionality (Stephen-
son and Gilleland (2005)). This section is only a short
tutorial on using extRemes to perform the analyses de-
scribed herein, but see Gilleland and Katz (2005) for a
full tutorial on the package.

1All of the packages available from the R-CRAN website
are also open source, including extRemes and ismev.



It is assumed here that extRemes (version
1.51 or greater) is already installed and loaded
into an R session (see the toolkit’s home page
at http://www.assessment.ucar.edu/toolkit
for installation and loading instructions). To load
the datasets used here into extRemes one sim-
ply needs to click on File followed by Read
Data, and then search for the files (one at a
time) PORTw.R and SEPTsp.R (if these
files are not found within the extRemes data di-
rectory, they can be obtained from the web at
http://www.isse.ucar.edu/extremevalues/data/).
After double-clicking (or selecting and clicking Open)
these files, a new window will appear. Select R
source and enter a name in the Save As field (e.g.,
the names PortJervisWinter and SeptIlesSpring
are used here), then click OK. Summary information
on the data should appear in the R console window,
and the working directory is saved to memory.

Graphical Tools

It is always a good idea to graph data before analyzing
it, and this can be readily performed from the toolkit
dialogs. For example, to create the top graph in
Figure 4, simply select Plot and then Scatter Plot,
then make the selections as shown below.

Other graphs, such as AO index against monthly
mean daily minima (maxima), can also be easily drawn
using the extRemes GUI dialogs.2

2For more advanced graphs, a good start might be an in-
spection of the code executed by the GUI windows found in
the extRemes.log file located in the path of the current R
working directory (use the R command getwd() to find this

Data Transformations

Several data transformations can be made using
extRemes. Although most are easy to compute from
the command line, it is preferable to use the toolkit
dialog in order that the resulting transformations are
placed where subsequent dialogs can include them.

To perform the negative transformation for the Sept-
Iles springtime minimum temperature data, choose
Negative from the Transform Data menu under
File. Select SeptIlesSpring from the Data Ob-
ject listbox, and then select the variable TMN0 from
the Variables to Transform field, and finally click
OK. A message is displayed in the R console inform-
ing you that a new column has been added to the data
with the heading TMN0.neg.

Parameter Estimation

After taking the negative transformation, the monthly
minima can be fit to a GEV distribution by selecting
Generalized Extreme Value (GEV) Distribu-
tion under Analyze. Again, select SeptIlesSpring
from the Data Object field followed by TMN0.neg
in the Response field. Check the Plot diagnostics
checkbutton to also obtain the graphs of Figure 5, but
do not make any other selections (yet)–simply click
OK. For the example below, the same steps are taken,
but AOindex is selected from the Location param-
eter (mu) field.

The estimation for Table 3 can be performed in
extRemes by making the selections (shown below)
from the Fit Generalized Extreme Value Dis-
tribution dialog window.

path) and the R help files for the function plot (i.e., use help(
plot)) and associated parameters (use help( par)).



There are several choices available for the numerical
optimization method. See the help file for the R func-
tion optim and the references therein for more infor-
mation. Press et al. (1989) provide Fortran algorithms
for all of these methods.

Profile Likelihood

Figure 6 is graphed using extRemes by selecting GEV
fit from the Parameter Confidence Intevals un-
der Analyze. In the window that opens, select Sep-
tIlesSpring from the Data Object field followed by
gev.fit1 in the Select a fit field. Enter −16 and 5
in the Lower and Upper limit fields for the Return
Level Search Range respectively; and −0.5 to 0.5
for the Shape parameter (xi) Search Range.3

Finally, check the Plot profile likelihoods check-
button, and then OK. Note that the parameter esti-
mate along with its confidence intervals are reported to
the R console. Here, the 100-year return level is esti-
mated to be about 11.83 degrees celsius (recall that the
model is fit to the negative minimum temperatures so
that the −11.83 reported actually refers to the negative
transformed minima) with a 95% confidence interval of
about (-2.566, 15.620).

Although somewhat tedious, it is possible to use
extRemes to create a graph similar to that of Figure 5
using results from the profile-likelihood estimation.
First, obtain confidence bounds for each of several
return levels using the profile-likelihood method as

3Choice of search ranges and number of intervals is a mat-
ter of trial and error. Different ranges are possible so long
as the range includes the points where the profile likelihood
crosses the lower horizontal line (see Coles (2001) Section 2.7
for the meaning of this line).

done for the 100-year return level above.4. Next,
graph the return levels by selecting Return Level
Plot from the Plot menu, and make the selections
as shown below.

To add the profile-likelihood derived confidence
bounds to the graph requires use of the command line.
First, for convenience, set up a 13 × 3 matrix of the
return year and negative transformed values from the
second and third columns of Table 2 by using, for exam-
ple, the following commands (here, the resulting matrix
is assigned to the object ci).
ci <- rbind( c(5 , -22.836, -19.142),

c( 10 , -20.568, -15.227),
c( 15 , -19.437, -12.654),
c( 25 , -18.188, -9.100),
c( 50 , -16.769, -3.666),
c( 75 , -16.067, -0.124),
c( 100 , -15.620, 2.566),
c( 110 , -15.481, 3.492),
c( 125 , -15.300, 4.762),
c( 150 , -15.055, 6.629),
c( 200 , -14.696, 9.716),
c( 500 , -13.751, 20.809),
c( 1000 , -13.204, 30.647))

Finally, add the values to the graph using the lines
command as follows (coloring (col) and line type
(lty) are optional to the user’s preference).
lines( ci[,1], ci[,2], lty=2, col="red")
lines( ci[,1], ci[,3], lty=2, col="red")

4The delta method is a reasonable approximation for the
shorter return levels, and therefore these are not estimated
via the more time consuming profile-likelihood method



Likelihood-Ratio Test

The likelihood-ratio test is performed with extRemes
by selecting Likelihood-ratio test from the An-
alyze menu. Simply select the data object (in this
case SeptIlesSpring), and then choose the model
fit associated with the base model (M0) and the more
complicated model (M1) being sure that M0 is nested
in M1 (extRemes will automatically switch the two if
M0 has more parameter estimates than M1), and fi-
nally click OK.
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