
Tutorial: Using LMD with XIOS

The LMDZ team

December 6, 2015

This tutorial focuses on setting up, compiling and running LMDZ with XIOS.

This document can be downloaded as a pdf file:

wget http://www.lmd.jussieu.fr/~lmdz/Distrib/TD_XIOS.pdf

which should ease any copy/paste of command lines to issue.

This tutorial is for users who want to learn the basic steps needed to be able to run LMDZ
with the XIOS input-output library on their computer. Note that this implies the prerequisite
that you can run in parallel on your machine (i.e. that you have already completed the tutorial
on running LMDZ in parallel).

1 Installing the required HDF5 and NetCDF4 libraries

The XIOS library relies on HDF5 and NetCDF4 libraries (which also rely on curl and zlib libraries)
that have to be compiled with the same compiler than the MPI library that will be used.

We have a script that combines all the download and install instructions, which you can download
using:

wget http://www.lmd.jussieu.fr/~lmdz/Distrib/install_netcdf4_hdf5_mpi.bash

You should then make that script executable and run it

chmod u=rwx install_netcdf4_hdf5_mpi.bash
./install_netcdf4_hdf5_mpi.bash > install_netcdf4_hdf5_mpi.out 2>&1

If all goes well, then all the required libraries will be generated under $HOME/local (on the
provided laptops this will be /home/util1/local). This default is set in the script as IN-
STALL PATH and can be changed; in all that follows it is assumed that the libraries have been
installed under $HOME/local

2 Initial setup and recompiling the IOIPSL library

Because of the change in used NetCDF libraries, it is recommended that you work on a copy
of the modipsl directory you have used so far. Copy over the entire LMDZtrunk directory
and remove subdirectories LMDZtrunk/netcdf-4.0.1, as well as the ORCHIDEE and OR-
CHIDEE beton from the modeles subdirectory (this is only to keep things simple in this tutorial
and avoid having to also recompile Orchidee).

To rebuild the IOIPSL library, you must first go to the modipsl/util directory and adapt the
AA make.gdef file to point NetCDF library. Replace lines

1

#-Q- g95 NCDF_INC= ...
#-Q- g95 NCDF_LIB= ...

With (again we assume here the NetCDF library is installed in /home/util1/local; adapt ac-
cordingly if it is not the case):

#-Q- g95 NCDF_INC= /home/util1/local/include
#-Q- g95 NCDF_LIB= -L/home/util1/local/lib -lnetcdff

And then issue the following command:

./ins_make -t g95 -p I4R8

This will generate adequate Makefile files in IOIPSL/tools and IOIPSL/src.

To recompile the IOISPL library, go to the IOIPSL/tools subdirectory and modify the Makefile
to set the SHELL variable to:

SHELL = /bin/bash

Note that this is mandatory, unless the (default) ksh shell is installed on your system. And then
build the library using the make command

make

This will compile the sources and put the generated library libioipsl.a in directory ../../../lib,
i.e. in the lib directory under modipsl. You have to also manualy move all the generated module
files to that same directory:

mv *.mod ../../../lib

3 Installing the XIOS library

First you must download the XIOS library sources, using svn, in your modipsl/modeles direc-
tory:

svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-1.0 XIOS

Then go to the XIOS/arch directory and create the following files:
arch-local.env:

export MPI_LIB="-L/usr/lib/openmpi/lib -lmpi"
export NETCDF="$HOME/local"
export NETCDFLIB=$NETCDF/lib
export NETCDFINC=$NETCDF/include

arch-local.path:

NETCDF_INCDIR="-I${NETCDFINC} "
NETCDF_LIBDIR="-L${NETCDFLIB} "
NETCDF_LIB="-lnetcdf -lnetcdff -lnetcdf_c++4"
HDF5_INCDIR="-I${NETCDFINC} "
HDF5_LIBDIR="-L${NETCDFLIB} "

arch-local.fcm:

2

%CCOMPILER mpicc
%FCOMPILER mpif90
%LINKER mpif90
%BASE_CFLAGS -w
%PROD_CFLAGS -O3 -D BOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g -DBZ_DEBUG
%BASE_FFLAGS -D__NONE__
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g
%BASE_INC -D__NONE__
%BASE_LD -lstdc++
%CPP mpicc -EP
%FPP cpp -P
%MAKE make

Once these three files have been created, you can build the XIOS library. In directory XIOS, run
the make xios script as follows:

./make_xios --debug --arch local --job 8 > make_xios.out 2>&1

If all went well, the XIOS/lib directory should contain the XIOS library, libxios.a, and the
XIOS/bin directory should contain (among other test programs) the XIOS server xios server.exe.

4 Compiling LMDZ with XIOS

Return to the LMDZ5 directory and add the following two lines to arch/arch-para.path:

XIOS_INCDIR=$LMDGCM/../XIOS/inc
XIOS_LIBDIR=$LMDGCM/../XIOS/lib

You also have to adapt the NETCDF LIBDIR and NETCDF INCDIR in arch/arch-para.path:

NETCDF_LIBDIR="-L/home/util1/local/lib -lnetcdff -lnetcdf -lnetcdfc++4 -lhdf5hl_fortran
-l hdf5_hl -lhdf5_fortran -lhdf5 -lz -lstdc++"
NETCDF_INCDIR="-I/home/util1/local/include"

You can now compile LMDZ5 as usual, but adding the ”-io xios” flag, e.g.

./makelmdz_fcm -arch para -mem -parallel mpi -io xios -d 32x32x39 -j 8 gcm

5 Running a first simulation with XIOS

Make a new simulation directory (e.g. by copying over all input .def and .nc files from the
BENCH32x32x39 directory1). In addition you will need the input .xml files to manage XIOS
outputs. Examples of these can be found in the LMDZ5/Deflists directory. Copy over files
iodef.xml, context lmdz.xml, field def lmdz.xml and file def hist*.xml.

For this first simulation, we will use XIOS in attached mode (i.e. embedded in LMDZ), so the
using server variable in iodef.xml must be set to false.
Moreover, to enable outputs via XIOS in LMDZ, the following flag:

ok_all_xml = y

1As in this example Orchidee is not used, the flag VEGET in config.def should be set to n

3

must be set in the run.def file (or equivalently in the config.def.

As can be seen in the context lmdz.xml file, many predefined output files (mimicking what is
done via the output.def file when using IOIPSL) are defined. By default none are enabled. Modify
file file def histday lmdz.xml by setting

<file id="histday" name="histday" output_freq="1d" output_level="2"
type="one_file" enabled=".true.">

so that the histday.nc file will be generated (as a single file over the entire domain) when the
model is run.

The model can now be run. Note that because the NetCDF libraries are dynamically loaded at run
time, the path to these must be included in the LD LIBRARY PATH environment variable2:

export LD_LIBRARY_PATH=\home\util1\local\lib:$LD_LIBRARY_PATH

Then run the model ”as usual”, e.g. in MPI mode using 4 processes:

mpirun -np 4 gcm_32x32x39_phylmd_para_mem.e > listing 2>&1

And check the contents of the generated histday.nc file.

6 Defining the output domain

One can ouput only a selected subset of the global domain by specifying the appropriate domain
attributes in the context lmdz.xml file. For example to ontput a 2x3 subomain starting at grid
indexes i = 14,j = 5:

<domain id="dom_glo" data_dim="2" zoom_ni="2" zoom_ibegin="14"
zoom_nj="3" zoom_jbegin="5" />

To test implementing this setup, let’s assume you want to output at only one grid point, corre-
sponding to Paris (longitude 48N ,latitude 2E) to compare model ouput to station records.

The first thing to do is to identify the global grid coordinates that will have to be specified in the
domain attributes. This can be done by inspecting the lat and lon values in the histday.nc file
from the previous run, either via your favorite visualization software, or simply using the ncdump
utility:

ncdump -ff -v histday.nc

And adapt the context lmdz.xml file accordingly.
Since we are interested in instantaneous values, it makes sense to enable the histins file, so adapt
the file def histins lmdz.xml so that an histins Paris.nc file (i.e.: add the enabled=.true.
and name=”histins Paris.nc” in the file attributes) will be generated.
Also adapt general output level and/or individual level in file def histins lmdz.xml so that
histins Paris.nc will contain t2m (temperature at 2m), precip (precipitation rates), psol (sur-
face pressure) and temp (temperature profile).
Run the model and check the produced files.

2Rather than having to have to add the path to LD LIBRARY PATH in each new shell before running the
model, it makes sense to add that command in your $HOME/.bashrc file so that it is always automatically done.

4

7 Running in client-server mode

When running on a small number of cores, it is advised to use XIOS in ”attached” mode. In
multicore environments (i.e. more than 32) it can be more efficient to run in client-server mode
and dedicate some cores to the XIOS server.

To test this setup, make a new directory where to run and copy over input files from previous
simulation. Start by copying over the XIOS server xios server.exe from XIOS/bin. Then
adapt the iodef.xml to switch to client-server mode by setting the using server variable to
true. The executables may now be run, where the number of processes allocated to each is set
via the mpirun command, for instance to run LMDZ on 3 processes and XIOS on 1:

mpirun -np 3 gcm_32x32x39_phylmd_para_mem.e > listing 2>&1 : -np 1 xios_server.exe

And check that you get the same output files as before.

5

