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1. Introduction 

In Coupled General Circulation Models (CGCMs), computations are often performed 
concurrently in separated executables implementing the different coupled model components. 
Their respective computing rates in terms of Simulated Year Per Day (SYPD) is a function of 
their MPI parallelism and the CGCM cannot be load balanced without setting respective 
appropriate MPI domain decompositions, which is unlikely to happen without a 
comprehensive work. An analysis of CMIP5 model simulation (Balaji et al., 2017) shows that 
up to 62% of the allocated resources can be wasted because of this imbalance. Even though 
this problem has several origins, such as the apparent resource abundance or practical 
difficulties. we think that, in the perspective of the reduction of the carbon footprint of our 
activities, the issue of load balancing our coupled configuration is well worth some efforts. 

Any proposed solution should be simple and portable enough to fit the community 
requirements and should be available in the coupler itself. A new version of the OASIS3-
MCT load balancing analysis tool is available since OASIS3-MCT_5.0 release (Maisonnave 
et al., 2021) and is described here. It produces the full timeline of all OASIS3-MCT related 



events for each of the allocated resources in a NetCDF file. A Python script is developed to 
visualise this timeline and its native zoom function facilitates the identification of possible 
bottlenecks of the coupling (Piacentini & Maisonnave, 2021). More general computing 
information (simulation time, speed, waiting time, etc.) is also provided for the coupled model 
and for each component in a text file. 

 

2. Installation  

The load balancing analysis functionality can be activated by simply setting to 1 the third 
number under $NLOGPRT in the namcouple configuration file (see the User Guide section 
3.2 at https://oasis.cerfacs.fr/en/documentation/ ). 

When activated, this functionality outputs the full timeline of all OASIS3-MCT related 
events, for any of the allocated resources in one NetCDF file per coupled component, 
timeline_XXXX_component.nc , where XXX is the component name (see section 3).  

A Python script, pyLucia.py, is available in directory oasis3-
mct/util/load_balancing to visualise results from the NetCDF files . It relies on the 
following specific libraries: 

• math 
• sys 
• os 
• time 
• numpy 
• matplotlib 
• netCDF4 to read the format of the timeline produced by OASIS ; 
• json or yaml to easily configure the visualization 

An appropriate Python3 library and environment is necessary to launch pyLucia.py. The 
3.7.9 version was tested successfully on a legacy Intel Harpertown desktop, but an older v3 
should match.  

The load balancing analysis functionality also produces a text file 
load_balancing_info.txt with general computing information (simulation time, speed, 
waiting time, etc.) for the coupled model and for each component (see section 4).  

3. Full timeline of all OASIS3-MCT related events  

The load balancing analysis functionality provides for each component1 the timeline of all 
operations related to the coupling, so that any simulation slowdown linked to the use of the 
OASIS3-MCT library can be identified. We call timeline a temporal sequence of events 
occurring during a coupled simulation. The analysis of the timelines, stored in NetCDF files, 

 
1 OASIS3-MCT gives the possibility to declare independent partitions for subsets of component 
processes (see section 2.1 of the OASIS3-MCT User Guide). At this development stage, considering 
the low number of prejudiced users and our wish to keep our algorithm as simple as possible, we 
prefer not to support the load balancing analysis in that case.  
 



allows to not only identify the waste of resources by components recurrently waiting for their 
coupling fields but it may also reveal other bottlenecks such as disk access or model internal 
load imbalance. The full picture of these events makes possible an optimal load balancing, 
even for the most complex configurations. 

3.1. Events 

The events measured can be common to all processes and independent of the field exchanges, 
i.e. (with their flag meaning and flag value in the NetCDF files):  

• MPI partitioning definition (PART, 8) 
• Coupling definition phase, including regridding weight and address computations 

(ENDF, 9) 
• Termination (TERM, 10) 

Events also occur in the time loop and are related to a field exchange: 

• sending (PUT, 1) 
• receiving (GET, 2) 
• mapping and regridding (MAP, 3) 
• output to file (OUT, 4) 
• reading from file (READ, 5) 
• restart writing for standard coupling fields (RST, 6) 
• restart writing for coupling fields on which temporal operations are performed, when 

the coupling period is not complete at the end of the run (TRN, 7) 

3.2. Timeline file  

One timeline file is produced in one NetCDF file per coupled component, 
timeline_XXXX_component.nc , where XXX is the component name. Each file describes: 

• the clock time when any event (nx) on any MPI process (ny) starts and stops 
timer_strt and timer_stop ;  

• the kind of each event, kind(nx) (see their flag value in the paragraph above);  

• the ID of the exchanged field, field(nx);  
• the ID of the component exchanging the coupled field, component(nx).  

3.3. Python script configuration with json or yaml file  

To run the Python script, pyLucia.py, you have to indicate as argument the name of the 
configuration json (or yaml) parameter file, e.g.: 
> pyLucia.py lucia.yaml 

or 
> pyLucia.py lucia.json 

The yaml or json configuration files, see Figures 1 and 2 respectively, include several 
mandatory or optional objects. They define the visualization workflow and information that 
appears in the resulting graphs to label (or design) the plotted timeline.  



 
 

Figure 1 - Example of a json configuration file for the Python script pyLucia.py 
 

 
 

Figure 2 - Example of a yaml configuration file for the Python script pyLucia.py 



3.4. Components 
The files describing the timelines for each component must be specified. A model name must 
be added to fully describe the input information. User must declare one sub-object (Name, 
File) per component. 

3.5. Plots 
Up to three graphics can be displayed in the same plot depending on the value of Kind, 
Field or Component sub-object. With Kind set to True, a graph showing the type of 
event (PUT, GET, MAP, OUT, READ, RST, TRN, PART, ENDF, TERM) for 
each event is output (see the upper graph in Figure 3). With Field set to True, a graph 
showing the coupling field implied in the event is output (see the middle graph in Figure 3). 
With Component set to True, a graph showing the other component implied the event is 
output (see the lower graph in Figure 3). 

3.6. TimeRange 
To reduce the timeline along the x-axis (time), a fraction (minFrac/maxFrac ) or a time 
window in second (minTime,maxTime ) of the full timeline can be defined. If both 
fractions and time bounds are prescribed, only fractions are taken into account. 

3.7. Rendering 

To visualise the timeline through the matplotlib GUI visualisation tool, the Display sub-
object must be set to true. In case of saving the graphics in a file, the File sub-object must 
be set to the name of the output file; extension in the name defines the file format. Joint 
visualisation on the screen and saving in file is possible. As an option, boundaries of the event 
rectangles can be plotted; this option (EventsBounds sub-object) can clarify the event 
sequence when several events with same Kind/Field/Component follow one another. 
The Palette option allows to choose among the matplotlib built-in colormaps. 

3.8. Fields 
Coupling fields are identified in OASIS3-MCT by numerical or alphanumerical IDs. For a 
non-ambiguous naming, it is required to explicitly provide a name for each coupling field in 
this object. Fields must be named following the namcouple sequence. 

4. Graphical output 

When the File sub-object of Rendering in the json/yaml file is set to the name of an 
output file, the plots are saved in this file. If the Display sub-object is set to true, a call to 
the matplotlib.pyplot.show command at the end of the script opens an interactive 
window. An example of timeline visualisation with this GUI is shown in Figure 3.  



 
Figure 3 - Example of the graphs interactively displayed when Display sub-
object is set to true. The type of event for each event is plotted in the upper graph 
(Kind). The coupling field implied in the event is plotted in the middle graph 
(Field). The other component implied the event is plotted in the lower graph 
(Component). The x axis represents the elapsed time and the y axis represents 
the MPI rank of all component processes (in the global communicator). 

 

The belonging of resources to each component is delimited by dashed black lines. Zooms and 
movements in plots are possible via push buttons. The zoomed figure can be saved into 
graphical format files. The mouse cursor is configured to display its position (time/resource 
number) and the name associated to the designated rectangle (Kind/Field/Component). 
The local communicator MPI rank and the name of the components are also shown.  

5. General computing information in text file 

The load balancing analysis functionality also produces a text file 
load_balancing_info.txt with general computing information (simulation time, 
speed, waiting time, etc.) for the coupled model and for each component. An example of this 
file is illustrated at Figure 4. In simple cases, this global information can help to allocate 
resources in a balanced way. 



 

Figure 4 - Example of a load_balancing_info.txt file providing general 
computing information 

 

The definition of the numbers delivered by this analysis are the following:  

• the total time of the simulation, from the beginning of the first process calling 
oasis_init, to the end of the last process calling oasis_terminate in seconds 
over all processes of the coupled system (“Coupled model simulation time 
(s) :”) 

• the speed in Simulated Year per Day (SYPD) of the coupled system (“Speed 
(SYPD) :”) 

• the cost in Core Hours Per Simulated Year (CHPSY) of the coupled system (“Cost 
(CHPSY) :”) 

• the total time in seconds and corresponding cost in CHPSY per component (e.g 
“ocean simulation time :” and  “cost (CHPSY):”) 

Then under “Load balance analysis”, this file provides for each component the 
computing time and the waiting time (e.g. “ocean / 7.625 / 1.818 ”). The waiting time 
in seconds is the time spent while receiving and sending2 coupling fields.  The computing time 
is defined as the difference between the total loop time and the waiting time, where the total 

 
2 The time spent while sending a coupling field is usually negligible as the oasis_put are non-blocking.  

Total Netcdf output for restart only:   0.000
with spread :    0.000

Total Netcdf output for restart only:   0.165
with spread :    0.007

Total Netcdf output for restart only:   0.000
with spread :    0.000

Clock spread after synchronise
.i.e. node clocks synchronisation (s) :

: 0.00003719



loop time is not the total time but the time spent in the coupling time loop only, excluding the 
first and the last coupling time steps3.  

Additional information is provided for each component under the line “Additional 
information”; this information has to be taken with care as numbers that may appear 
illogical may be produced in special cases. In case of doubt, the detailed information from the 
timeline of events (see sections 3 and 4) should be taken as the reference. 

For each component, the total time spent in receiving the fields (averaged over all component 
processes) is provided (“Specific oasis_get time”) per corresponding source 
components (“from model atmosphere ”). The total of these oasis_get times should be 
very close to the component waiting time (as the time spent waiting to send a coupling field is 
usually negligible). 

For each component, the “Total jitter” is also provided. This total jitter time is defined 
as the total for all send and receive operations of the time difference between the latest end 
and the earliest start of the operation among all component processes. The jitter time for one 
specific operation for a component running on 4 processes is illustrated on Figure 5.  

 
Figure 5 – Jitter time for one specific operation (in orange) for a component 
running on 4 processes.  

The “partial coupling cost”, which is the ratio (in %) of the component waiting time 
compared to the total loop time, is also provided for each component, as well as the 
“Partial coupling cost including OASIS operations”, which is the ratio (in %) 
of the component waiting time plus all other OASIS3-MCT runtime coupling field operations 
(output, input, mapping/interpolation, restarts writing) compared to the total loop time. 

 
3 The first and the last coupling time steps are excluded from the total loop time as these time steps 
often involve specific operations, like restart writing or reading; including them would distort the 
extrapolation of the time needed for longer simulations.  



The time spent during OASIS3-MCT runtime coupling field operations is also detailed per 
component, with averaged values across component processes and corresponding total jitter 
when starting the operations (“with spread”), as follows:  

• the total time for mapping/interpolation operations (s) (“Total 
mapping/interpolation :”)  

• the total time for NetCDF output launched according to the namcouple options 
(OUTPUT, EXPOUT) or during restart writing (s) (“Total Netcdf output 
(OUTPUT+EXPOUT+restart) :”)  

• the total time for NetCDF restart writing only (“Total Netcdf output for 
restart only:”) 

Finally, two details are provided to check the performance and the validity of the load 
balancing analysis itself:  

• the duration of the load balancing synthesis phase itself (s) (“Total time of this 
load balancing analysis:”);  

• the spread of time clocks measured after an MPI_barrier call, to check the coherence 
of the clock between the computing nodes (s) (“Clock spread after 
synchronise”).  

6. Conclusions 

OASIS3-MCT load balancing analysis functionality delivers at low cost a set of summarized 
quantities on the computing characteristics of a coupled model that can help to better 
understand the origin of any coupling extra cost. It also provides the timeline, for all processes 
involved in the coupling, of every coupling event, such as coupling field sending or receiving, 
but also coupling initialization and termination, regridding, file reading or writing. These 
timelines are available in NetCDF files and are easily accessible thanks to a Python 
visualization script.  

To be able to keep the implementation as simple as possible (~ 700 lines), the analysis is 
limited to a component- (and not a partition-) per-basis. Storing the analysis requires 
additional memory on the master process of each component approximately equal to the size 
of a single precision array containing the number of coupling events times the number of MPI 
processes. This means that users may have to restrain the analysis to relatively short 
simulations or parallel models with a relatively small number of processes to avoid memory 
overflow.  
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