LMDYZ tutorial: Parallelism

LMDZ team
January 13-15, 2026

This tutorial focuses on setting up, compiling and running LMDZ in a parallel environment.

This document can be downloaded as a pdf file:
wget http://lmdz.1lmd.jussieu.fr/pub/Training/Tutorials/Tutorial_Parallel.pdf

which should ease any copy/paste of command lines to issue.

This tutorial is for users who want to learn the basic steps needed to be able to run parallel versions
of LMDZ on their computer. Note that this implies the prerequisite that there is a working MPI library
already installed on the machine, which is the case for the laptops provided for this training session (on
which the MPICH library is installed; the OpenMPIT library is also know to work).

Throughout this tutorial we will assume that you are working on a computer on which an MPI library
and utilities (using the gfortran compiler) are installed in the following directories’:

/usr/bin /usr/1lib /usr/lib/openmpi

Depending on your environment variables and settings?, it is recommended (often mandatory!) to set
available stacksize (which is roughly the amount of memory your program is allowed to request from
the system) to maximum and add the MPT library path to LD_LIBRARY _PATH (this variable tells
programs where to look for needed dynamical libraries at run time):

ulimit -s unlimited
export LD_LIBRARY_PATH=/where/your/mpi/lib/is/1ib:$LD_LIBRARY_PATH

1 Running the install lmdz.sh script

The install_lmdz.sh script can do the necessary to install the model; all that is required is to use the
-parallel option, which may be set to none (default), mpi to compile and run in MPI only, omp to
compile and run in OpenMP only, or mpi_omp to compile and run the hybrid (mixed MPT and Openmp)
parallel version of LMDZ.

Create a separate directory to install the model (assuming you want to keep previous work done with
the serial version used in tutorial #1) and run®:

wget http://lmdz.1lmd.jussieu.fr/pub/install_lmdz.sh

chmod +x install_lmdz.sh

./install_lmdz.sh -name LMDZORpara -parallel mpi_omp -veget CMIP6 -rad oldrad \
-d 32x32x39 -netcdf $PWD/LMDZseq

Just as in tutorial #1, the script will end after a short run of the 32x32-L39 test case has run in
parallel.

1On some machines you might of course have to adapt MPI paths to point to the appropriate location. There are various
available MPI libraries downloadable from the Internet, such as OpenMPI or MPICH. What is important to know is that
the MPI library must have been compiled with the same compiler than the one used to compile LMDZ.

2Ideally setting stacksize and LD_LIBRARY _PATH should be set in your 7.bashrc to avoid having issue these com-
mands in each terminal and in every session.

3 An alternative to working in a different directory than previously would be to use the -name option of install_lmdz.sh
to download, install and run in a different target directory than the default.

2 About the arch files

In order to enable MPI and OpenMP, one has to set the corresponding options in arch files prior to
compilation. In practice, this means one must use or create (the install lmdz.sh script takes care of it)
an appropriate arch-*.fcm files (in the arch subdirectory of the LMDZ directory).

For instance your arch-local-gfortran-parallel.fcm could be something like*:

%COMPILER /usr/bin/mpif90

%LINK /usr/bin/mpif90

%FPP /usr/bin/mpif90 -E

HAR ar

%ARFLAGS rU

%MAKE make

%FPP_FLAGS -P -traditional

#FPP_DEF NC_DOUBLE

%BASE_FFLAGS -cpp —ffree-line-length-0 -fdefault-real-8 -DNC_DOUBLE
%PROD_FFLAGS -03

%DEV_FFLAGS -Wall -fbounds-check

%DEBUG_FFLAGS -g3 -Wall -fbounds-check -ffpe-trap=invalid,zero,overflow
-00 -fstack-protector-all -fbacktrace -finit-real=snan

%MPI_FFLAGS -fcray-pointer

%0MP_FFLAGS -fopenmp -fcray-pointer

%BASE_LD -Wl,-rpath:/usr/lib

%MPI_LD

%0MP_LD -fopenmp

Where additions mainly concern the COMPILER, LINK, MPI_FFLAGS and MPI_LD lines for
MPI, and the OMP_FFLAGS and OMP_LD lines for OpenMP.

Having correctly set an arch file, one can then compile and run in the various parallel modes, or
even just in serial. In practice, it is convenient to put these instructions in scripts (see for instance
the compile.sh in the LMDZ directory and the bench.sh and bench_parallel.sh scripts in the
BENCH32x32x39), but in what follows the minimal necessary sequence of commands are given and
explained one at a time.

3 Compiling and running LMDZ in MPI

In the LMDZ directory, compile the model in MPI mode:

./makelmdz_fcm -arch local-gfortran-parallel -mem -parallel mpi -d 32x32x39 -j 8 \
-rad oldrad gcm

Note that here we compile without Orchidee (-v false).
The executable, gcm_32x32x39_phylmd_oldrad_para_mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a simulation. To do so, create a new sub-
directory, e.g. BENCH32x32x39_mpi, in LMDZ and copy boundary conditions, initial conditions
and parameter files (limit.nc, star*nc, *.def) over from directory BENCH32x32x39, along with the
newly created excutable. Since this case is without ORCHIDEE you need to adapt config.def and set

VEGET=n

To run, you will need to use the mpirun utility (from the MPT library) and specify the number of
processes to run on (using the -np option), e.g. 4:

mpirun -np 4 ./gcm_32x32x39_phylmd_oldrad_para_mem.e > listing 2>&1

The run should be much shorter than if using only one process (verify this!).
When running in parallel, each MPI process creates its own hist* files. You will thus obtain for

instance a files histday.0001.nc, histday.0001.nc, histday.0002.nc and histday.0003.nc which contains data
relative to the sets of atmospheric columns managed by each process. To combine the output files from

4Check out the files in the arch directory for examples relative to other compilers; e.g. ifort in the JeanZay arch files.

different processes into a single file containing the full dataset, use the IOIPSL rebuild script. The
rebuild script is generated when installing IOIPSL. When installing IOIPSL, a modipsl directory was
created and the rebuild script installed in modipsl/bin®.

For each type of file, histday, histmth, etc., simply issue a command of the likes of® :

rebuild -o histday.nc histday_000%*
to generate the recombined output file.

Note also that the listing file for the MPI run is larger than in a serial case, as most output messages
are redundantly written by all processes.

4 Compiling and running LMDZ in OpenMP

Compile LMDZ in OpenMP mode:

./makelmdz_fcm -arch local-gfortran-parallel -parallel omp -d 32x32x39 -j 8 \
-rad oldrad gcm

The executable, gcm_32x32x39_phylmd_oldrad_para_mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a new simulation in a new subdirectory of
LMDZ, e.g. BENCH32x32x39_omp and copy over boundary conditions etc. from BENCH32x32x39,
along with the newly created excutable. Again, In this test you will run without ORCHIDEE you need
to adapt config.def and set

VEGET=n

Before launching the run, some OpenMP environment variables must be set to specify the (maximum)
amount of memory privately allocated to each thread, and the number of OpenMP threads to run with,
e.g. 4 in the following example:

export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=4
./gcm_32x32x39_phylmd_oldrad_para_mem.e > listing 2>&1

Note that this time the generated hist*nc files are unique, but suffixed 0000.nc.
You can check that the output files thus generated are identical to the ones generated by the
BENCH32x32x39_mpi run. Likewise for the restart.nc and restartfi.nc files.

5 Compiling and running LMDZ in mixed MPI/OpenMP

Compile LMDZ in mixed MPI/OpenMP mode:

./makelmdz_fcm -arch local-gfortran-parallel -parallel mpi_omp -d 32x32x39 -j 8 \
-rad oldrad gcm

Again, create a subdirectory in which to run the model. All that was mentionned in the previous
sections on pure MPI and OpenMP runs combine when using the mixed mode. So assuming you want
to run using 3 MPI processes, each using 2 OpenMP threads”:

export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=2
mpirun -np 3 ./gcm_32x32x39_phylmd_oldrad_para_mem.e > listing 2>&1

Since you have used 3 MPI processes, output hist files will be split in 3 (i.e. histday_0000.nc, hist-
day_0001.nc and histday_0002.nc¢) and should be recombined using the rebuild tool. Once again, results
should match those obtained with the serial, pure MPI, and pure OpenMP runs.

5Adding this directory to your PATH, e.g. in your ~/.bashrc to avoid having to type the full path each time you want
to use rebuild is advised

6This is what the provided reb.sh script does. You nedd only run it and specify the file to rebuild as an argument; e.g.
reb.sh histday

"Note that you can request using more cores than available on a given machine. This is of course extremely inefficient
and one should strive to use at most the total number of available cores.

6 Exercice: Adjusting and setting the workload between MPI
tasks

In the directories where you did your MPI (or mixed MPI/OpenMP) run, you’ll find a bands file, e.g.
Bands_32x32x39_4prc.dat, which contains information on how many columns where handled by each
MPI process®.

The default behaviour, for LMDZ, is to load and follow the instructions of the bands file present in
the directory where it runs. If it cannot find such a file, it then automaticaly generates one (which was
the case in the test runs you’ve done so far) which simply considers splitting evenly the work between all
available tasks. But this is rarely optimal.

There is an automated way of (iteratively) adjusting the workshare in LMDZ which can be triggered
by setting the adjust parameter in file run.def to y.
Important: The adjust option should only be used in pure MPI mode, and is intended to be used to
tune the bands file, and not to be used for production runs. Once a suitable bands file is obtained (which
typically requires a month, i.e. 30 days long run), one should revert the adjust option to n and run with
the resulting bands file.

Set up you experiment in a new directory. Import files (and MPI executable) there and set adjust=y
in the run.def file, as well as nday=30. Run using 4 processes:

mpirun -np 4 ./gcm_32x32x39_phylmd_oldrad_para_mem.e > listing 2>&1

Check out the produced Bands_32x32x39_4prc.dat file and compare to the more naive one that was
previously generated.
To evaluate if this bands file is "converged”, copy it aside for future reference and re-run LMDZ.

8The bands file contains information on how many columns are handled by each MPI process, but also for each
of the four main ”code steps”: dynamics, tracer advection, dissipation, and physics. A bands file for N pro-
cesses thus contains 4N lines.To learn more about this, search for ”"bands” on the LMDZ Mediawiki: https://lmdz-
forge.lmd.jussieu.fr/mediawiki/LMDZPedia

https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia
https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia

	Running the install_lmdz.sh script
	About the arch files
	Compiling and running LMDZ in MPI
	Compiling and running LMDZ in OpenMP
	Compiling and running LMDZ in mixed MPI/OpenMP
	Exercice: Adjusting and setting the workload between MPI tasks

