LMDYZ tutorial: XIOS

LMDZ team
January 13-15, 2026

This tutorial focuses on setting up, compiling and running LMDZ with XIOS.

This document can be downloaded as a pdf file:
wget http://lmdz.1lmd.jussieu.fr/pub/Training/Tutorials/Tutorial_XIOS.pdf

which should ease any copy/paste of command lines to issue.

This tutorial is for users who want to learn the basic steps needed to be able to run LMDZ with the
XIOS input-output library on their computer. Note that this implies the prerequisite that you can run in
parallel on your machine (i.e. that you have already completed the tutorial on running LMDZ in parallel).

1 Running the install lmdz.sh script

The install Imdz.sh script can download and compile the necessary libraries (NetCDF, IOIPSL, XIOS)
and programs (ORCHIDEE and LMDZ), and runs a test simulation. All that is required is to specify
the -xios and -parallel mpi_omp (XIOS is designed to be used in parallel) options:

wget http://lmdz.1lmd.jussieu.fr/pub/install_lmdz.sh
chmod +x install_1mdz.sh
./install_lmdz.sh -name LMDZXIOS -parallel mpi_omp -xios -veget none -rad oldrad

As with previous automated installations, you are encouraged to browse through the contents of sub-
directory LMDZ (e.g. the compile.sh script) and BENCH32x32x39.

Note that to compile LMDZ with XIOS, one must use the -io xios flag, e.g.:

./makelmdz_fcm -arch local-gfortran-parallel -parallel mpi_omp -io xios -d 32x32x39 \
-j 8 gcm

As can be seen in the compile.sh script in the LMDZ directory.

Take the time to browse through the *.xml and histday.nc ﬁlesE] in BENCH32x32x39 to identify
definitions and settings that were used. Note that the automated processing in the install script has
renamed the executable gcm.e, but you may still find it in LMDZ /bin.

2 Running a first simulation with XIOS

Make a new simulation directory (e.g. by copying over all input .def and .nc files from the BENCH32x32x39
directoryED, along with the executable gcm_32x32x39_phylmd_oldrad_para_mem.e from LMDZ/bin. In
addition you will need the input .xml files to manage XIOS outputs, which you should also copy over
from BENCH32x32x39.

For this first simulation, we will use XIOS in attached mode (i.e. embedded in LMDZ), so the us-
ing_server variable in iodef.xml must be set to false (which should already be the case in the current
setup).

Moreover, to enable outputs via XIOS in LMDZ, note that the following flag:

INote that there is also a histmth.nc file that is generated but that it is empty, as the run is too short compared to
the 1 month output rate for that output file
2As in this example ORCHIDEE will not used, the flag VEGET in config.def should be set to n



ok_all xml = .true.

(or equivalently ok_all_xml = y) must be set in the run.def or config.def file.
As we will not be using ORCHIDEE (which also uses XIOS for its outputs) you should also make sure
you have

VEGET = n

in config.def. Moreover you can also remove (or simply ignore) references to *_orchidee.xml files, e.g.
by commenting out (or deleting) line

<context id="orchidee" src="./context_orchidee.xml"/>

from the iodef.xml file.

As can be seen in the context_lmdz.xml file, many predefined output files (mimicking what is done via
the output.def file when using IOIPSL) are defined via the inclusion of file_def_*_lmdz.xml files. By
default a few output files are enabled. You can check this by checking the value of the enabled field
of the various file_def_#*_lmdz.xml files. For instance by default histday.nc is enabled since in file
file_def_histday_lmdz.xml we have:

<file id="histday" name="histday" output_freq="1d" output_level="5"
type="one_file" enabled=".TRUE." compression_level="0" sync_freq="1d4">

Let’s imagine that instead we want output file histhf.nc to be outputed. Modify file file_def_histhf lmdz.xml
by setting

<file id="histhf" name="histhf" output_freq="3h" output_level="5"
type="one_file" enabled=".true." compression_level="0" sync_freq="3h" >

so that the histhf.nc file will also be generated (as a single file over the entire domain) when the model
is run.

Then run the model "as usual”, e.g. in MPI mode using 4 processeﬂ(withou‘c OpenMP here):
mpirun -np 4 gcm_32x32x39_phylmd_oldrad_para_mem_orch.e > listing 2>&1

And check the contents of the generated histday.nc and histhf.nc files. Note the use of operation="average",
operation="instant", operation="once" , etc. attributes in the xml files to trigger designated opera-
tions on the outputted fields.

3 Exercise: Changing XIOS output files and verbosity level

Parameters specific to dictate XIOS behavior are defined in the iodef.xml file within the XIOS context:

<context id="xios">
<variable_definition>
<!-- set print_file to true to have XIOS write its
outputs in separate files -—>
<variable id="print_file" type="bool"> false </variable>

<variable_group id="parameters" >
<l-- set using_server to true to run with XIOS
in detached server/client mode -->
<variable id="using_server" type="bool">false</variable>
<l-- info_level is the verbosity level of XIOS
0 for no messages; 100 for lots -->
<variable id="info_level" type="int">100</variable>
</variable_group>
</variable_definition>
</context>

30r using a script such as bench.sh or bench_parallel.sh, which you might need to adapt to your settings



The info_level variable sets the degree of verbosity of XIOS (0: low, 100: high). There are other addi-
tionnal variables than the one present in the current iodef.xml, for instance print_file, which can be
set to true to have XIOS issue its output and error messages to dedicated text files (one of each for each
MPIT process), or false (default behavious) to send these messages to the same standard output and error
streams as LMDZ. When debugging, another useful variable is xios_stack (true/false; default value is
false) to have a more complete traceback or encountered errors.

Assume you want to rerun the previous experiment with higher XIOS verbosity and dedicated output
files; adapt the iodef.xml and rerun to check the generated xios_client_*.err and xios_client_*.out
files.

4 Exercise: Running in client-server mode

When running on a small number of cores, it is advised to use XIOS in ”attached” mode, as done so far.
In multicore environments (i.e. more than 32), when outputing a lot of data, it can be more efficient to
run in client-server mode and dedicate some cores to the XIOS server.

To test this setup, make a new directory where to run and copy over input files from previous simulation.
Start by copying over the XIOS server xios_server.exe from XIOS/bin. Then adapt the iodef.xml
to switch to client-server mode by setting the using_server variable to true. The executables may now
be run, where the number of processes allocated to each is set via the mpirun command, for instance to
run LMDZ on 3 processes and XIOS on 1:

mpirun -np 3 gcm_32x32x39_phylmd_oldrad_para_mem_orch.e > listing 2>&1 : -np 1 xios_server.exe

And check that you get the same output files as before.

5 Exercise: Defining an additional output domain and grid

One can output only a selected subset of the global domaixﬁ by specifying the appropriate domain
attributes in the context_lmdz.xml file. For example to ontput a 2x3 subdomain starting at (rectilinear)
grid indexes ¢ = 20,57 = 15 (C convention: index begining at 0):

<domain_definition>

<domain id="dom_glo" data_dim="1" />

<domain id="dom_glo_rect" ni_glo="32" nj_glo="33" type="rectilinear" >
<generate_rectilinear_domain lat_start="90" lat_end="-90" lon_start="-180"/>
<interpolate_domain order="1"/>

</domain>

<domain id="domain_zoom" domain_ref="dom_glo_rect">
<zoom_domain ni="2" ibegin="20" nj="3" jbegin="15" />

</domain>

</domain_definition>

And also, still in the context_lmdz.xml file, define the corresponding grid in the <grid_definition>
section:

<grid_definition>

<grid id="grid_glo">

<domain domain_ref="dom_glo" />
</grid>
<grid id="grid_out">

<domain domain_ref="dom_out" />
</grid>

<grid id="grid_zoom" >
<domain domain_ref="domain_zoom" />

4Some XIOS terminology: a "domain” refers to a horizontal (2D) domain, an ”axis” is 1D (e.g. altitude, or number of
tracers) and a ”grid” is a (0D, 1D, 2D or 3D) geometry along which outputs will be made.



</grid>
<grid id="grid_zoom_presnivs" >
<domain domain_ref="domain_zoom" />
<axis axis_ref="presnivs" />
</grid>

To test implementing this setup, let’s assume you want to output at only one grid point, corresponding
to Paris to compare model ouput to station records.

The first thing to do is to identify the grid coordinates that will have to be specified in the domain
attributes. This can be done by inspecting the lat and lon values in the histday.nc file from the
previous run, either via your favorite visualization software, or simply using the ncdump utility:

ncdump -fc -v lon histday.nc
ncdump -fc -v lat histday.nc

And adapt the context_lmdz.xml file accordingly.

Since we are interested in instantaneous values of for instance the t2m (temperature at 2m), precip
(precipitation rates), psol (surface pressure) and temp (temperature profile) in the zoomed grid, it
makes sense to define a new output file. One could either adapt the current histins file, or define a new
one e.g. a file_def_histinsParis_Imdz.xml file:

<file_definition>
<file_group id="defile">
<file id="histinsParis" name="histinsParis"
output_freq="1ts" output_level="5"
type="one_file" enabled=".TRUE.">

<!-- VARS 2D -->
<field_group operation="instant" freq_op="1ts"
grid_ref="grid_zoom" >

<field field_ref="t2m" level="5" />
<field field_ref="t2m_min" level="5" operation="minimum" />
<field field_ref="t2m_max" level="5" operation="maximum" />
<field field_ref="precip" level="1" />
<field field_ref="psol" level="5" />

</field_group>

<!-— VARS 3D -—>
<field_group operation="instant" freq_op="1ts"
grid_ref="grid_zoom_presnivs">
<field field_ref="temp" level="4" />
</field_group>
</file>
</file_group>
</file_definition>

And add this new definition file to the others specified in context_lmdz.xml:
<file_definition src="./file_def_histinsParis_lmdz.xml"/>

Run the model and check the produced histinsParis.nc file.



	Running the install_lmdz.sh script
	Running a first simulation with XIOS
	Exercise: Changing XIOS output files and verbosity level
	Exercise: Running in client-server mode
	Exercise: Defining an additional output domain and grid

