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Introduction

LMDZ outputs include

* «history» files : they gather instantaneous or averaged diagnostic variables
» «restart» files : used to extend or to restart a simulation

* «control printing» file : collects all control and error messages

Netcdf / IOIPSL. / XIOS libraries

* LMDZ «history» and «restart» files are in NetCDF format and written using either :
> directly the NetCDF library or
> TOIPSL/XIOS libraries : developed at IPSL for model I/Os using the NetCDF library

* «restart » files of dynamics and phisics modules are written using directly NetCDF

» «history» output files
> are written by using IOIPSL/XIOS libraries

> For « history » files, the output of variables consists in 2 steps:
v definition of the variables to output (during initialisation of the run)

v computation and writing of the variables (during the simulation)
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Introduction
IOIPSL. / XIOS libraries

LMDZ «history» output files are written by using IOIPSL/XIOS libraries

o IOIPSL library :

> older and easy to use (outputs controlled in def files)

> not parallelized = with IOIPSL : each process writes its own history files in its domain. Then, global file is

reconstructed from these various files by using the rebuild utility distributed with the IOIPSL library.

> limited in the mathematical operations on the output variables, canot output variables with more than 3D, ...

o XIOS: XML-IO-SERVER

>

Based on client-server principle = 1O server manages the outputs so that the climate code does not waste time
on its outputs, it just sends them to the IO server = code not slowed down by outputs

All aspects of the outputs (name, units, post-processing frequencies, operations, ...) are controlled by external
xml files = no recompilation of code necessary when changing IO definitions

Don’t need rebuilding the global file in parallel mode

Lots of functionalities with more mathematical transformations : reading files, filters and transformations, on-
the-fly interpolation to a particular grid, on-the-fly timeseries output

But to use XIOS, needs to install additional libraries (mpi, boost, blitz)
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«history» outputs of the physics module

Generalities

e 10 « history » output files :
managed according to a scheme witch allows to control individually the output of the variables in 10 files

> 5 basic files that are used most often :
monthly/daily/high frequency - averege/instantanous

> 5 output files with particular uses :
~ histstn.nc = fields for a number of grid points (data sites was requested by CMIP)
3 files : histmthNMC.nc, histdayNMC.nc, histhfNMC.nc (was requested by CMIP) =
outputs interpolated on 17 standard levels pressures (in hPa):
1000., 925., 850., 700., .600., 500., 400., 300., 250., 200., 150., 100., 70., 50., 30., 20., 10.
» histstrataer.nc = Outputs of stratospheric aerosols

* Qutput variables :
> 2D fields are written on the horizontal grid of the model (longitude, latitude)

> 3D fields are written on a the horizontal and verticale grid :
v 2D (longitude,latitude)
v vertical level : the hybrid coordinate system is used for the verticale in LMDZ
= More detail in « Dynamics » presentation (Ehouarn)



LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

Control of output files and variables

~~ - Flags to control the activation of the output of files / change the name of files and variables

- Flags controlling how many and which variables are written to each output file

* types of keys<
- Flags controlling time frequencie/mathematical operation used to write in output file

“— - Flags to activate and define the output on a limited domain

- with IOIPSL in def files (config.def or output.def)
* Keys controlled
- with XIOS in xml files (field_lmdz.xml, file_hist*_Imdz.xml)

> Sample def and xml files are in DefLists directory :

../modipsl/modeles/LMDZ/DefLists
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«history» outputs of the physics module

Control of activation of output of files / change the name of output files and variables

- flag used to activate or not the output of files

 3flags: < - flag used to change the name for each of output files

- flag used to change the name of the output variable in each output file

* In practice, how to control these keys ?
> With IOIPSL in config.def or output.def:

phys_out_filekeys = y y n y n
phys_out_filenames = histmth histday  histhf histins histLES
name_tsol = ts_mth ts_day ts_hf ts_ins tsol

2> With XIOS in file_histhf Ilmdz.xml
<file_definition>
<file_group id="defile" >
<file id="histhf" name="histhf" output_freq="3h" output_level="2" enabled="TRUE ">
<field_group operation="average" ...
<field field_ref="tsol" name="ts_hf" level="1" />

e Default values in the code (.../LMDZ/libf//phylmd/phys_output_mod.F90) :
» File names : histmth histday histhf6h histhf3h histhf3hm histstn histmthNMC histdayNMC histhfNMC histstrataer

> Activate/not: 'y n n n n n n n n n
> Default names of variables are defined in : .../LMDZ/libf//phylmd/phys_output_mod.F90
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«history» outputs of the physics module
Controlling of how many and which variables to write in the output files

* Principle :
> For each output file fileN.nc (N from 1 to 10) = an output level file_level(N), which is an integer :
phys_out_filelevels = file_level(1) ... file_level(N) ... file_level(10)

> For each output variable Var = an output level flag_Var(N) associated with fileN.nc, which is an integer :
flag_Var = flag_Var(N) ... flag _Var(N) ... flag_Var(10)

= If flag_Var(N) < file_level(N) then variable Var will be defined and written to the file fileN.nc

 In practice, how to control these keys ?
> With IOIPSL in config.def or output.def:

phys_out_filekeys = y y n y n
phys_out_filenames = histmth  histday histhf histins  histLES
phys out filelevels = 5 1 1 1 1
flag tsol = 1 2 3 4 5

> With XIOS in file_histday_lmdz.xml :

<file_definition>

<file id="histday" ... output_freq="1d" output level="2">
<field field_ref="tsol" level="2" />

* Default values in the code (.../LMDZ/libf//phylmd/phys_output_mod.F90) :
> file_level(1:10) : 2 1 1 1 1 1 5 5 5 5
> tsol_levels(1:10) : 1 1 1 5 10 10 11 11 11 11



LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

Control of time frequencie and mathematical operation used to write in output files

- Flag controlling the time frequencies of output files :
(mounthly, daily, hourly, physical time step)

» 2flags:
- Flag to control mathematical operations used to archive variables :

(instantaneous, average , min, max)

 In practice, how to control these keys ?

> With IOIPSL in config.def or output.def:
phys_out_filekeys y y n y n
phys_out_filenames histmth  histday histhf histins  histLES

phys_out_filetimesteps = 1mth 1day 6h 3h 1TS
phys_out_filetypes = ave(X) ave(X) ave(X) inst(X) inst(X)
> With XIOS in file_histmth lmdz.xml :
<file_definition>
<file_group id="defile">
<file id="histmth" output_freq="1m" output_level="2" ...

<field_group operation="average" ...

e Default values in the code (.../LMDZ/libf/phylmd/phys_output_mod.F90) :
> output time frequency: 1month 1day 3hours 30mn 3hours 30mn 1month lday 6hours 1month

> archive operation :  ave(X) ave(X) inst(X) inst(X) ave(X) inst(X) inst(X) inst(X) inst(X) ave(X)
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«history» outputs of the physics module

Control of output on a limited domain
- Flag to activate or note the output on limited domain for each file
> Flags : {

- Flage Flags to define the limited horizontal domain for each file
- Flag to define the limited vertical axis for each file

* In practice, how to control these keys ?

> With IOIPSL in config.def/outputs.def:
phys_out_filekeys = y y y y n
phys_out_filenames = histmth histday histhf  histins  histLES
v to activate or note the output on limited domain for each file :

phys_out_regfkey = n n y n n
v to define the limited horizontal domain for each file :
phys_out_lonmin = -180 -180 0 -180 -180
phys_out_lonmax = +180 +180 90 +180 +180
phys_out_latmin = -90 -90 -30 -90 -90
phys_out_latmax = +90 +90 +40 +90 +90
v to define the limited vertical axis for each file :
phys_out_levmin= 1 1 1 1 1
phys_out_levmax= 39 39 3 39 39

> With XIOS in context_Imdz.xml
<domain_definition>
<domain id="dom_glo" data_dim="2" />
<domain id="dom_MyRegion" domain_ref="dom_glo">
<zoom_domain id="dom_MyRegion" ibegin="12" jbegin="14" ni="8" nj="10" />
</domain>
</domain_definition>
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«history» outputs of the physics module :

In practice, with IOIPSL.:
In config.def file :

# Activate or not the output of the file =y (yes), n (no)
phys_out_filekeys = y y n y n

# Name of files :
phys_out_filenames = histmth histday histhf6h  histhf histins

Q1 : Which files will be written here?
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«history» outputs of the physics module :

In practice, with IOIPSL.:
In config.def :

# Activate or not the output of thefile =  y(yes), n (no)
phys_out_filekeys = y y n y n

# Name of files :
phys_out_filenames = histmth  histday  histhféh  histhf histins

# Time frequency = mth/mo/mois/.. (month), day/jour/j/.. (day), hour/heure/h/.. (hour), TS/ts (time step of physics), ...
phys_out_filetimesteps = 1mth 1day 6hr 3hr 1TS

# Archive operation = inst(X) (instantaneous), ave(X) (average), t min(X) (min), t max(X) (max)

phys_out_filetypes = ave(X) ave(X) ave(X) inst(X) inst(X)

Q2 : For each file to be written, can you give me the time frequency and the mathematical operation used to
output the variables?
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«history» outputs of the physics module :

In practice, with IOIPSL.:

In config.def or output.def, file = we can change the control keys of output files :

# Activate or not the output of the file = y(yes), n (no)
phys_out_filekeys = y y n y n

# Name of files :
phys_out_filenames = histmth  histday  histhf6éh  histhf histins

# Output level of files = 0, 1, ... (integer)
phys_out_filelevels = 5 2 2 1 1

# writing of variable in output files : 0, 1, ... (integer)
flag_tsol = 2 3 7 10 10

Q3 : In wich output files tsol will be written here ?
Q4 : If you want to output tsol in histday.nc file how to do it ?
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«history» outputs of the physics module:
In practice with IOIPSL.:

Control the output of variables on a limited domain :

phys_out_filekeys = n y n n
phys_out_filenames = histmth histday histhf histins

# Activate or note the output on a limited domain
phys_out_regfkey = n y y n

# Longitude min and max of domain
phys_out_lonmin = -180 -5 -180 -180
phys_out_lonmax = +180 +10 +180 +180
# Latitude min and max of domain

phys_out_latmin = -90 +40 -90 -90

phys_out_latmax = +90 +53 +90 +90
# Vertical level min and max

phys_out_levmin = 1 1 1 1

phys_out_levmax = 39 5 39 39

Q1 : In this case, for which output file will we activate the outputs on a limited domain ?
On which horizontal and vertical grids?
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«history» outputs of the physics module
In practice with XIOS

- Download XIOS from : http://forge.ipsl.jussieu.fr/ioserver/ XIOS

* Need to - Compile LMDZ with XIOS : makelmdz / makelmdz_fcm with options :
-i0 xios (only XIOS), -io mix (both IOIPSL and XIOS), -io ioipsl : only IOIP)

- To put : ok_all_xml =y in run.def / config.def file to get xml to control everything
e Xml file : one file, at least must be present (model will crash if this file is absent) = iodef.xml

<simulation>

<context id="xios">
<variable_definition>
<variable_group id="buffer">
buffer_size = 85000000
buffer_server_factor_size = 2
</variable_group>
<variable_group id="parameters" >
<variable id="using_server" type="bool">true</variable>
<variable id="info_level" type="int">0</variable>
</variable_group>
</variable_definition>
</context>
<context id="LMDZ" src=""./context_Imdz.xml" />

</simulation>


http://forge.ipsl.jussieu.fr/ioserver/
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«history» outputs of the physics module

In practice With XIOS
e XML files = context Imdz.xml :

<context id="LMDZ">
<!-- Define available variables -->
<field_definition src="./field_def Imdz.xml"/>

<!-- Define output files. Each file contains the list of variables and their output levels -->
<file_definition src="./file_def_histday_lmdz.xml"/>

<!-- Define domains and groups of domains -->
<domain_definition>

<domain id="dom_regular" ni_glo="144" nj_glo="143" type="rectilinear" >
<generate_rectilinear_domain lat_start="-90" lat_end="90" lon_start="0"/>
<interpolate_domain order="1"/>

</domain>

</domain_definition>

<I-- Define groups of vertical axes -->
<axis_definition>

<axis id="time_month" n_glo="12" value="(0,11)[123456 78910 11 12]"/>

</axis_definition>
<grid_definition>
<grid id="grid_glo">
<domain domain_ref="dom_glo" />
</grid>

</grid_definition>
</context>
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«history» outputs of the physics module

In practice with XIOS

e Xml files = field def Imdz.xml

<definitionfield_definition level="1" prec="4" operation="average" freq_op="1ts" enabled=".true."
default_value="9.96921e+36">

<field_group id="fields_2D" domain_ref="dom_glo">
<field id="phis" long_name="Surface geop.height" unit="m2/s2" />
<field id="ffonte" long_name="Thermal flux for snow melting" unit="W/m2" />

</field_group>

<field_group id="fields_3D" domain_ref="dom_glo" axis_ref="presnivs">
<field id="tke" long_name="TKE" unit="m2/s2" />

</field_group>

<field_group id="fields_ NMC" domain_ref="dom_glo" axis_ref="plev'>
<field id="ta" long_name="Air temperature" unit="K" />

</field_group>

<field_group id="fields_ COSP_CALIPSO" domain_ref="dom_glo" freq_op="3h">
<field id="cllcalipso"” long_name="Lidar Lowlevel Cloud Fraction" unit="1"/>

</field_group>
</field_definition>
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«history» outputs of the physics module

In practice with XI0S

e XML files = file def histday lmdz.xml :

<file_definition>
<file_group id="defile">
<file id="histday" name="histday" output_freq="1d" output_level="2" enabled="TRUE">
<I'VARS 2D >
<field_group operation="average" freq_op="1ts">
<field field_ref="phis" level="1" />

;.field field_ref="ffonte" level="10" />

<field_group operation="average" freq_op="1ts" detect_missing_value=".true.">
<field field_ref="u850" level="7" />

</field_group>

</field_group>

<I'VARS 3D >

<field_group operation="average" freq_op="1ts" axis_ref="presnivs">
<field field_ref="cldtau" level="5" />

</field_group>

</file>
</file_group>
</file_definition>
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«history» outputs of the physics module:
Approximate number of output variables (LMDZ svn5855) ~ 1314 fields

Scalars and 1D-fields

Isotropic diagnostics
3D fields

Tracer diagnostics

2D fields

Aerosol diagnostics

Meteorological diagnostics

Radiative diagnostics



LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module:
How to add a new output variable ?

libf/phylmd/phys_output_ctrlout.F90 :

declaration of output level, name, description, unit, archiving operation of variable
* 2 routines need to be modified

libf/phylmd/phys_output_write.F90 :

write the new variable in each file

* Example for «my_newvar» variable :
> Declaration of variable in ...LMDZ//libf/phylmd/phys_output_ctrlout.F90
type(ctrl_out), save :: o_my_newvar = ctrl_out((/1,1,1,5,10,11,11,11,11,11/), &
'my_newvar',' My New field', 'K', &
(/ 'ave(X)', 'ave(X)', 'ave(X)', ave(X), inst(X), &
"inst(X)','inst(X)',"'inst(X)’, 'inst(X)’','ave(X)' /))

> Write a new variable in .../LMDZ/libf/phylmd/phys_output_write.F90
call histwrite_phy(o_t2m_min, znewvar)
znwvar : variable calculated in the code that corresponds to my_new_var

> To add variable to the XIOS output files = you also need to add them to the xml files
(necessarily in field_lmdz.xml)
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«Restart» files :

e '"restarts" files contain the final state of the simulation =
used to extend this simulation or to restart an other new one

* The dynamical and physical modules each write their own restart file (restart.nc and restartphy.nc).
These files save the state variables that the model needs at each time step so that :
the model can be restarted without losing continuity (in practical terms this is known as «1+1=2»)

* Routines involved in this process are :
> for the dynamical module :
v .../.LMDZ/Nlibf/dyn3d/dynredem.F90 / .../LMDZ/libf/dyn3dmem/dynredem_mod.F90
v .../LMDZ/Nlibf/dyn3d/dynetat0.F90 / .../LMDZ/libf/dyn3dmem/dynetat0_loc.F90

> for the physics module :
v .../.LMDZ/Nibf/phylmd/phyredem.F90 / .../LMDZ/libf/phylmd/phyredem.F90
v .../LMDZ//Mibf/phylmd/phyetat0.F90 /.../LMDZ//libf/phylmd/phyetat0_mod.F90

* These routines do not use the IOIPSL library and are interfaced directly with the NetCDF library.
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files of control printing and error messages:

* Controlling output messages :

> Most of control outputs and messages are written to standard output (the screen) by the use of commands such as:

print¥, or write(*,*) 'ma variable =/, ...

> A cleaner mechanism exists to output these messages to a file rather than the screen :

v to include in any new routine, the iniprint.h file = #include iniprint.h

- lunout : a unit number corresponding to the output file
(if lunout # 6 = Imdz.out file is created and assigned to this number)
in iniprint.h are defined 2 parameters
- prt_level : an output level

The value of these two parameters can then be modified in the run.def file

v to use them in the routine you then just need to add lines such as :
IF (prt_level>9) WRITE (lunout,*) 'pas de convection'
While keeping small values of prt_level for really important messages
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Output file of control printing and error messages:

* What use are they ?

If the model crashes or does not seem to run properly, these output messages should give you an indication of what’s
going on.

> The first thing todois:  grep ‘Houston, we have a problem ’ output_file
As the model will output this string with an indication of the problem it encountered, when the problem has been
anticipated by the developers (might be a configuration problem, a temperature that’s suddenly out of range, ...)

> If the string is not found and no obvious error (segmentation fault, memory violation,
floating point exception) can be found in the output messages =
v to recompile the model with the -debug option
v and run it again.
= It should now give you an indication of :
v the line
v the routine that is causing the crash.
= Once found, you can :
v start debugging the routine or
v call for help with some vital information.
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Output specific files :

«history» file for the dynamics module :
only consists of the variables of state (U, V, T, Q, Ps) at two frequencies : instantaneous and averaged.

«history» output files of COSP (CFMIP Observation Simulator Package) :
3 output files (monthly, daily and HF) with a lot of cloud diagnostics

Output files with variables in the GrADS format :
to help with the debugging of the code, there is also a mechanism which writes the variables in the GrADS format by
using directly NetCDF library

Files with all the control parameters used for the simulation :
a mechanism to write files with all the control parameters effectivly read and used for the simulation : used_run.def,
used_config.def, used_physiq.def, ...

CMIP6 IPSL workflow :
with XIOS, LMDZ outputs files containing single timeseries of requested variables of CMIP

Alert messages in output of control printing file or in file ALERTES.txt :
We have introduced a routine called prt_alerte_mod.F90 to print informative alert messages = see for information:
https://Imdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia/index.php/HowTo:_Print_alert_messages
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Output specific files :
« history » output files of COSP

* COSP : CFMIP Observation Simulator Package
> simulator : a diagnostic code that computes pseudosatellite observations from model variables in order to compare
them to real satellite observations
> Cosp implemented in LMDZ to evaluate the representation of cloud process in the models
(https://Imdz.Ilmd.jussieu.fr/Members/aidelkadi/cosp)

> COSP has simulators for these satellite cloud products:
ISCCP, CALIPSO, CLOUDSAT, PARASOL, MISR, MODIS

» 2 versions of COSP implemented in LMDZ model :
> cospvl (used for CMIP6 exercise)
> cospv2 (new version of cosp with more diagnostics)

> Cosp routines in directory :
v Cospvl ....LMDZ/libf/phylmd/cosp
v Cospv2 ....LMDZ/libf/phylmd/cospv2
Cosp output routines :
cospvl: cosp_output_mod.F90 and cosp_output_write_mod.F90
cospv2: Imdz_cosp_output_mod.F90 and Imdz_cosp_output_write_mod.F90

e To run LMDZ simulation with COSP simulator :
> Compile LMDZ model with option : makelmdz/makelmdz_fcm -cosp none/v1/v2 ....
> Activate COSP in LMDZ simulation : ok_cosp=y in config.def file
> cosp_input.txt and cosp_output.txt : Cosp namelist files to control input and output of simulators
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Output specific files :

« history » output files of COSP

The same philosophy, as described before for LMDZ history files, is used with IOIPSL and XIOS:
* 3 outputs files for COSP: histmthCOSP.nc, histdayCOSP.nc, histhfCOSP.nc
Lot of cloud diagnostics : low, mid, hight level, total, vertical distribution of cloud fraction, ...

* The control keys of files and variables :

> With IOIPSL library:
cosp_outfilenames = histmthCOSP.nc histdayCOSP.nc histhfCOSP.nc

cosp_outfilekeys = vy y n
cosp_ecritfiles = 1mth 1day 3h
cosp_outfiletypes = ave(X) ave(X) inst(X)
cles_cllcalipso = y y n

name_cllcalipso LowCldMth LowCldDay  LowCIldHf

> With XIOS library:
Variables defined in XML file: field_def_ cospl.xml / field_def_ cospv2.xml
Output files defined in XML files:
file_def _histmthCOSP_Imdz.xml / file_def_histmthCOSPv2_Imdz.xml
file_def_histdayCOSP_Imdz.xml / file_def_histmthCOSPv2_lmdz.xml
file_def_histhfCOSP_Imdz.xml / file_def_histhfCOSPv2_Imdz.xml

e Number of Cosp output variables (approx.) : +70(cospvl) +110(cospv2)
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