LMDZ outputs

LMDZ Training, january 2026

Outline

Introduction

«history» files

«restart» files

«control printing and error messages» file / specific output files

Abderrahmane IDELKADI

LMDZ outputs

LMDZ Training, january 2026

Introduction

LMDZ outputs include

* «history» files : they gather instantaneous or averaged diagnostic variables
» «restart» files : used to extend or to restart a simulation

* «control printing» file : collects all control and error messages

Netcdf / IOIPSL. / XIOS libraries

* LMDZ «history» and «restart» files are in NetCDF format and written using either :
> directly the NetCDF library or
> TOIPSL/XIOS libraries : developed at IPSL for model I/Os using the NetCDF library

* «restart » files of dynamics and phisics modules are written using directly NetCDF

» «history» output files
> are written by using IOIPSL/XIOS libraries

> For « history » files, the output of variables consists in 2 steps:
v definition of the variables to output (during initialisation of the run)

v computation and writing of the variables (during the simulation)

LMDZ outputs

LMDZ Training, january 2026

Introduction
IOIPSL. / XIOS libraries

LMDZ «history» output files are written by using IOIPSL/XIOS libraries

o IOIPSL library :

> older and easy to use (outputs controlled in def files)

> not parallelized = with IOIPSL : each process writes its own history files in its domain. Then, global file is

reconstructed from these various files by using the rebuild utility distributed with the IOIPSL library.

> limited in the mathematical operations on the output variables, canot output variables with more than 3D, ...

o XIOS: XML-IO-SERVER

>

Based on client-server principle = 1O server manages the outputs so that the climate code does not waste time
on its outputs, it just sends them to the IO server = code not slowed down by outputs

All aspects of the outputs (name, units, post-processing frequencies, operations, ...) are controlled by external
xml files = no recompilation of code necessary when changing IO definitions

Don’t need rebuilding the global file in parallel mode

Lots of functionalities with more mathematical transformations : reading files, filters and transformations, on-
the-fly interpolation to a particular grid, on-the-fly timeseries output

But to use XIOS, needs to install additional libraries (mpi, boost, blitz)

LMDZ outputs

LMDZ Training, january 2026
«history» outputs of the physics module

Generalities

e 10 « history » output files :
managed according to a scheme witch allows to control individually the output of the variables in 10 files

> 5 basic files that are used most often :
monthly/daily/high frequency - averege/instantanous

> 5 output files with particular uses :
~ histstn.nc = fields for a number of grid points (data sites was requested by CMIP)
3 files : histmthNMC.nc, histdayNMC.nc, histhfNMC.nc (was requested by CMIP) =
outputs interpolated on 17 standard levels pressures (in hPa):
1000., 925., 850., 700., .600., 500., 400., 300., 250., 200., 150., 100., 70., 50., 30., 20., 10.
» histstrataer.nc = Outputs of stratospheric aerosols

* Qutput variables :
> 2D fields are written on the horizontal grid of the model (longitude, latitude)

> 3D fields are written on a the horizontal and verticale grid :
v 2D (longitude,latitude)
v vertical level : the hybrid coordinate system is used for the verticale in LMDZ
= More detail in « Dynamics » presentation (Ehouarn)

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

Control of output files and variables

~~ - Flags to control the activation of the output of files / change the name of files and variables

- Flags controlling how many and which variables are written to each output file

* types of keys<
- Flags controlling time frequencie/mathematical operation used to write in output file

“— - Flags to activate and define the output on a limited domain

- with IOIPSL in def files (config.def or output.def)
* Keys controlled
- with XIOS in xml files (field_lmdz.xml, file_hist*_Imdz.xml)

> Sample def and xml files are in DefLists directory :

../modipsl/modeles/LMDZ/DefLists

LMDZ outputs

LMDZ Training, january 2026
«history» outputs of the physics module

Control of activation of output of files / change the name of output files and variables

- flag used to activate or not the output of files

 3flags: < - flag used to change the name for each of output files

- flag used to change the name of the output variable in each output file

* In practice, how to control these keys ?
> With IOIPSL in config.def or output.def:

phys_out_filekeys = y y n y n
phys_out_filenames = histmth histday histhf histins histLES
name_tsol = ts_mth ts_day ts_hf ts_ins tsol

2> With XIOS in file_histhf Ilmdz.xml
<file_definition>
<file_group id="defile" >
<file id="histhf" name="histhf" output_freq="3h" output_level="2" enabled="TRUE ">
<field_group operation="average" ...
<field field_ref="tsol" name="ts_hf" level="1" />

e Default values in the code (.../LMDZ/libf//phylmd/phys_output_mod.F90) :
» File names : histmth histday histhf6h histhf3h histhf3hm histstn histmthNMC histdayNMC histhfNMC histstrataer

> Activate/not: 'y n n n n n n n n n
> Default names of variables are defined in : .../LMDZ/libf//phylmd/phys_output_mod.F90

LMDZ outputs

LMDZ Training, january 2026
«history» outputs of the physics module
Controlling of how many and which variables to write in the output files

* Principle :
> For each output file fileN.nc (N from 1 to 10) = an output level file_level(N), which is an integer :
phys_out_filelevels = file_level(1) ... file_level(N) ... file_level(10)

> For each output variable Var = an output level flag_Var(N) associated with fileN.nc, which is an integer :
flag_Var = flag_Var(N) ... flag _Var(N) ... flag_Var(10)

= If flag_Var(N) < file_level(N) then variable Var will be defined and written to the file fileN.nc

 In practice, how to control these keys ?
> With IOIPSL in config.def or output.def:

phys_out_filekeys = y y n y n
phys_out_filenames = histmth histday histhf histins histLES
phys out filelevels = 5 1 1 1 1
flag tsol = 1 2 3 4 5

> With XIOS in file_histday_lmdz.xml :

<file_definition>

<file id="histday" ... output_freq="1d" output level="2">
<field field_ref="tsol" level="2" />

* Default values in the code (.../LMDZ/libf//phylmd/phys_output_mod.F90) :
> file_level(1:10) : 2 1 1 1 1 1 5 5 5 5
> tsol_levels(1:10) : 1 1 1 5 10 10 11 11 11 11

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

Control of time frequencie and mathematical operation used to write in output files

- Flag controlling the time frequencies of output files :
(mounthly, daily, hourly, physical time step)

» 2flags:
- Flag to control mathematical operations used to archive variables :

(instantaneous, average , min, max)

 In practice, how to control these keys ?

> With IOIPSL in config.def or output.def:
phys_out_filekeys y y n y n
phys_out_filenames histmth histday histhf histins histLES

phys_out_filetimesteps = 1mth 1day 6h 3h 1TS
phys_out_filetypes = ave(X) ave(X) ave(X) inst(X) inst(X)
> With XIOS in file_histmth lmdz.xml :
<file_definition>
<file_group id="defile">
<file id="histmth" output_freq="1m" output_level="2" ...

<field_group operation="average" ...

e Default values in the code (.../LMDZ/libf/phylmd/phys_output_mod.F90) :
> output time frequency: 1month 1day 3hours 30mn 3hours 30mn 1month lday 6hours 1month

> archive operation : ave(X) ave(X) inst(X) inst(X) ave(X) inst(X) inst(X) inst(X) inst(X) ave(X)

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

Control of output on a limited domain
- Flag to activate or note the output on limited domain for each file
> Flags : {

- Flage Flags to define the limited horizontal domain for each file
- Flag to define the limited vertical axis for each file

* In practice, how to control these keys ?

> With IOIPSL in config.def/outputs.def:
phys_out_filekeys = y y y y n
phys_out_filenames = histmth histday histhf histins histLES
v to activate or note the output on limited domain for each file :

phys_out_regfkey = n n y n n
v to define the limited horizontal domain for each file :
phys_out_lonmin = -180 -180 0 -180 -180
phys_out_lonmax = +180 +180 90 +180 +180
phys_out_latmin = -90 -90 -30 -90 -90
phys_out_latmax = +90 +90 +40 +90 +90
v to define the limited vertical axis for each file :
phys_out_levmin= 1 1 1 1 1
phys_out_levmax= 39 39 3 39 39

> With XIOS in context_Imdz.xml
<domain_definition>
<domain id="dom_glo" data_dim="2" />
<domain id="dom_MyRegion" domain_ref="dom_glo">
<zoom_domain id="dom_MyRegion" ibegin="12" jbegin="14" ni="8" nj="10" />
</domain>
</domain_definition>

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module :

In practice, with IOIPSL.:
In config.def file :

Activate or not the output of the file =y (yes), n (no)
phys_out_filekeys = y y n y n

Name of files :
phys_out_filenames = histmth histday histhf6h histhf histins

Q1 : Which files will be written here?

LMDZ outputs

LMDZ Training, january 2026
«history» outputs of the physics module :

In practice, with IOIPSL.:
In config.def :

Activate or not the output of thefile = y(yes), n (no)
phys_out_filekeys = y y n y n

Name of files :
phys_out_filenames = histmth histday histhféh histhf histins

Time frequency = mth/mo/mois/.. (month), day/jour/j/.. (day), hour/heure/h/.. (hour), TS/ts (time step of physics), ...
phys_out_filetimesteps = 1mth 1day 6hr 3hr 1TS

Archive operation = inst(X) (instantaneous), ave(X) (average), t min(X) (min), t max(X) (max)

phys_out_filetypes = ave(X) ave(X) ave(X) inst(X) inst(X)

Q2 : For each file to be written, can you give me the time frequency and the mathematical operation used to
output the variables?

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module :

In practice, with IOIPSL.:

In config.def or output.def, file = we can change the control keys of output files :

Activate or not the output of the file = y(yes), n (no)
phys_out_filekeys = y y n y n

Name of files :
phys_out_filenames = histmth histday histhf6éh histhf histins

Output level of files = 0, 1, ... (integer)
phys_out_filelevels = 5 2 2 1 1

writing of variable in output files : 0, 1, ... (integer)
flag_tsol = 2 3 7 10 10

Q3 : In wich output files tsol will be written here ?
Q4 : If you want to output tsol in histday.nc file how to do it ?

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module:
In practice with IOIPSL.:

Control the output of variables on a limited domain :

phys_out_filekeys = n y n n
phys_out_filenames = histmth histday histhf histins

Activate or note the output on a limited domain
phys_out_regfkey = n y y n

Longitude min and max of domain
phys_out_lonmin = -180 -5 -180 -180
phys_out_lonmax = +180 +10 +180 +180
Latitude min and max of domain

phys_out_latmin = -90 +40 -90 -90

phys_out_latmax = +90 +53 +90 +90
Vertical level min and max

phys_out_levmin = 1 1 1 1

phys_out_levmax = 39 5 39 39

Q1 : In this case, for which output file will we activate the outputs on a limited domain ?
On which horizontal and vertical grids?

LMDZ outputs

LMDZ Training, january 2026
«history» outputs of the physics module
In practice with XIOS

- Download XIOS from : http://forge.ipsl.jussieu.fr/ioserver/ XIOS

* Need to - Compile LMDZ with XIOS : makelmdz / makelmdz_fcm with options :
-i0 xios (only XIOS), -io mix (both IOIPSL and XIOS), -io ioipsl : only IOIP)

- To put : ok_all_xml =y in run.def / config.def file to get xml to control everything
e Xml file : one file, at least must be present (model will crash if this file is absent) = iodef.xml

<simulation>

<context id="xios">
<variable_definition>
<variable_group id="buffer">
buffer_size = 85000000
buffer_server_factor_size = 2
</variable_group>
<variable_group id="parameters" >
<variable id="using_server" type="bool">true</variable>
<variable id="info_level" type="int">0</variable>
</variable_group>
</variable_definition>
</context>
<context id="LMDZ" src=""./context_Imdz.xml" />

</simulation>

http://forge.ipsl.jussieu.fr/ioserver/

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

In practice With XIOS
e XML files = context Imdz.xml :

<context id="LMDZ">
<!-- Define available variables -->
<field_definition src="./field_def Imdz.xml"/>

<!-- Define output files. Each file contains the list of variables and their output levels -->
<file_definition src="./file_def_histday_lmdz.xml"/>

<!-- Define domains and groups of domains -->
<domain_definition>

<domain id="dom_regular" ni_glo="144" nj_glo="143" type="rectilinear" >
<generate_rectilinear_domain lat_start="-90" lat_end="90" lon_start="0"/>
<interpolate_domain order="1"/>

</domain>

</domain_definition>

<I-- Define groups of vertical axes -->
<axis_definition>

<axis id="time_month" n_glo="12" value="(0,11)[123456 78910 11 12]"/>

</axis_definition>
<grid_definition>
<grid id="grid_glo">
<domain domain_ref="dom_glo" />
</grid>

</grid_definition>
</context>

LMDZ outputs

LMDZ Training, December 2024
«history» outputs of the physics module

In practice with XIOS

e Xml files = field def Imdz.xml

<definitionfield_definition level="1" prec="4" operation="average" freq_op="1ts" enabled=".true."
default_value="9.96921e+36">

<field_group id="fields_2D" domain_ref="dom_glo">
<field id="phis" long_name="Surface geop.height" unit="m2/s2" />
<field id="ffonte" long_name="Thermal flux for snow melting" unit="W/m2" />

</field_group>

<field_group id="fields_3D" domain_ref="dom_glo" axis_ref="presnivs">
<field id="tke" long_name="TKE" unit="m2/s2" />

</field_group>

<field_group id="fields_ NMC" domain_ref="dom_glo" axis_ref="plev'>
<field id="ta" long_name="Air temperature" unit="K" />

</field_group>

<field_group id="fields_ COSP_CALIPSO" domain_ref="dom_glo" freq_op="3h">
<field id="cllcalipso"” long_name="Lidar Lowlevel Cloud Fraction" unit="1"/>

</field_group>
</field_definition>

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module

In practice with XI0S

e XML files = file def histday lmdz.xml :

<file_definition>
<file_group id="defile">
<file id="histday" name="histday" output_freq="1d" output_level="2" enabled="TRUE">
<I'VARS 2D >
<field_group operation="average" freq_op="1ts">
<field field_ref="phis" level="1" />

;.field field_ref="ffonte" level="10" />

<field_group operation="average" freq_op="1ts" detect_missing_value=".true.">
<field field_ref="u850" level="7" />

</field_group>

</field_group>

<I'VARS 3D >

<field_group operation="average" freq_op="1ts" axis_ref="presnivs">
<field field_ref="cldtau" level="5" />

</field_group>

</file>
</file_group>
</file_definition>

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module:
Approximate number of output variables (LMDZ svn5855) ~ 1314 fields

Scalars and 1D-fields

Isotropic diagnostics
3D fields

Tracer diagnostics

2D fields

Aerosol diagnostics

Meteorological diagnostics

Radiative diagnostics

LMDZ outputs

LMDZ Training, january 2026

«history» outputs of the physics module:
How to add a new output variable ?

libf/phylmd/phys_output_ctrlout.F90 :

declaration of output level, name, description, unit, archiving operation of variable
* 2 routines need to be modified

libf/phylmd/phys_output_write.F90 :

write the new variable in each file

* Example for «my_newvar» variable :
> Declaration of variable in ...LMDZ//libf/phylmd/phys_output_ctrlout.F90
type(ctrl_out), save :: o_my_newvar = ctrl_out((/1,1,1,5,10,11,11,11,11,11/), &
'my_newvar',' My New field', 'K', &
(/ 'ave(X)', 'ave(X)', 'ave(X)', ave(X), inst(X), &
"inst(X)','inst(X)',"'inst(X)’, 'inst(X)’','ave(X)' /))

> Write a new variable in .../LMDZ/libf/phylmd/phys_output_write.F90
call histwrite_phy(o_t2m_min, znewvar)
znwvar : variable calculated in the code that corresponds to my_new_var

> To add variable to the XIOS output files = you also need to add them to the xml files
(necessarily in field_lmdz.xml)

LMDZ outputs

LMDZ Training, january 2026

«Restart» files :

e '"restarts" files contain the final state of the simulation =
used to extend this simulation or to restart an other new one

* The dynamical and physical modules each write their own restart file (restart.nc and restartphy.nc).
These files save the state variables that the model needs at each time step so that :
the model can be restarted without losing continuity (in practical terms this is known as «1+1=2»)

* Routines involved in this process are :
> for the dynamical module :
v .../.LMDZ/Nlibf/dyn3d/dynredem.F90 / .../LMDZ/libf/dyn3dmem/dynredem_mod.F90
v .../LMDZ/Nlibf/dyn3d/dynetat0.F90 / .../LMDZ/libf/dyn3dmem/dynetat0_loc.F90

> for the physics module :
v .../.LMDZ/Nibf/phylmd/phyredem.F90 / .../LMDZ/libf/phylmd/phyredem.F90
v .../LMDZ//Mibf/phylmd/phyetat0.F90 /.../LMDZ//libf/phylmd/phyetat0_mod.F90

* These routines do not use the IOIPSL library and are interfaced directly with the NetCDF library.

LMDZ outputs

LMDZ Training, january 2026

files of control printing and error messages:

* Controlling output messages :

> Most of control outputs and messages are written to standard output (the screen) by the use of commands such as:

print¥, or write(*,*) 'ma variable =/, ...

> A cleaner mechanism exists to output these messages to a file rather than the screen :

v to include in any new routine, the iniprint.h file = #include iniprint.h

- lunout : a unit number corresponding to the output file
(if lunout # 6 = Imdz.out file is created and assigned to this number)
in iniprint.h are defined 2 parameters
- prt_level : an output level

The value of these two parameters can then be modified in the run.def file

v to use them in the routine you then just need to add lines such as :
IF (prt_level>9) WRITE (lunout,*) 'pas de convection'
While keeping small values of prt_level for really important messages

LMDZ outputs

LMDZ Training, january 2026

Output file of control printing and error messages:

* What use are they ?

If the model crashes or does not seem to run properly, these output messages should give you an indication of what’s
going on.

> The first thing todois: grep ‘Houston, we have a problem ’ output_file
As the model will output this string with an indication of the problem it encountered, when the problem has been
anticipated by the developers (might be a configuration problem, a temperature that’s suddenly out of range, ...)

> If the string is not found and no obvious error (segmentation fault, memory violation,
floating point exception) can be found in the output messages =
v to recompile the model with the -debug option
v and run it again.
= It should now give you an indication of :
v the line
v the routine that is causing the crash.
= Once found, you can :
v start debugging the routine or
v call for help with some vital information.

LMDZ outputs

LMDZ Training, january 2026

Output specific files :

«history» file for the dynamics module :
only consists of the variables of state (U, V, T, Q, Ps) at two frequencies : instantaneous and averaged.

«history» output files of COSP (CFMIP Observation Simulator Package) :
3 output files (monthly, daily and HF) with a lot of cloud diagnostics

Output files with variables in the GrADS format :
to help with the debugging of the code, there is also a mechanism which writes the variables in the GrADS format by
using directly NetCDF library

Files with all the control parameters used for the simulation :
a mechanism to write files with all the control parameters effectivly read and used for the simulation : used_run.def,
used_config.def, used_physiq.def, ...

CMIP6 IPSL workflow :
with XIOS, LMDZ outputs files containing single timeseries of requested variables of CMIP

Alert messages in output of control printing file or in file ALERTES.txt :
We have introduced a routine called prt_alerte_mod.F90 to print informative alert messages = see for information:
https://Imdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia/index.php/HowTo:_Print_alert_messages

LMDZ outputs

LMDZ Training, january 2026

Output specific files :
« history » output files of COSP

* COSP : CFMIP Observation Simulator Package
> simulator : a diagnostic code that computes pseudosatellite observations from model variables in order to compare
them to real satellite observations
> Cosp implemented in LMDZ to evaluate the representation of cloud process in the models
(https://Imdz.Ilmd.jussieu.fr/Members/aidelkadi/cosp)

> COSP has simulators for these satellite cloud products:
ISCCP, CALIPSO, CLOUDSAT, PARASOL, MISR, MODIS

» 2 versions of COSP implemented in LMDZ model :
> cospvl (used for CMIP6 exercise)
> cospv2 (new version of cosp with more diagnostics)

> Cosp routines in directory :
v CospvlLMDZ/libf/phylmd/cosp
v Cospv2LMDZ/libf/phylmd/cospv2
Cosp output routines :
cospvl: cosp_output_mod.F90 and cosp_output_write_mod.F90
cospv2: Imdz_cosp_output_mod.F90 and Imdz_cosp_output_write_mod.F90

e To run LMDZ simulation with COSP simulator :
> Compile LMDZ model with option : makelmdz/makelmdz_fcm -cosp none/v1/v2
> Activate COSP in LMDZ simulation : ok_cosp=y in config.def file
> cosp_input.txt and cosp_output.txt : Cosp namelist files to control input and output of simulators

LMDZ outputs

LMDZ Training, january 2026
Output specific files :

« history » output files of COSP

The same philosophy, as described before for LMDZ history files, is used with IOIPSL and XIOS:
* 3 outputs files for COSP: histmthCOSP.nc, histdayCOSP.nc, histhfCOSP.nc
Lot of cloud diagnostics : low, mid, hight level, total, vertical distribution of cloud fraction, ...

* The control keys of files and variables :

> With IOIPSL library:
cosp_outfilenames = histmthCOSP.nc histdayCOSP.nc histhfCOSP.nc

cosp_outfilekeys = vy y n
cosp_ecritfiles = 1mth 1day 3h
cosp_outfiletypes = ave(X) ave(X) inst(X)
cles_cllcalipso = y y n

name_cllcalipso LowCldMth LowCldDay LowCIldHf

> With XIOS library:
Variables defined in XML file: field_def_ cospl.xml / field_def_ cospv2.xml
Output files defined in XML files:
file_def _histmthCOSP_Imdz.xml / file_def_histmthCOSPv2_Imdz.xml
file_def_histdayCOSP_Imdz.xml / file_def_histmthCOSPv2_lmdz.xml
file_def_histhfCOSP_Imdz.xml / file_def_histhfCOSPv2_Imdz.xml

e Number of Cosp output variables (approx.) : +70(cospvl) +110(cospv2)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

