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Abstract The objective of this work is to gain a general

insight into the key mechanisms involved in the impact of

nudging on the large scales and the small scales of a

regional climate simulation. A ‘‘Big Brother experiment’’

(BBE) approach is used where a ‘‘reference atmosphere’’ is

known, unlike when regional climate models are used in

practice. The main focus is on the sensitivity to nudging

time, but the BBE approach allows to go beyond a pure

sensitivity study by providing a reference which model

outputs try to approach, defining an optimal nudging time.

Elaborating upon previous idealized studies, this work

introduces key novel points. The BBE approach to optimal

nudging is used with a realistic model, here the weather

research and forecasting model over the European and

Mediterranean regions. A winter simulation (1 December

1989–28 February 1990) and a summer simulation (1 June

1999–31 August 1999) with a 50 km horizontal mesh grid

have been performed with initial and boundary conditions

provided by the ERA-interim reanalysis of the European

Center for Medium-range Weather Forecast to produce the

‘‘reference atmosphere’’. The impacts of spectral and

indiscriminate nudging are compared all others things

being equal and as a function of nudging time. The impact

of other numerical parameters, specifically the domain size

and update frequency of the large-scale driving fields, on

the sensitivity of the optimal nudging time is investigated.

The nudged simulations are also compared to non-nudged

simulations. Similarity between the reference and the

simulations is evaluated for the surface temperature,

surface wind and for rainfall, key variables for climate

variability analysis and impact studies. These variables are

located in the planetary boundary layer, which is not sub-

ject to nudging. Regarding the determination of a possible

optimal nudging time, the conclusion is not the same for

indiscriminate nudging (IN) and spectral nudging and

depends on the update frequency of the driving large-scale

fields sa. For IN, the optimal nudging time is around s = 3

h for almost all cases. For spectral nudging, the best results

are for the smallest value of s used for the simulations

(s = 1 h) for frequent update of the driving large-scale

fields (3 and 6 h). The optimal nudging time is 3 for 12 h

interval between two consecutive driving large-scale fields

due to time sampling errors. In terms of resemblance to the

reference fields, the differences between the simulations

performed with IN and spectral nudging are small. A

possible reason for this very similar performance is that

nudging is active only above the planetary boundary layer

where small-scale features are less energetic. As expected

from previous studies, the impact of nudging is weaker for

a smaller domain size. However the optimal nudging time

itself is not sensitive to domain size. The proposed strategy

ensures a dynamical consistency between the driving field

and the simulated small-scale field but it does not ensure

the best ‘‘observed’’ fine scale field because of the possible

impact of incorrect driving large-scale field. This type of

downscaling provides an upper bound on the skill possible

for recent historical past and twenty-first century projec-

tions. The optimal nudging strategy with respect to

dynamic downscaling could add skill whenever the parent

global model has some level of skill.

Keywords Optimal nudging � Regional climate

modelling � Dynamical downscaling � Big Brother

experiment � Uncertainty � Internal variability

H. Omrani (&) � P. Drobinski � T. Dubos
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1 Introduction

Dynamical downscaling has been widely used to produce

regional climate description at fine scales (e.g. Hewitson

and Crane 1996). With dynamical downscaling, a regional

climate model (RCM) is driven at its boundaries by large-

scale fields provided by analysis, reanalysis or a global

climate model (GCM). The RCM is then expected to

simulate high resolution physical processes consistent with

the prescribed large scale weather evolution.

RCMs can be of different types. They can be a GCM

with grid refinement over a specific region. The refinement

can be done using a mesh stretching technique (e.g.

Hourdin et al. 2006) or by moving the model pole over the

region of interest (e.g. Déqué and Piedelievre 1995). RCMs

can also be a limited area model (LAM). LAMs were

originally developed for process studies at fine scale over

meteorological time scales (few days simulation; e.g.

Lebeaupin-Brossier and Drobinski 2009). With increasing

computer resources, their use have been extended to

regional climate modeling (e.g. Crétat et al. 2012;

Flaounas et al. 2012a).

Both GCMs and LAMs are sensitive to the resolution

and the content of physical parametrizations (Seth and

Giorgi 1998; von Storch et al. 2000; Giorgi and Bi 2000;

Alexandru et al. 2009; Crétat et al. 2012). Regarding

LAMs specifically, previous studies have investigated the

specific sensitivity of the predictions to the update fre-

quency of the boundary conditions, the size and resolution

of the domain of simulation in order to prevent these

models to mislead (Bhaskaran et al. 1996; Noguer et al.

1998; Seth and Giorgi 1998; Denis et al. 2002, 2003;

Castro et al. 2005).

In the context of regional climate modeling, long-term

simulations of typically few decades have to be performed.

Lo et al. (2008) showed that continuous runs can produce

very low score when the simulations are compared to

observations and that simulations re-initialised periodically

have better results than continuous runs. However re-ini-

tialization creates discontinuities which are detrimental for

time variability studies. All these studies have shown that

RCMs possess an internal variability with a far from neg-

ligible impact on regional climate predictions.

One way to reduce internal variability is to apply large-

scale nudging. This technique consists in partially impos-

ing the large scale of the driving fields (DF) on the RCM

simulation with the aim of disallowing large and unrealistic

departures between driving and driven fields. Two different

types of nudging exist: indiscriminate nudging which

consists in relaxing the RCM’s prognostic variables

towards the GCM values within a predetermined relaxation

time (e.g. Davies and Turner 1977; Salameh et al. 2010;

Omrani et al. 2012a) and spectral nudging which consists

in driving the RCM on selected spatial scales (e.g. Waldron

et al. 1996; von Storch et al. 2000; Radu et al. 2008;

Omrani et al. 2012b). IN is also referred to as data

assimilation, dynamical or Newtonian relaxation, grid-

point nudging or analysis nudging (Davies and Turner

1977; Stauffer and Seaman 1994; Lo et al. 2008; Salameh

et al. 2010; Omrani et al. 2012a). Both nudging techniques

require the definition of a relaxation time controlling

the nudging strength, with no obvious physical basis

(e.g. Stauffer and Seaman 1990; Radu et al. 2008). A

theoretical and practical issue is how the choice of this

relaxation time affects the quality of the model outputs, and

which values of the relaxation time are to be preferred.

This specific issue has been partially addressed using

idealized numerical frameworks. In Salameh et al. (2010),

the impact of IN on regional climate modeling has been

investigated using a toy model consisting in resolving a

linear transport equation with a Newtonian relaxation term.

The toy model suffers from the same drift phenomenon as a

complex atmospheric model and needs to be nudged as

well. Salameh et al. (2010) consider the impact of the

nudging time on the root-mean-square error of the mod-

elled small and large scales. They predict the existence of

an optimal nudging time minimizing the total error which

depends on the time scale over which numerical errors

affect significantly the accuracy of the solution at the large

spatial scales, and the typical time scale of the small-scale

phenomena that are not resolved in the coarse-resolution

DF. However, since the toy model is linear, its drift is

solely due to accumulating numerical errors and not to a

genuine unpredictability. To overcome this limitation,

Omrani et al. (2012a, b) have used a two-layer quasi-

geostrophic (QG) model which presents more similarities

to atmospheric dynamics. They used a ‘‘Big-Brother

experiment’’ (BBE) approach, where a reference atmo-

spheric state is known (Denis et al. 2002; De Elia et al.

2002) and investigated the impact on the QG internal

variability of IN (Omrani et al. 2012a) and spectral nudg-

ing (Omrani et al. 2012b). They investigated the link

between nudging and atmospheric predictability, numerical

domain size, model resolution, and update frequency of the

driving large-scale fields. In Omrani et al. (2012a), it has

been shown that for IN, there is a trade-off between the

adverse effect of nudging on small scales and the departure

of the large-scales from the DF. This trade-off defines an

optimal nudging time for which the small scales produced

by the RCM are best correlated with a reference field. For a

small domain, the boundary conditions sufficiently control

the atmospheric dynamics and low sensitivity is found on

the nudging time. Omrani et al. (2012b) showed that in

spectral nudging, this trade-off does not exist since small

scales are not affected. Contrary to expectations, an infi-

nitely strong spectral nudging does not produce optimal
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reconstruction of the small scales. Indeed, this would be

true only if the DF were fully resolved in time. In fact they

are typically sampled at intervals of a few hours, poten-

tially undersampling smaller-scale phenomena that tend to

evolve more rapidly. A consequence is that care must be

given to the spatial resolution of the DF to ensure that they

are adequately time-resolved. Omrani et al. (2012b) pro-

posed a practical means to check that the forcing fields are

adequately time-resolved and degrade their spatial resolu-

tion as necessary.

Of course, the simple nature of the QG model does not

allow to transpose straightforwardly the results to real

regional modelling. However, the use of dimensionless

parameters in Omrani et al. (2012a, b) gives a method-

ology to evaluate with a realistic RCM how to realize the

potential benefit of nudging as a function of other

numerical parameters, here mainly the domain size and

the frequency of update of boundary conditions. The

RCM used in this study is the weather and research

forecasting (WRF) LAM (Skamarock and Klemp 2007).

Compared to the QG model used in Omrani et al. (2012a,

b) the WRF model approaches much better the full

complexity of the atmospheric processes. Compared to

previous studies examining the sensitivity of RCM results

to domain size and the frequency of update of boundary

conditions (e.g. Bhaskaran et al. 1996; Noguer et al.

1998; Seth and Giorgi 1998; Denis et al. 2002; Denis

et al. 2003; Castro et al. 2005), we address here specifi-

cally the interaction between these parameters and the

nudging parameters. Previous studies have investigated

nudging impact on regional climate simulations. For

instance Castro et al. (2005) studied the sensitivity of

RAMS model simulations to domain size and also to the

activation of IN but a single large value of the nudging

time (24 h) was considered. Rockel et al. (2008) com-

pared spectrally nudged CLM simulations to the RAMS

simulations of Castro et al. (2005) but the models them-

selves differed in many ways (dynamical core, physics

package) so the comparison was not all other things being

equal. Liu et al. (2012) compared spectral and IN in a

common configuration of the WRF model but a single,

small value of the nudging time (1 h) was used, which

could be unfair to IN. Compared to these studies, we

isolate the effect of nudging without any interference with

other sources of error and uncertainty propagation, by

using a BBE approach, meaning that the same model and

hence the same physics are used. This investigation is

based on an evaluation of the actual benefit of using

nudging, indiscriminate or spectral, for the simulated

variables of greatest importance for regional climate

modeling (surface temperature, wind fields and rainfall).

We compare the two nudging techniques, indiscriminate

and spectral, because both techniques were widely used in

previous studies. Furthermore, it would be interesting to

identify configurations for which the simpler IN produces

results with comparable quality as spectral nudging.

Key novel points of our work, elaborating upon previous

idealized studies (Omrani et al. 2012a, b), are

• the use of a BBE approach which allows the determi-

nation of a possible optimal nudging time for a realistic

model

• the determination of a possible optimal nudging time

for both spectral and IN all others things being equal

• the examination of the impact of other numerical

parameters, specifically the domain size and update

frequency of the large-scale DF, on the sensitivity of

optimal nudging time, as performed in Omrani et al.

(2012a, b) with a QG model.

This study is of particular relevance in the context of the

CORDEX program (cordinated downscaling experiment;

Giorgi et al. 2009) endorsed by the world climate research

program (WCRP). CORDEX aims at developing a frame-

work to evaluate and possibly improve dynamical and

statistical downscaling techniques for use in downscaling

global climate projections. It also aims at fostering an

international coordinated effort to produce improved multi-

model downscaling-based high- resolution climate-change

information over regions worldwide for input to impact /

adaptation work and promoting greater interaction and

communication between global climate modellers, the

downscaling community and end-users to better support

impact/adaptation activities. Our study focus on the first

objective of CORDEX, i.e. evaluating and improving

dynamical downscaling technique. In order to address the

issue of the domain size, two CORDEX domains have been

used: the EURO–CORDEX domain over Europe and the

HyMeX/MED–CORDEX over the Mediterranean domain.

The HyMeX/MED–CORDEX is a joint initiative between

the hydrological cycle in the Mediterranean experiment

(HyMeX; see international science plan on http://www.

hymex.org and Drobinski et al. 2009a, b, 2010, 2011) and

the CORDEX international programs for the specific

investigation of the Mediterranean climate. These two

domains overlap significantly and thus the results can be

compared over the common domain.

This paper is organized as follows. A description of the

model and the experiment set-up is given in Sect. 2 The

impact of nudging on the WRF skill at reproducing

the reference fields over Europe is investigated in Sect. 3

The comparison of the results obtained over the European

and Mediterranean domains is discussed in Sect. 4. Finally,

Sect. 5 summarizes the results and points out some open

research questions needing further investigation.
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2 Numerical setup

2.1 Model description

The model used in this study is the updated version 3.1.1

of the WRF model released on July 31, 2009. WRF is a

LAM, non-hydrostatic, with terrain following eta-coordi-

nate mesoscale modeling system designed to serve both

operational forecasting and atmospheric research needs

(Skamarock and Klemp 2007). The WRF development

is a collaborative partnership, principally among the

National Center for Atmospheric Research (NCAR),

the National Oceanic and Atmospheric Administration (the

National Centers for Environmental Prediction (NCEP) and

the Forecast Systems Laboratory (FSL), the Air Force

Weather Agency (AFWA), the Naval Research Laboratory,

the University of Oklahoma, and the Federal Aviation

Administration (FAA).

We use the physical options chosen to perform the

HyMeX/MED–CORDEX simulations (Lebeaupin-Brossier

et al. 2011, 2012a, b, c; Flaounas et al. 2012a). These

include the WRF single-moment 5-class microphysical

parameterization (Hong and Zhao 1998; Hong et al. 2004),

the new Kain–Fritsch convective parameterization (Kain

2004), the Dudhia shortwave radiation (Dudhia 1989) and

rapid radiative transfer model longwave radiation (Mlawer

et al. 1997) and the Yonsei University planetary boundary

layer scheme (Noh et al. 2003). For the land surface model

(LSM), a 5-layer diffusive scheme is used here but other

simulations are available with the rapid update cycle

scheme (Flaounas et al. 2012a). In the context of HyMeX/

MED–CORDEX, ocean/atmosphere coupled simulations

have also been performed using WRF with such configu-

ration (Drobinski et al. 2012; Claud et al. 2012; Lebeaupin

Brossier et al. 2012c).

In this work we use the BBE (Denis et al. 2002) to

investigate the impact of the indiscriminate and spectral

nudging on WRF skills to produce significant small scales

from low resolution driving data. It consists in first estab-

lishing a reference climate by performing a large-domain

high-resolution RCM simulation: this simulation is called

the Big-Brother (BB). This reference simulation is then

degraded by filtering short scales that are generally unre-

solved by the DF (e.g. global reanalysis and GCMs). This

filtered reference is then used to drive the same nested

RCM (called the Little-Brother LB), integrated at the same

high-resolution as the Big Brother, but over a smaller

domain that is embedded in the BB domain. The resem-

blance between LB and BB over the LB domain is char-

acterized in terms of seasonal and spatial statistics :

standard deviation of LB and of BB, mean bias, root-mean-

square difference and correlation between LB and BB

(Fig. 1). Differences can thus be attributed easily to errors

associated with the nesting and downscaling technique, and

not to model errors nor to observation limitations.

2.2 Nudging

We investigate the two existing nudging techniques, i.e. the

IN and the spectral nudging (SN). The IN technique has

been originally developed for assimilation purposes

(Davies and Turner 1977; Schraff 1997; Yong et al. 1998;

Vidard et al. 2003) but is increasingly popular to drive

RCMs (Flaounas et al. 2012a, b) . The nudging technique

consists in relaxing the model state towards the driving

large-scale fields by adding a non-physical term to the

model equation. This nudging term is defined as the dif-

ference between the observation and the model solution

weighted by a nudging coefficient which is the inverse of

the nudging time. In WRF, IN is represented by the general

following equation [Eq. (1)].

otqLB ¼ FðqLBÞ �
1

s
qLB � qDF½ � ð1Þ

where q is a prognostic variable. The subscripts DF and LB

stand for driving field and LB, respectively. In WRF, IN

can be applied to the wind components u and v (zonal and

meridional wind components, respectively), to the potential

temperature h, and to the water vapor mixing ratio qv. The

models physical forcing terms (advection, Coriolis effects,

etc.) are represented by F(.). The quantity 1/s is the

nudging coefficient, with s a representative time scale for

the artificial nudging term. Following Lo et al. (2008), the

two nudging techniques are applied only above a time-

dependent planetary boundary layer height diagnosed by

the planetary boundary layer scheme. Above that height

the nudging coefficient is constant. For IN, the smaller the

nudging time s, the closer the RCM predictions qLB to the

driving large scale fields fields qDF interpolated on

the RCM grid and the larger the inhibition of the RCM

physics. In this work, the nudging time is the same for all

the nudged variables.

The spectral nudging technique technique consists in

driving the RCM on selected spatial scales only and does

not affect the small scales fields since only the large scales

are relaxed [Eq. (2)].

otqLB ¼ FðqLBÞ �
1

s
qls

LB � qDF

� �
ð2Þ

where qLB
ls is the large-scale part of the LB simulated field

qLB. It is obtained by applying a two-dimensional Fourier

filter to qLB (which resolution is that of a typical RCM,

i.e. about 50 km resolution) with a cutoff wavelength

corresponding to typical GCM resolution (i.e. about

300 km). As for indiscriminate nudging, spectral nudging

in WRF can only be applied to the wind components and
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potential temperature. Spectral nudging is applied above

the planetary boundary layer with a constant nudging

coefficient which is chosen equal for all nudged variables.

2.3 Simulations

An ensemble of 144 simulations has been performed with

varying domain size, update frequency of the driving large-

scale fields (sa) and nudging time (s) for winter and sum-

mer and for indiscriminate and spectral nudging (Table 1).

The BB simulation was performed over a large domain

covering Europe and North Africa (Fig. 2) with 130 9 140

horizontal grids points with a 50 km horizontal mesh grid

(as required within CORDEX) and 28 vertical levels, the

model top is 50 hPa. A winter simulation starts on 1

December 1989–28 February 1990 with 1 month spin up

(November 1989) and a summer time simulations from 1

June 1999 to 31 August 1999 with 1 month spin up (May

1999). The initial and boundary conditions of the BB

simulation are provided by the ERA-interim reanalysis of

the European Center for Medium-range Weather Forecast

(ECMWF). The resolution of the BB fields are then

degraded using a simple low pass averaging filter to obtain

a resolution of 300 km 9 300 km (typical GCM resolu-

tion) from the 50 km 9 50 km fields. It must be noted here

that the nature of the initial and boundary conditions used

to drive the BB does not matter as long as they represent a

possible realization of the atmospheric state, past or future.

The impact of the quality of the driving large-scale fields is

out of the scope of this study. The aim of this study is to

achieve the best dynamical consistency between the driv-

ing large-scale field and the small-scale field simulated

with a nudged LAM as a RCM.

In this work it is thus not important whether the model

producing the driving fields aims at modelling the actual

history of the atmosphere like reanalyses, or aims only at

modelling a possible realization of atmospheric dynamics

Fig. 1 Big-Brother experiment

approach using a limited area

model (LAM) as a regional

climate model (RCM)

Table 1 Summary of performed simulations

Domain Mediterranean Europe

Resolution (km) 50 9 50 50 9 50

Grid dimensions 54 9 90 98 9 100

Period (JJA), (DJF) (JJA), (DJF)

Analysis frequency sa (h) 3, 6, 12 3, 6, 12

Nudging type NN, IN, SN NN, IN, SN

Nudging time s (h) 1, 3, 6, 12 1, 3, 6, 12

The acronyms JJA, DJF, NN, IN and SN stand for June–July–August,

December–January–February, no nudging, indiscriminate nudging

and spectral nudging, respectively
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like in climate modelling, be it purely atmospheric or cou-

pled. Therefore in terms of the downscaling typology pre-

sented in Castro et al. (2005) our work could be relevant to

types 2, 3 or 4 depending on which type of fields are used to

drive the regional model. However, renanalyses are an

accurate characterization of the global weather, but global

climate simulations for both past and future climates are not

(e.g. Stephens et al. 2010; Fyfe et al. 2011; Sun and Liang

2012; Xu and Yang 2012; Van Oldenborgh et al. 2012; Van

Haren et al. 2012). The proposed strategy ensures a

dynamical consistency between the driving field and the

simulated small-scale field but it does not ensure the best

observed fine scale field because of the possible impact of

uncorrect driving large-scale field. This type of downscaling

provides an upper bound on the skill possible for recent

historical past and twenty-first century projections. Our

optimal nudging strategies with respect to dynamic down-

scaling could add skill whenever the parent global model has

some level of skill. For these types of downscaling, as for

gobal climate models, post-processing with de-biasing

techniques is needed to correct the misrepresented features

of the regional climate. This is also absolutely needed for

impact studies which are a key objectives of CORDEX.

When nudging (IN and SN) is used, it is applied above

the planetary boundary layer as suggested by Lo et al.

(2008). The nudged variables are the potential temperature,

wind and moisture.

Two CORDEX domains with different domain sizes are

used in the model sensitivity experiments. These are the

EURO–CORDEX and HyMeX/MED–CORDEX domains

covering Europe and the Mediterranean regions (Fig. 2).

The HyMeX/MED–CORDEX domain is embedded within

the EURO–CORDEX domain (the HyMeX/MED–COR-

DEX domain is smaller since a strong focus is put on ocean/

atmosphere coupled runs which requires more computer

resources). This ‘‘nested’’ domain approach allows to

compare the two sensitivity experiments on the common

domain (i.e. the HyMeX/MED–CORDEX domain).

The investigated region is also of strong climate interest

since located in a transition zone between the humid western

and central European domain and the arid North African

desert belt and it is affected by interactions between mid-

latitude and tropical processes. It displays a very pronounced

seasonal cycle characterized by wet-cold winters and dry-

warm summers (Peixoto et al. 1982). Winter in the region is

strongly affected by large scales patterns. At the southern

limit of the North Atlantic storm tracks, the region is par-

ticularly sensitive to interannual displacement of the trajec-

tories of mid-latitude cyclones that can modulate the

precipitation (Rodriguez Fonseca and Castro 2002). In the

summer, high pressure and descending motions dominate

over the region, leading to high temperature and long periods

of drought (Xoplaki et al. 2004; Trigo 2006; Stéfanon et al.

2012). In addition to global scale processes and telecon-

nections, the regional climate is affected by local processes

induced by the complex physiography of the region and the

presence of the Mediterranean Sea, such as strong regional

winds (e.g. Drobinski et al. 2001; Drobinski et al. 2005;

Guénard et al. 2005, 2006) and heavy precipitation (e.g.

Ducrocq et al. 2008). The contrast between the two seasons

prompted us to conduct our studies on two different periods

because the physical and dynamical processes involved are

not the same and the effect of nudging may differ between

winter and summer.

In the following, we identify simulations over the

Mediterranean domain as LB–Med and over Europe as

LB–Euro. Contrary to Omrani et al. (2012b), we can not

use a wide range of values for the update frequency of the

driving large-scale fields sa because of the diurnal cycle.

The value of sa is thus always smaller than 12 h.

To quantify the ability of the LB to reproduce the ref-

erence field, we used a set of diagnostics similar to those

used in Omrani et al. (2012a, b) to facilitate their inter-

pretation. The mean bias d, the standard deviation r and

the correlation coefficient c.

3 Results over the EURO–CORDEX domain

In this section we will investigate our results over Europe.

In the following, the diagnostics are produced for the sur-

face temperature and wind and for rainfall, for both sake of

Fig. 2 The Big Brother experiment domains and topography in

meters (color shading) as represented in WRF. The Europe and Med

domains correspond to the EURO–CORDEX and HyMeX/MED–

CORDEX domains of the HyMeX and CORDEX international

programs
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simplicity and because they are key variables for climate

variability analysis and impact studies. One must note that

precipitation is not nudged but produced by the physical

parameterizations of the WRF model. Therefore, nudging

has an indirect effect on precipitation through temperature,

humidity and wind through moisture convergence, for

instance. Conversely, even though nudging is not applied

within the planetary boundary layer, surface temperature

and wind are more directly affected by the nudging term.

3.1 Surface temperature field

Figure 3 shows the Taylor diagram for the total space-time

surface temperature in summer (Fig. 3a) and winter

(Fig. 3b) for the simulations performed in the absence of

nudging (NN with star marker F) and in the presence of

nudging (IN with circle marker � and SN with square

marker h). The Taylor diagram provides a way of graph-

ically summarizing how closely a pattern (or a set of pat-

terns) matches reference field (Taylor 2001). The similarity

between two patterns is quantified in terms of their corre-

lation (c) , their centered root-mean-square difference ð�Þ
and the amplitude of their variations (represented by their

standard deviations r). Notice that we first substract at

each grid point the seasonal mean before computing the

space-time standard deviation and the space-time root-

mean-square difference. The LB patterns that agree well

with BB are the nearest from the point marked ‘‘BB’’ on

the x axis. These patterns have relatively high correlation

and low errors. Models lying on the arc corresponding to

the standard deviation r value of the reference have the

correct standard deviation (which indicates that the pattern

variations are of the right amplitude).

For both seasons, we can only distinguish two ensembles

of markers. An ensemble of three points with star marker

corresponds to the NN simulations using different update

frequencies for the driving large-scale fields (sa = 1, 3, 6 and

12 h). These simulations have the lowest correlation coef-

ficients and the highest root means square error compared to

the second ensemble which corresponds to the nudged

simulations (IN and SN). They have a higher standard

deviation compared to the BB in summer and almost the

same in winter. This shows that independently of the type or

the strength of nudging, IN and SN simulations have the

highest skills with respect to the NN simulations. Looking

in details, we note that the model skill to reproduce the

reference temperature (BB) increases as the updating time

(sa) decreases. Comparing IN and SN we note that in

summer, IN simulation have the highest correlation coef-

ficient, however the SN simulations standard deviation is

Fig. 3 Taylor diagram for

surface temperature in summer

(a) and in winter (b) obtained

from the LB simulations over

the EURO–CORDEX domain.

The red dot indicate the skill

target for the LB simulations

(‘‘BB’’ stands for Big-Brother).

The stars, circles and squares

display the skill scores of the

NN, IN and SN simulations in

the Taylor diagram,

respectively. The red, blue and

black colours correspond to sa =

3, 6 and 12 h, respectively. The

numbers 1, 3, 6 and 12 indicate

the values of the nudging time

(s = 1, 3, 6 and 12 h,

respectively). Zooms into the

small rectangles are displayed

on the right panels
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closer to the BB standard deviation value. Nevertheless, the

difference between the nudged simulations is very small

and thus its significance may be questionable.

The Taylor diagram is a good way to get an overview of

the results but it must be accompanied by space-time

diagnostics. Figure 4 shows the mean biases between the

BB and LB–Euro simulations in the surface temperature in

summer and winter for the NN (Fig. 4a, d), IN (Fig. 4b, e)

and SN simulations (Fig. 4c, f). In summer, when nudging

is not used, we notice a strong warm bias (about ?10 �C)

over Europe and north Africa mainly over land and the

domain centre. This bias is very weak over the sea because

the sea surface temperature (SST) is prescribed from ERA-

interim reanalysis for all simulations, whereas over land the

LSM computes its own surface temperature. In IN and SN

simulations, this bias decreases to about ± 2 �C. The dif-

ference between the two types of nudging is not significant.

Unlike the summer, in winter we note a strong cold bias

(about -6 �C) in Eastern Europe and a smaller bias over

almost the whole domain in the NN simulation. This bias

also disappears in the nudged simulations. The same

behavior is found when using larger sa values (6, 12 h) (not

shown).

This result is consistent with the work of Radu et al.

(2008). Comparing non nudged and spectrally nudged

simulations performed with the spectral RCM ALADIN

over Europe, they found a similar problem of warming over

Southeastern Europe related to a dry bias in summer

through a positive feedback (Rowell and Jones 2006) and a

smaller one in winter. Such summer bias has also been

observed in other studies with WRF model (e.g. Caldwell

et al. 2009) and explained by an overprediction of daily-

maximum temperature which is correlated with a low soil

moisture content. In the present work, the summer bias of

the soil moisture is very small (not shown) because we use

the 5 layer land-surface model which predicts only soil

temperature and prescribes moisture availability given the

land surface cover (Bukovsky and Karoly 2009). So these

explanation does not hold. Another mechanism must

therefore be invoked.

The work by Bowden et al. (2012) also showed a

temperature bias over North America when nudging is not

used. They showed a significant correlation with a 500 hPa

geopotential height bias. Figure 5 shows the 500 hPa

geopotential height mean bias between the BB and LB–

Euro simulations when nudging is not used (Fig. 5a, d)

and for IN (Fig. 5b, e) and SN (Fig. 5c, f) simulations.

The 500 hPa geopotential height bias pattern is very

similar to that of the temperature (Fig. 4). This result is

consistent with the work of Bowden et al. (2012). The

increase in temperature corresponds to an atmospheric

blocking situation artificially created by the model when

nudging is not used. To check whether the blocking is due

to dynamical process linked to the synoptic circulation

over this region or to numerical deficiencies, the simula-

tion domain has been shifted eastwards (upper row of

Fig. 6) and westwards (lower row of Fig. 6) with respect

to the reference simulation (middle row of Fig. 6) (the

domain size is kept unchanged). This experiment showed

that the positive anomaly persists. Its maximum is always

located in the center of the domain and extends horizon-

tally over a range roughly corresponding to the domain

size. This reveals the numerical nature of this anomaly.

This can be easily explained by the feedback of the small

scale energetic features produced in the NN simulations

towards the larger scales. After some time, the NN

Fig. 4 The mean bias (�C)

between the LB simulations

with respect to the BB

simulation of the surface

temperature (i.e. at 2 m height)

for summer (a, b, c) and for

winter (d, e, f) over the EURO–

CORDEX domain. The nudging

time s and update frequency of

the large-scale driving fields sa

are set to 1 and 3 h,

respectively. The left (a, d),

middle (b, e) and right (c,

f) columns correspond to the

NN, IN and SN simulations,

respectively

2458 H. Omrani et al.

123



simulations thus produces in the center of the domain a

large-scale atmospheric circulation which is ‘‘inconsis-

tent’’ with the large-scale atmospheric circulation imposed

at the domain boundaries. The NN simulations finally

produces a balanced solution for the large-scale atmo-

spheric circulation different from that of the driving large-

scale field within the LB domain.

Figure 7 displays the correlation coefficient c computed

for the surface temperature field as a function of the

nudging time s. It is splitted into the large scale component

(cls) and the small scale component (css) as in Salameh

et al. (2010), Omrani et al. (2012a, b). The surface tem-

perature field is decomposed into a large-scale part and a

small-scale part by application of the same low-pass and

high-pass 2-D averaging filters used in the BBE with cutoff

scale D ¼ 300 km. The sum of the large and small scale

components is referred as the total surface temperature

field (ctot). The different curves correspond to IN and SN

simulations using different values of sa. The correlation

coefficient is very high for the total and large scale fields

(ctot, cls [0.9). The correlation css between the BB and

LB–Euro small-scale surface temperatures is also fairly

high with values ranging between about 0.75 (winter) and

0.80 (summer). The difference between summer and winter

is significant since it exceeds the spread of the ensemble of

simulations performed for summer on the one hand and for

winter on the other hand. This can be explained by the fact

that during summer, strong and persistent anticyclonic

conditions associated with low cloudiness (and rainfall)

make the surface temperature field more predictable. In

winter, despite a strong large scale forcing, the temperature

field is strongly controlled by cloudiness and precipitation

at small scales which are less predictable variables in

numerical modeling. In winter, the difference between IN

and SN simulations is not significant. In summer, the IN

simulations have systematically higher skill scores than SN

simulations. Notice that the increased skill of IN simula-

tions is however not very large (0.82 correlation compared

to 0.80 for SN) and possibly sensitive to, e.g. the choice of

the cut-off wavenumber for SN. The dominant contribution

of the large scales to the total surface temperature field has

also been evidenced by Di Luca et al. (2012a) who quan-

tified the added value of the use of RCM at fine horizontal

resolution to predict surface temperature and rainfall fields.

Looking in detail, Fig. 7 shows that the IN simulations

display a peak of maximum correlation for the small-scale

component of the surface temperature field. This maximum

is found for s = 3h. The significance of this maximum can

be questionned but there is good chance that such maxi-

mum exists since expected from the previous studies by

Salameh et al. (2010) and Omrani et al. (2012a). More-

over, by applying their theoretical linear prediction to

actual numerical simulations with the MM5 model (e.g.

Dudhia 1993); Salameh et al. (2010) found an optimum for

s = 3.4 h which is very close to our results. For SN sim-

ulations, such a peak is not visible except maybe for the

small-scales when sa = 12 h (see dashed black curve). This

can be due to time-sampling errors as suggested by Omrani

et al. (b). Indeed there may be phenomena with a spatial

scale larger than D ¼ 300 km and a characteristic time

scale shorter than 12h. When sa = 12 h, such scales are

spatially resolved but poorly time-sampled in the forcing

fields. These sampling errors can then propagate into the

BB model.

Fig. 5 Same as Fig. 4 for

geopotential height (m)

at 500 hPa
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3.2 Surface wind field

Figure 8 shows the mean bias of the zonal surface wind

component (u component) for summer and winter from the

NN, IN and SN simulations. In summer, the NN simulation

displays the largest negative bias over the Mediterranean

Sea where it can reach -4 ms-1 in some location. It dis-

plays the largest positive bias over the Gibraltar Strait

where it exceeds 3 ms-1. Slightly lower biases are found

over Northwestern Europe (about -3 ms-1) and Central

Europe (?1–2 ms-1). The IN and SN simulations show no

bias over land and the Mediterranean Sea. A residual bias

remains over the Atlantic Ocean but its magnitude is sig-

nificantly reduced (between -1 and -2 ms-1). In winter,

the zonal surface wind difference between BB and LB–

Euro simulations is negative and can reach values of about

-4 ms-1. When nudging is used the bias disappears almost

completely over land but a negative bias persists over the

sea. The bias is slightly smaller over the Atlantic Ocean

near the western boundary of the domain but it increases

over the Mediterranean Sea.

Figure 9 is similar to Fig. 8 for the meridional surface

wind component (v component). We first note that the

spatial pattern of the bias is different from the that of the

zonal surface wind component. For both summer and

winter, the bias is slightly smaller than for the zonal surface

wind component. In summer, the most significant biases

are found in the vicinity of the main mountain ranges

surrounding the Mediterranean Sea. It is particularly evi-

dent in the Northwestern Mediterranean basin over the

‘‘Alpine arc’’ composed of the Pyrennes, Massif Central

and the Alps and in North Africa over the Atlas mountain.

As for the zonal surface wind component, when nudging is

applied (IN and SN simulations), the bias is almost

supressed over land, whatever the season. In summer, the

residual bias over the Atlantic Ocean is positive contrary to

the zonal surface wind component but with nearly the same

magnitude (Fig. 8b, c). This advocates for a difference in

wind direction and not in wind speed. Even over the

Atlantic Ocean, the effect of nudging is thus beneficial. In

winter, the use of nudging seems to degrade the surface

wind field over the Atlantic Ocean. Indeed, the difference

between BB and LB–Euro increases for IN and NN sim-

ulations with respect to NN simulations. The difference

remains negative as for the zonal surface wind components.

The magnitude of the difference is similar for the zonal and

Fig. 6 Five-hundred hPa geopotential height mean (m) for the BB

(left colum a, d, g) and NN simulations (middle column b, e, h) and

bias (right column c, f, i). The upper row (a–c) correspond to the LB

simulation domain shifted westward, the middle row (d–f) to the

reference simulation and the lower row (g–i) to the LB simulation

domain shifted eastward
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meridional wind components implying that nudging affects

here the wind speed and not the wind direction. The reason

for such different behavior in summer and winter is still to

be understood. Finally, one can note that there is no

sensitivity to the type of nudging used to relax the LB-Euro

simulations towards the driving large-scale fields.

Figure 10 displays the correlation coefficient as a

function of the nudging time for the surface wind speed at

10 m height. Even smaller than for the surface temperature,

the correlation coefficient is also high. For the total and the

large scale parts, the correlation coefficients ctot and cls are

high ([0.85), because the relaxation is strong enough to

prevent LB–Euro field to depart from the driving fields.

The small scale part is less accurately simulated. The

correlation coefficient css can reach a fairly good value of

0.65 but can be as low as 0.45. Indeed, for both IN and SN

simulations, we obtain a bell shape curve for css as a

function of s with a maximum between 0.5 and 0.6 for s =

3 h. As for the surface temperature, the reason for the

similarity of the bell shape curve for css for the IN and SN

simulations differs for the two nudging techniques. In the

IN simulations and for s = 1 h, the production of small

scales is inhibited because the LB fields are too tightly

constrained by nudging to the large-scale driving fields. As

the nudging time increases (s [ 1 h), the correlation

coefficient reaches a maximum around s = 3 h and then

decreases for large s values (Omrani et al. 2012a). In the

SN simulations, the nudging does not affect the small

scales but for example for sa = 12 h, the smallest scales

present in the large scale driving fields are probably not

well resolved in time (Omrani et al. 2012b). However, a

still open question is why css displays a bell-shape curve

for sa = 3 and 6 h while it only occurs for sa = 12 h when

surface temperature is considered (Fig. 7). Finally, one can

note that the correlation coefficient css decreases when sa

increases for both IN and SN simulations. Indeed for sa =

12 h, too few information are provided as boundary con-

ditions. The interpolation between two consecutive large-

Fig. 7 Correlation coefficient c between the LB and BB simulations

for the surface temperature (i.e. at 2 m height) as a function of the

nudging time s. The results are shown for summer (left column a, c, e)

and winter (right column b, d, f) and for the total field ctot (upper row

a, b), the large scale cls (i.e. scales C 300 km) (midlle row c, d) and

the small scale css (lower row e, f) . The solid and dashed lines

indicate the results from the IN and SN simulations. The red, blue and

black colors correspond to values of update frequency of the driving

large-scale fields sa = 3, 6 and 12 h, respectively

Fig. 8 Same as Fig. 4 for the

zonal surface (i.e. at 10 m

height) wind component

u (ms-1)
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scale driving fields also degrades the dynamics of the

atmospheric circulation at the domain boundaries so that

the correlation coefficient for both the large-scale part (cls)

and the small-scale part (css) decreases.

3.3 Precipitation field

Figure 11 displays the Taylor diagram for the total space-

time summer and winter precipitation computed from the

NN, IN and SN simulations for different nudging time (s)

and update frequency of large-scale driving fields (sa).

Again we first substract at each grid point the seasonal

mean before computing the space-time standard deviation

and the space-time root-mean-square difference. We note

that for NN simulations, the precipitation field is poorly

correlated to the BB fields compared to IN and SN simu-

lations. SN simulations produce the highest skill score for

the smallest nudging time (s = 1 h) with respect to the other

SN simulations. The correlation coefficient c is [0.4 in

summer and[0.6 in winter. However, IN simulation gives

the highest scores among all performed simulations for s =

3 h as also found in Salameh et al. (2010). We also note

that in summer, the SN simulations have systematically a

higher standard deviation compared to BB, however the IN

simulations display a smaller standard deviation for all

updating and nudging times (sa, s). In winter, all the sim-

ulations have a smaller standard deviation with respect to

BB.

Figure 12 displays the summer and winter precipitation

bias for NN, IN and SN simulations with s = 1 h and sa = 3 h.

In summer and for NN simulation, we note a dry bias

(about 2 mm day-1) over a large area of Eastern Europe.

This may be partly explained by the positive anomaly of

the 500-hPa geopotential height in summer (Fig. 5a),

which induces a well-know soil moisture/precipitation

feedback (Zampieri et al. 2009; Hohenegger et al. 2009).

Indeed, in the absence of nudging, the artificial high

pressure over the center of the domain reduces cloud cover

and precipitation producing a negative soil-moisture

anomaly (not shown). The lower soil moisture content

induces smaller evaporation and higher sensible heat which

in turn warms the planetary boundary layer and increases

Fig. 9 Same as Fig. 4 for the

meridional surface (i.e. at 10 m

height) wind component

v (ms-1)

Fig. 10 Same as Fig. 7 for the surface wind speed (i.e. at 10 m

height)
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the surface temperature (Fig. 4a). We also note a strong

wet bias over the Northeastern boundary of the domain due

to the resolution discontinuity between the driving large-

scale fields at the domain boundaries and the fine resolution

simulated field within the domain. This effect is called the

Gibbs effect and is partially smoothed by applying a

damping Davies zone. However, some discontinuity is

unavoidable which produces strong horizontal gradient of

the horizontal wind. The continuity equation imposes the

production of strong vertical velocity which can trigger

unrealistic precipitation near the domain boundaries. In the

following, we remove the data within the Davies zone over

the 5 nearest grid points from the domain boundaries.

However, when nudging is applied, this effect disappears

almost completely. We still have a small dry bias (\1 mm

day -1) over the whole domain in the IN simulations.

Conversely, the SN simulations display a small residual

wet bias. Indiscriminate and spectral nudging improve the

simulation precipitation but in different ways. In winter, we

note a dry bias over the Northern and Western parts of the

domain and a small wet bias over the Mediterranean sea in

the NN simulation. When nudging is used, precipitation is

underestimated over the whole domain, but with a larger

magnitude over the Western part of the domain. Spectral

nudging seems to have a stronger impact to reduce the bias

than IN.

Figure 13 displays the correlation coefficient c for

precipitation in summer and winter for the total field (ctot),

the large scale part (cls) and the small scale part (css). The

correlation coefficient for the total field ctot is larger in

winter (0.65) than in summer (0.50) even though we have

almost the same scores for the large scale part cls (around

0.80). The IN and SN simulations appear to better simulate

the small scales in winter than in summer. Indeed, in

winter, precipitation comes mainly from the large-scale

circulation. Even if the small scale precipitation is not well

simulated, the impact on the total field remains marginal.

In summer, we have more small-scale precipitations which

explains the lower scores of the total field, even though the

large scales are correctly simulated . The simulated pre-

cipitation display a much weaker sensitivity to the nudging

time than surface temperature and wind. The bell-shape

curve still exists when IN is used and the optimal nudging

time s is still 3 h, whereas the bell-shape curve is no longer

visible when spectral nudging is used. This difference can

be explained by the different time scales involved in the

dynamics of the temperature, wind and precipitation fields

and advocates for possible different optimal nudging time

regarding the various variables. Finally, similarly to sur-

face temperature and wind, the correlation coefficient c
decreases when sa increases.

Spectral analysis (not shown) shows that, for precipita-

tion, all the scales are overestimated by NN simulations.

Conversely, IN simulations underestimate the variance of

the small scales which can be expected since all scales are

nudged. The SN simulations also tend to underestimate the

Fig. 11 Same as Fig. 3 for

precipitation
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variance of the small scales with however a better agree-

ment with the BB simulations. The sensitivity of the sim-

ulated small scale precipitation in IN and SN simulations is

larger than the sensitivity of the simulated small scale

temperature. It is consistent with Di Luca et al. (2012a, b)

who suggest that the potential added value in precipitation

simulated by high resolution nested RCMs is higher than

for temperature due to the dominant contribution of the

large scales for temperature and the dominant contribution

of the small scales for precipitation.

4 Comparison with the results over the HyMeX/MED–

CORDEX domain

The HyMeX/MED–CORDEX domain being smaller than

the EURO–CORDEX domain, the impact of nudging

should be damped (Miguez-Macho et al. 2004; Leduc and

Laprise 2009; Omrani et al. 2012a). Comparisons of LB–

Med simulations with the results obtained over the EURO–

CORDEX domain (LB–Euro simulations) are made on the

overlapping domain (i.e. the HyMeX/MED–CORDEX).

Figure 14 shows the temperature bias for summer and

winter time from the LB–Med and LB–Euro simulations

displayed over on the HyMeX/MED–CORDEX domain.

Comparing the NN simulations (Fig. 14; left column), we

first note that the temperature bias is much stronger in LB-

Euro simulations (Fig. 14d, j) than in LB–Med simulations

(Fig. 14a, g) for both summer and winter. This confirms the

results by Leduc and Laprise (2009) who show that the

spatial correlation of the small scale patterns improve when

the domain size is reduced. The same effect was observed

in a QG model (Omrani et al. 2012a) when it was attrib-

uted to the decrease of predictability when the domain size

increases. One can also note that the spatial pattern of the

surface temperature bias is not the same between NN

simulations over the HyMeX/MED–CORDEX and EURO–

CORDEX domains. This is due to the location of the LB

domains. The center of the LB–Euro simulation domain is

located over Central Europe whereas it is located over the

Mediterranean Sea for the LB–Med simulations. This

produces an anomaly of the 500-hPa geopotential height

located in the center of the domains. In summer, the arti-

ficial pressure high induces the positive feedback between

cloudiness, precipitation, soil moisture and temperature

discussed previously. In the LB–Med simulations, the

Fig. 12 Same as Fig. 4 for

precipitation (mm day-1)

Fig. 13 Same as Fig. 7 for precipitation
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temperature anomaly is also in part damped by the fact that

over the Mediterranean Sea, the effect on the surface

temperature is much smaller. In winter, the artificially

produced pressure low produces a negative bias of tem-

perature. The interpretation is less straightforward than

during summer since the European continent is less locally

forced and is under the influence of synoptic disturbances

advected form the Atlantic Ocean. However, nudging

inhibits the impact of the domain size on the simulated

surface temperature whatever the season. This is consistent

with the work of Alexandru et al. (2009) and Weisse and

Feser (2003) who showed the ability of spectral nudging to

reduce the internal variability of the regional model for

smaller domain. The comparison between the nudged

simulations (IN and SN simulations) does not show sig-

nificant difference.

Figure 15 shows the Taylor diagram of the surface

temperature from the LB–Med and LB–Euro simulations.

The difference between the results obtained in the absence

of nudging and when nudging is applied (indiscriminate

and spectral) is stronger for LB–Euro simulations than for

LB–Med simulations, whatever the diagnostic used to

evaluate the LB simulations.

Table 2 finally summarizes for all the diagnosed vari-

ables, the spatial correlation c between LB–Euro/LB–Med

simulations and the BB simulation over the Mediterreanean

domain. For the NN simulations, we see that for all vari-

ables and for both seasons, the Mediterranean domain has a

higher correaltion than Europe. However, when nudging is

used, the correlation coefficients are the same or very close.

This confirms the two previous results: nudging reduces the

sensitivity of the model to the domain size and the control

by the boundaries is significantly more important over the

LB–MED simulations even though the LB–Med simula-

tions still need to be nudged.

5 Conclusions and perspectives

In this work, we have analyzed the impact, as a function of

the nudging time, of indiscriminate and spectral nudging on

an ensemble of simulations performed with the WRF

Fig. 14 The mean bias (�C) between the LB simulations with respect

to the BB simulation of the surface temperature (i.e. at 2 m height) for

summer (two upper rows a–f) and for winter (two lower rows

g–l) over the HyMeX/MED–CORDEX domain (a–c and g–i) and

EURO–CORDEX domain (d–f and j–l). The nudging time s and

update frequency of the large-scale driving fields sa are set to 3 and 1 h,

respectively. The left (a, d, g, j), middle (b, e, h, k) and right (c, f, i, l)
columns correspond to the NN, IN and SN simulations, respectively
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model. We use a BBE framework which eliminates a

number of possible sources of errors and allows a com-

parison all other things being equal. Using this framework

we have furthermore addressed the existence of an optimal

nudging time maximizing the resemblance of the down-

scaled fields with reference fields, and we have compared

the ability of indiscriminate and spectral nudging to

reconstruct the reference fields. This provides an objective

and physically based strategy to have the best dynamical

consistency between the driving large-scale field and the

simulated small-scale field. The optimal time is identified

simply by exploring a plausible range of nudging times and

not by a systematic optimization procedure (e.g. Vidard

et al. 2003). The ensemble of numerical simulations was

performed on two different but overlapping domains to

investigate the impact of the size of the domain on the

sensitivity to nudging time. Such work was in part moti-

vated by the international downscaling experiment COR-

DEX. The largest domain is the EURO–CORDEX domain

and the smallest domain is the HyMeX/MED–CORDEX

domain ‘‘nested’’ in the largest domain. Sensitivity to

nudging time is also impacted by the update frequency of

driving fields and depends on the variable under consid-

eration. Domain size and update frequency of the large-

Fig. 15 Taylor diagram for

surface temperature (i.e. at 2 m

height) obtained from the LB

simulations over the EURO–

CORDEX domain (a) and

HyMeX/MED–CORDEX

domain (b). The red dot indicate

the skill target for the LB

simulations (‘‘BB’’ stands for

Big-Brother). The stars, circles

and squares display the skill

scores of the NN, IN and SN

simulations in the Taylor

diagram, respectively. The red,

blue and black colours

correspond to sa = 3, 6 and 12,

respectivel. The numbers 1, 3, 6

and 12 indicate the values of the

nudging time (s = 1, 3, 6 and

12, respectively. Zooms into the

small rectangles are displayed

on the right panels

Table 2 Spatial correlation coefficients c between the LB–Med/LB–Euro and BB simulations computed over the overlapping domain (i.e. the

HyMeX/MED–CORDEX domain) for s = 1 h and sa = 3 h

Season DJF JJA

Nudging NN IN SN NN IN SN

Domain Euro Med Euro Med Euro Med Euro Med Euro Med Euro Med

Surface temperature 0.90 0.94 0.97 0.97 0.97 0.97 0.69 0.89 0.97 0.97 0.96 0.96

Precipitation 0.28 0.36 0.69 0.69 0.74 0.74 0.05 0.16 0.49 0.48 0.45 0.45

Surface zonal wind component 0.66 0.75 0.93 0.93 0.93 0.93 0.38 0.58 0.92 0.91 0.91 0.90

Surface meridional wind component 0.66 0.75 0.93 0.93 0.93 0.93 0.38 0.59 0.91 0.89 0.89 0.87

The acronyms JJA, DJF, NN, IN and SN stand for June–July–August, December–January–February, no nudging, indiscriminate nudging and

spectral nudging, respectively
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scale driving fields are the key parameters identified by

Omrani et al. (2012a, b) controlling how the quality of

nudged simulations depends on the nudging time. Instead

of a nested QG model, we use here a numerical model

approaching much better the full complexity of the atmo-

spheric processes. Due to the different nature of the

regional Euro-Mediterranean climate in summer and win-

ter, the results have been analyzed for the two seasons

separately.

Compared to non nudged configuration, results show

that nudging clearly improves the model capacity to

reproduce the reference fields from the BB simulations,

regardless the domain size and the diagnosed variable.

However the skill scores depend on the variable, the season

and the update frequency of the driving large-scale fields.

When comparing the simulations over the EURO–COR-

DEX and HyMeX/MED–CORDEX domains, we found

that for large simulation domain, the effect of nudging is

very positive on the simulated field whereas its effect

becomes marginal for small simulation domain because of

a strong control by the lateral boundaries. When nudging is

applied, the simulations also become insensitive to the

domain size. Despite the weaker effect of nudging on the

simulations performed over the HyMeX/MED–CORDEX

domain, nudging is still needed to improve significantly the

simulated regional climate.

The differences between the simulations performed with

IN and spectral nudging are not significant. The reasons for

which one simulation performed better than the other and

vice-versa are not straightforward and no clear behaviour is

found. The difference between indiscriminate and spectral

nudging that is observed in practice in our RCM runs is

much smaller than what one could anticipate based on

previous idealized studies (Omrani et al. 2012a, b). We

suggest that a reason for this very similar performance is

that nudging is active only above the planetary boundary

layer, following Lo et al. (2008). Although there is some

small-scale activity in the free troposphere, we expect it to

be less energetic than in the planetary boundary layer

which is forced by surface fluxes and orography. Therefore

the detrimental effect of IN on small scales remains limited

in practice. IN then has an impact similar to that of spectral

nudging. Confirming this suggestion would probably need

a dedicated study with a less complex model such as the

QG model used in Omrani et al. (2012a, b). Regarding

the determination of a possible optimal nudging time, the

conclusion is not the same for indiscriminate nudging and

spectral nudging and depends on the update frequency of

the driving large-scale fields sa. For indiscriminate nudg-

ing, the optimal nudging time is around s = 3 h for almost

all cases. This value is very similar to Salameh et al.

(2010). For spectral nudging, the optimal nudging time s
varies between 1 and 3 h. Indeed, for sa = 3 and 6 h, the

highest model skills are found for s = 1 h. One must note

here that s = 1 h is the smallest value used for the simu-

lations. The optimal nudging time could thus be smaller

than 1 h but this has not been investigated, in part due to

numerical instabilities produced for very small values of s.

For sa = 12 h, the optimum nudging time s is around 3 h.

This can be due to time-sampling errors as suggested by

Omrani et al. (b). Indeed there may be phenomena with a

spatial scale larger than D ¼ 300 km and a characteristic

time scale shorter than 12 h. When sa = 12 h, such scales

are spatially resolved but poorly time-sampled in the

forcing fields. These sampling errors can then propagate

into the BB model. This is at least true for surface tem-

perature and wind. Such behavior is not evidenced for

precipitation. This difference can be explained by the dif-

ferent time scales involved in the dynamics of the tem-

perature, wind and precipitation fields and advocates for

possible different optimal nudging time regarding the

various variables. Also, in our simulations, all possible

variables of WRF have been nudged (temperature, wind

and humidity). In the future, the choice of the variables to

be nudged will be addressed.

In the context of spectral nudging, it would be inter-

esting to address the impact of the cut-off wavenumber on

the sensitivity to nudging time. Recent work by Liu et al.

(2012) compares spectrally nudged simulations with dif-

ferent cut-off wavenumbers to NCEP reanalyses. However

a single nudging time of 1 h is used. This value is low

compared to the optimal value found in the present study

and could be unfair to IN. It would be interesting to vary

systematically the nudging time and to evaluate the nudged

simulations in a BBE framework.

Finally, in real regional climate modeling, the GCM used

to drive the RCM have generally different numerical

schemes and physical parameterizations (e.g. Kanamaru and

Kanamitsu 2007; Thatcher and McGregor 2009). They are a

source of enhanced internal variability. In addition, the

validation of regional climate simulations must eventually

be done by comparing to observations, often using gridded

dataset like CRU and ECA&D which have their own

uncertainties and biases (Flaounas et al. 2012c). For all

these reasons, it must be clear that the ideal optimal nudging

configuration of WRF discussed in this study may not at the

end produce the best results due to other uncertainty sources.
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JC, Ethe C, Foujols MA, Khvorostyanov D, Madec G, Mancip

M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S,

Valcke S, Viovy N (2012) Modelling the regional coupled earth

system MORCE: application to process and climate studies in

vulnerable regions. Env Model Softw 35:1–18

Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Anquetin S (2008) A

numerical study of three catastrophic precipitating events over

Southern France. II: mesoscale trigerring and stationarity factors.

Q J R Meteorol Soc 134:131–145

Dudhia J (1989) Numerical study of convection observed during the

winter monsoon experiment using a mesoscale two dimensional

model. J Atmos Sci 46:3077–3107

Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR

mesoscale model: validation tests and simulations of an Atlantic

cyclone and cold front. Mon Weather Rev 121:1493–1513

Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C,
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