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to significantly improve the simulations. Indeed, nudging 
tropospheric wind or temperature directly impacts the sim-
ulation of the tropospheric geopotential height and thus the 
synoptic scale atmospheric circulation. Nudging moisture 
improves the precipitation but the impact on the other fields 
(wind and temperature) is not significant. As an immediate 
consequence, nudging tropospheric wind, temperature and 
moisture in WRF gives by far the best results with respect 
to the Big-Brother simulation. However, we noticed that 
a residual bias of the geopotential height persists due to a 
negative surface pressure anomaly which suggests that sur-
face pressure is the missing quantity to nudge. Nudging the 
geopotential has no discernible effect. Finally, it should be 
noted that the proposed strategy ensures a dynamical con-
sistency between the driving field and the simulated small-
scale field but it does not ensure the best “observed” fine 
scale field because of the possible impact of incorrect driv-
ing large-scale field.

Keywords  Regional climate modeling · Nudging ·  
Big Brother Experiment · WRF model 

1  Introduction

Dynamical down-scaling has been widely used to improve 
regional climate description at fine scale. It consists in driv-
ing a regional climate model (RCM) by large-scale fields 
provided by a global circulation model (GCM) or (re) 
analysis as initial and boundary conditions. Previous stud-
ies (e.g. Miguez-Macho et al. 2004; Lo et al. 2008; Radu 
et al. 2008; Salameh et al. 2010) have shown the necessity 
of relaxing the three-dimensional RCM fields towards the 
GCM fields to avoid deviation from the large-scale atmos-
pheric circulation. This relaxation technique, also referred 

Abstract  Regional climate modelling sometimes requires 
that the regional model be nudged towards the large-scale 
driving data to avoid the development of inconsistencies 
between them. These inconsistencies are known to produce 
large surface temperature and rainfall artefacts. Therefore, 
it is essential to maintain the synoptic circulation within the 
simulation domain consistent with the synoptic circulation 
at the domain boundaries. Nudging techniques, initially 
developed for data assimilation purposes, are increasingly 
used in regional climate modeling and offer a workaround 
to this issue. In this context, several questions on the “opti-
mal” use of nudging are still open. In this study we focus 
on a specific question which is: What variable should we 
nudge? in order to maintain the consistencies between 
the regional model and the driving fields as much as pos-
sible. For that, a “Big Brother Experiment”, where a ref-
erence atmospheric state is known, is conducted using the 
weather research and forecasting (WRF) model over the 
Euro–Mediterranean region. A set of 22 3-month simula-
tions is performed with different sets of nudged variables 
and nudging options (no nudging, indiscriminate nudging, 
spectral nudging) for summer and winter. The results show 
that nudging clearly improves the model capacity to repro-
duce the reference fields. However the skill scores depend 
on the set of variables used to nudge the regional climate 
simulations. Nudging the tropospheric horizontal wind 
is by far the key variable to nudge to simulate correctly 
surface temperature and wind, and rainfall. To a lesser 
extent, nudging tropospheric temperature also contributes 
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to as nudging, consists in partially imposing the large scale 
of the driving fields provided by global climate models 
(GCM) or (re)-analyses, on the regional climate model 
(RCM) simulation with the aim of disallowing large and 
unrealistic departures between driving and driven fields. 
Two different types of nudging exist, indiscriminate nudg-
ing (IN), also referred to as data assimilation, dynamical 
relaxation, grid-point nudging or analysis nudging, consists 
in driving the RCM indiscriminately at all scales (Davies 
and Turner 1977; Stauffer and Seaman 1990; Lo et  al. 
2008; Salameh et al. 2010; Omrani et al. 2012a). Spectral 
nudging (SN) consists in driving the RCM on selected spa-
tial scales only (e.g. Kida et al. 1991; Waldron et al. 1996; 
von Storch et  al. 2000; Radu et  al. 2008; Omrani et  al. 
2012b).

Nudging was initially developed for data assimilation pur-
poses. Several studies have investigated the “optimal” use 
of nudging by varying nudging parameters (Zou et al. 1992; 
Stauffer and Bao 1993; Vidard et al. 2003; Lei et al. 2012). 
The first motivation of using nudging in data assimilation is 
to minimize the model errors with respect to observations or 
gridded analysis, whereas, nudging is used in regional cli-
mate modeling to ensure a dynamical consistency between 
the driving field and the simulated large-scale fields, however 
it does not ensure the best observed fine scale field because 
of the possible impact of incorrect driving large-scale field. 
In this context, the optimal nudging strategies with respect 
to dynamic downscaling could add skill whenever the parent 
global model has some level of skill.

Nudging can be applied to a different set of meteoro-
logical variables depending on models, nudging technique 

(IN or SN) and the down-scaling purpose (see Table  1). 
However, how to choose the nudged variable(s) remains 
an open question. Only few studies have addressed this 
issue. Radu et al. (2008) analyzed the sensitivity of RCM 
simulations to the nudged variables in order to quantify the 
associated uncertainties. Recently Pohl and Crétat (2013) 
explored the impact of the nudged variables on the WRF 
simulated deep atmospheric convection in the tropics. They 
showed that nudging temperature reduces the model bias, 
while nudging horizontal wind improves the model time 
variability with respect to the observations. In the present 
work, we adopt an idealized approach known as the Big 
Brother Experiment (BBE) (Denis et al. 2002a) in order to 
evaluate the “best” set of variables to be nudged and the 
physical processes supporting such optimal configuration, 
if they exist. However, the variables that can be nudged 
differ between models and between indiscriminate and 
spectral nudging (Table  1). The WRF model is thus cho-
sen here because of the possibility to apply both indiscrimi-
nate and spectral nudging techniques all other things being 
equal, and as a natural follow-up of Omrani et al. (2013). 
To isolate the effect of nudging without any interference 
with other sources of error and uncertainty propagation, a 
BBE approach is used as in Omrani et  al. (2013), mean-
ing that the same model and hence the same physics are 
used between the driving and driven models. Indeed, in 
real regional climate modeling, the GCM used to drive 
the RCM have generally different numerical schemes and 
physical parameterizations (e.g. Kanamaru and Kanamitsu 
2007; Thatcher and McGregor 2009). In addition, the vali-
dation of regional climate simulations must eventually 

Table 1   Review of variables used for nudging in various models

The reference in which the model nudging configuration is given in the left column. The model as well as the nudging technique used in the 
cited reference are given in the second and third column from left, respectively. The right column details the variables used for nudging. The 
quantities T , u, v, θ , θil , π

′, h, q, ps, div, ω, ζ , Φ refer to temperature, zonal wind, meridional wind, potential temperature, modified equivalent 
potential temperature that is conserved in both ice-to-liquid and liquid-to-vapor, Exner function perturbation, specific humidity, water vapor mix-
ing ratio, surface pressure, divergence, vorticity and geopotentail height, respectively

Model Nudging technique Nudged variables References

MM5 IN u, v, T , q, ζ Stauffer and Seaman (1990)

RAMS SN u, v, θil , π
′ Miguez-Macho et al. (2004)

CRCM SN u, v De Elia et al. (2008)

CRCM SN u, v Alexandru et al. (2009)

CLM SN u, v Rockel et al. (2008)

WRF IN u, v, θ , q Lo et al. (2008)

MM5 IN u, v, θ , h, sm Otte (2008a, b)

ARPEGE/ALADIN SN T , ps, h, div, ω Radu et al. (2008)

WRF IN u, v, θ , q Bowden et al. (2012)

WRF SN u, v, θ , Φ Bowden et al. (2012)

WRF IN, obs nudging u, v, θ , q Rogers et al. (2013)

WRF IN u, v, θ , q Omrani et al. (2013)

WRF SN u, v, θ , Φ Omrani et al. (2013)
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be done by comparing to observations, often using grid-
ded datasets like CRU and ECA&D which have their own 
uncertainties and biases (Flaounas et al. 2012).

For all these reasons, it must be clear that the ideal nudg-
ing configuration of WRF discussed in this study may not 
at the end produce the best results due to other uncertainty 
sources. However, it offers a set of controlled experiments 
designed to isolate the impact of nudging one variable 
rather than another and to understand the different physical 
processes involved.

This paper is organized as follows. A description of the 
WRF model and the experimental set-up is given in Sect. 2. 
In Sect. 3 we quantify statistically the impact of the differ-
ent sets of nudged variables on the simulation of fields of 
great importance for regional climate modeling: surface 
temperature, wind and rainfall. Potential dynamical pro-
cesses causes for the different responses observed are ana-
lyzed and discussed in Sect. 4. Finally, Sect. 5 summarizes 
the results and points out some open research questions 
needing further investigation.

2 � The model and the experiment design 

The model used in this study is the 3.1.1 version of the 
weather research and forecasting model (WRF) released 
on July 31, 2009. WRF is a limited area model, non-
hydrostatic, with terrain following sigma-coordinate mes-
oscale modeling system designed to serve both operational 
forecasting and atmospheric research needs (Skamarock 
and Klemp 2007). The WRF development is a collabora-
tive partnership, principally among the National Center 
for Atmospheric Research (NCAR), the National Oceanic 
and Atmospheric Administration (the National Centers 
for Environmental Prediction (NCEP) and the Earth Sys-
tem Research Laboratory (ESRL), the Air Force Weather 
Agency (AFWA), the Naval Research Laboratory, the Uni-
versity of Oklahoma, and the Federal Aviation Administra-
tion (FAA). WRF offers a flexible and robust platform not 
only used but also developed by a worldwide research com-
munity including government laboratories, academia and 
the private sector.

The physical options chosen to perform the simulations 
include the WRF Single-Moment 5-class microphysical 
parameterization (Hong and Juang 1998; Hong et al. 2004), 
the new Kain–Fritsch convective parameterization (Kain 
2004), the Dudhia shortwave radiation (Dudhia 1989) 
and Rapid Radiative Transfer Model longwave radiation 
(Mlawer et  al. 1997) and the Yonsei University planetary 
boundary layer scheme (Hong et  al. 2006). For the land 
surface model, a 5-layer diffusive scheme is used here.

As in Omrani et al. (2013), we conduct a “Big-Brother 
Experiment”. It consists in first establishing a reference 

climate by performing a large-domain high-resolution 
RCM simulation: this simulation is called the Big-Brother 
(BB). This reference simulation is then degraded by filter-
ing short scales that are generally unresolved by the driv-
ing fields (DF) (e.g. global reanalysis and global climate 
models). This filtered reference is then used to drive the 
same nested RCM (called the Little-Brother LB), inte-
grated at the same high-resolution as the Big Brother, but 
over a smaller domain that is embedded in the Big-Brother 
domain. The climate statistics of the Little Brother are then 
compared with those of the Big-Brother over the Little-
Brother domain (Fig. 1). Differences can thus be attributed 
easily to errors associated with the downscaling technique, 
and not to model errors nor to observation limitations.

2.1 � Nudging

We investigate the two existing nudging techniques in 
WRF, i.e. the indiscriminate nudging (IN) (Stauffer and 
Seaman 1990) and the spectral nudging (SN) (Cha et  al. 
2006). The nudging technique consists in relaxing the 
model state towards the driving large-scale fields by adding 
a non-physical term to the model equation. This nudging 
term is defined as the difference between the observation 
and the model solution weighted by a nudging coefficient 
which is the inverse of the nudging time τ. In WRF, indis-
criminate nudging is represented by the general follow-
ing equation described by Stauffer and Seaman (1990) 
[Eq. (1)].

where α is a prognostic variable, p∗
= ps − pt is a mass-

weighting factor due to the use of a terrain-following 
sigma-coordinate, pt = 50 hPa is the pressure at the model 
top, ps is the surface pressure, x represents the spatial vari-
ables, t is time. The model’s physical forcing terms (advec-
tion, Coriolis effects, etc.) are represented by F. The sub-
scripts DF and LB stand for driving field and Little-Brother, 
respectively. The quantity 1/τ is the nudging coefficient, 
with τ a relaxation time scale for the nudging term. The 
nudging coefficient can vary in time and space with a four-
dimensional weighting function W. Finally, ǫ is the analysis 
quality factor which ranges between 0 and 1.

In WRF, indiscriminate nudging can be applied to the 
wind components u and v (u and v are grid-relative wind 
components but in this study with the Mercator projection 
u and v are the zonal and meridional wind components, 
respectively), to the potential temperature θ, and to the 
water vapor mixing ratio q. Nudging can be restricted to not 
act within the atmospheric boundary layer or below a user-
specified model level (Rogers et al. 2013). For indiscrimi-
nate nudging, Omrani et al. (2012a) show that the smaller 

(1)
∂p∗αLB

∂t
= F(αLB, x, t) +

1

τ
W(x, t) ǫ(x) p∗(αDF − αLB)
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the nudging time τ, the closer the RCM predictions αLB to 
the driving fields αDF interpolated on the RCM grid and the 
larger the inhibition of the small-scale RCM dynamics.

The spectral nudging technique technique consists in 
driving the RCM on selected spatial scales only and does 
not affect the small-scale fields since only the large scales 
are relaxed. In this study, the cutoff wavelength corresponds 
to 300 km. Spectral nudging in WRF can be applied to the 
wind components, potential temperature and geopotential 
Φ. The spectral nudging equation is that of Miguez-Macho 
et al. (2004):

where α represents the prognostic variable being nudged, 
L is the model operator, αDF

mn  and αLB
mn represent the spec-

tral coefficients of αDF and αLB. The nudging coefficient 1
τmn

 
can vary with m and n (wavenumbers in the x and y direc-
tion, respectively) as well as height; km and kn then repre-
sent the wave vector and are dependent on the domain size, 
Dx and Dy, given by:

(2)
∂αLB

∂t
= L(αLB) +

∑

|n|≤N

∑

|m|≤M

1

τmn

(

αDF
mn − αLB

mn

)

eikmxeikny

km =

2π m

Dx

and kn =

2π n

Dy

Following Lo et  al. (2008), the nudging term is applied 
only above the planetary boundary layer (PBL) with a 
time-dependent height diagnosed by the planetary bound-
ary layer scheme. In fact, nudging in the PBL may prevent 
reasonable mesoscale structures from being developed by 
constraining these structures toward large-scale driving 
fields. Above that height the nudging coefficient is con-
stant. The nudging coefficient can be defined separately 
for each nudged variable, however in this work we use 
the same nudging coefficient for all the nudged variables. 
It is set to six hours (6 h). This time defined as “the opti-
mal nudging time” was determined in Omrani et al. (2013) 
using the same model configuration, where a set of experi-
ment was conducted by varying the nudging times (01, 03, 
06 and 12 h). However, it should be noticed that the “opti-
mal” nudging time used here is not universal but depends 
on the model configuration.

2.2 � Simulations

A set of 2 × 11 simulations has been performed for winter 
and summer by varying the set of nudged variables, for both 
indiscriminate and spectral nudging techniques (Table  2). 
The BB simulation was performed over a large domain 
covering Europe and North Africa (Fig. 1) with 130 × 140 
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Fig. 1   “Big-Brother” experiment diagram using a limited area model (LAM) as a regional climate model (RCM)
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horizontal grid points with a 50 km horizontal resolution, 
as required within CORDEX (Giorgi et  al. 2009), and 28 
vertical levels. The model top is at 50  hPa. The winter 
simulations start on 1 December 1989 to 28 February 1990 
with one month spin up (November 1989). The summer 
simulations start on 1 June 1990 to 31 August 1990 with 
one month spin up (May 1990). The initial and boundary 
conditions of the BB simulation are provided by the ERA-
Interim reanalysis of the European Center for Medium-
range Weather Forecast (ECMWF). The resolution of the 
BB fields are then degraded using a simple low pass aver-
aging filter to obtain a resolution of 300 km × 300 km from 
the 50 km × 50 km fields and to serve as large-scale driv-
ing fields for the LB simulations.

The LB simulations have been performed with a 50 km 
resolution over the EURO-CORDEX domain (98  ×  100 
horizontal grid points) covering Europe and the Mediter-
ranean regions (Fig.  1). When indiscriminate or spectral 
nudging is used, it is applied above the planetary boundary 

layer as suggested by Lo et  al. (2008). The variables that 
can be nudged are the potential temperature, wind and 
moisture for IN and the potential temperature, wind and 
geopotential for SN. The update frequency of the large-
scale driving fields is set to 6 h since the ERA-Interim rea-
nalyses and CMIP5 climate simulations used in the frame 
of HyMeX (Drobinski et  al. 2009) and MED-CORDEX 
programs are also sampled every 6 h. WRF automatically 
performs a linear time interpolation between two samples 
of the driving fields.

To quantify the ability of the LB to reproduce the refer-
ence field, we use the mean bias δ, the root mean square 
error ε, the standard deviation σ and the correlation coef-
ficient γ.

3 � Sensitivity analysis to the nudged variables 

In this section the impact of nudging various sets of vari-
ables on nudged and non-nudged variables is analyzed.

3.1 � Nudging wind and temperature

We first focus on simulations where only wind and temper-
ature are nudged (IN-UV, IN-T, IN-UV&T, SN-UV, SN-T, 
and SN-UV&T), in order to have the same set of experi-
ments for indiscriminate and spectral nudging and compare 
the two techniques.

Figure 2 shows the Taylor diagram for the total space–
time 3-h cumulated precipitation in summer (Fig. 2a) and 
winter (Fig.  2b) for the simulations performed without 
nudging (NN with square marker) and with nudging (IN 
with circle marker and SN with star marker). The Taylor 
diagram provides a way of graphically summarizing how 
closely a pattern (or a set of patterns) matches the reference 
field (Taylor 2001). The similarity between two patterns is 
quantified in terms of their correlation (γ ), their centered 
root-mean-square difference (ǫ) and the amplitude of their 

Table 2   List of performed simulations

Experiment name Nudging technique Nudged variables

NN No nudging None

IN-All Indiscriminate θ , u, v, q

IN-UV Indiscriminate u, v

IN-T Indiscriminate θ

IN-Q Indiscriminate q

IN-UV&T Indiscriminate θ , u, v

IN-UV&Q Indiscriminate u, v, q

IN-T&Q Indiscriminate θ , q

SN-All Spectral θ , u, v,

SN-UV Spectral u, v

SN-T Spectral θ

SN-Φ Spectral Φ

SN-UV&Φ Spectral u, v, Φ

SN-T&Φ Spectral θ , Φ

Fig. 2   Taylor diagram for daily 
cumulative precipitation in 
summer (a) and in winter (b) 
obtained from the LB simula-
tions over the EURO-CORDEX 
domain. The red dot indicate the 
skill target for the LB simula-
tions (“BB” stands for Big-
Brother). The stars, circles and 
square display the skill scores 
of the SN, IN and NN simula-
tions in the Taylor diagram, 
respectively
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variations (represented by their standard deviations σ). 
Notice that we first subtract at each grid point the seasonal 
mean before computing the space–time standard deviation 
and the space–time root-mean-square difference. The LB 
patterns that agree well with BB are the nearest from the 
point marked “BB” on the x-axis. These patterns have rela-
tively high correlation and low errors. Models lying on the 
arc corresponding to the standard deviation σ value of the 
reference have the correct standard deviation (which indi-
cates that the pattern variations are of the right amplitude).

Overall, we note a much lower skill at reproducing the 
reference precipitation in summer (Fig. 2a) compared to 

winter (Fig. 2b). For NN simulations, the precipitation field 
is poorly correlated to the BB fields compared to IN and 
SN simulations. IN-UV&T and SN-UV&T simulations 
give the highest scores among all performed simulations. 
We also note that in summer, all simulations have system-
atically a higher standard deviation compared to BB, how-
ever in winter, all the simulations have a smaller standard 
deviation compared to BB.

Figure  3 displays maps of summer and winter pre-
cipitation bias for the different experiments. In summer, a 
dry bias (about 2 mm day−1) over a large area of Eastern 
Europe is produced in the NN simulation (Fig.  3a). We 

Fig. 3   The mean bias (mm day−1) between the LB simulations with 
respect to the BB simulation of the daily precipitation for summer 
(a–g) and for winter (a′–g′) for NN (a, a′), IN-UV&T(b, b′), IN-UV 

(c, c′), IN-T (d, d′), SN-UV&T (e, e′), SN-UV (f, f′), SN-T (g, g′) 
simulations (see Table 2)
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also note a strong wet bias over the Northeastern bound-
ary of the domain, probably due to the resolution discon-
tinuity between the driving large-scale fields at the domain 
boundaries and the fine resolution simulated field within 
the domain. This discontinuity causes Gibbs oscillations 
that are partially smoothed by applying a damping Davies 
zone. However, some discontinuity is unavoidable which 
produces strong horizontal gradient of the horizontal wind. 
Conservation of mass then imposes strong vertical veloci-
ties which can trigger unrealistic precipitation near the 
domain boundaries. Therefore, in all our diagnostics we 
removed the data within the Davies zone over the 5 grid 
points nearest to the domain boundaries. When temperature 
is nudged (Fig.  3d, g) this effect is significantly reduced. 
However, the dry bias persists. On the other hand, when 
only wind is nudged (Fig.  3c, f), the dry bias disappears 
almost completely but not the wet bias over the boundaries. 
It seems that the two effects are decoupled and are due to 
different processes. Finally, when both wind and temper-
ature are nudged (Fig.  3b, e) the bias is strongly reduced 
over all the domain. In winter, precipitation is underesti-
mated in all LB simulations and the impact of nudging is 
not clear.

For surface wind we found the same behavior (not 
shown). Nudging wind and temperature gives the highest 
skills.

Figure 4 is similar to Fig. 2 and shows the Taylor dia-
gram for the total space–time surface temperature in sum-
mer (Fig. 4a) and winter (Fig. 4b) for the simulations per-
formed without and with nudging. Again we first subtract 
at each grid point the seasonal mean before computing the 
space–time standard deviation and the space–time root-
mean-square difference.

For both seasons, the NN simulations (square marker) 
have the lowest correlation coefficients and the highest 
root-mean-square error compared to the nudged simula-
tions (IN and SN). It also has a higher standard deviation 
compared to the BB in summer and almost the same in 

winter. The nudged simulations, independently of the type 
of nudging (IN and SN), have the highest skills. Indeed, 
nudging both wind and temperature (IN-UV&T, SN-
UV&T) gives the highest skills in term of correlation and 
root mean square. Then comes IN-UV and SN-UV simu-
lations. Nudging only temperature shows the lowest skills 
among all the nudged simulations. For the same set of 
nudged variables it is hard to distinguish between the two 
nudging techniques, the circle and star markers are almost 
superposed.

Figure 5 shows the mean biases between the BB and LB 
simulations in the surface temperature in summer and win-
ter for the not nudged (NN) simulation (Fig. 5a, a′) and the 
nudged simulations (IN-UV&T, IN-UV, IN-T, SN-UV&T, 
SN-UV, SN-T respectively Fig. 5b–g, b′–g′. In summer, the 
non nudged simulation displays a strong warm bias (>5 °C) 
over Europe and North Africa mainly over land. This bias 
is very weak over the sea because the sea surface tempera-
ture (SST) is prescribed from ERA-Interim reanalysis for 
all simulations, whereas over land, the land surface model 
(LSM) computes its own surface temperature. When nudg-
ing is used, this bias decreases to about ±2 ◦C. Here again, 
nudging wind and temperature show the highest skills by 
reducing the bias to less than ±1 ◦C. Unlike summer, we 
note a strong cold bias (about −6 ◦C) in winter in Eastern 
Europe and a smaller bias between 1 and 4 ◦C over almost 
the whole continental domain in the NN simulation. This 
bias is strongly reduced when nudging is applied to wind 
and temperature. However in winter, the impact of nudging 
is not as spectacular as in summer and a significant resid-
ual cold bias persists over almost the entire domain. Here 
again the difference between the two nudging techniques is 
very small. At least two facts could yield this result. The 
first one is that being applied above the PBL, nudging does 
not affect the small-scales in the PBL. Above the PBL, the 
small-scale structures are much less energetic so whatever 
its strength, nudging mainly impacts the large-scale field in 
LB. The second one is that the nudging time τ = 06 h is 

Fig. 4   Same as Fig. 2 for sur-
face temperature
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equal to its optimal value as determined in (Omrani et al. 
2013). Therefore we performed additional simulations with 
a much smaller nudging time (τ = 10 mn) and with nudg-
ing in the PBL.

Figure  6 displays the power spectra of temperature at 
1,000  hPa for a relaxation time τ = 10 mn and τ = 06 h 
when nudging is applied in the PBL and above the PBL. 
It shows that when nudging (IN or SN) is applied above 
the PBL, the small-scales of the surface temperature pattern 
are weakly affected (panels c and d) even if the nudging 
coefficient is large (i.e. nudging time τ = 10 mn). When 
nudging is applied in the PBL, the small-scales are cor-
rectly simulated when the nudging time τ = 06 h and equal 
to its optimal value as deteremined in (Omrani et al. 2013). 
Conversely, the small-scales are significantly damped in 

IN simulation when τ = 10 mn. In SN, the small-scale fea-
tures of the temperature field are well reproduced in SN for 
length-scales smaller than the cutoff length. Overall, small 
scales are preserved if nudging is applied either above the 
PBL only or with a sufficiently long nudging time, both 
conditions being satisfied in our experiments, leading to 
small differences between IN and SN.

This large surface temperature bias produced in the NN 
simulations (Fig. 5a, a′) has already been observed in sev-
eral studies (e.g. Radu et  al. 2008; Caldwell et  al. 2009; 
Bowden et al. 2012). Most of these studies explained this 
bias by an overprediction of daily-maximum temperature 
correlated with a low soil moisture content. As in Omrani 
et  al. (2013), such an explanation did not hold since the 
very simple 5 layer land-surface model used did not 

Fig. 5   Same as Fig. 3 (°C) for surface temperature (i.e. at 2 m height)
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permit to simulate soil moisture deficit. The other mecha-
nism invoked in Omrani et  al. (2013) is that the increase 
in temperature in summer corresponds to an atmospheric 
blocking situation artificially created by the model when 
nudging is not used. In that case small-scale discrepancies 
between the LB and BB can grow with time and contami-
nate the large scales. The NN simulation then produces in 
the center of the domain a large-scale atmospheric circula-
tion which is inconsistent with the large-scale atmospheric 
circulation imposed at the domain boundaries and within 
the LB domain. This explanation is also valid in this study 
since the same experimental methodology is used here. 
We can easily verify this hypothesis. Figure 7, shows the 
500 hPa geopotential height mean bias between the BB and 
LB simulations. The various sub-panels show the 500 hPa 
geopotential height mean bias for different sets of nudged 
variables. We note a strong positive anomaly of the summer 
geopotential height (≥140 m) in the center of the domain 
for the NN simulation (Fig. 7a). When the temperature is 
nudged, this anomaly decreases significantly (≤40  m). 
Whereas, when the wind is nudged, this centered positive 

anomaly disappears and it is replaced by a negative anom-
aly over the whole domain. In winter, we see on the con-
trary a negative bias over the Eastern Mediterranean which 
decreases somewhat, but not spectacularly, when the wind 
is nudged.

To check whether this temperature anomaly is con-
fined to the surface or spreads over all vertical levels of 
the model, we plot the summer mean bias of temperature 
and the geopotential height at different vertical levels (900, 
700, 500 and 400 hPa) for the NN, IN-UV&T, IN-UV and 
IN-T simulations (Fig.  8). Results for spectral nudging 
are not shown because we obtain very similar figures. The 
warm temperature bias exists at almost all vertical levels of 
our model when nudging is not used. Moreover, this bias 
is associated with a strong positive bias of the geopotential 
height that increases for the upper layers. Nudging reduces 
the temperature and the geopotential height bias at all lev-
els (≤2 °C).

These results are consistent with the results of Bowden 
et  al. (2012) who showed evidence of a temperature bias 
over North America in the absence of nudging, significantly 

Fig. 6   Power spectra for temperature at 1,000 hPa for a relaxation time τ = 10 mn (a, c) and τ = 06 h (b, d) when nudging is applied in the 
PBL (a, b) and above the PBL (c, d)
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correlated to a 500 hPa geopotential height anomaly. The 
impact of the absence of nudging on the 500-hPa geopoten-
tial height, and thus on the synoptic atmospheric circula-
tion has significant consequences on the rainfall pattern as 
shown in Fig. 3 (panels a and a′). In summer, the dry bias 
is induced in part by the positive anomaly of the 500-hPa 
geopotential height. The artificial high pressure over the 
center of the domain reduces cloud cover and precipitation 
producing a negative soil-moisture anomaly with smaller 
evaporation and higher sensible heat which in turn warms 
the planetary boundary layer and increases the surface tem-
perature (Zampieri et al. 2009; Hohenegger et al. 2009).

In summer and winter, a significant residual bias on the 
500 hPa geopotential height persists even when all possible 
variables are nudged. To analyze why, let us assume that 

hydrostatic balance approximately holds, which is a good 
approximation at scales larger than a few tens of kilometers. 
The temperature profile then entirely determines the pres-
sure and density profiles, up to a constant provided by sur-
face pressure, an independent prognostic variable in sigma-
coordinate models like WRF. Now any difference in surface 
pressure between LB and BB contaminates the whole pres-
sure field. This in turn affects the large-scale circulation 
which is approximately in geostrophic balance with the 
pressure field. Figure 9 displays the time-mean bias of the 
surface pressure. The observed pattern is remarkably sim-
ilar to the mean bias in 500 hPa geopotential height. This 
strongly suggests that surface pressure is the missing quan-
tity that, in addition to temperature, would allow to prevent 
the pressure field to diverge from its LB reference value.

Fig. 7   Same as Fig. 5 for geopotential height at 500 hPa (m)
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Figure  10 is similar to Fig.  3 but for 10m wind speed 
(m s−1). In summer, the bias is very low over land with no 
significant difference between the NN simulation and the 
nudged ones. In winter, we note a negative bias (≥3 m s−1) 
over the Atlantic part of the domain, nevertheless weak 
over land. Overall, nudging has no significant effect on sur-
face wind. Figure 11 shows the wind speed bias for differ-
ent pressure levels. Near the surface the impact of nudg-
ing is not significant as shown in Fig. 10, however, for the 
upper level, the strong positive anomaly of the geopotential 
height creates an anticyclonic circulation in the center of 
the domain. Nudging wind remove this bias over the whole 
vertical level while nudging only temperature leaves a 
small residual bias.

3.2 � Nudging moisture

We now examine the impact of nudging moisture. Note that 
with WRF, nudging moisture can be used only with IN. 
Indeed, we have compared simulations where moisture is 
or is not nudged, i.e. NN versus IN-Q, IN-UV&T versus 
IN-UV&T&Q, IN-UV versus IN-UV&Q, IN-T versus IN-
T&Q. Tables 3 and 4 display the correlation coefficients 
and the root mean square errors between the reference (BB 
simulation) and the different set of experiment with and 
without nudging moisture for rain, temperature and wind. 
Overall, nudging moisture has a positive effect on rain by 
reducing the bias and improving the temporal variability. 
This effect seems to be more significant in summer than in 

Fig. 8   The mean bias (°C) between the LB simulations with respect 
to the BB simulation of temperature (in shaded color) at 900 (a–d), 
700 (e–h), 500 (i–l) and 400 (m–p) hPa for summer for NN (a, e, i, 

m), IN-UV&T (b, f, j, n), IN-UV (c, g, k, o), IN-T (d, h, l, p) simula-
tions and geopotential height anomaly in contours
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winter. Indeed, it increases the correlation coefficients by 
0.1 at least and reduces significantly the RMS errors. For 
the other variables, nudging moisture shows no significant 
feedback on wind or temperature. This result is consistent 
with the finding of Radu et al. (2008), where they compared 
the sensitivity of the model to the set of nudged variables 
and showed that nudging the specific humidity improves 
the rainfall but it has a weak impact on temperature. No 
evident reason has been found within this framework which 
would explain these results. The boundary layer parametri-
zation (eg. the convection scheme) may be at stake here. 
However, additional investigations out of the scope of this 
Big Brother Experiment are left for future work.

3.3 � Nudging geopotential height

The bias of the geopotential height controls a large part of 
the surface wind and temperature biases. Nudging the geo-
potential height may thus be a way to overcome the prob-
lem of the residual bias due to the surface pressure bias. 
With WRF, we can nudge geopotential height with SN. To 
identify the added value of nudging geopotential (as for 
moisture) we compared pairs of simulations (NN versus 
SN-GHT), (SN-UV versus SN-UV&GHT), (SN-T versus 
SN-T&GHT) and (SN-UV&T versus SN-UV&T&GHT). 
Results show no difference (not shown). Nudging the geo-
potential has no discernable effect.

Fig. 9   Same as Fig. 5 for hydrostatic surface pressure (hPa)
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4 � Discussion: effectiveness of nudging 
and inter‑variable relationships

We finally discuss potential dynamical causes of two 
observations made previously: the absence of any impact 
of nudging geopotential on the simulations and the persis-
tence of a bias in surface pressure and geopotential height 
even when nudging wind and temperature.

4.1 � Implications of a nearly‑hydrostatic regime

At scales much larger than the scale height (about 10 km), 
non-hydrostatic effects are small. Our simulations are well 
within this nearly-hydrostatic regime, and we first explore 

implications for the biases we observed. Table 5 shows 
the correlation coefficient between the geopotential height 
bias and either the surface pressure bias (C(∆Φ500, ∆ps))  
or the surface temperature bias (C(∆Φ500, ∆T2) ) for 
NN, IN-UV&T, IN-UV and IN-T simulations, with 
∆Φ500 = ΦLB

500
− ΦBB

500
, ∆ps = pLB

s − pBB
s , ∆T2 = TLB

2 − TBB
2

. 
In winter, we note that the geopotential height bias is mainly 
controlled by the surface pressure bias. Indeed, for the NN 
simulation the correlation coefficient C(∆Φ500, ∆ps) is 
high (83.27  %) compared to C(∆Φ500, ∆T2) = 19.23 %.  
When we nudge the temperature (IN-UV&T and IN-T), the 
residual bias of the geopotential height is even more cor-
related to the surface pressure bias (≥98  %). In summer, 
the geopotential bias seems to be more correlated to the 

Fig. 10   Same as Fig. 3 for surface wind speed (m s−1)
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temperature bias with C(∆Φ500, ∆T2) = 84.6 % for NN 
simulation versus C(∆Φ500, ∆ps) = 67.6 %. When the 
temperature is nudged, the residual bias is strongly corre-
lated to the surface pressure bias (∼99 %).

To analyze more theoretically the results of Table 5, let 
us consider the hypsometric equation (Holton 1992)

where 〈T〉 denotes the mean temperature in the layer 
between the surface pressure ps and 500 hPa and R is the 
gas constant for dry air (R = 287 J K−1 kg−1). The corre-
sponding geopotential height bias at 500 hPa is then:

Φ500 − Φs = −R�T�ln

(

500

ps

)

Fig. 11   Same as Fig. 8 but for wind speed (m s−1)

Table 3   Correlation coefficients for the different experiment set-up

NN/IN-Q IN-UV/ 
IN-UV&Q

IN-T/ 
IN-T&Q

IN-UV&T/
IN-UV&T&Q

Rain (JJA) 0.05/0.16 0.32/0.48 0.17/0.34 0.43/0.56

Rain (DJF) 0.30/0.48 0.53/0.69 0.39/0.55 0.61/0.72

T2 (JJA) 0.79/0.80 0.93/0.94 0.90/0.91 0.95/0.95

T2 (DJF) 0.8/0.87 0.89/0.92 0.86/0.88 0.92/0.92

U10 (JJA) 0.41/0.40 0.86/0.87 0.66/0.69 0.90/0.91

U10 (DJF) 0.69/0.73 0.86/0.89 0.77/0.79 0.91/0.92

V10 (JJA) 0.42/0.41 0.86/0.88 0.68/0.69 0.90/0.91

V10 (DJF) 0.69/0.74 0.88/0.89 0.78/0.79 0.91/0.91
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Table 6 shows the correlation coefficient and the mean 
bias between ∆Φ500 and ∆Φ theo

500  for the NN simulation. The 
two time series are highly correlated (99  %) with a very 
small bias. This confirms that the spatial scales considered 
here are dominated by the hydrostatic balance and the geo-
potential height is entirely determined by the surface pres-
sure and the vertical profile of potential temperature. Now, 
if we prescribe the temperature by nudging toward the Big 
Brother temperature (TLB

∼ TBB) Eq. (3) becomes:

(3)

∆Φ theo
500 =

1

g0

(

ΦLB
500 − ΦBB

500

)

= −

R

g0

[

�T�
LBln

(

500

pLBs

)

− �T�
BBln

(

500

pBBs

)]

(4)∆Φ
IN−T , theo
500 =

R

g0

�T�
BBln(500)

[

ln
(

pLB
s

)

− ln
(

pBB
s

)]

and the geopotential bias is then, theoretically, entirely 
determined by the bias of the surface pressure logarithm. 
This is a very plausible explanation for the strong correla-
tion coefficient between ∆Φ500 and ∆ps (≥98  %) for IN-
UV&T and IN-T simulations and both seasons (Table 5).

4.2 � Actual degrees of freedom

To understand the absence of any impact of nudging geo-
potential on the simulations, it is useful to identify the actual 
degrees of freedom of the flow and how they relate to the 
prognostic variables of the numerical model. For atmos-
pheric flows the existence of a dominant, hydrostatic bal-
ance reduces the degrees of freedom that the model can actu-
ally explore. This is especially true at the hydrostatic scales 
resolved in the present numerical experiments. In a hydro-
static numerical model using the same mass-based coordi-
nate as WRF, the geopotential is a diagnostic variable which 
is entirely determined for each atmospheric column by the 
surface pressure and the vertical profile of potential tempera-
ture. When modelling hydrostatic flow with a non-hydro-
static model like WRF, it seems that geopotential is a prog-
nostic variable but in fact it is strongly constrained due to 
hydrostatic balance being nearly satisfied. As a consequence 
nudging geopotential has a negligible effect unless the time 
scale for nudging is decreased until it becomes comparable 
to that of hydrostatic adjustment. This time is comparable to 
the time needed by sound waves to travel vertically over the 
atmospheric column, i.e. less than 1 min (Bannon 1995).

In hindsight, it is therefore entirely expected that nudg-
ing the geopotential has little usefulness. In fact nudging 
the geopotential should probably be avoided altogether, 
because it is more a diagnostic quantity than a prognostic 
variable. Notice that while this argument is clearly valid 
at horizontal scales where hydrostatic equations describe 
the flow well, it is probably also valid at smaller scales 
where the flow is non-hydrostatic. Indeed Arakawa and 
Konor (2009) and Dubos and Voitus (2014) have recently 
proposed non-hydrostatic equations where hydrostatic bal-
ance is nevertheless enforced for each atmospheric column, 
therefore making the geopotential explicitly diagnostic, 
exactly as with the primitive equations.

On the other hand hydrostatic balance puts no constraint 
on the value of the surface pressure, which is equivalent to the 
total mass of an atmospheric column. This is therefore a genu-
ine degree of freedom. Surface pressure is associated with 
barotropic motion such as Lamb waves and barotropic Rossby 
waves. The latter play a significant role in large scale atmos-
pheric variability at a scale of a few days (Madden 2007). It 
is therefore entirely possible that this mode of atmospheric 
motion becomes progressively inconsistent between the driv-
ing model and the driven model as time passes, if no nudging 
is applied. This issue might not be encountered when dealing 

Table 4   Root mean square error for the different experiment set-up

NN/IN-Q IN-UV/ 
IN-UV&Q

IN-T/ 
IN-T&Q

IN-UV&T/
IN-UV&T&Q

Rain (JJA) 1.23/0.86 1.12/0.72 0.97/0.74 0.8/0.65

Rain (DJF) 0.84/0.71 0.68/0.55 0.74/0.64 0.61/0.53

T2 (JJA) 3.22/3.20 1.68/1.57 1.99/1.91 1.46/1.36

T2 (DJF) 3.29/2.63 2.39/2.00 2.71/2.49 2.02/1.96

U10 (JJA) 3.92/3.93 1.89/1.79 2.89/2.79 1.57/1.52

U10 (DJF) 3.79/3.55 2.44/2.28 3.23/3.16 2.11/2.08

V10 (JJA) 3.91/3.96 1.86/1.76 2.82/2.74 1.56/1.50

V10 (DJF) 3.66/3.39 2.37/2.23 3.10/3.03 2.09/2.08

Table 5   Correlation coefficients between the biases of geopoten-
tial height at 500  hPa (∆Φ500 = ΦLB

500
− ΦBB

500
), of surface pressure 

(∆ps = pLB
s − pBB

s ) and of surface temperature (∆T2 = TLB
2 − TBB

2 )

C(∆Φ500, ∆ps) C(∆Φ500, ∆T2)

Winter Summer Winter Summer

NN 0.83 0.67 0.19 0.84

IN-UV&T 0.98 0.98 0.02 0.29

IN-UV 0.89 0.82 −0.05 0.28

IN-T 0.98 0.99 0.18 0.61

Table 6   Correlation coefficient and mean bias between the geo-
potential height bias retrieved from respectively NN, IN-T simula-
tions and the geopotential height computed from Eqs. 3, 4

∆Φ
NN ,theo
500

, ∆ΦNN
500

∆Φ
IN−T ,theo
500

, ∆ΦIN−T
500

MJJA NDJF MJJA NDJF

C 0.99 0.99 0.90 0.83

∆ −2.13 3.79 −20.22 −19.66
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with small regional domains or short experiments. However 
for regional climate studies over large domains, nudging sur-
face pressure may be necessary as Fig.  9 (panels c and d) 
suggest.

4.3 � Inter‑variable relationships and nudging

Nudging has been initially introduced as a data assimilation 
technique (Anthes 1974; Hoke and Anthes 1976; Davies 
and Turner 1977). When used for this purpose, nudging is 
typically applied during a short assimilation window (12–
24  h) before a non-nudged forecast is performed. When 
used for the purpose of regional climate modelling, nudging 
is applied during the whole simulation, typically months or 
years. Despite this difference, it is interesting to discuss our 
results in the light of the understanding of nudging gained 
in a data assimilation context. Indeed the question of which 
variables can best improve a forecast when assimilated into 
an initial condition by nudging has been examined in some 
detail (Hoke and Anthes 1976; Kuo et  al. 1993; Bao and 
Errico 1997). The general picture that emerges from these 
studies is that nudging a certain field can affect other fields 
due to inter-variable relationships imposed by the dynam-
ics. Those relationships, which depend on the spatial scale, 
are captured by a normal-mode analysis of idealized mod-
els, especially the shallow-water equations (Bao and Err-
ico1997). The latter are relevant for hydrostatic atmospheric 
motion because three-dimensional motion can be decom-
posed into vertical modes (baroclinic and external) obeying 
uncoupled linearized shallow-water equations.

Whenever these modes couple two fields, nudging one 
affects the other. For instance small-scale gravity waves 
have as much kinetic energy as potential energy, coupling 
the (divergent) velocity field and the mass field. Nudg-
ing mass only (or velocity only) will affect both mass 
and (divergent) velocity in that case. Indeed, although the 
loss of potential (resp. kinetic) energy due to nudging is 
partially offset by drawing energy from the kinetic (resp. 
potential) reservoir, the wave is damped with a damping 
time just twice the nudging time (detailed calculation not 
shown). Conversely large-scale Rossby waves have much 
more potential energy than kinetic energy. Nudging wind 
affects the mass field very weakly in that case, as the loss 
of kinetic energy due to nudging is compensated by draw-
ing energy from the much larger potential energy reservoir, 
resulting in an overall damping time much longer than the 
nudging time.

Following the above reasoning, nudging the small  
(<Rossby radius) scales of the mass field affects mostly 
gravity waves, hence small-scale divergent wind. Nudg-
ing the small scales of the wind field affects both Rossby 
and gravity waves, the latter affecting the small scales of 
the mass field. Nudging the large scales of the mass field 

affects large-scale Rossby waves, hence large-scale wind, 
assuming the latter is mostly geostrophic, a reasonable 
assumption at midlatitudes. Nudging the large scales of 
the wind field affects mostly inertial waves, which have 
very little potential energy, so the effect on the mass field 
should be weak. Overall while the small-scale mass field is 
affected by nudging applied to wind, it is not the case of the 
large-scale mass field.

Translating these shallow-water results into the three-
dimensional realm involves the vertical structure of nor-
mal-modes, which are either external (barotropic) or baro-
clinic. Baroclinic modes have a very small projection onto 
surface pressure while external (barotropic) modes have a 
vanishing temperature perturbation (Davies et  al. 2003). 
Hence in the above intervariable relationships, mass is a 
synonym of temperature for baroclinic modes and of sur-
face pressure for external modes. Especially nudging wind 
affects the small-scale temperature field and nudging tem-
perature affects the large-scale baroclinic wind field. How-
ever the shallow-water analysis applied to the barotropic 
modes suggests that nudging temperature has no effect 
on wind while nudging wind effectively controls only the 
scales smaller than the barotropic Rossby radius (about 
3,000 km). Controlling the long barotropic Rossby waves 
would require nudging mass, i.e. surface pressure, as sug-
gested above. The absence of such a control opens the pos-
sibility that surface pressure becomes inconsistent with the 
driving field, as we have observed in our simulations.

5 � Conclusion 

In this work, we investigate the impact of different sets of 
variables nudged in regional climate simulations performed 
with the Weather Forcasting and Research (WRF) model 
in a Big Brother Experiment (BBE) framework, using 
indiscriminate and spectral nudging. A set of of numerical 
simulations has been performed over the Euro–Mediter-
ranean region in summer and winter. We quantify statisti-
cally the ability of nudging to reduce the inconsistencies 
between LB and BB (reference fields) that develop over 
time (Omrani et al. 2012a, b, 2013).

Comparison of nudged and non nudged configurations 
shows that nudging clearly improves the model capacity to 
reproduce the reference fields from the Big-Brother simu-
lations, regardless of the diagnosed variable. However the 
improvement depends on the set of variables used to nudge 
the regional climate simulations. The results also depend 
on the season and the diagnosed variable.

The tropospheric horizontal wind is by far the key vari-
able to nudge to simulate correctly surface temperature and 
wind, and rainfall. To a lesser extent, nudging tropospheric 
temperature also contributes to significantly improve the 
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simulations. This is unsurprising as wind determines the 
transport of all conserved quantities, especially heat and 
moisture. These results are consistent with the study of 
Pohl and Crétat (2013), who showed that nudging the hori-
zontal wind and temperature provides the best simulation 
of deep tropical convection with respect to observations. 
Furthermore wind and temperature are coupled through 
the thermal wind balance. Thermal wind balance follows 
from hydrostatic equilibrium and geostrophic equilibrium, 
the latter being valid at scales larger than about 1,000 km. 
Therefore nudging tropospheric wind or temperature 
directly impacts the simulation of the tropospheric geo-
potential height and thus the synoptic scale atmospheric 
circulation. Maintaining a synoptic circulation within the 
simulation domain consistent with the synoptic circulation 
at the domain boundaries is essential to avoid numerical 
artifacts which are known to produce large surface temper-
ature and rainfall biases.

Nevertheless nudging wind and temperature leaves a 
residual bias in surface pressure and, as a consequence, in 
geopotential height. We suggest that this is due to the ina-
bility of the wind and temperature fields to control large-
scale barotropic Rossby waves. Removing this residual 
bias seems to require the nudging of the surface pressure, 
an independent degree of freedom. This would not be with-
out problems since nudging surface pressure actually adds 
a source term to the mass budget. Some care would be 
needed to do this in a manner consistent with the transport 
of potential temperature and other species.

Nudging moisture has generally a marginal impact on 
the quality of the regional climate simulations. However, it 
has a significant positive impact on the simulation of rain-
fall. As an immediate consequence, nudging all possible 
variables in WRF gives by far the best results with respect 
to the Big-Brother simulation. The same conclusions were 
found with spectral nudging and were thus not illustrated 
in the article. The fact that nudging can not be applied on 
moisture with spectral nudging in WRF (Bowden et  al. 
2012) is detrimental to a more thorough comparative analy-
sis between indiscriminate and spectral nudging.

In this study, nudging has been applied to all nudged 
variables with the same relaxation time. Due to the dif-
ferent nature of the processes and scales that control tem-
perature, wind and precipitation, the question of the use of 
different nudging times for wind, temperature and moisture 
seems relevant and should be addressed in the future. A 
potential limitation of this work is to be based on the sin-
gle WRF model. However, for those results (ie that nudg-
ing wind and temperature has the most impact, that nudg-
ing geopotential is ineffective and that the surface pressure 
needs to be nudged) for which a plausible physical expla-
nation could be found, it seems reasonable to expect that 
they are robust and model independent.
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