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A regional climate model (RCM) is driven by the ERA-40 reanalyses produced by
the ECMWF general circulation model (GCM) to simulate the winter 1998 climate
over the Mediterranean basin. In this article, we consider the effects on internal
variability of temporal nudging. This technique consists of relaxing the RCM’s
prognostic variables towards the GCM values within a predetermined time-scale,
with the aim of disallowing large and unrealistic departures between driving and
driven fields. To interpret the significant effect of time nudging on the regional
climate prediction, we develop a ‘toy model’ basically consisting of resolving a
linear transport equation with a Newtonian relaxation term. This model predicts the
existence of an optimal nudging time which depends on the time-scale over which
numerical errors affect significantly the accuracy of the ‘regional’ solution at the
large spatial scales, and the typical time-scale of the small-scale phenomena that are
not resolved by the GCM. Copyright c© 2010 Royal Meteorological Society
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1. Introduction

Climate varies across a wide range of temporal and spatial
scales. Yet climate modelling has long been approached
using global general circulation models (GCMs) that can
resolve only the broader scales of atmospheric circulations
(around 100 km grid resolution). Clearly, large-scale climate
determines the environment for mesoscale and microscale
processes that govern the weather and local climate, but,
likewise, processes that occur at the regional scale may have
significant impacts on the large-scale circulation. Resolving
such interactions will lead to much improved understanding
of how climate both influences, and is influenced by, human
activities.

Hence there is a need to develop tools for downscaling
GCM predictions to generate finer-scale projections of
local climatologies. Downscaling is the process of deriving

regional climate information based on large-scale climate
conditions. Both dynamical and statistical downscaling
methods have been used extensively in the last decade to
produce regional climate (Wilby and Wigley, 1997, provide
a review).

Statistical downscaling is a method for obtaining high-
resolution climate from GCMs by deriving statistical
relationships between observed small-scale (often station-
level) variables and larger (GCM)-scale variables, using
either analogue methods (circulation typing), regression
analysis, or neural network methods (Wilby and Wigley,
1997; Wilby et al., 1998). Statistical downscaling may be used
whenever suitable small-scale observed data are available to
derive the statistical relationships (e.g. Salameh et al., 2009).

Dynamical downscaling consists of driving a regional
climate model (RCM) by a GCM over an area of interest
since decreasing grid spacing in mesoscale models generally

Copyright c© 2010 Royal Meteorological Society



The Effect of Indiscriminate Nudging Time on Regional Climate Modelling 171

improves the realism of the results (Mass et al., 2002).
This nesting technique can be one-way, so the circulations
produced by the RCM do not feed back into the GCM, or
two-way (Giorgi, 1990). Previous studies have investigated
the sensitivity of the RCM predictions to initial and
boundary conditions, frequency of update of boundary
conditions, size and resolution of the domain of simulation,
spin-up time, and physical parametrisations, in order to
prevent these models misleading (Bhaskaran et al., 1996; Seth
and Giorgi, 1998; Noguer et al., 1998; Laprise et al., 2000;
Denis et al., 2002, 2003). For long-term RCM modelling,
Qian et al. (2003), Žagar et al. (2006), and Lo et al. (2008)
showed that RCM simulations re-initialized periodically
have better results than continuous runs. However re-
initialization creates discontinuities which are detrimental
for time variability studies. All these studies have shown
that RCM internal variability may be very complex and
that its impact on regional climate predictions is far from
negligible. One way to overcome this problem is to consider
the effects on internal variability of large-scale nudging,
which is a technique originally developed for assimilation
issues (Davies and Turner, 1977; Schraff, 1997; Li et al., 1998;
Vidar et al., 2003) but increasingly popular to drive RCMs.
This technique consists of partially imposing the large scale
of the driving fields on the RCM simulation with the aim of
disallowing large and unrealistic departures between driving
and driven fields. Two different types of nudging exist, both
requiring constant adjustments: spectral nudging which
consists of driving the RCM on selected spatial scales (e.g.
Von Storch et al., 2000) and temporal nudging or Newtonian
relaxation, which consists of relaxing the RCM’s prognostic
variables towards the GCM values within a predetermined
relaxation time. For the latter, the smaller the nudging
time, the closer are the RCM predictions to the GCM’s
fields interpolated on the RCM grid and the larger is the
inhibition of the RCM physics. Spectral nudging is indeed
a solution to the undesirable effect of nudging on small
scales and allows us to overcome the issue of indiscriminate
temporal nudging, but indiscriminate nudging is suited for
basic irregularly spaced data assimilation. This appropriate
solution of basic data assimilation contributes to widely
spread the indiscriminate nudging option in many up-to-
date regional numerical models such as MM5 (Grell et al.,
1993), WRF (Skamarock et al., 2005), Méso-NH (Lafore
et al., 1998), RAMS (Pielke et al., 1992), and LMDZ (Genthon
et al., 2002). The use of indiscriminate nudging is thus widely
used for applications such as data assimilation and dynamical
downscaling. For this reason, it is useful to assess the various
error sources and how they scale with the indiscriminate
nudging time, which is the main aim of the present work.

In this paper, we analyze the impact of large-scale nudging
on RCM internal variability. To investigate the effect of time
nudging on the regional climate prediction, we develop a ‘toy
model’ basically consisting of resolving a linear transport
equation with a Newtonian relaxation term. This model
allows the identification of the different sources of errors
in the RCM, the evaluation of the time-scale over which
numerical errors affect significantly the accuracy of the RCM
solution at the large spatial scales, and the time-scale of the
small-scale phenomena that are not resolved by the GCM.
We then use the results obtained with the linear model to
interpret a series of numerical experiments conducted with
the fifth-generation Penn State/NCAR mesoscale model
MM5 as the RCM and performed with different nudging

times over the Mediterranean basin. The RCM is nudged
towards the reanalyses (ERA-40) of the European Centre for
Medium-Range Weather Forecasts (ECMWF) of November
and December 1998. Despite the wide complexity gap
between the two models, their combined analyzes allows
a better insight into the effects of indiscriminate nudging
on the different scales in regional modelling and in the
determination of an appropriate nudging time.

After the introduction in section 1, section 2 describes the
‘toy model’ which consists of a linear one-dimensional
transport equation with a Newtonian relaxation term.
Section 3 details the RCM used in this study and describes the
RCM internal variability as a function of large-scale nudging.
Section 4 gives an interpretation of the RCM results in the
light of the ‘toy model’ learnings. Finally section 5 concludes
the study and points out some open research questions
needing further investigation.

2. The toy model

2.1. Rationale

Finding the optimal nudging time for a realistic nonlinear
model is in general a nonlinear optimization problem.
Iterative techniques based on adjoint methods can be used to
obtain an accurate and quantitative estimate of the optimal
time. However this is an expensive task which must be
done for each specific model and configuration. The result
also depends on the criterion to be optimized (the cost
function). The main objective of the present work is not to
obtain the optimal value of the nudging time or to propose
a new general method to quantitatively estimate the optimal
nudging time in realistic models. Our aim is to gain a general
insight into the key mechanisms involved in the impact of
indiscriminate nudging on the large scales and the small
scales of a regional climate simulation.

To do so, we develop a toy model amenable to analytical
treatment, which contains enough ingredients to suffer from
the same drift phenomenon as a complex atmospheric
model and needs to be guided as well. As soon as the
toy model presents a variety of spatial scales, the issue
of the degradation of the small scales by indiscriminate
nudging arises. Since the nudging technique is of very general
applicability, independently of the underlying dynamics, the
adequacy of the toy model to study the influence of the
nudging time on regional climate simulations does not
result from its approximating a real-world model but from
the key ingredients the toy model contains: a variety of scales
and a tendency to drift away from the large-scale situation.
The approach of analyzing complex models by resorting to
synthetic models containing a few key ingredients with only
a formal similarity with the original problem has a long
history and has proven useful in the past. Actually Waldron
et al. (1996) use a linear wave model in order to compare
the impact of indiscriminate and spectral nudging at the
small and large scales, before turning to a realistic model.
The approach used in this paper is quite similar.

2.2. Setting

The basic parameters and scales defining an optimal nudging
time appear better in a simplified problem. Because most
dynamical variables evolve under the combined effect of
transport and various sources, the toy model we consider
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consists of a one-dimensional transport equation

∂q

∂t
+ U

∂q

∂x
= s(x) , (1)

where U is a constant, uniform velocity and the right-hand-
side s(x) represents non-conservative effects, assumed here
time-independent for simplicity. One can think for instance
of the transported variable q as being Ertel’s potential
vorticity (2� + ∇ × V) · ∇θ/ρ, where ρ is the air density,
� is the angular velocity vector of the Earth’s rotation, V is
the air velocity and θ is the potential temperature. Potential
vorticity is a conservative variable obeying a conservation
equation of transport similar to Eq. (1). The right-hand side
then corresponds to the sources of potential vorticity due to
dissipation, notably over mountains and valleys. Because of
its extreme simplicity, Eq. (1) admits a closed-form general
solution:

q(x, t) = q0(x − Ut) + qss(x) (2)

where q0 is an arbitrary transient and qss is the steady
response to the forcing:

U
∂qss

∂x
= s(x). (3)

The subscript ss stands for ‘small-scale’, due to the assumed
small-scale nature of the forcings.

We now introduce two imperfect models which try to
numerically approach the solution of Eq. (1). The first one
is our toy analogue of a GCM and has insufficient resolution
to resolve the small-scale source s, hence:

∂qls

∂t
+ U

∂qls

∂x
= 0 , (4)

where the subscript ls stands for ‘large-scale’. We assume that
the lack of a proper representation of the small-scale sources
is the main source of error in qls, effectively neglecting
discretization error, imperfect initialization, etc. As a result:

qls = q0(x − Ut) , (5)

where q0 is the transient that effectively occurs in the perfect
physical model described by Eq. (1). Obviously, the small-
scale details that occur in response to the sources s are
missing from the field qls. We finally introduce a ‘regional’
model, resolving Eq. (1) with improved resolution over a
limited interval. Because spatial and temporal discretizations
introduce errors, the numerical model effectively solves
an equation slightly different from Eq. (1), and which
includes numerical diffusion or dispersion. In order to
compensate for the accumulated numerical errors, a non-
physical nudging term is added which keeps the ‘regional’
solution not too far from the large-scale solution qls:

∂qr

∂t
+ U

∂qr

∂x
= U

∂qss

∂x
− 1

τ
(qr − qls) + Knum

∂2qr

∂x2
, (6)

where Knum is the numerical diffusion (we do not consider
here numerical dispersion) and the nudging time τ is a
freely tunable parameter. The shorter the time τ , the closer
qr will be to qls, and hence the less accurate the small scales
of qr will be. In the following subsection, we determine
quantitatively the dependance on τ of the accumulation of
numerical errors, which occurs for long nudging times, and
of the damping of the small scales, which occurs for short
nudging times. The best compromise between these two
sources of errors defines an optimal nudging time, which
can be explicitly derived for this toy model.

2.3. Error estimate and optimal nudging time

In order to estimate the effect of the nudging time on
the regional solution qr and the errors made at large and
small scales, we now analyze Eq. (6) in Fourier space. The
regional solution qr differs from the ideal solution by a
large-scale contribution proportional to qls and a small-
scale contribution proportional to qss (see Appendix). This
provides a bound on the r.m.s error ε:

ε ≤ ε ls + εss (7)

Given characteristic scales Lls � Lss, corresponding to wave
numbers kls � kss, of the functions qls and qss, we obtain the
estimates

ε ls ∼ ∥∥̂qls

∥∥ ∣∣∣∣ 1

1 + Knumk2
lsτ

− 1

∣∣∣∣ , (8)

εss ∼ ∥∥̂qss

∥∥ ∣∣∣∣∣ 1

1 + (
iτUkss

)−1 − 1

∣∣∣∣∣ . (9)

Details on the calculation of error estimate are developed in
the Appendix.

Two time-scales associated with two asymptotic regimes
appear in the expressions for εls and εss. The first time-scale is

τ num = (
Knumk2

ls

)−1 ∼ L2
ls/Knum, the time-scale over which

numerical errors affect significantly the accuracy of the
‘regional’ solution at spatial scale kls. The second time-scale

is τ ss = (
Ukss

)−1
, the typical time-scale of the small-scale

phenomena that are not resolved by the GCM. In the limit
where τ � τ num,

ε ls ∼ ∥∥̂qls

∥∥ ∣∣∣∣ 1

1 + Knumk2
lsτ

− 1

∣∣∣∣ ∼ ∥∥̂qls

∥∥ τ

τ num
, (10)

while if τ � τ ss,

εss ∼ ∥∥̂qss

∥∥ τ ss

τ
. (11)

We can expect that τ num � τ ss, i.e. it takes much longer for
the noise to contaminate the large scales than for the small
scales to evolve under their own dynamics. Hence there
exists a range where τ ss � τ � τ num and

ε ls + εss ∼ ∥∥̂qls

∥∥ Knumk2
lsτ + ∥∥̂qss

∥∥ (
τUkss

)−1
. (12)

This estimate of the error attains a minimum for

τ opt ∼
√∥∥̂qss

∥∥∥∥̂qls

∥∥ √
τnumτ ss . (13)

This result emphasizes the effects which contribute to
the total error committed by the nudged simulation: the
damping of small scales if τ is much smaller than the
dynamical time-scale τ ss, and the deviation of large scales
from the reanalyses if τ is much larger than the time-scale
τ num. Both sources of error can be kept small if τ ss � τ num

with an optimum nudging time given by Eq. (13).
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Figure 1. The MM5 RCM domain; solid lines indicate the coasts, grey areas represent topography higher than 500 m and the dots represent the nodes of
the horizontal grid.

3. Mediterranean climate modelling

3.1. Numerical model

The RCM used to conduct the simulations is the fifth
generation Penn State–National Center for Atmospheric
Research RCM, MM5 version 3.6 (Dudhia, 1993; Grell et al.,
1993). The model solves the non-hydrostatic equations
of motion in a terrain-following sigma coordinates. The
domain covers the Mediterranean basin (Figure 1).

It is centred on 38◦N, 13◦E and covers an area of 4000 km
× 1150 km. The horizontal resolution is 21 km and 37
unevenly spaced full sigma levels are used. The lowermost
half-sigma level (σ = 0.999) is about 12 m above ground. The
vertical distance between the model levels is about 50 m close
to the ground and increases up to 1200 m near the upper
boundary which is located at 100 hPa. The model orography
is interpolated from terrain data with 30′′ resolution. It
is filtered by a two-pass smoother–desmoother (Guo and
Chen, 1994) in order to remove two-grid-interval waves that
would induce numerical noise. Information on land use was
obtained from United States Geological Survey (USGS) data
with the same horizontal resolution as for orography. The
simulations use up-to-date local land surface characteristics
coupled with the advanced land surface model (NOAH-
LSM) (Chen and Dudhia, 2001). A complete set of physics
parametrisations is used. The cloud microphysics are treated
with a sophisticated scheme having prognostic equations
for cloud water, cloud ice, cloud ice particle number
concentration, rain, snow and graupel (Reisner et al., 1998).
The Grell cumulus parametrisation (Grell, 1993) is used. The
radiation scheme accounts for the interaction with moisture
and clouds (Grell et al., 1993; Mlawer et al., 1997). The
atmospheric boundary layer is parametrised using the Hong
and Pan scheme (Hong and Pan, 1996). It is an efficient
scheme based on the Troen and Mahrt representation of
the countergradient term and eddy viscosity profile in the
well-mixed atmospheric boundary layer.

The GCM outputs are the ECMWF reanalyses ERA-40
which are available every six hours on a 1.125◦ × 1.125◦
latitude–longitude grid. Since the interpolation routine

of the MM5 modelling system needs pressure level data,
the standard-level-pressure version of the ECMWF data is
used.

In this paper, we analyze the impact of large-scale
nudging on RCM internal variability based on a series
of numerical experiments performed with different nudging
times over the Mediterranean basin. The nudging time τ

ranges between 0 h (basically the ERA-40 fields interpolated
onto the RCM grid) and 10 d (τ = 1, 2, 3, 4, 5, 6, 12 h,
and 1, 2, 5 and 10 d). One simulation is performed without
nudging (i.e. τ = ∞). Nudging is applied on the 3D GCM
fields (wind, temperature and humidity) as proposed by Lo
et al. (2008). All the simulations start on 1 November 1998
and end on 31 December 1998.

3.2. Results

The Mediterranean basin presents several characteristics.
First, because of the latitudes that it covers, it is a transition
area under the influence of both midlatitude and tropical
variability: to the north, a large part of the atmospheric
variability is linked to the North Atlantic Oscillation (NAO)
and other midlatitude teleconnection patterns (Xoplaki,
2002; Trigo et al., 2004), while the southern part of the
region is under the influence of the descending branch of
the Hadley cell materialized through the Azores High, with
in addition El Niño Southern Oscillation (ENSO) influence
to the east (Rodwell and Hoskins, 1996; Price et al., 1998).
At the southern limit of the North Atlantic storm tracks, the
Western Mediterranean region is particularly sensitive to
interannual displacement of the trajectories of midlatitude
cyclones that can modulate the precipitation over the region
mainly during the winter season when the impact of the
NAO is greatest (Rodriguez-Fonseca and De Castro, 2002).
The Mediterranean climate is also influenced by tropical
and subtropical systems, such as ENSO, tropical cyclones,
Saharan dust and the South Asian monsoon (Rodó et al.,
1997; Reale et al., 2001; Rodó, 2001; Mariotti et al., 2002).

At finer scale, Mediterranean region features a nearly
closed sea with high sea surface temperature during summer
and autumn surrounded by an almost continuous barrier of
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Figure 2. 3-hourly surface wind speed (shading) and direction (arrows) averaged over November and December 1998 for nudging time τ equal to (a) 1 h,
(b) 2 h, (c) 3 h, (d) 4 h, (e) 5 h, (f) 6 h, (g) 12 h and (h) ∞ (no nudging). This figure is available in colour online at www.interscience.wiley.com/journal/qj

mountains. The complex topography plays a crucial role in
steering air flow and the Mediterranean Sea acts as a moisture
and heat reservoir, so that energetic mesoscale features are
present in the atmospheric circulation which can evolve to
high-impact weather systems such as heavy precipitation and
wind storms. The ability to predict such high-impact weather
events, their impacts and their evolution in the context of
climate change is still low because of the contribution of
fine-scale processes. Figure 2 displays the mean surface wind
field averaged over November and December 1998, when
teleconnections with synoptic-scale atmospheric circulation
is the greatest (e.g. Dünkeloh and Jacobeit, 2003). The
different panels of Figure 2 correspond to different nudging
times (τ ranging from 1 to 12 h, the last panel corresponding
to the simulation performed without nudging).

On average, the mean surface wind field is not strongly
affected by the nudging and the typical wind regimes in the

various sub-basins can be identified. In the Alboran Sea (the
westernmost Mediterranean), the levanter blows from the
east and in winter it may be strong and long lasting (up to 10
days). In the central Mediterranean, the north-north-west
cold and dry mistral (e.g. Jansá 1987; Jiang et al., 2003;
Caccia et al., 2004; Corsmeier et al., 2005; Drobinski et al.,
2005; Guénard et al., 2005, 2006; Lebeaupin Brossier and
Drobinski, 2009) and its companion wind the tramontane
(e.g. Drobinski et al., 2001) blows in the Gulf of Lion,
occasionally up to the African coasts (Salameh et al., 2007).
Winter 1998 was a period of particularly frequent and
intense mistral events. The northeasterly strong and cold
bora (Yoshino, 1976; Jurčec, 1981; Smith, 1987; Pandžić and
Likso, 2005) affects the entire Adriatic Sea and bora-type
winds are also visible in the northern Aegean Sea. In the
Levantine basin, the prevailing winds are the etesians (Ziv
et al., 2004) whereas the Black Sea is dominated by northerly
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winds (Efimov and Shokurov, 2002); a cyclonic circulation
dominates the eastern part of the basin, while an anticyclonic
circulation prevails on its western side. In detail, significant
differences can be seen between the different simulations: in
the region of the Gibraltar Strait over the Alboran Sea, the
levanter is nearly non-existent in the case of strong nudging
(τ < 6 h; Figure 2(a–f)), whereas it can blow on average
up to 6–7 m s−1 when nudging is applied on longer time-
scales (τ ≥ 12 h; Figure 2(g–h)). Over the Gulf of Lion,
the footprint of the mistral and tramontane jets spreads
westwards over a wider zone and eastwards to the Ligurian
Sea when τ increases. In the central basin, surface wind
speed decreases with increasing τ and the etesians veer
from the west (τ < 6 h) to the northwest (τ ≥ 12 h), in
better agreement with the climatology by Zecchetto and De
Biasio (2007). Other less significant differences are visible
with winds intensifying over the Adriatic Sea and over the
southern shore of the Black Sea with increasing τ .

Compared to the mean surface wind field, the variability
in strength and direction is even more sensitive to the
nudging time. Following Zecchetto and De Biasio (2007),
we define the wind steadiness S (i.e. indicating the variability
of the wind direction) and the relative wind speed G (i.e.
indicating the variability of the wind speed) as

S = 100

U

(
u2 + v2

)1/2
,

G = σ U

U
.

(14)

where U is the surface wind speed of components u and
v, σ U is the standard deviation of the wind speed and the
overbar denotes time averaging. The larger the variability
in wind direction and wind speed, the weaker is the wind
steadiness S and the stronger is the relative wind speed
G, respectively. The wind variability differs in the eastern
and western Mediterranean sub-basins and are strongly
dependent on the nudging time as displayed in Figures. 3
and 4.

The wind steadiness field (Figure 3) defines the extent
of the main Mediterranean wind systems well but varies
significantly with time nudging. For τ ≤ 6 h, the highly
steady etesians (S > 65) in the Levantine basin affect an area
roughly east of 24◦E as shown in Zecchetto and De Biasio
(2007) between 2000 and 2004. However, when τ ≥ 12 h,
wind steadiness decreases to values S � 50 over a much
less defined area in the absence of nudging. However, the
sensitivity of the etesians to time nudging is weak compared
to the sensitivity of the mistral/tramontane wind systems in
the Gulf of Lion. West of 12◦E, two zones of large steadiness
(S > 65) over the Gulf of Lion and off the coasts of Tunisia
are clearly detached for τ ≤ 1 h and τ ≥ 12 h whereas when
1 h ≤ τ ≤ 12 h, these two regions of large steadiness merge
into one. Similarly to the Levantine basin, wind steadiness
decreases with increasing τ and τ ≥ 12 h. Contrary to
Zecchetto and De Biasio (2007) climatology, the western
Mediterranean basin in winter 1998 is characterized by large
steadiness (S > 65 in 1998 compared to S < 60 on average
for winters 2000 to 2004). This can reasonably be explained
by the unusual high frequency of intense mistral/tramontane
events. Finally, the regions of very low wind steadiness
(S < 40) are consistent with the Zecchetto and De Biasio
(2007) climatology, whatever the nudging time τ , except for
the Sicilian Channel (S > 55 in 1998 compared to S < 40

on average for winters 2000 to 2004): they are the Alboran,
Balearic, Adriatic, Tyrrhenian and Black Seas. The fact that,
in general, wind steadiness decreases is consistent with the
fact that the production of small-scale wind structures is
favoured by the absence of relaxation to the GCM wind
field.

The relative wind speed variability (Figure 4) shows that,
as in Zecchetto and De Biasio (2007) climatology, the
highest values (G > 0.40) occur in areas swept by winds
from land, such as the Gulf of Lion, and the Alboran,
Adriatic, and Aegean Seas, as well as at the lee side of
Corsica and Sardinia in the northern Tyrrhenian Sea,
and Crete and Rhodes in the Levantine basin, indicating
strong airflow–orography interactions. The lowest values
of relative wind speed variability (G < 0.40) are found in
the southernmost part of the basin (below about 35◦N),
offshore from flat coastal areas that mainly experience winds
from the sea. The relative wind speed G in this region is
extremely sensitive to the nudging time τ . Indeed, over the
Ionian and Levantine basins, G decreases when τ increases
up to 1 h. The G field varies very little up to τ = 12 h and
then increases significantly with increasing τ . Contrary to
Zecchetto and De Biasio (2007), the highest values of G
does not occur in the Gulf of Lion because of the more
frequent occurrence of strong mistral/tramontane events
(even though G is still high with values exceeding 0.5 in the
worst case) but in the Alboran Sea. The high wind speed
variability confirms the presence of orographic effects, which
is evident along the coast of the Gulf of Lion and Adriatic
Sea, as an effect of the funnelling of the northwesterly
mistral/tramontane and northeasterly bora through the
chain gaps, but is also relevant east of Sardinia–Corsica
and south of Crete–Rhodes.

As for the wind steadiness S, the fact that on average G
increases with τ is consistent with the simulation of small-
scale features. In the absence of nudging, the G pattern does
not show zones as distinct as in the presence of nudging.

Finally, the significant impact of the nudging time on the
mean surface wind and its variability affects dramatically the
accumulated precipitation pattern in intensity and location
and, to a lesser extent, the surface temperature field (not
shown). The question is thus: can we determine from the
RCM fields an optimal nudging time minimizing the error
made on the large-scale field, and simultaneously allowing
the production of realistic fine-scale structures contributing
significantly to the climate of the region?

4. Discussion

In this section,we assess to what extent the toy model can
help interpret the dependence of the MM5 simulations on
the nudging time τ . Specifically, we attempt to estimate
small-scale and large-scale times τ num and τ ls from our set
of MM5 simulations.

For this purpose, we choose q = PV , because it is a
conservative variable verifying a conservation equation
similar to Eq. (1) and because the complex orography of our
domain is a source of small-scale potential vorticity. Indeed,
when low-level flow splitting or wave breaking occurs,
dissipative processes in the turbulent regions generate PV
that streams downwind in ‘PV banners’ (e.g. Smith, 1989;
Smith et al., 2007). For instance, the mistral is qualified
as a primary PV banner (Drobinski et al., 2005; Guénard
et al., 2006), contrary to smaller streams of vorticity which
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Figure 3. Surface wind steadiness S over November and December 1998 for nudging time τ equal to (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h, (e) 5 h, (f) 6 h, (g)
12 h and (h) ∞ (no nudging). This figure is available in colour online at www.interscience.wiley.com/journal/qj

wrap up into pairs of eddies of opposite signs due to the
irregular peak and pass structure of the mountain ridges
forming eventually multiple PV banners (Aebischer and
Schär, 1998; Schär et al., 2003; Flamant et al., 2004).
Figure 5 displays the 850 hPa PV fields for the various
values of τ for day 20 of the two-month simulation. As
for the mean surface wind field and wind variability, the
PV field is very sensitive to the nudging time. The major
source of PV, present in all simulations, is the mistral
(generating positive PV)/tramontane (generating negative
PV) winds, shooting through the Rhône and Aude valley
gaps between the Alps and the Pyrenees, and bounded on
both sides by mountain-induced PV banners shed from
major peaks in the Pyrenees, the Massif Central and the
Alps (Jiang et al., 2003; Drobinski et al., 2005). When τ

increases, smaller-scale PV features appear in the western
basin in the lee of Corsica–Sardinia (positive PV) and
at the exit of the Ebro valley (Spain) where the cierzo
blows. In the absence of nudging, the PV field is completely

different from the PV field simulated with nudging, and
is much more difficult to interpret, even though we still
see the major PV banners associated with the mistral and
tramontane, although they appear much narrower. The
absence of nudging gives full freedom to the RCM at all
spatial scales and the deviation of the RCM large-scale field
from the GCM, affects considerably the small-scale field
through complex nonlinear interactions.

PV fields in the simulations are decomposed into a
large-scale part and a small-scale part by application
of low-pass and high-pass Fourier filters with cut-off
wavenumber kc = π/	, with 	 = 1.125◦ the ERA-40
resolution. Contrary to the ideal situation of section 2, we do
not have a true reference solution qref , containing both large
and small scales, to compare with. Our best approximation
of reality is the ERA-40 reanalysis, containing only large
scales. Concerning the small scales, we can compute their
small-scale variability and compare their dependence on the
nudging time τ with the prediction by the toy model. We
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Figure 4. As Figure 3, but for the relative wind speed G. This figure is available in colour online at www.interscience.wiley.com/journal/qj

therefore focus on the τ dependance of:

∥∥qr − qref

∥∥2
ls

=
∫

|k|<kc

∣∣̂qr − q̂ref

∣∣2
d2k, (15)

∥∥qr

∥∥2
ss

=
∫

|k|>kc

∣∣̂qr

∣∣2
d2k. (16)

According to section 2, these should behave as a function
of τ as:∥∥qr − qref

∥∥
ls

∼ ∥∥qref

∥∥
ls

τ

τ num
, (17)

∥∥qr

∥∥
ss

∼ ∥∥qref

∥∥
ss

{
1 +

(τ ss

τ

)2
}−1/2

. (18)

Equation (18) is analogous to Eq. (10) and can be derived
the same way under the assumption τ num � τ ss.

We can actually go a bit further and derive a proxy
expression for the small-scale error. Indeed comparing

Eqs. (11) and (18) when τ � τ ss one finds that∥∥qr − qref

∥∥2
ss

� ∥∥qref

∥∥2
ss

− ∥∥qr

∥∥2
ss

, (19)

hence an estimate of the total (squared) error is

ε2
tot = ε2

ss+ε2
ls � ∥∥qref

∥∥2
ss
+∥∥qr − qref

∥∥2
ls
−∥∥qr

∥∥2
ss

. (20)

Since
∥∥qref

∥∥2
ss

is independent of τ , Eq. (20) expresses the

fact that τ should be set short enough to keep
∥∥qr − qref

∥∥2
ls

small, and long enough to let the small-scale dynamics

develop a significant
∥∥qr

∥∥2
ss

. Looking for a minimum of∥∥qr − qref

∥∥2 − ∥∥qr

∥∥2
ss

as a function of τ yields directly an
estimate of τ opt, bypassing the separate estimates of τ num

and τ ss.
For a given day of the simulation, we compute∥∥qr − qref

∥∥
ls

and
∥∥qr

∥∥
ss

for each MM5 simulation. The

unknown value of
∥∥qref

∥∥
ss

is obtained as the value of
∥∥qr

∥∥
ss
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Figure 5. Potential vorticity at 850 hPa on day 20 of the MM5 RCM simulation at 0000 UTC for nudging time τ equal to (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h,
(e) 5 h, (f) 6 h, (g) 12 h and (h) ∞ (no nudging). This figure is available in colour online at www.interscience.wiley.com/journal/qj
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Figure 6. Normalized total error ε2
tot/

(∥∥qref

∥∥2
ss + ∥∥qref

∥∥2
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)
computed from

the MM5 RCM fields on day 20 of the simulation, as a function of τ .

in the simulation with τ = ∞ (no nudging). Figure 6 shows

the ε2
tot normalized by

∥∥qref

∥∥2
ss

+ ∥∥qref

∥∥2
ls

as a function of τ .
A minimum (τ opt) is reached for τ ∼ 6 h. However we

have found when performing this analysis at other days in

the simulations that the estimate of τ opt is not very robust
and subject to large variations. We therefore introduce a
second estimate of τ opt based not on the deviation of PV
from a reference value but on the separate determination of
τ num and τ ss. Going back to Eq. (17), one finds :

∥∥qr

∥∥
ls

∼ ∥∥qref

∥∥
ls

(
1 + τ

τ num

)−1

. (21)

Figure 7 displays the normalized quantities
∥∥̂qr

∥∥
ls
/∥∥̂qref

∥∥
ls

and
∥∥̂qr

∥∥
ss

/
∥∥̂qref

∥∥
ss

as a function of τ .

Consistently with Eq. (17),
∥∥qref

∥∥
ls

is obtained from∥∥qr

∥∥
ls

for small τ . We now try and adjust the value of

τ num for
∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

to match its theoretical expression

(1 + τ/τ num)−1 (Figure 6). For 0 ≤ τ ≤ 1 h,
∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

decreases from 1 (q = qls) by about 5% (Figure 7(a)). This
behaviour is systematic whatever the simulation day and is
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Figure 7. Normalized quantities (a)
∥∥̂qr

∥∥
ls /

∥∥̂qref

∥∥
ls and (b)

∥∥̂qr

∥∥
ss /

∥∥̂qref

∥∥
ss

as a function of τ . The linear predictions given by Eqs. (21) and (18) (dash-
dotted lines) are superimposed on those computed from the MM5 RCM
fields (solid lines) on day 20 of the simulation.

consistent with Eq. (21), thus showing the effect of numerical
diffusion which smooths the large-scale variability. For
1 < τ < 12 h,

∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

remains nearly constant and
increases for τ > 12 h. Indeed, the linear model only allows
the prediction of the contribution of numerical diffusion
to the large-scale variability. The intrinsic limits of the
linear model prevent the prediction of the contribution
of the nonlinearities to the large-scale variability and the
interactions between the large- and small-scale flows. In
addition to these limits, our scale truncation into large and
small scales leads to an estimation of

∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

on a
small number of points in the spectral domain, and probably
a significant increase of the domain size (which however
leads to a significant increase of the numerical cost) would
have made more accurate the estimation of

∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

(Seth and Giorgi, 1998). Approximating
∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

,
Eq. (21) (dash-dotted line) gives τ num � 18 h.

Figure 7 shows that
∥∥qr

∥∥
ss

/
∥∥qref

∥∥
ss

increases with τ to
the asymptotic value of 1 for τ ≥ 3 h, approximately. The
shape of the curve obtained from the MM5 RCM field
is in very good agreement with the linear prediction and
indicates that, even though the small-scale variability is
most probably caused by nonlinear processes, the evolution
of

∥∥qr

∥∥
ss

/
∥∥qref

∥∥
ss

with τ is well predicted by the linear

expression given by Eq. (21). Approximating
∥∥qr

∥∥
ss

/
∥∥qref

∥∥
ss

with Eq. (21) (dash-dotted line), gives τ ss �1.2 h. Using
Eq. (13), we obtain τ opt �3.4 h, which is close to the value
obtained from the direct estimation (∼ 6 h) and to the value
chosen in many numerical studies which generally justify
this choice by the time interval between consecutive analyzes
or reanalyses used to drive the RCM (e.g. Salameh et al.,
2007; Champollion et al., 2009).

In order to assess the significance of the τ opt estimate,
the estimation of τ num and τ ss is performed over the whole
period of the simulation. Figure 8 displays τ num and τ ss

computed every 5 d, as a function of the simulation day.
The estimation of τnum seems to be not very robust since

it results from the fitting of
∥∥qr

∥∥
ls
/
∥∥qref

∥∥
ls

with Eq. (21) on
the first two nudging times only (τ ≤ 1 h), where the linear
model matches best (e.g. Figure 7(a)). The estimation of τ ss

is more consistent from day to day. This is in agreement
with the better fit in Figure 8(b).
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Figure 8. (a) τ num and (b) τ ss, as a function of the simulation day.

5. Conclusion

In this paper, a RCM is driven by the ERA-40 reanalyses
produced by the ECMWF GCM to simulate the winter
1998 climate over the Mediterranean basin. We consider the
effects on internal variability of temporal large-scale nudging
which consists in relaxing the RCM’s prognostic variables
towards the GCM values within a predetermined relaxation
time. A ‘toy model’, basically consisting of resolving a
linear transport equation with a Newtonian relaxation term,
predicts the existence of an optimal nudging time which
depends on the time-scale over which numerical errors
affect significantly the accuracy of the ‘regional’ solution
at the large spatial scales, and the typical time-scale of the
small-scale phenomena that are not resolved by the GCM.

The comparison between the RCM and the prediction of
the linear model evidences the limits of this model, especially
when the large-scale field is considered. Indeed, the linear
model only allows the prediction of the contribution of
numerical diffusion to the large-scale variability, but not
the contribution of the nonlinearities to the large-scale
variability and the interactions between the large- and small-
scale flows. Despite, this limitation, the comparison between
the RCM and the linear model allows the prediction of a
reasonable optimal nudging time that is close to the value
commonly used and usually chosen based on trial and error
or non-dynamical arguments.

An important feature of our toy model is the absence of
nonlinearities. This simplicity allowed an analytic treatment
of the problem and we identified the competing time-
scales which control the discrepancy between the regional
simulation and the ideal flow state. One time-scale is set
by the small-scale dynamics and controls small-scale error.
The other time-scale controls large-scale errors, due to the
‘regional model’ drifting away from the ‘reanalyses’, and
is set in our toy model by numerical dissipation. However
it is apparent in Figure 7 that our estimate of the latter
time-scale in a realistic model is disputable since large-
scale variance increases as the nudging time is increased,
unlike our estimate (Eq. 21). It is plausible that this increase
reflects a feedback of the small scales, which develop for long
nudging times, onto the large scales. This possibility is ruled
out in our model because of its linearity. Hence Eq. (13)
should not be considered as a generally valid prescription of
an ideal nudging time, but instead as a stimulus to identify
the two problem-dependent time-scales τ ss and τnum. For
instance, in a realistic, nonlinear model, the drift of the
regional simulation away from the reanalyses may not be
caused mainly by numerical errors but rather by an intrinsic
lack of predictability, which is usually attributed to the
nonlinear feedback of small scales onto large scales. Future
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work should assess this hypothesis in fully nonlinear models
of intermediate complexity, such as geostrophic turbulence,
in order to provide additional, dynamically based guidance
on the choice of appropriate nudging times.
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Appendix

Error estimate

In order to estimate the effect of the nudging time on the
errors made at large and small scales, we analyze Eq. (6) in
Fourier space:

qls(x, t) =
∫

q̂ls(k, t)eikx dk ,

qss(x, t) =
∫

q̂ss(k, t)eikx dk ,
(A.1)

where k is the wave number. Eq. (6) then becomes:

∂ q̂r

∂t
+q̂r

(
ikU + 1

τ
+Knumk2

)
= ikUq̂ss+ 1

τ
q̂0e−ikUt . (A.2)

The solution of this equation is the sum of a homogeneous
solution without the right-hand side and a particular
solution for the right-hand side. The homogenous solution
is q̂hom = Cst e−At , where Cst is a constant and A =
ikU + τ−1 + Knumk2 . We find a particular solution of
Eq. (A.2) of the form C(t)e−At where

C(t) = ikUqss
eAt

A
+ 1

τ
q̂ls

eAt

A − ikU
, (A.3)

with q̂ls = q̂0e−ikUt . The general solution of Eq. (A.2)
(hereafter called regional solution q̂r) is then finally:

q̂r(k, t) = q̂ls(k, t)
1

1 + Knumk2τ

+ q̂ss(k)
iUk

ikU + τ−1 + Knumk2
,

(A.4)

which differs from the ideal solution (obtained when τ = ∞
and Knum = 0) by:

q̂r(k, t)− q̂ls(k, t) − q̂ss(k)

= q̂ls(k, t)

(
1

1 + Knumk2τ
− 1

)
+ q̂ss(k)

(
iUk

ikU + τ−1 + Knumk2
−1

)
.

(A.5)

Hence the error present in the regional solution qr can be
decomposed into a large-scale contribution proportional to

qls and a small-scale contribution proportional to qss. This
provides a bound on the r.m.s error ε:

ε ≤ ε ls + εss , (A.6)

where

∥∥̂q(k)
∥∥ =

(∫ ∣∣̂q(k)
∣∣2

dk

)1/2

, (A.7)

ε = ∥∥̂qr(k, t) − q̂ls(k, t) − q̂ss(k)
∥∥ ,

ε ls =
∥∥∥∥̂qls(k, t)

(
1

1 + Knumk2τ
− 1

)∥∥∥∥ , (A.8)

εss =
∥∥∥∥∥̂qss(k)

(
ikU

ikU + 1
τ

+ Knumk2
− 1

)∥∥∥∥∥ .

We shall consider ε ls + εss as our best estimate of the r.m.s.
error, and as the quantity to be minimized as a function
of the nudging time τ . Given characteristic scales Lls � Lss,
corresponding to wave numbers kls � kss, of the functions
qls and qss, we obtain the estimates

ε ls ∼ ∥∥̂qls

∥∥ ∣∣∣∣ 1

1 + Knumk2
lsτ

− 1

∣∣∣∣ ,

εss ∼ ∥∥̂qss

∥∥ ∣∣∣∣∣ 1

1−i
(
τUkss

)−1−iKnumkss/U
− 1

∣∣∣∣∣
∼ ∥∥̂qss

∥∥ ∣∣∣∣∣ 1

1 + (
iτUkss

)−1 − 1

∣∣∣∣∣ .
(A.9)

The last approximation stems from the fact that, for
low-order time and space discretizations, the numerical

diffusion is typically Knum ∼ U
2
	t; furthermore, the time

step 	t is usually limited by the Courant–Friedrich–Levy
stability condition U	t ≤ 	x where 	x is the spatial grid
resolution. In that case Knumkss/U ∼ Ukss	t < kss	x < π

while, as we shall see, the optimal nudging time is such that(
τUkss

)−1 � 1.
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