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Investigation of indiscriminate nudging and predictability
in a nested quasi-geostrophic model
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In this work, we consider the effect of indiscriminate nudging time on an idealized
high-resolution global model (GM) and limited-area model (LAM) simulations. The
model used is a two-layer quasi-geostrophic model on the beta-plane.

The effect of nudging is studied as a function of the predictability time, following
a ‘Big Brother’ experimental approach: a high-resolution ‘global’ model is used to
generate a ‘reference run’. These fields are filtered afterwards to remove small scales
and provide the coarse-resolution fields which are used to drive the high-resolution
GM and the LAM. Comparison of the reference fields and the high-resolution runs
over the same region allows the estimation of the ability of the high-resolution GM
and LAM to regenerate the removed small scales. This fully nonlinear set-up mimics
the configuration used for regional high-resolution atmospheric modelling.

For the high-resolution GM, the results show that the behaviour of the nudged
model depends primarily on the ratio of the nudging time to the predictability time.
When the nudging time is very small compared to the predictability time, the model
reproduces the large scale used to drive the model. On the other hand, if the nudging
time is close to or larger than the predictability time, the nudging effect is weak
and both large and small scales are poorly reproduced compared to the reference
fields. The best result is obtained with a nudging time close to half the predictability
time. This technique clearly improves the model capacity to reproduce the reference
fields.

For the high-resolution LAM, our results show that for a sufficiently small domain
the simulation is largely controlled by the lateral boundary conditions (LBCs) and is
quasi-insensitive to nudging. However, if the domain size exceeds a few Rossby radii,
the high-resolution LAM becomes sensitive to initial conditions and the control
exerted by LBCs becomes insufficient to prevent a divergence from the driving
fields. Although the reconstructed fine scales are significantly damped, they are
surprisingly well correlated to their reference values in a deterministic sense, not a
statistical sense. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

Atmosphere is one of the most challenging geophysical
systems to simulate because of the number of interacting
components and the wide range of time and spatial scales
of relevant processes and their complexity. Spatial scales
also vary greatly, ranging from the micro scale of cloud
droplets to the planetary scale of the atmospheric circulation.
Numerical modelling constitutes a powerful approach to
further our understanding of the mechanisms responsible
for the maintenance of the atmospheric system’s dynamic
equilibrium and variability, and to probe its response to
changes in its external forcing. To date, general circulation
models (GCM), used to simulate climate or provide analyses
or reanalyses of the atmosphere, resolve only the broader
scales of atmospheric circulations (around 100 km grid
resolution). Hence there is a need to develop tools for
downscaling the large-scale fields to generate finer-scale
description of regional weather and climate. The starting
point of dynamical downscaling is typically a set of coarse-
resolution large-scale fields which are either used to drive a
high-resolution GCM or to provide the initial, and lateral
and surface boundary conditions to a nested limited area
model (LAM).

Both GCMs and LAMs are sensitive to the resolution and
to the content of physical parametrizations, and require a
spin-up. LAMs also present specific issues like sensitivity
to the size of the domain of simulation, to the boundary
conditions, and to the frequency of update of boundary
conditions (Bhaskaran et al., 1996; Seth and Giorgi, 1998;
Noguer et al., 1998; Denis et al., 2002a, 2003). For long-
term simulations, Lo et al.(2008) showed that continuous
runs can produce a very low score when the simulations are
compared to observations and that simulations reinitialized
periodically have better results than continuous runs. The
practical solution to this issue is to explicitly disallow large
and unrealistic departures between the coarse-resolution
driving fields and the high-resolution fields by nudging
the model towards the coarse-resolution driving fields.
Nudging consists in adding to the conservation equations a
Newtonian relaxation towards the driving fields.

Hence experience shows that, in order to reproduce
a given weather history over a long period of time, a
circulation model needs not only to be properly intialized
but also to be nudged. Our basic hypothesis to explain
this fact is that the need to nudge a high-resolution
model results from its limited predictability. Indeed it is
well known that atmospheric dynamics are sensitive to
initial conditions (Thompson, 1957; Lorenz, 1963). Due
to this inherent unpredictability of the atmosphere, small
differences between a non-nudged model and the targeted
state of the atmosphere amplify exponentially with time so
that, after a finite time referred to as the predictability time,
the model diverges from its target. In the specific case of
a LAM it would seem that nudging is not necessary since
the model is controlled by its lateral boundary conditions,
which coincide with the targeted state of the atmosphere.
The need to nudge would therefore indicate that it is not
fully controlled by its lateral boundaries. In fact, since for a
given model a specific simulation is entirely determined by
the initial and boundary conditions, the amount of control
exerted by the boundaries can be estimated by analysing the
sensitivity of the model to initial conditions. Hence it appears
that, for both GCMs and LAMs, the lack of predictability

due to sensitivity to initial conditions is intimately related
to the practice of nudging towards driving fields.

Indiscriminate and spectral nudging is increasingly imple-
mented in numerical models (GCM and LAM) (e.g. Kuo
and Williams, 1992a, 1992b; Miguez-Macho et al., 1992; von
Storch et al., 2000; Biner et al., 2002; Genthon et al., 2002;
Lo et al., 2008; Salameh et al., 2010). Indiscriminate nudging
was originally developed for assimilation issues (Davies and
Turner, 1977; Schraff, 1997; Li et al., 1998; Vidard et al.,
2003) but has become increasingly popular to drive Regional
Climate Models (RCMs). The term ‘indiscrimnate nudging’
is thus not as commonly used as ‘spectral nudging’. Salameh
et al.(2010) use the term ‘indiscriminate nudging’, Anthes
(1974), Hoke and Anthes (1976) and Stauffer and Seaman
(1990) refer to ‘data assimilation’, and other synonymous
terminologies exist such as ‘dynamical relaxation’ (Davies
and Turner, 1977) or ‘grid’ or ‘analysis nudging’. In the
following we will use ‘indiscriminate nudging’.

Both indiscriminate and spectral nudging require that
some relaxation time constant be adjusted. Indiscriminate
nudging has been widely used for testing purposes, sensitivity
studies, assimilation, and mesoscale or boundary layer
studies (e.g. Vidard et al., 2003; Lo et al., 2008; Salameh et al.,
2010) and also for regional climate variability investigations
(e.g. Genthon et al., 2002; Coindreau et al., 2007, with the
global stretched grid regional model LMDZ; and Zhang
et al., 2009, with the limited area model WRF). Nudging
techniques have demonstrated their usefulness in simulating
regional weather and climate, especially in regions where
forcing due to complex orography, or coastlines, regulates
the spatial distribution of atmospheric variables (Raluca Rad
et al., 2008), especially orographic precipitation (Schraff,
1997; Tang et al., 2010) and regional-scale climate variability
(Genthon et al., 2002; Coindreau et al., 2007).

Currently the relaxation time is chosen based on trial
and error and a posteriori validation rather than a priori
understanding leading to suitable values. One key issue of
this work is to explore the possibility of relating a tunable
parameter to physical processes. The relation between the
predictability time-scale τp and the relaxation time-scale τ is
therefore investigated in this article. To test this hypothesis
we adopt an approach similar to Salameh et al.(2010). In that
study, the impact of nudging on a high-resolution model
was investigated using a toy model consisting of resolving a
linear transport equation with a Newtonian relaxation term.
The toy model suffers from the same drift phenomenon as
a complex atmospheric model and needs to be nudged as
well. Salameh et al.(2010) predict the existence of an optimal
nudging time which depends on the time-scale over which
numerical errors affect significantly the accuracy of the
solution at large spatial scales, and the typical time-scale of
small-scale phenomena that are not resolved in the coarse-
resolution driving fields. However, since the toy model is
linear, its drift is solely due to accumulating numerical
errors and not to a genuine unpredictability. To overcome
this limitation we base our analysis on a two-layer quasi-
geostrophic (QG) model which presents more similarities
to atmospheric dynamics. We use a ‘Big Brother’ (BB)
experimental approach, where the true atmospheric state is
known, unlike when RCMs are used in practice (Denis et al.,
2002b). We address the relationship between nudging and
predictability in two steps:

1. We first consider the relationship between nudging
and predictability by using a refined ‘global’ QG model
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as a high-resolution GCM. We especially investigate
the ability of the high-resolution GCM to produce the
correct small scales depending on the nudging time
and predictability time.

2. We investigate the additional effect on predictability
and nudging of lateral boundaries using a limited-area
QG model as an LAM. This study is complementary to
the few studies investigating the predictability of LAMs
(Anthes et al., 1985, 1989; Errico and Baumhefner,
1987; Van Tuyl and Errico, 1989; Vukicevic and
Paegle, 1989; Vukicevic and Errico, 1990; De Elia
et al., 2002). By using a strongly idealized model we
are able to explore a wide parameter space in terms of
regional domain size and of nudging time.

Indiscriminate nudging is available in many up-to-
date regional numerical models, such as the limited-area
models MM5 (Grell et al., 1995), WRF (Skamarock et al.,
2005), Méso-NH (Lafore et al., 1998) and RAMS (Pielke
et al., 1992), and the global stretched grid regional model
LMDZ (Genthon et al., 2002; Coindreau et al., 2007). For
these reasons, and also for simplicity, we focus here on
indiscriminate nudging. Spectral nudging is the object of
ongoing work.

This paper is organized as follows. A description of
the ‘global’ and ‘limited-area’ two-layer QG models and
predictability issues is given in section 2. Downscaling using
a high-resolution GCM is investigated in section 3, and
the results from downscaling using a high-resolution LAM
version are presented and discussed in section 4. Section 5
summarizes the results and points out some open research
questions needing further investigation.

2. The quasi-geostrophic model

2.1. Equations

We use the flat-bottom two-layer quasi-geostrophic (QG)
model on a β-plane derived by Haidvogel and Held (1980),
modifying it only to implement a limited-area version, and
include nudging terms. For completeness we reproduce in
this subsection the derivation by Haidvogel and Held (1980).
The dimensional form of the equations of motion can be
written:

∂tQ1 + J(�1, Q1) = −υ �6 �1, (1)

∂tQ2 + J(�2, Q2) = −υ �6 �2 − κ �2 �2, (2)

where the subscripts 1 and 2 refer to the upper and
lower layers of the model, respectively. The quantities �i

and Qi are the stream function and potential vorticity
(PV) for layer i, J is the horizontal Jacobian operator
J(�i, Qi) = (∂x�i∂yQi − ∂y�i∂xQi) and ∇2 is the horizontal
Laplacian operator ∇2�i = ��i = ∂2

x �i + ∂2
y �i. The two

layers have the same depth H at rest. The quantity ν is a
numerical diffusion preventing the build-up of enstrophy
in high wave numbers and κ is a surface friction term. The
wind components (ui, vi) are related to the stream function

through the diagnostic relations

Q1 = ∇2�1 + βy + 1

2R2
d

(�2 − �1) , (3)

Q2 = ∇2�2 + βy + 1

2R2
d

(�1 − �2) , (4)

(ui, vi) =
(

−∂�i

∂y
,
∂�i

∂x

)
, i = 1, 2. (5)

In these equations, Rd = (g′ H
2f 2

0
)1/2 is the Rossby radius,

g′ = g �θ

θ0
is the reduced gravity, θ and θ0 are the potential

temperature and the reference potential temperature,
respectively, and f0 is the Coriolis parameter. The upward
displacement η of the interface between the two layers is

given by f0η

H = 1
2R2

d
(�2 − �1).

Equations (3) and (4) state that upper and lower layer
PV are conserved following the horizontal flow, except for
the effects of dissipative processes. These latter processes
are assumed to act on the relative vorticity (��i, i = 1, 2)
through a biharmonic lateral diffusion in layers 1 and 2 and
a linear surface drag in layer 2 only with turbulent mixing
ratio coefficients ν and κ , respectively. Following Haidvogel
and Held (1980), we consider the horizontally uniform
time-averaged temperature gradient (directed north–south)
and zonal vertical shear. The mean velocity is confined to
the upper layer, so that U2, V2, V1 = 0 and Ū1 = U , with
Ui, Vi the mean zonal and meridional wind components,
respectively:

�1(x, y, t) = −Uy + ψ1(x, y, t), (6)

�2(x, y, t) = ψ2(x, y, t), (7)

where ψi (i = 1, 2) is the deviation of the stream function
from its time average, i.e. �i(x, y, t) = � i(x, y) + ψi(x, y, t).
Similar notation is used for the other variables (e.g. the
potential vorticity).

Non-dimensionalizing (x, y, t, ψ) by (Rd, Rd, Rd
U , URd)

(x and y are the zonal and meridional coordinates), the QG
PV equations for the transient flow become

∂t̂ q̂1 + J(ψ̂1, q̂1) = −υ̂ �6 ψ̂1 + F1, (8)

∂t̂ q̂2 + J(ψ̂2, q̂2) = −υ̂ �6 ψ̂2 − κ̂ �6 ψ̂2 + F2, (9)

where the eddy potential vorticities are

q̂1 = ∇2ψ̂1 + 1

2
(ψ̂2 − ψ̂1), (10)

q̂2 = ∇2ψ̂2 + 1

2
(ψ̂1 − ψ̂2). (11)

The forcing terms

F1 = −∂x̂ q̂1 −
(

β̂ + 1

2

)
∂x̂ψ̂1, (12)

F2 = −
(

β̂ + 1

2

)
∂x̂ψ̂2, (13)

represent the effects of the mean temperature and planetary
vorticity gradients on the transient flow. All variables in
Eqs (10)–(13) are non-dimensional. The parameters which

appear in these equations are β̂ = β
R2

d
U , κ̂ = κ

Rd
U and

υ̂ = υ

R3
dU

. In the following, for sake of simplicity, the hats of

non-dimensional variables will be omitted.
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2.2. Numerical implementation of the global and limited
area QG models

The temporal integration of the two-layer QG model is
based on second-order spatial finite differences and a third-
order Runge–Kutta explicit temporal scheme. With finite
differences, it is easy to apply the same discretization in
the global and limited-area model. The main tasks to be
performed during a time step are the computation of the
PV trends ∂tqi given ψi and the inversion of the PV, e.g. the
computation of the stream functions ψi given the PV fields
qi.

Computation of the PV trend involves discrete approx-
imations of the Jacobian and Laplacian operators. For the
Jacobian we use Arakawa’s Jacobian, which preserves energy
and potential enstrophy at the discrete level, preventing
spurious energy transfers to small scales (Arakawa, 1966).
The Laplacian is approximated using the standard five-point
stencil. The iterated Laplacian is approximated by iterating
this approximate operator.

In this study, we adopt the BB experimental approach
(Denis et al., 2002b). The first step consists of running
a global high-resolution BB model to produce a high-
resolution reference dataset (qref

i , i = 1, 2). Then, the small
scales existing in that reference dataset are filtered out
to generate a low-resolution dataset (qana

i , i = 1, 2). The
filtering technique consists in applying a two-dimensional
Fourier filter to qref

i and the ratio between the horizontal
resolutions of qref

i to qana
i is hereafter referred to as α. The qana

i
fields can be seen as analyses, reanalyses or coarse-resolution
GCM outputs. The qana

i fields are used to initialize and
drive another instance of the QG model (‘Little Brother’)
running at the same resolution as the BB. This mimics
the driving of a high-resolution GCM or LAM by coarse-
resolution atmospheric fields. We will later refer to the
high-resolution GCM or LAM as ‘Little Brother’ (LB). The
BB reference dataset (before filtering) qref

i contains the small
scales against which the LB small scales are then validated.
This experimental framework is set up to evaluate the ability
of the LB to accurately reproduce the fine-scale features
present in the BB reference simulation.

Boundary conditions are periodic in the ‘global’ QG
model. In the LAM, evaluating the Jacobian and iterated
Laplacian requires values of ψi located in a so-called halo
around the computational domain. These values are given
by the ‘analyses’ ψana

i . Inverting the PV means solving the
linear system

(
L − 1 1

1 L − 1

)(
ψ1

ψ2

)
=

(
q1

q2

)
, (14)

where L is the second-order finite-difference operator
approximating the Laplacian. In the global model,
system (14) is solved by performing a forward discrete
Fourier transform, solving for each Fourier mode a 2 × 2
linear system, and performing a backward discrete Fourier
transform.

In the limited-area model, system (14) is supplemented by
the Dirichlet boundary conditions ψi = ψana

i . This enforces
the continuity of the pressure field across the domain
boundary, as physically required. We solve for the deviation
δψi = ψi − ψana

i . The right-hand side term of system (14)
then becomes qi − qana

i , where qana
i is the PV computed from

ψana
i . The deviation δψi satisfies the boundary condition
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Figure 1. Horizontal cross-section of potential vorticity in layer 1 (q1).

δψi = 0. Therefore system (14) is solved by performing a
forward discrete sine transform, solving for each Fourier
mode a 2 × 2 linear problem, and performing a backward
discrete sine transform. Finally, ψi = ψana

i + δψi gives the
desired ψi. Additionally, a relaxation over 6 points is applied
at the boundaries, forming a Davies-type lateral sponge zone
(we also performed the whole study without using a sponge
zone, without noticeable change to the results; not shown).
Figure 1 shows an example of a horizontal cross-section
of the PV field in layer 1 of the model at long time range
(t > 20 in non-dimensional units). It evidences the presence
of anticyclones and cyclones of typical size equal to a few
units (i.e. a few Rossby radii in dimensional form).

2.3. Nudged version of the QG model

As we analyse later in more detail, the simulated fields ψi

deviate rapidly from the reanalyses ψana
i if the latter are used

only to prescribe boundary conditions. In order to prevent
this drift, we use the nudging technique (or Newtonian
relaxation) developed for assimilation purposes (Davies and
Turner, 1977; Schraff, 1997; Yong et al., 1998; Vidard et al.,
2003) and commonly available for dynamical downscaling
purposes. The nudging technique consists of relaxing the
model state towards the analyses by adding a non-physical
term to the model equation. This nudging term is defined
as the difference between the observation and the model
solution, weighted by a nudging coefficient which is the
inverse of the nudging time. After addition of the nudging
term, Eqs (8) and (9)become

∂tq1 + J(ψ1, q1) = −υ �6 ψ1 + F1, (15)

− 1

τ
(q1 − qana

1 ),

∂tq2 + J(ψ2, q2) = −υ �6 ψ2 − κ �6 ψ2 + F2, (16)

− 1

τ
(q2 − qana

2 ),

where the nudging time τ is a freely tunable parameter. The
shorter the time τ , the closer qi and ψi will be to qana

i and
ψana

i (i = 1, 2), and hence the less accurate the small scales
of qi will be.

To quantify the predictability time-scale τp in the QG
models, we compute the initial exponential error growth,
yielding the first Lyapunov exponent. We consider a run
ψ1

i (t) and a second run called the perturbated simulation
ψ2

i (t), which is almost identical except that its initial
condition is different by a random and infinitesimal amount
(10−3 amplitude Gaussian white noise). We compute the
total energy of the difference between perturbed and

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 158–169 (2012)



162 H. Omrani et al.

0 20 40 60 80 100
10−4

10−3

10−2

10−1

100

101

t

E
(d
y

)

Figure 2. Evolution of total energy E of the difference between perturbed
and reference stream functions as a function of normalized time t for
β = 0.25 and κ = 0.5 (non-dimensional values).
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Figure 3. Contour plot of predictability time τp as a function of β and κ .
The contours range between 0.14 and 0.34 with an increment of 0.2.

reference stream functions:

E(t) =
∫ ‖∇δψ1‖2 + ‖∇δψ2‖2

2
dx dy

+
∫ ∥∥∥∥∥

(
δψ1 + δψ2

2

)2
∥∥∥∥∥ dx dy, (17)

where δψi = ψ2
i − ψ1

i .
The total energy E consists of the sum of upper and

lower kinetic energies (first term of Eq. (17)) and potential
energies (second term of Eq. (17)). Figure 2 displays a
typical evolution of E as a function of time in log-scale
along the ordinate axis. It clearly shows evidence of an
exponential initial error growth (linear evolution in log-
scale) until t = 20 in non-dimensional coordinates. Then
there is nonlinear saturation. The exponential phase of
error growth E(t) = E0 exp(2λt) defines the first Lyapunov
exponent λ and the predictability time-scale τp = 1

λ
.

Figure 3 shows the value of τ as a function β and κ . As
also observed by Vallis (1983), the predictability properties
of two-layer flow are rather subtly affected by β. Vallis
(1983) argues that the energy cascade at low wavenumbers is
slowed by a strong β, which increases predictability, whereas
it weakly depends on κ . Similarly to Haidvogel and Held
(1980), we set κ = 0.5 in the following and let β vary
between 0.1 and 0.55.

3. Downscaling using a high-resolution GCM

In this section, we use the same periodic domain for BB and
LB (Figure 4). One must note that downscaling by nugding
a high-resolution GCM towards a coarse-resolution GCM

is of no practical use. The motivation is here to establish
the relationship between the sensitivity to initial conditions
and the nudging time in a context which is free of the
technicalities associated with a LAM, which will be addressed
in section 4.

To quantify the ability of the downscaled LB field qi to
reproduce the BB reference field qref

i in layer i, we first
evaluate the variance ratio of LB to BB solutions σ 2

qi
/σ 2

qref
i

.

This is a classical diagnostic for climate model evaluation.
A second approach, which corresponds to deterministic

evaluation, consists of computing their normalized covari-
ance ai given by

ai = cov(qref
i , qi)

σ 2
qref

i

, (18)

which represents the slope of the linear regression between qi

and qref
i (i.e. qi ∼ aiqref

i + bi), and the correlation coefficient
ri given by

ri = cov(qref
i , qi)

σqref
i

σqi

, (19)

with

cov(qref
i , qi) = 1

NxNy

Nx∑
k=1

Ny∑
l=1

[
qref

i (k, l) − qi
ref

]

× [
qi (k, l) − qi

]
,

(20)

σqref
i

=
√√√√ 1

NxNy

Nx∑
k=1

Ny∑
l=1

[
qref

i (k, l) − qi
ref

]2
, (21)

σqi =
√√√√ 1

NxNy

Nx∑
k=1

Ny∑
l=1

[
qi (k, l) − qi

]2
, (22)

where qi
ref and qi are the values of qref

i and qi averaged over
the whole model domain in layer i. The quantities Nx, Ny are
the number of grid points of the domain in the x (longitude)
and y (latitude) directions. The quantities ai and ri represent
the slope and spread of the scatter-plot between qref

i and qi.
When ai and ri are close to 1, the LB reproduces accurately at
each time step and each grid point the BB reference field in
layer i. Conversely, a large departure from 1 indicates poor
LB performance. Therefore, a crucial aspect of the estimation
of the LB performance in simulating the fine-scale features in
the context of regional weather and climate modelling is the
deterministic grid point to grid point comparison between
the LB outputs qi and the BB reference field qref

i . These skill
scores are much more constraining than a comparison of
climatological statistical diagnostics (Murphy and Epstein,
1989).

In the following, β̂ = 0.25; κ̂ = 0.5, ν̂ = 10−4. The
domain size is 24Rd × 24Rd and the number of grid points
is 128 × 128. This implies that one Rossby radius is made of
5.3 grid points. We run the LB model until t = 100 � 10τp

with different nudging time τ ranging between 0.01τp and
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Figure 4. ‘Big Brother’ experiment principle using a high-resolution GCM.

Figure 5. Horizontal cross-section of the reference (BB) PV in layer 1 (qref
1 )

(a, b, c), horizontal cross-section of the coarse-resolution driving PV in
layer 1 obtained by filtering spatially the reference PV field (qana

1 ) (d, e, f)
and horizontal cross-section of simulated (LB) PV in layer 1 (q1) (g, h, i)
for τ = 0.01τp (a, d, g), τ = 0.4τp (b, e, h) and τ = τp (c, f, i). The ratio α

between the horizontal resolutions of qref
i to qana

i is 1/3.

τp and a resolution factor α between 1/2 and 1/8. Figure 5
shows horizontal cross-sections in layer 1 at the end of the
simulation of the reference (BB) PV qref

1 , of the coarse-
resolution driving PV qana

1 obtained by spatially filtering
qref

1 with α = 1/3 and of the simulated (LB) PV q1 for
τ = 0.01τp, τ = 0.4τp and τ = τp, respectively.

A small value of the nudging time (τ = 0.01τp) forces
the model to stick to the coarse-resolution driving fields:
indeed, comparing Figure 5(g) (q1) to Figure 5(d) (qana

1 ) and
Figure 5(d) (q1) to Figure 5(a) (qref

1 ), we can observe that
the model reproduces perfectly the large-scale vortices but
not the fine-scale structures. On the other hand, for τ = τp

(Figure 5(c, f, i)), the model is able to reproduce neither the
large-scale nor the fine-scale features. The nudging time that
corresponds to τ = 0.4τp seems visually to be the optimum
time since the model (Figure 5(h)) best agrees with the
reference (Figure 5(b)).

In order to evaluate more quantitatively the quality of the
simulations of the fine- and large-scale features, the LB PV
fields qi in the simulations are decomposed into a large-scale
part (qi,ls and qref

i,ls) and a small-scale part (qi,ss and qref
i,ss) by

application of low-pass and high-pass Fourier filters, with
cut-off wavelength being the resolution of the field qana

i
driving the simulation.

Figure 6 displays the variance ratio of LB to BB solutions
averaged over 80 ≤ t ≤ 100, as a function of the nudging
time for the total field, large-scale field and small-scale field.

We note that for τ between 0 and 0.5τp , the amount of
small scales increases until it reaches a maximum. It then
decreases for τ between 0.5τp and 6τp down to a value
of 0.2, and finally increases again up to about a value of
1. For small nudging time, the production of small-scale
features is inhibited because by construction the model is
forced to stick to the driving fields. Intuitively, we expect the
production of the fine-scale features to be associated with
increasing ratio of LB to BB solutions until it reaches 1 for
large nudging time. This is not the case for τ between 0.5 and
6τp, where the ratio of LB to BB solutions decreases until it
reaches a minimum. In fact, a similar behaviour is observed
for the large-scale field. Hence nudging for this range of τ

hinders the production of large-scale features too. To check
the robustness of this result, a similar test was performed
with the Lorenz model, which is much simpler than the QG
model but still presents a chaotic character. The calculations
showed a strongly reduced variance of the nudged model
as well (not shown). The small variance of the small-scale
BB flow compared to LB is probably the result of the weak
large-scale LB flow. Finally, as expected, for very large values
of τ , nudging no longer has any effect, and both the LB
small- and large-scale fields have the same variance as in BB.
One can note that the value of the ratio of LB to BB solutions
slightly exceeds 1 for large τ . This is due to the uncertainty
associated with the variance estimate for the two different
fields. In the following we restrict the discussion to values of
τ ranging between 0 and τp.

Figure 7 displays scatter-plots between the simulated (LB)
and reference (BB) PV fields for 80 ≤ t ≤ 100 in layer 1 for
the large-scale (q1,ls and qref

1,ls) and for the small-scale (q1,ss

and qref
1,ss) for τ = 0.01τp, τ = 0.4τp and τ = τp.

For a small nudging time τ = 0.01τp (Figure 7(a)),
the LB large scale is accurately reproduced compared to
the reference (BB) and the covariance and correlation
coefficients a1,ls and r1,ls are � 1. However, the LB small-
scale features are very poorly reproduced as quantified
with covariance and correlation coefficients a1,ss = 0.13 and
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Figure 7. Scatter-plots between the simulated (LB) and reference (BB) PV fields in layer 1 for the large-scale (q1,ls and qref
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and qref
1,ss) for τ = 0.01τp (a, d), τ = 0.4τp (b, e) and τ = τp (c, f), respectively. The ratio α between the horizontal resolutions of qref

i to qana
i is 1/3.

r1,ss = 0.56 (Figure 7(d)). When τ is large, i.e. τ = τp,
the error on the large scale increases significantly with
a1,ls = 0.53 and r1,ls = 0.67 (Figure 7(c)) and induces large
errors at the fine scale with a1,ss = 0.01 and r1,ss = 0.02
(Figure 7(f)). The use of the intermediate value of the
nudging time τ = 0.4τp allows the minimization of the
error both at the small and large scales (Figure 7(b, e)). The
covariance and correlation coefficients for the large scale
a1,ls and r1,ls are � 1 and for the small scale a1,ss = 0.76 and
r1,ss = 0.96.

Figure 8 displays the covariance (a1) and correlation (r1)
coefficients computed in layer 1 for the small (ss subscript)
and the large scale (ls subscript) as a function of the nudging
time normalized by the predictability time (τ/τp) using
various resolution factors α.

The figure shows that for the large scale and for low
to intermediate values of τ (from 0 to about 0.5τp), the
covariance and correlation coefficients a1,ls and r1,ls remain
very close to 1 because the relaxation is strong enough to
prevent LB simulations (qi) departing significantly from the
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Figure 8. Covariance (a1) (a, c) and correlation (r1) (b, d) coefficients computed in layer 1 for the large (ls subscript, a, b) and small scales (ss subscript,
c, d) as a function of the nudging time normalized by the predictability time (τ/τp) using various resolution factors α.

driving large-scale fields (qana
i ) (Figure 8(a, b)). However,

one can notice that for τ < 0.1τp the small-scale field is very
poorly simulated by LB and a1,ss and r1,ss reach maximum
values between 0.1 and 0.5 (Figure 8(c, d)). Indeed, for
such low values of τ the production of small-scale structures
is inhibited because the LB fields are constrained by the
nudging to match too tightly the coarse-resolution driving
fields. As the nudging time increases (τ > 0.5τp), the model
progressively deviates from the forcing large-scale fields.
The LB does produce small-scale patterns, but they poorly
match those present in the BB reference fields (Figure 5(i)).
Indeed, a1,ls and r1,ls decrease below 0.6 and 0.8 respectively
for the large scales and a1,ss and r1,ss tend to zero for
the small scales. The departure of the LB large-scale fields
from the coarse-resolution driving fields induces small-
scale patterns that may be statistically representative of the
mean regional climate (for τ/τp > 10; see Figure 6) but
differ from the reference on a ‘grid point to grid point
comparison’ basis. An optimum is eventually reached for
intermediate values of τ , ranging between 0.3 and 0.6τp.
Figure 8 also shows that LB simulations deteriorate when
the resolution factor α decreases, i.e. the ratio between
the resolution of the driving large-scale fields and the LB
resolution increases. This deterioration is due to the too-
coarse resolution the driving fields reach, which prevents the
accurate representation of even the large-scale atmospheric
circulation. This is especially critical when the driving field
resolution becomes coarser than the Rossby deformation
radius, corresponding roughly to α < 1/8. Quantitatively,
for τ = 0.4τp, a1,ss and r1,ss decrease from 0.73 and 0.95 for
α = 1/2 to 0.23 and 0.50 for α = 1/8.

4. Downscaling using a high-resolution LAM

In this section, the main difference from section 3 is that
we consider a limited-area model nested within the global

model, so that the size of the LAM domain L comes into
play. The experimental framework of a perfect model used
in this section is similar to that of the previous section but
with a small modification (Figure 9): the first step consists
of running the global high-resolution QG model, referred as
‘Big Brother’ (BB), to produce a high-resolution reference
dataset (qref

i , i = 1, 2). Then, the small scales existing in that
reference dataset are filtered out to generate a low-resolution
dataset (qana

i , i = 1, 2) needed to drive the nested LAM. The
qana

i fields are used as initial and boundary conditions of
the LAM and to drive the LAM when nudging is used. The
reference dataset (before filtering) qref

i contains the small
scales against which the LAM small scales in the nested
domain (qi, i = 1, 2) are then validated. The performance
of the LAM is quantified by the same parameters (ai, ri)
as in the previous section, but in the nested domain only.
We will later refer to the LAM as the ‘Little Brother’
(LB).

The effect of the LB domain size on the predictability is
first investigated. For this the LAM is driven at its boundaries
by the perfect data qref

i and initialized with perturbed data as
described in section 3.2. No nudging is used. In Table I, the
predictability time τ p in normalized coordinate is reported
as a function of the normalized domain size L/Rd.

We first observe that a finite predictability time is found
for all the domain sizes we consider. If the simulation
was completely controlled by its boundaries, the initial
discrepancy between the reference and the perturbed
simulations would decay as time passes and eventually
vanish. Conversely, the finite predictability time of the LB
implies that the control exerted by the boundary conditions
is incomplete, in the sense that the trajectory followed by
the model depends significantly on its initial condition, and
not only on the information provided at the boundaries. We
must, however, make clear here that the slower growth
of initial errors in a small-domain LAM results from
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Figure 9. ‘Big Brother’ experiment approach using a LAM.

Table I. Predictability time τp as a function of the normalized
domain size L/Rd.

Nx × Ny 64 × 64 80 × 80 96 × 96 112 × 112
L

Rd
12 15 18 21

τp 18 15 13 10

the artificial constraints exerted by the lateral boundary
conditions, and that it does not reflect a greater intrinsic
predictability of the modelled atmosphere. However, for
consistency with the previous section we keep referring
to predictability when discussing the sensitivity to initial
conditions.

The predictability decreases as the domain size of the LB
increases. We interpret this dependency qualitatively in two
ways. First, the characteristic size of a potential vorticity
cyclone or anticyclone is comparable to the Rossby radius
Rd. Then, as the domain size decreases, fewer cyclones and
anticyclones fit into it. Therefore fewer interactions take
place between the different cyclones and anticyclones, and
predictability of the model increases. Second, as the domain
size L decreases, an individual air parcel swept by the mean
wind U spends a decreasing amount of time τadv = L/U in
the domain. Assuming that the errors exit the domain as well,
a small domain leaves them less time to develop than a large
domain. Small domains can therefore be expected to lead
to a more predictable system. Indeed, Vukicevic and Paegle
(1989) show that if the domain is small enough the sensitivity
of the forecast to small initial uncertainties is low. Similarly,
Leduc and Laprise (2009) analysed the sensitivity of regional
climate modelling to the domain size and showed that the
small-scale stationary patterns improve in spatial correlation
when the domain size is reduced. Conversely, Vannitsem
and Chomé (2005) show that for a large domain a small
error in initial condition leads to different simulations. The
study of Alexandru et al.(2007) suggests that a reduction of

the domain size generally results in a significant reduction of
LAM internal variability. Finally, Lucas-Picher et al.(2008)
have computed the time spent by air parcels in the domain
of an RCM. They find a linear relation between the spatial
distribution of the internal variability and residency time.
These previous results are fully consistent with a small
domain having a larger predictability, and our postulated
relationship between predictability and internal variability.
Nutter et al.(2004) also show that the loss of dispersion
within an ensemble of simulations is greater on smaller
domains because features are advected more quickly from
one side to the other.

Moreover, we have observed a complete suppression
of sensitivity to initial conditions with a domain of size
L ≤ 12Rd (i.e. smaller than 64 × 64 grid points). In an
idealized set-up similar to ours, Nutter et al.(2004) address
sensitivity to initial conditions by considering the internal
variability within an ensemble of limited-area one-layer QG
simulations on the β-plane. They also find that internal
variability is smaller for small domains, with significant
reduction for an LAM domain of size 1500 km (i.e. one
Rd). Note that, owing to their use of a barotropic model
instead of a baroclinic model like ours, we do not expect
that the LAM domain size below which sensitivity to initial
conditions disappears is the same.

We now consider nudging in a small domain of size L =
12Rd for the LB, in a global domain of 24Rd. The value of the
predictability time τp is then 18 (Table I). Figure 10 displays
the covariance and correlation coefficients computed in
layer 1. The use of only 64 × 64 grid points makes the
estimations of the covariance and correlation coefficients
much noisier, especially for α < 1/4. Nevertheless, one can
see that, except for very low values of τ (< 0.1τp), the
values of the covariance and correlation coefficients are
weakly dependent on the nudging time τ , so the quality and
performance of the LB simulations do not depend on the
strength of relaxation towards the coarse-resolution driving
fields.

We finally consider a nudging in a larger domain of
size L = 18Rd for the LB, in a global domain of 24Rd.
The value of the predictability time τp is then 13 (Table I).
Figure 11 displays the covariance and correlation coefficients
computed in layer 1. The use of 96 × 96 grid points allows
a more accurate estimate of the covariance and correlation
coefficients, even though it is still noisier than with 128 × 128
grid points. The shape of the curves as a function τp is
similar to that obtained with the high-resolution GCM, with
a performance optimum for τ � 0.4τp, but with slightly
more spread between the various runs for different values of
α (Figure 11). We see that, compared to the high-resolution
GCM, the large scale is slightly less accurately reproduced.
Also, the degradation of the performance with respect to α

is larger, and for α < 1/4 the small degradation of the LAM
performance at a large scale does not allow the production
of correct fine-scale features.

5. Discussion

When performing a dynamical downscaling experiment, one
expects to produce data with two distinct improvements
over the large-scale information. The first expectation
is that the downscaled data will benefit from better-
resolved forcings like orography and surface fluxes, which
depend on spatially variable soil properties. The second
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Figure 10. Covariance (a1) (a, c) and correlation (r1) (b, d) coefficients computed in layer 1 for the smallest LB domain–Nx × Ny = 64 × 64 i.e. L = 12Rd
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(τ/τp) using various resolution factors α.
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Figure 11. Same as Figure 10 for the LB domain–Nx × Ny = 96 × 96 i.e. L = 18Rd (Table I).

expectation is that, even with orography and other boundary
conditions unchanged, a simulation with higher resolution
will produce smaller-scale eddies explicitly and take into
account more accurately their contribution to the regional-
scale averages and variability. Whether these expectations are
realized can be investigated following the BB experimental
approach, which has been used mostly with complex,
realistic models and rarely with idealized models. With our
idealized methodology, we are able to address the second

expectation independently from the first one. Furthermore,
using an idealized model which nevertheless allows a good
representation of the atmospheric dynamics driven by the
baroclinic instability ensures that the results we obtain are
a consequence of the resolved dynamics and not of some
specific physical parameterization.

Since climate models forget rapidly about their initial
conditions, it would seem that the concept of predictability
is relevant to short-term weather forecasting but not to
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long-term regional climate modelling. This will be the case
if regional climate is studied using a standalone global
model, but regional climate modelling is mostly done using
LAMs. A LAM must maintain a consistency between the
atmosphere it models within its domain and the fields that
drive it at the boundary. This will not happen if the LAM
is sensitive to initial conditions, since this implies that it
is insufficiently controlled by its lateral boundaries. Our
results show that LAMs with a domain larger than a few
Rossby radii are sensitive to initial conditions even for perfect
lateral boundary conditions, and therefore must be nudged
in order to maintain their consistency with boundary data.
Furthermore, the behaviour of the nudged model, both at
large small scales, depends primarily on the ratio of the
nudging time to the predictability time.

When the nudging time is very small compared to the
predictability time, the model reproduces the large scale
used to force the model. On the other hand, if the nudging
time is close to or larger than the predictability time, both
large and fine scale are poorly reproduced compared to the
reference fields. As a result, the internal variability of the
model strongly depends on nudging. This technique clearly
improves the model’s capacity to reproduce the reference
fields, used here as a surrogate for reality. The best result is
obtained with a nudging time close to half the predictability
time (τ = 0.4τp). Although the reconstructed fine scales are
significantly damped, they are surprisingly well correlated
to their reference values in a deterministic sense, not a
statistical sense.

For LAM our predictability study shows that if the domain
size increases the predictability of the system decreases.
We speculate that when the LAM domain is sufficiently
large the atmospheric system has more active parts in
interaction, which increases its chaotic character and limits
its predictability. Conversely, when the domain is small,
the short time spent by air parcels in the domain does
not allow initially present errors to develop. With nudging,
the LAM capacity to reconstruct the small scales is similar
to that of a high-resolution GCM. In particular, a good
correlation between the reconstructed small scales and the
reference requires an increase in resolution 1

α
less than 2 or

possibly 3 (Figures 8 and 10). Even if deterministic scores
are not important, statistics such as the variance are strongly
distorted in our experiments when 1

α
≥ 4. Current nested

regional climate models frequently employ grid meshes
almost an order of magnitude finer than the GCM serving
to drive them. In such a case, if the LAM domain is large
and nudging cannot be avoided, indiscriminate nudging
will have a strong detrimental effect on the modelled small
scales. Scale-selective nudging like spectral nudging might
then be a requirement rather than an interesting option.

To summarize, we have evaluated the ability of the
dynamical downscaling framework to reconstruct the small
scales of the dynamics given its large scales. We find that for
a moderate ratio of resolved scales, a large to global model
domain and an adequate nudging time, the small scales of
the downscaled field achieve a substantial correlation with
the small scales of the reference field. For a small LAM
domain, the boundary conditions sufficiently control the
atmospheric dynamics and low sensitivity is found on the
nudging time. In this work we focus on indiscriminate
nudging. Spectral nudging is the object of ongoing work.
We must stress that we use both statistic and deterministic
skill scores to evaluate the RCM. For climate modelling

it is the statistics of the simulations that matters, not the
deterministic skill. However, we see that in the Coordinated
Downscaling Experiment (CORDEX) programme of the
World Climate Research Program (WCRP) (Giorgi et al.,
2009) a first phase is the downscaling of meteorological
reanalyses over 20 years (1989–2008) using RCMs. One key
aspect of this phase is the evaluation of the RCMs. In this
context, verifying analysis on a time-by-time, point-by-point
basis with gridded observations from satellite or reanalyses
also makes sense, so the two ways of evaluating RCMs should
be used adequately in a complementary way.

Finally, it must be kept in mind that the simple nature of
the QG model does not allow the results to be transposed
to real regional modelling. More work has to be conducted
with RCM integrating the full complexity of the atmospheric
processes, but this is left for the future.
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Denis B, Laprise R, Caya D, Côté J. 2002b. Downscaling ability of
one-way nested regional climate models: the Big-Brother experiment.
Clim. Dynam. 18(8): 627–646.

Denis B, Laprise R, Caya D. 2003. Sensitivity of a regional climate model
to the resolution of the lateral boundary conditions. Clim. Dynam.
20(2): 107–126.

Errico R, Baumhefner D. 1987. Predictability experiments using a high-
resolution, limited-area model. Mon. Weather Rev. 115: 488–504.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 158–169 (2012)



Fine Scale Atomospheric Variability in a Nudged Q-G Model 169

Genthon C, Krinner G, Cosme E. 2002. Free and laterally nudged Antartic
climate of an atmospheric general circulation model. Mon. Weather
Rev. 130: 1601–1616.

Giorgi F, Jones C, Asrar GR. 2009. Addressing climate information
needs at the regional level: the CORDEX framework. WMO Bull.
58(3): 175–183.

Grell G, Dudhia J, Stauffer D. 1995. ‘A description of the fifth-generation
Penn State/NCAR mesoscale model (MM5)’. NCAR Technical Note,
NCAR/TN-398-STR.

Haidvogel DB, Held IM. 1980. Homogeneous quasigeostrophic
turbulence driven by a uniform temperature gradient. J. Atmos.
Sci. 37(12): 2644–2660.

Hoke JE, Anthes R. 1976. The initialization of numerical models by a
dynamic initialization technique. Mon. Weather Rev. 104: 1551–1556.

Kuo H, Williams R. 1992a. Boundary effects in regional spectral models.
Mon. Weather Rev. 120: 2986–2992.

Kuo H, Williams R. 1992b. Scale-dependent accuracy in regional spectral
models. Mon. Weather Rev. 126: 2640–2647.

Lafore J, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C,
Hèreil P, Mascart P, Masson V, Pinty J, Redelsperger J, Richard E, Vilà-
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