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Abstract. Newtonian relaxation allowing RCM (regional climate model) to follow GCM (global climate model or general circulation model) is a widely used technique for climate downscaling and regional weather forecasting. A thorough assessment on effects of the relaxation procedure in an idealized framework is presented in this paper for both synoptic variability and long-term mean climate. LMDzZ is a global atmospheric general circulation model that can be configured as a regional model if the outside domain of the focused region is applied with a relaxation. It thus plays the role of both GCM and RCM in this paper. Same physical parameterization and identical dynamical configuration are usedkept to ensure a rigorous comparison between the two models. The experimental set-up that can be referred to as “Master (GCM) versus Slave (RCM)” considers the GCM as the reference to assess the behavior of RCM. A further experimentsimulation with identical framework but RCM in a higher resolution configuration allows isolating the effect of relaxation procedure from that of mesh refinement. In terms of mean climate in GCM and RCM, there are noticeable differences, not only in the border areas, but also within the domain. In terms of synoptic variability, there is a general spatial resemblance and temporal concomitance between the two models. But there is a dependence on variables, seasons, spatiotemporal scales and spatial modes of atmospheric circulation. Winter/Summer has the most/least resemblance between the RCM and the GCM. A better similarity occursis noticed when atmospheric circulations manifestsed aton large scales. WeakNo-correlation cases are generallycan be remarked when the dominant circulation of the region is at a smaller scales.
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1 Introduction
General Circulation Models (GCMs) are the most advanced tools available to study climate variation at global scale. But they generally have a too-coarse spatial resolution (about hundreds of kilometers) to appropriately investigate regional climate. Climate downscaling, either dynamical or statistical, is thus a necessary step for all issues on regional impacts of global climate change. Climate downscaling in the so-called dynamical approach is generally carried out with a physically-based regional climate model (RCM). 

RCMs plays an essential role in understanding climate variability and impact of climate change behaviors at regional and local scales (Laprise, 2008; Rummukanien, 2010; Giorgi, 2015). Due to the fact that an RCM is formulated, in majority of the cases, over a limited area, one can go to high spatial resolution with limited computing resources. RCMIt can be driven by various driving models or datasets such as the reanalysis, GCMs and other RCMs. It is cheaper than a GCM at the same resolution. An RCM generally provides an improved climate simulations, especially with respect to statistical properties of extremes, such as cyclones, intense precipitation and strong winds (Giorgi and Mearns, 1991). Improvements can also come from regionally specific empirical adjustments of the model parameterizations.

Meanwhile, RCM is far from being a perfect solution for all needs of climate downscaling. RCMs brings added-values with respect to GCM or reanalyzes, but itthey can also presenttake the drawbacks or retained-value. Many challenges still require attention and efforts. First of all, RCM is of constrained modeling with nudging applied at the lateral boundaries. Nudging is a simple operation that can be realized by adding a “Newtonian relaxation” in the dynamical equations governing the evolution of wind, temperature and humidity (Drobinski, 2015). The Newtonian relaxation added into the prognostic equations of the model is therefore not a physical term, it can introduce concernsproblems of boundary inconsistency in the model, but it remainsis a simple and efficient way to drive the RCM. It allows us to use outputs of general circulation model (GCM) of coarse resolution as lateral boundary conditions (LBC) to run high-resolution regional simulations that evolve over time with RCM. A second caveat in using RCM is the lack of interactive exchanges between RCM and its driving GCM, since the one-way nesting (OWN) with a unidirectional nudging is the standard methodology to pilot RCM through the outputs of GCM. 

In order to understand the behaviors of RCM, it is necessary to separate the various influencing factors for the downscaling ability of the nested RCM. They are at least of three different natures: mesh refinement, downscaling methodology and interaction among spatiotemporal scales. The present work is devoted to dealing with the issue of Newtonian relaxation, the core operation of the downscaling methodology. To isolate its effect, and to understand its role in regional climate simulation, it is necessary to design an idealized framework excluding differences in space resolution and in model physics. We can then focus on methodological issues in relation to the relaxation technique.”
In order to understand the characteristic of the RCM, it is necessary to separate the various influencing factors to study downscaling ability of nested regional climate models through the separation of mesh refinement, the influence of downscaling methodology and interaction between different scales. 

The present work is devoted to dealing with the problem of the Newtonian relaxation. To isolate its effect, and to understand its role in regional climate simulation, it is necessary to use an idealized framework excluding differences in space resolution and in model physics. The work presented in this paper explores through a methodological study to evaluate essentially the effect of relaxation technique to the regional climate representation. Spatial resemblance of intra-seasonal variability between RCM and GCM is exclusively focused to asses the effect of Newtonian relaxation to RCM.

The paper is organized as follows. In Section 2, we present the experimental design. Assessment methodology is introduced in Section 3. Section 4 evaluates the effect of Newtonian relaxation by comparing RCM against GCM in 5 subparts. Subsection 4.1 compares the seasonal mean between RCM and GCM. The spatial resemblance of the atmospheric circulation within the domain is shown in Subsection 4.2. EOF analysis and weather regimes analysis are used in Subsection 4.3 to investigate how the duality RCM/GCM behaves in function of different atmospheric modes or circulation regimes. Section 4.4 is devoted to investigating the relationship between external forcing from GCM and the reproducibility of GCM’s synoptic variability by RCM. And the effect of RCM mesh refinement is presented in Subsection 4.5 before the presentation of Conclusion.”
The study is organized as follows. In section 2, we present the experimental design and data analyzed. Assessment methodology will be introduced in section 3. Section 4 evaluate the effect of Newtonian relaxation to the RCM in 5 subparts. Section 4.1 show the comparison on the seasonal mean between the RCM and the GCM. The spatial resemblance of the circulation within the domain will show in section 4.2 EOF analysis and weather regimes analysis will assess in section 4.3 to decompose regional modes. Section 4.4 analyze the relationship between the external forcing coming from the GCM and the resemblance between the RCM and the GCM. And the effect of the mesh refinement will be presented in section 4.5 before the conclusion.

2 Model configuration and Experimental design
The LMDZz4 model (Hourdin et al., 2006; Li, 1999) is the atmospheric component of the coupled model IPSL-CM4 (Marti et al., 201005) developed and explored atof the Pierre Simon Laplace Institute (IPSL). Different versions and configurations of the IPSL model wereas largely used into perform climate simulations contributing to the IPCC reports (IPCC, 2007, 2013). LMDZ4It can be operated as a GCM and also as a RCM according to its configurations. In this study, although GCM and RCM are identical, their geographical coverage differs: the GCM covers the entire globe, while the RCM is effective only in the regional domain considered. Our protocol of simulations can be qualified as “Master versus Slave”, since both GCM and RCM are identical, but they are operated in a different way: GCM is entirely autonomous (Master) but RCM is driven (Slave) at boundaries (rest of the whole globe beyond its effective domain) by outputs from GCM.

RCM in this study is configured inas a large domain extending from the Eequator to Greenland (latitude: between 2.4°S south and 82.4°N north) and from the middle of the North Atlantic Ocean to the Caucasus (longitude: between 40.4°W west and 42.4°E east). This domain covers regions with varied and complex characteristics, such as the North Atlantic, Europe, the Mediterranean Sea and North Africa. It therefore includes several sub-regions commonly used in CORDEX studies (Europe, Mediterranean, and Africa, http://cordex.org/community/domains.html). Jones et al., (1995) had showed that then a domain size of RCM should be large enough to allow the full development of circulations at fine scales but small enough to maintain suitable control fromby the driving lateral boundary conditions (LBC). The choice of the domain size is still an open question, but beyond the scope of our to study. Our domain includespresents strong internal variabilities which are believed to bey, especially in mid-latitude regions of the Northern Hemisphere. The internal variability is stronger in summer than in winter (Lucas-Picher et al., 2008; Caya and Biner, 2004; Giorgi and Bi, 2000).

The protocol “Master versus Slave” used for this study has a certain resemblance to that of “Big brother versus Little brother” (BBE) proposed by Laprise et al., (2002). BBE protocol consists of performing firstly a GCM simulation with a very high resolution, the same as that in of the RCM. Horizontal resolution of the output isis then degraded to that of a normal GCM. Degraded information is ultimately used to drive the RCM. Thus the climate simulated by GCM with enhanced spatial resolution (called “Big Brother”) plays the role of reference to assess the climate simulated by RCM (called “Little Brother”). Difference between “Big brother” and “Little Brother” obviously reveals the upmost theoretical performance of the RCM. This protocol is particularly interesting for cases where there is no reliable high resolution dataset to evaluate the performance of RCM. The original geographicTheir domain of interest in Laprise et al. (2002) is on the eEast Coast area of North America, and their model used is the CRCM (Canadian Regional Climate Model) (Caya and Laprise, 1999). Although their simulations cover only a month (February 1993), they were able to conclude that the one-way nesting (Davies and Turner, 1977) applied to the RCM did a good performance in climate downscaling from large scales to regional scales. 

The common point of BBE with our “Master versus Slave” protocol the present study is the concept of prerfect model which makes it possible to assess the downscaling approach and the operational procedure by getting rid of physical imperfections of the climate model used. GCM is actually considered as a perfect model and served as the reference for RCM.

Our hypothesis in designing “Master versus Slave” simulations is that there are conceptually two factors affecting the climate downscaling: the general driving methodology of RCM by GCM and the mesh refinement in RCM. To eliminate the effect of RCM resolution, our “Master versus Slave” protocol keeps purposely the two models identical and with the same resolution, about 300 km, a regular grid of 3.75° in longitude and 2.5° in latitude. In the vertical, there are also 19 identical levels for the two models. 

The particular design of our simulation allows us to have a rigorous comparison between the RCM and the GCM, since they are actually identical in terms of physics and spatial resolution. This configuration will be hereafter noted as “DS-300-to-300”, standing for “downscaling from 300 km to 300 km”. A comparison between the two models reveals purely the impact of Newtonian relaxation procedure used in drivingfor the RCM.

To evaluate the only effect of RCM grid refinement, we actually performed a second simulation, just as “DS-300-to-300”, in our protocol “Master versus Slave”, but the RCM (Slave) has a higher spatial resolution (100 km, against 300 km in the initial configuration). This additional experiment will be noted hereafter as “DS-300-to-100”, standing for “downscaling from a model of 300 km as spatial resolution to another model of 100 km”. A relevant comparison between the two experiments can reveal the effect of mesh refinement in RCM, the effect of Newtonian relaxation being eliminated. All simulations of the two experiments have a 360-day calendar (30 days for every month). To ensure a good statistical significance, they have all have a long duration of simulation exceedingof more than 80 years. 

The relaxation time scale () represents the nudging strength. When it is smaller than 6h, the nudging is considered strong (Salameh et al., 2010). In this study, all variables (Winds, Humidity, Temperature) U, V, Q and T are strongly nudged since  is set at 90 minutes. Boundary conditions from GCM are renewed every two hours. We remind that our RCM actually covers the whole globe and the buffer zone where relaxation is effective is the rest of the globe outside the RCM domain. There is no transition for the relaxation time scale between the inside and outside of the RCM effective domain. In fact, our configuration inherited from a two-way nesting methodology (as in Chen et al., 2011; Junquas et al., 2015) in which the two models need to be spatially complementary from each other. Both GCM and RCM share the same low boundary conditions with climatological sea-surface temperature and sea ice concentration obtained from 1971 to 2000. They also share the same climatological values for greenhouse gases and aerosols over the period 1971 to 2000. 

For the sake of completeness, and to preserve the traceability of our work, Supplement I (or http://www.lmd.jussieu.fr/~li/LMDZ4_compilation.docx) provides detailed information and guidance to compile the code and to run simulations presented in this work. Supplement II (or http://www.lmd.jussieu.fr/~li/LMDZ4_code.tar.gz) provides an archived file containing the code, and Supplement III (or http://www.lmd.jussieu.fr/~li/LMDZ4_data.tar.gz, file size 111 Mb) provides configuration files, boundary conditions and job-launching shell scripts. 

3 Assessment methodology
Numerical climate model simulations are affected by various uncertaintiesy due to internal variability, and sensitivity to initial conditions and to boundary conditions (Giorgi, 2006; Stainforth et al., 2005; Murphy et al., 2004). The evaluation of the RCM is often based on mean climatological the average state of relevant variables such as surface air temperature and precipitation. A to the observations or the GCM. There are few studies also check focused on the synoptic variability. One scale.

The RCM assessment should be based not only on regional mean climate reproduction, but also on climate variability. We needs even to assess the synoptic sequences if the RCM is destined for regional weather forecasting. Intuitively, we can imagine that the reproduction of regional climate depends on two factors, the external forcing from GCM (reproducible component depending on boundary forcing of GCM) and the internal dynamics (non- reproducible) that develops independently in GCM and RCM. Even in a very restrictive framework, the internal dynamics developinged within the region can be quite spontaneous (Separovic et al., 2015, 2008, Christensen et al., 2001). Whatever is the climate downscaling protocol, the internal dynamics can occur and makes the RCM to drift significantly from the GCM. Generally speaking, the internal dynamics can come from a better resolution in the RCM, an advanced physics and the climate downscaling protocol itself. In the past, the protocol issue has never been properly evaluated, since it could not be easily isolated. This is just the focus of our current study. Our basic working hypothesis is that large-scale information of regional climate in the RCM should be consistent with that of the GCM because the RCM is under the constraints of the GCM. At the same time, we recognize that, within the domain, regional climate dynamics can also be generated by internal processes. We thus expect, when the GCM exerts a dominant constraint on the regional climate, to obtain a good resemblance between the RCM and the GCM. On the other hand, when the large-scale circulation is weak and the internal dynamics is strong, the RCM is expected to diverge substantially from the GCM.

3.1 Data filtered to retain synoptic-scale variability 
Daily data of the geopotential height at 500 hPa (Z500) and surface airthe temperature at 2 meters (T2M) are used to assess the reproduction of the large-scale atmospheric circulation. Separovic et al. (2008, 2015) have shown that the relaxation procedure impacts firstly synoptic (intra-seasonal) scale, an essential element of the atmospheric general circulation (Christensen et al. 2001; Separovic et al., 2015, 2008).  FurthermoreBy the way, synoptic (intra-seasonal) variability situation is a very important window for criterion to represent the internal variability of a model to manifest and to operate (Separovic et al., 2008, 2015; Alexandru et al., 2007; Christensen et al., 2001; Jones et al., 1995). These arguments motivate us to focus on synoptic variation scales to describe  comparison on the reproduction of intra-seasonal between RCM and GCM is chosen to characterize the resemblance between RCM and GCM, with the objective to  two models who reveal effects ofs the influence of Newtonian relaxation into regional climate modelling. In other words, it can show the dependence between RCM and GCM following the relaxation procedure. In order to isolate the synoptic or intra-seasonal variability, daily outputs of both RCM and GCMdata arehave been linearly decomposed into four components, namely the mean state, the inter-annual variation, the seasonal cycle, and finally the intra-seasonal or synoptic variation (including synoptic and higher-frequency variability).


To asses the resemblance between RCM and GCM, we perform 3.2 Spatio-temporal resemblance in different modes and regimes
The spatial correlation on daily variables from is performed on the filtered data between RCM and GCM  after their temporal-scale separationto assess the resemblance of the two models. An ensemble of these Temporal evolution of this spatial correlation coefficients is then examined with box-whisker plots to show their statistical distribution. Intuitively we can expect that the resemblance between RCM and GCM is dependent on atmospheric general circulation structures at different scales. We thus perform trace the daily variation of the spatial similarity between the two models. EOF analysis and weather regimes analysis  to illustrate this dependenceare also used in this study to distinguish different situations in order to understand impacts of different scales and modes on the resemblance between RCM and GCM.

4 Results
4.1 Drift ofSeasonal mMean cClimate
As expected, RCM shows drifts in its mean climate compared to the reference from GCM. Figure 1 displays the difference maps, in the form of seasonal average, of surfacen air temperature at 2 meters between RCM and GCM. RCM can reproduce main features of the means well the climate simulated by GCM. This is generally true over all the four seasons (DJF a., MAM b., JJA c., and SON d, Fig. 1). However, there is a significant cooling of more than 1 °C at the eastern borderundary for all seasons (Fig. 1). Furthermore, differences are also observed insidewithin the domain. The differences are quite pronounced during DJF and JJA, with a warming of aboutthe order of 0.3 °C in sub-Saharan Africa and over the Atlantic Ocean, and a cooling of about 0.6 °C for the summer (JJA) in Eastern Europe. The fact that RCM drift is dependent on seasons is certainly a revelation that the basic climate matters for RCM to reproduce the mean climate of GCM. Nevertheless, we should point out that the magnitude of climate drift in RCM is an acceptable one compared to our general skill in simulating regional climate with the most advanced dynamical modelling tools. Furthermore, we also performed an identical experiment, but with future global warming as the background climate (results not shown here). A very similar drift was obtained there, showing that the general approach practiced by the regional climate modelling community is a reliable one in terms of future climate projection.differences are the strongest in summer. That means the seasonal characteristics could impact the reproduction of the regional climate. The verification of the seasonal mean between RCM and GCM reinforces the initial hypothesis that the downscaling procedure through nudging guarantees a reproduction of large-scale atmospheric circulation simulated in GCM.

4.2 How close is RCM to GCM in terms of synoptic variabilityResemblance of atmospheric circulation within the domain for different seasons
The protocol “Master versus Slave” provides an idealized (but ideal) framework to evaluate effect of the downscaling procedure. Recall that in this study, RCM and GCM have the same physical and dynamical configurations, apart the relaxation procedure applied in RCM. In the previous section, the comparison of mean climate between RCM and GCM shows a significant differences not only at borders the boundaries but also within the domain. It is clear that The cause is probably the manifestation of certain autonomy of RCM can manifest in our Master/Slave configuration, even RCM and GCM are identicalthe internal dynamics in RCM. 

Apart mean climate drifts, RCM can also show deviations from GCM for day-to-day variations. This is a crucial issue if RCM is destined for weather forecasting, since the synoptic sequence matters. The evolution over time will be studied in this section. The filtered daily data are used to keep only the day-to-day variability. That means, Ffor eachvery day, we can now compare a physical fields between RCM and GCM after variables are filtered to retain only the synoptic variability. We want now to investigate how close RCM is to GCM for their simulated synoptic variability. The resemblance between RCM and GCM can be measured by the spatial correlation coefficient of the fields between the two simulations. The physical variables of our investigation are the 

The objective of this section is to investigate if the relaxation procedure modifies the day-to-day variation within the domain. We examine the spatial resemblance between RCM and GCM for the four seasons. The geopotential height at 500 hPa and surface airthe temperature at 2 meters. They are examined for the whole year and for the four seasons separately. The surface air temperature at 2 meters is an emblematic climate variable with large implication to societal issues, are selected to show the near-surface situation and the geopotential height at 500 hPa is an appropriate variable to describe the atmospheric general circulation  for the middle atmosphereat higher altitudes.

The ensemble of spatial correlation coefficients forms a complex distribution that can be represented in a box plot graph. Results are shown either for the whole yeardata or for the four seasons separately. The averages in the form of a small dot in the box plots are all below the medians (Fig. 2). This relationship between the mean and the median reveals a biased distribution and the presence of a small number of very small values. Weak correlation means big disagreement of spatial structures in the two models. That is, RCM shows its maximum autonomy and losses driving signal from GCM. At the same time, the spatial correlation coefficients have also a tendency toward higher correlation. In fact, a Fisher z-transformation would give approximately a normal distribution for correlation coefficients, since fields from RCM and GCM can be considered as identically distributed and independent.

The box plots for T2M (Fig. 2) and Z500 (Fig. 3) show all an obvious seasonal dependencevariation. A higher spatial correlation with a smaller dispersion (interquartile gap) is found in winter. That is, winter represents a better spatial resemblance between RCM and GCM. Summer shows the lowest spatial resemblance between the two models for both T2M and Z500. 

The largest correlation coefficient from T2M is 0.98 (maximum) in winter, 0.90 in summer and 0.96 in spring and autumn. A difference between two high correlations (close to 1) is not easy to detect on the box plots because the values are very close. The 1% percentile values for all four seasons show a peculiarity of very low resemblance in summer with a correlation coefficient of 0.10.

The box size (interquartile gap) and the gap of outliers are two parameterscriteria to mesurerepresent the dispersion of spatial correlation coefficients between RCM and GCM. Seasonal characteristics are clearly shown on the box plot. There is a larger dispersion in summer than in winter (Fig. 2). Temperature at four other pressure levels (1000 hPa, 850 hPa, 500 hPa and 300 hPa) are also analyzed. The results (not shown) largely confirm those found on the temperature at 2 meters.

Figure 3 summarizes the statistics offor correlation coefficients for the 500 hPa geopotential height. For the whole yeardata and the four seasons, a good correlation is noticed with an average exceeding 0.80 and a median exceeding 0.90. The 99th percentiles all exceed 0.99. The spatial correlation coefficients for Z500 show the same seasonal variation as for T2M. RCM has the best skill in reproducing the synoptic variabilitytion of GCM in winter and the worst in summer. However, the spatial correlation coefficients for Z500 (Fig. 3) are generally higher than for T2M (Fig. 2), with furthermorealso a smaller dispersion. It is clear This is shown for all statistics (mean, median, quartiles). This phenomenon shows that there is a better reproduction at altitudes than near the surface. GCM exerts stronger control at altitudes than The reproduction in RCM is more impacted at the surface than at altitudes, the RCM autonomy being certainly amplified by surface processes and feedbacks.. 

4.3 Main modes of regional variability and relationship to RCM skill
The spatial correlation coefficient analysis in the previous section shows there is a better resemblance between RCM and GCM in winter. We have all our intuitive arguments to think that the skill of RCM in reproducing synoptic variability of GCM is dependent on regional circulation modes. Different modes should make RCM to behave differently although the relaxation operation is identically added at the boundaries of RCM without any differentiation of scales or modes. Our  The particularity of winter should be related to the strong variance in its general circulation (not shown). The study domain is dominated by the North Atlantic Oscillation (NAO) mode, with intermittent appearance ofbut other modes of regional variability also exist. The different modes should have a distinct reaction to the relaxation operation imposed to RCM. We perform EOF analysis (Fig. 4, 5) and weather regime (Fig. 7, 8) analysis to identify the main modes dominating the regional variability. Such modes or regimes are then used to stratify the correlation coefficients. The results confirm the initial hypothesis: the two models have non-identical structures, but very close.

The analysis is applied to the filtered daily data of the geopotential height at 500 hPa representing, for the day-to-day variability of the atmospheric circulation. The EOF analysis gives in descending order of explained variance,interest the spatio-temporal patterns, which explain the most variability and leaves the noise in the EOF structures of higher order. In order to compare the time series (PC: principal component) characterizing the synoptic sequence, it is necessary to have a series of common spatial structures for RCM and GCM and to perform their analysis in a combined way. The combined EOF is used to characterize their ten  first spatial structures. The first ten structures representing a variance contribution over 92% are shown in  (over 92% contribution, Fig. 4). The analysis wasis done separately forover the four seasons. OHowever, only winter iswill be shown for the sake of conciseness. Winter revealsbecause of the strongest resemblance between the two models in winter. Similar results are noticed in three other seasons (not shown).

Figure 4 displaysshows the decomposed structures offor winter 500-hPa geopotential height. The spatial structures are presented from large scales to small ones, with a decreasing order in the explained variance and spatial structure scale both decrease for higher-order EOFs. The first three EOFs show large-scale structures, which have a contribution of 6564.97% to the total variance. The first EOF shows essentially a north-south bipolar structure between the Greenland Sea and the Mediterranean Sea. It represents the North Atlantic Oscillation, the most important mode of variability in this region. The second EOF also represents a bipolar structure (Fig. 4), but with contrasts between the East (Central Europe) and the West (Middle North Atlantic). The third EOF shows a remarkable oval structure (Fig. 4), centered in the North Sea with an extension from the middle of the Atlantic to the Caucasus. At the same time, there is a weak expression with opposite sign towards Greenland and the Red Sea. It seems that this structure is in very weak relation with the outside, because it has practically no loading expression in border zones. 

The fourth and fifth EOFs both represent a structure like horse-saddle (Fig. 4). Their contribution in variance also remains very close, and around 7.5% for both. They represent a structure that propagates: a movement in counterclockwise rotation is visible between these two structures. The sixth EOF is an oval structure stretched from Greenland to the Barents Sea with a center on the Norwegian Sea. This structure is encompassed by opposed values, with a strengthened loadingexpression in the middle of the North Atlantic, the Balkan and the Arctic Ocean. Higher order EOFs (from 7 to 10EOF7, EOF8, EOF9 and EOF10) show smaller scales structures with a wave number around 2.0 (Fig. 4).

With fixed common spatial structures, it is now useful to compare the corresponding time series between RCM and GCM. Our purpose is to check if some modes promote (or induce)/disadvantage a good (or /bad) temporal concomitance between RCM and GCM. Remember that RCM is a constrained model, with control from GCM, at the outside of its effective the domain, from GCM, through a relaxation operation. It is expected that different structures have their own behaviors in response to constraints from the boundaries. In other words, the influence of external forcing from the outside of the domain mightshould be different for different spatial structures. We perform then a correlation calculation between the two corresponding temporal series for each EOF structure to show how their similarity varies for different dominant modes. The reproduction in RCM of the temporal variation of GCM is represented by a correlation coefficient, as shown in  (Fig. 5). A low temporal correlation coefficient reflects non-concomitant variations of synoptic sequences between the two models. In other words, a low temporal correlation coefficient means that the two models do not vary at the same time in the same mode.

We can see thatFor the case of Z500 in winter, the two models are geneally close to each other for all the ten shownfirst  EOFs,. withThe correlation coefficients are all greater than 0.84. A very strong resemblance (correlation coefficient greater than 0.95) is found foron the first five EOFs (Fig. 5). On the other hand, EOF3 has the lowest correlation coefficient (0.93) among them first five EOFs, but it is still greater than those for smaller scale modes (from EOF6 to EOF10) which have a correlation coefficientefficient around 0.90 (Fig. 5). For the first two EOFs which contribute nearly half of the total variance to the physical field, RCM and GCM are extremely very close to each other with a high correlation coefficient larger than 0.97 (Fig. 5). The trend line in Figure 5 clearly shows that the concomitance of synoptic sequences between the two models decreases from large scales to small scales. 

It is clear that the effect of the relaxation operation is dependent on spatial scales. It The relaxation procedure operated in this study creates a favorable situation for RCM to behave with greater freedom at small scales than at large scales (Fig. 5).

Figures 4 and 5 reveal that the control from GCM to RCM depends not only on spatial scales, but also on spatial modes. Some modes show a weaker concomitance between the two models such as EOF3, EOF6 and EOF9. They have all have an oval structure around 60° N (Fig. 4) and poorly connected to the boundaries. This is especially true for EOF3 in which the isolated oval structure presents a large geographical extension covering Europe and the North Atlantic. The oval structure noticed in these three EOFs makes RCM easier to have largergreater freedom to manifest its own behaviors, and the temporal evolution between the two models is less concomitantreproducible. 

It is now clear The EOF analysis confirms that the downscaling procedure with the relaxation operation diverts the spatio-temporal variability of RCM from GCM, although their divergence remains weak. Especially, it 

The relaxation procedure operated in this study ensures a good simultaneity between the two models at large scales (Figure 4, 5, 6). RCM shows however more freedom at small spatial scales. This can be furthermore demonstrated with reconstructed fields from different scales. We will consider three cases with physical fields reconstructed from the selectedfirst 10 EOFs.

The first ten EOFs explain about 92% of the total variance. The first five EOFs explain 79%, and they are mainly from variations of large scales. The last five EOFs from EOF6 to EOF10 explain 13% of the total variance, mainly for variations of small scales. With such reconstructed fields, we perform again the spatial correlation coefficients between RCM and GCM. Their distributions in the form of box plots are displayed in Figure 6. Large scales (first five EOFs) show a greater resemblance and smaller dispersion, compared to small scales (between EOF6 and EOF10). It is consistent with the result presented previously, namely, the spatial resemblance and the temporal reproduction between RCM and GCM are generally dominated by large-scale atmospheric circulations from GCM. At the same time, RCM does show freedom by simulating small-scale circulations which are not necessarily controlled by GCM.

The EOF analysis is a powerful tool in decomposing atmospheric variability. But it remains a mathematical manipulation and the obtained structures can be devoid of any meteorological significance. We need thus to find a complementary way to check the robustness of results. The concept of weather regimes might be a very appropriate one to do so. In mid and high latitudes, quasi-stationary states of atmospheric circulations are recurrent and can be easily recognized at synoptic scale. They are often referred to as weather regimes or circulation regimes (Michelangeli and Vautard, 1995). In the geographic sector Europe / North Atlantic, four weather regimes are generally recognized (Vautard, 1990). They are: NAO+ (zonal), NAO-, blocking and Atlantic Ridge. DSince different circulation regimes are discriminable for the regional atmospheric circulation and for the regional weather., Ffor example, the zonal regime is linked to winter storms and the blocking regime is associated to cold weather., Wwe can imagine that the resemblance between RCM and GCM may be very dependent on the regional weather regimes. We believe that the stratification of results into different regimes can provide relevant explanations on the resemblance between the two models. Our objective is to understand why such conditions or others are favorable / unfavorable to bring RCM closer to GCM.

Figure 7 shows the four weather regimes that we obtained with 500-hPa geopotential height from GCM, by using thea classic K-means algorithm. They have a similar distribution of presence, each with a quarter occurrence frequency. The regime Atlantic Ridge (regime 1 with 24.218% occurrence frequency), the NAO- (regime 2 of 24.876%) and the blocking (regime 3 of 24.986%) all have a less important occurrence than the zonal (NAO+, regime 4) with an occurrence frequency of 26.219%. This means that our GCM simulates more winter storms with a stronger presence of the zonal regime (Fig. 7). The resemblance between RCM and GCM is always evaluated by means of the spatial correlation coefficient. Results are displayed in Fig. 8. We remind that a Fisher transformation is performed to facilitate the differentiation of two high values of correlation coefficient. As expected, 

There is not a big difference on the resemblance between RCM and GCM varies after the stratification of synoptic variability into four weather regimes. A low resemblance However, a bigger difference between the two models is noticed foron the blocking regime and zonal regime. Figure 8 shows clearly that RCM has less resemblance to GCM foron the blocking regime than onfor three other regimes (Fig. 8). This means that RCM has more freedom to not follow reproduce the cold winter simulated in GCM under the blocking regime. At the same time, there is a better distribution of correlation coefficient (Fig. 8) on the zonal regime. However, a bigger dispersion of spatial resemblance is also noticed at the zonal regime. 

4.4 Dependence of RCM skill on the forcing strength from GCMReproductive fidelity of regional circulation according to the boundary conditions
Conceptually, the skill of RCM to reproduce the synoptic variability of GCM can be considered as dependent on the driving strength that GCM exerts on RCM, and on the autonomous capacity of both models to develop independent variabilities. The former should enhance the resemblance of models and is reported in this paper; the latter should diminish the skill of RCM and will be reported in future. The influence of external forcing from GCM to the resemblance between the two models will be examined in the following. The intensity of the external forcing is diagnosed by the variance of geopotential height at 500 hPa at the outside of the RCM effective domainboundary. The variance from GCM at 45° WWest (or and 45° EEast) can be a goodboundaries are both close to the study domain (between 40.4° west and 42.4° east). This choice for our purpose. Our tests (not shown here) with different locations reveal that results are not very sensitive to the precise geographicis based on a comparison and verification among a few positions, such as 45°, 50° and 65°. The same relationship between the external forcing from the GCM and the internal resemblance between the two models is found with different positions to characterize the external forcing.

In Figure 9 displays the scatter plot with the correlation coefficients (from -0.1 to 1.0) in x-axis and the variances of 500-hPa geopotential height at 45°W in GCM in y-axis, we can observe that the intensity of external forcing is different between the western (between 0 and 120 000 m2, Fig.9.b) and eastern (between 0 and 60000 m2, Fig. 9.a) boundaries. We can see Figure 9 also shows that the resemblance between the two models increases with the intensification of external forcing. This means that a strong GCM control favors to havinge a good similarity between RCM and GCM. Figure 9 also reveals that low correlation coefficients (less than 0.5) are associated with a very small variance  of GCMfor both west and east boundaries. However, a weak external forcing does not always imply a bad resemblance between the two models.

Table 1 presents a numerical summary of what shown in Figure 9. First, we can see that the two models are generally very close to each other with a spatial correlation coefficient greater than 0.95 in 4396 days out of 7200 (61.105%). On the other hand, there are only 29 days out of 7200 (0.40%) with a low resemblance characterized by the correlation coefficient smaller than 0.5. Second, the average of the GCM variance atof the east boundary is smaller than that of the west on all classes of similarity. Third, the average of the variances of the boundaries has an obvious relation withto the correlation coefficient. WThat means when the correlation coefficient is low, the GCM variance atof the boundary is also small, and a high correlation corresponds to a high variance. (Figure 9, Table 1). 

In summary, tThe interior of the Rregion domain is more or less controlled by large-scale circulation coming from GCM beyond the RCM effectiveoutside of the domain. The strong external forcing manifested by a high value of variance at the boundary, favors a good reproduction of the RCM towards the GCM. On the other hand, a weak external forcing makes the effect of the internal dynamics more important, which causes a divergence to the two models.

4.5 Effect of the mesh refinement
In previous sections, all analyzes are based on idealizedthe experiment without a finer resolution for RCM. The application of mesh refinement at the regional scale is necessary because the coarse resolution of the GCM is not sufficient to correctly simulate the regional climate (Giorgi et al., 1991, 2010; Jacob et al., 2007; Laprise et al., 2008; Castel et al., 2010; Rummukainen, 2010; Richard et al., 2010). FurthermoreBy the way, the horizontal resolution is an important issue for regional climate modelling. OurThe framework is therefore completed by a second simulation (“DS-300-to-100”) in which the RCM has an increased spatial resolution (100 km), with all other aspects unchanged. The comparison between the two configurations helps to reveal the impact of mesh refinement in the RCM whose effect is added to that of the nesting procedure (Fig. 10).

The bi-histograms in Figures 10.a and 10.b show the same relationship between the external forcing and the correlation coefficient characterizing the resemblance ofbetween the two models, Fig. 10a being directly deduced from the scatter plot shown in Fig. 9. With mesh refinement (Fig. 10b), a strong external forcing is always associated with a high value of spatial correlation coefficient and a very low correlation value is always in situations of weak external forcing. In both protocols, there areis a large number of very strong correlation coefficients with moderate variances (Fig. 10.a and, 10.b). A visual comparison between Figure 10.a and Figure 10.b shows a kernel shift to the left. That means from “DS-300-to-3100” to “DS-300-to-1300”, there is a trend toward lower correlation and bad resemblance between RCM and GCM. The decrease of correlation (resemblance) following the mesh refinement is obviously noticed on the subtraction of the two protocols (Fig. 10.c).

The most significant difference between “DS-300-to-100” and “DS-300-to-300” is found in the range with the external variance less than 20000 m2 and a spatial correlation coefficient exceeding 0.70 (Fig. 10.c). Compared to “DS-300-to-300”, “DS-300-to-100” present a decrease about 40% (-0.08/0.2, relative changes of probability density function) for highof the spatial correlation coefficients which exceeds 0.93. At the same time, there is an increase in probability density functionfrequency of occurrence for the range of correlation coefficientss between 0.70 and 0.93. An obvious increase about 60% (0.03/0.05) is found forin the correlation coefficient range between 0.80 and 0.93, and a smaller increase of 30% when the correlation coefficient is between 0.70 and 0.80 (Figure 10.c, Figure 10.a).

To make the bi-histogram more symmetrical, a Fisher transformation is applied for the spatial correlation coefficient and a natural logarithm is used for the variance. A shift to the left of the center of high probability (Fig. 10.d, 10.e) is noticed with a decrease in the upper 50 percentiles and an increase in the lower 50 percentiles (Fig. 10.f). The decrease amplitude is larger than the increase. The comparison between “DS-300-to-100” and “DS-300-to-300” clearly shows that the mesh refinement in the RCM decreases the spatial resemblance between the RCM and the GCM. Furthermore, the influences from boundary conditions remain unchanged between the two experiments. 

5 Conclusion
This paper was devoted to the investigation of effects of a largely-used climate downscaling procedure which uses a Newtonian relaxation in order to drive RCM with outputs from GCM. We designed an idealized framework, called “Master versus Slave” in which GCM and RCM are identical, but GCM is operated autonomously and RCM is relaxed to GCM at boundaries. The fidelity of RCM to an identical GCM is firstly analyzed (experiment “DS-300-to-300”). The GCM was used as the reference to evaluate the RCM. We thoroughly examined the spatial-temporal resemblance between RCM and GCM. We also performed the analysis with a stratification of regional atmospheric circulation into different modes or regimes which are believed to play a discriminant role in the relation RCM/GCM. Finally, the intensity of external forcing is also revealed to be a determinanted factor for the resemblance between the two models. 

In terms of mean climate, RCM can reproduce main spatial patterns of 2-m surface air temperature and 500-hPa geopotential height as in GCM. But significant differences do manifest, especially at  borders of RCM effective domainthe boundaries, due to the inevitable conflict between imposed external forcing from GCM and internal dynamics in RCM. Beyond the difference found near the boundaries, we also found significant difference for the whole domain. If the former can be simply treated by an exclusion of the boundaries from our analysis, the later may raise serious challenges for climate downscaling.

Beyond the mean climate simulated in RCM, we also examined the synoptic sequences reproduced by RCM and their resemblance to those in GCM. We found that there is a certain dependency on seasons and regional atmospheric circulation modes or regimes. The resemblance between the two models is shown to be strong in winter than in summer, in larger scales than in smaller ones. Furthermore, the blocking regime in the region seems to have a larger autonomy in RCM. The results are generally in agreement with our expectation, since the reproduction of synoptic sequences is a compromise between the external forcing from GCM and the internal dynamics generated in RCM. The external forcing was thoroughly examined. Strong external forcing promotes a good spatial resemblance and a good temporal reproduction of the RCM towards the GCM. However, the external forcing does not always guarantee to have a good coherence of regional climate simulation between the two models, because of the impact of relaxation procedure. The relaxation time is an indication of the e-folding time scale. It is to be noted that the relaxed variables can never reach the driving variables. This manuscript is a first step to investigate the commonly-used methodology of driving RCM through lateral boundary conditions. Impact of GCM updating frequency (every two hours in our work) and that of the relaxation time scale (set to 90 minutes here) are planned to be reported in future.

The internal atmospheric dynamics come from two sources of variability. On the one hand, there is a relation with the continuity of the movement coming from the outside of the domain and the physical-dynamical law governing the continuity of the general atmospheric general circulation. On the other hand, regional climate dynamics are also generated by local processes within the study domain, independently of what happens outside the region. The internal dynamics has more freedom in refined RCM which is impacted by more detailed surface process. The mesh refinement increases the RCM’s autonomy, with less dependence on the GCM. In other words, there is more development of the internal dynamics when the spatial resolution of the RCM is increased. Further results on internal variability and its influences on the reproduction of climate and synoptic sequences in RCM will be reported in a future work.
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Figure 1. Differences of seasonal averages between RCM and GCM (served as reference simulation) of surface air temperature at 2 meters. Simulations were conducted within “DS-300-to-300” in which RCM and GCM are identical including the same spatial resolution of 300 km.
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Figure 2. Box plots showing the distribution of correlation coefficients (between RCM and GCM) for surface air temperature at 2 meters. The calculation is for the whole yeardata and four4 separate seasons, respectively. The bleu point is the average. The red line is the median. Red crosses are outliers.
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Figure 3. Same as in Figure 2, but for the geopotential height at 500 hPa. 
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Figure 4. Spatial patterns of combined EOF from RCM and GCM for winter (DJF) filtered daily Z500 in “DS-300-to-300”. Percentages above each chart show the fraction of explained variance.
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Figure 5. Time correlation coefficients between synoptic sequences from RCM and GCM, for the first 10 EOF structures. The dotted line is a linear regression of the 10 correlation coefficients.
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Figure 6. Box plots showing the distribution of spatial correlation coefficients between RCM and GCM for reconstituted Z500 fields in winter: STAT 1 represents the 10 first ten EOFs (92.19%), STAT2 represents the reconstituted Z500 from the 5 first five EOFs (79%) and STAT3 represents the reconstituted Z500 from EOF6 to EOF10. 
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Figure 7. Four weather regimes of the winter season, calculated with daily geopotential height at 500 hPa in GCM. Regime 1 represents the Atlantic RidgeDorsal with 1783 days (24.18%). Regime 2 is the NAO- with 1741 days (24.76%) over the entire 80-years. The 1790 days of the blocking regime (1790 days, 14.86%) is represented in regime 3. The zonal regime (NAO+) is in regime 4 of 1886 days (26.19%).



[image: ]
Figure 8. Box plot of spatial correlation coefficients (after Fisher transformation) between RCM and GCM for winter. They are calculated after stratification on four weather regimes: the Atlantic Ridgedorsal, the negative phase of NAO, the blocking regime, and the NAO+ regime.
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Figure 9. Scatter plots showing the variance (Y axis) of Z500 (intra-seasonal variability only) at 45° E (a, blue) and 45° W (b, orange). The X axis shows the spatial correlation coefficients between RCM and GCM, calculated for intra-seasonal variability of Z500.


Table 1. Different classes of correlation coefficients between RCM and GCM for synoptic variability, with  number of occurrence days and GCM variance at 45° Wvariances at 45° East and 45° West respectively. 

	Classes of correlation
(DJF)
	Number of day
	Average of variance at 45° W (m2)

	-0.3 : 0.5
	29
	7436.02

	0.5 : 0.7
	181
	8896.70

	0.7 : 0.9
	1184
	10395.45

	0.9 :0.95
	1410
	11821.19

	0.95 : 1
	4396
	13141.52
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Figure 10. NormalizedStandardized bi-histograms (or bivariate probability distribution functions) showing the probability of occurrence as a function of the correlation coefficient and the variance. The spatial correlation coefficient is calculated from the synopticintra-seasonal variability of Z500 between RCM and GCM. The variance is calculated foron the GCM synoptic variability intra-seasonal variation of Z500 at 45° W. All results are for DJF. Panels on the left are from the “DS-300-to-300” protocol (a, d), and directly derived from Fig.9, those in the middle are from the “DS-300-to-100” protocol (b, e), and those on the right are the subtraction of the two experiments (c, f). Panels at the top (a, b, c) are from direct calculations. Those at the bottom (d, e, f) underwentgo a Fisher transformation for the correlation coefficient, and a natural logarithmic transformation for the variance.
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