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Sensitivity of tropical carbon to climate change
constrained by carbon dioxide variability
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The release of carbon from tropical forests may exacerbate future
climate change1, but the magnitude of the effect in climate models
remains uncertain2. Coupled climate–carbon-cycle models gene-
rally agree that carbon storage on land will increase as a result of
the simultaneous enhancement of plant photosynthesis and water
use efficiency under higher atmospheric CO2 concentrations, but
will decrease owing to higher soil and plant respiration rates asso-
ciated with warming temperatures3. At present, the balance between
these effects varies markedly among coupled climate–carbon-cycle
models, leading to a range of 330 gigatonnes in the projected change
in the amount of carbon stored on tropical land by 2100. Explana-
tions for this large uncertainty include differences in the predicted
change in rainfall in Amazonia4,5 and variations in the responses of
alternative vegetation models to warming6. Here we identify an
emergent linear relationship, across an ensemble of models7,
between the sensitivity of tropical land carbon storage to warming
and the sensitivity of the annual growth rate of atmospheric CO2 to
tropical temperature anomalies8. Combined with contemporary
observations of atmospheric CO2 concentration and tropical tem-
perature, this relationship provides a tight constraint on the sensi-
tivity of tropical land carbon to climate change. We estimate that
over tropical land from latitude 306 north to 306 south, warming
alone will release 53 6 17 gigatonnes of carbon per kelvin. Com-
pared with the unconstrained ensemble of climate–carbon-cycle
projections, this indicates a much lower risk of Amazon forest die-
back under CO2-induced climate change if CO2 fertilization effects
are as large as suggested by current models9. Our study, however,
also implies greater certainty that carbon will be lost from tropical
land if warming arises from reductions in aerosols10 or increases in
other greenhouse gases11.

We use results from the Coupled Climate Carbon Cycle Model
Intercomparison Project3 (C4MIP) focusing on changes in tropical
land carbon storage in the latitudinal band from 30uN to 30u S.
Although C4MIP included general circulation models (GCMs) and
Earth-system models of intermediate complexity, we limit our analysis
to the GCMs because our emergent constraint requires models that
generate interannual variability. The C4MIP experimental design3

forced models using the SRES A2 scenario12 of anthropogenic CO2

emissions (including those due to land-use change). For each model,
an ‘uncoupled’ simulation was carried out in which the land and ocean
carbon cycles were made insensitive to the climate change caused by
the increase in atmospheric CO2. Comparison between the coupled
and uncoupled simulations allows the direct effects of CO2 on land and
ocean carbon sinks to be separated from the effects of climate
change3,13. We test the emergent constraint derived from the C4MIP
GCMs against results from the recent HadCM3 land carbon-cycle
ensemble14.

Our emergent constraint could also be tested against the recent
CMIP5 climate–carbon-cycle models, which will appear in the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change. However, models in that report typically use prescribed

concentrations of atmospheric CO2 (ref. 15). This makes direct com-
parison with the observed interannual variability in the atmospheric
CO2 concentration difficult. Therefore, the emergent constraint we
present here is conditional on the relatively simplistic representations
of the carbon cycle in the C4MIP models.

Table 1 summarizes results from six C4MIP GCMs (A to F) for 1960
to 2099. For all models, the impact of climate change on the carbon
cycle results in a larger increase in atmospheric CO2 in the coupled
simulation relative to the uncoupled simulation. This amplification
varies by an order of magnitude across the model ensemble (from
an extra 18 parts per million by volume (p.p.m.v.) in model D to an
extra 212 p.p.m.v. in model A). A large part of this uncertainty arises
from differing responses of tropical land carbon to projected climate
changes in each model. All models produce a significant increase in
tropical land carbon storage in the uncoupled simulations as a result of
the direct effects of CO2 on photosynthesis and water-use efficiency
(from 1263 gigatonnes of carbon (GtC) in model F to 1413 GtC in
model C). The neglect of carbon–nitrogen interactions in this first
generation of climate–carbon models is arguably a major limitation
in the mid and high latitudes16, but is much less problematic in tropical
forests, which are not typically nitrogen-limited17. Forest inventories
are also consistent with a significant CO2 fertilization in the tropics18,19.
Despite the reasonable agreement among models on the effect of CO2

fertilization, the fully coupled simulations produce very different
changes in tropical land carbon storage from 1960 to 2099 (from
211 GtC for model A to 1319 GtC for model D).

Figure 1a represents the evolution of tropical land carbon storage in
the C4MIP models, with the upper and lower estimates shown for both
the coupled and uncoupled simulations. The lower estimate in the
coupled simulation comes from the HadCM3LC model, which pro-
jects Amazon forest dieback under CO2-induced climate change1,9,10.
In this model, tropical land carbon storage increases owing to direct
CO2 effects until around 2050, but then declines abruptly owing to
warming and drying in Amazonia9. This projection, along with recent
extreme droughts in Amazonia20–22, suggests that tropical forest die-
back is a potential high-impact tipping element that would constitute
an abrupt change in Earth’s climate system23.

To separate direct effects of CO2 from those of climate change, we
follow previous analyses3,13 in writing the change in tropical land car-
bon storage, DCLT, in terms of the change in atmospheric CO2, DCa,
and the change in tropical mean temperature, DTT:

DCLT~bLTDCazcLTDTT

Here bLT (GtC per p.p.m.v.) and cLT (GtC K21) are the sensitivities of
tropical land carbon storage to direct CO2 effects and to climate
change, respectively. The uncoupled simulations are used to estimate
bLT for each model, and then these values are used to isolate cLT from
the coupled simulations3,13 by subtracting the direct CO2 effect.
Figure 1b is a scatter plot of bLT and cLT for each C4MIP model and
the three HadCM3 ensemble members. Whereas the bLT values span a
factor of two, from about 0.5 to 1 GtC per p.p.m.v., the cLT values range
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over a factor of more than four, from 229 GtC K21 (model F) to
2133 GtC K21 (model A), with a C4MIP mean of 269 GtC K21 and
standard deviation of 39 GtC K21. This range is even larger if the
HadCM3 ensemble members are included. We therefore focus on
reducing the larger uncertainty, namely that in cLT.

Our inspiration for deriving a multi-model emergent constraint
comes from a recent study that showed a strong relationship between
the contemporary temperature sensitivity of seasonal snow cover and
the magnitude of the snow–albedo feedback, across more than 20
GCMs7. Because the seasonal cycle of snow cover can be estimated
from observations, this model-derived relationship converts the con-
temporary observations to a constraint on the size of the snow–albedo
feedback in the real climate system, for which there is no direct reliable
measurement. Emergent constraints of this type make use of the often
bewildering spread among Earth-system model projections to reduce
uncertainties in the sensitivities of the real Earth system to anthro-
pogenic forcing. They are distinct and complementary to bottom-up
constraints arising from process-based studies.

It made sense a priori to look for an emergent constraint linking the
sensitivity of tropical land carbon to interannual variability (IAV) in
the growth rate of atmospheric CO2. Tropical land carbon changes in
response to climate through changes in the net land–atmosphere CO2

flux into and out of this carbon store. Critically, the sensitivity of this
net tropical CO2 flux is revealed by the IAV in the CO2 growth rate,
because this is known to be dominated by the response of the tropical
land carbon cycle to climatic anomalies (Supplementary Fig. 1a) such
as the El Niño/Southern Oscillation8,24,25. Hence, some relationship
between the IAV in CO2 and the longer-term sensitivity of tropical
land carbon storage to climate change (cLT) is to be expected, as long as
processes that are not evident in the short-term variation of the CO2

fluxes (for example forest dynamics or changes in long-lived soil car-
bon pools) do not dominate the long-term response. This is our

working hypothesis to be tested against the C4MIP models, which
include a range of representations of slow vegetation and soil processes3.

Figure 2a compares the observed IAV in the growth rate of global
atmospheric CO2 (refs 26, 27) with the IAV in the annual mean trop-
ical temperature28. In both cases, we have chosen observational vari-
ables (global mean atmospheric CO2 and mean land-plus-ocean
temperature between 30uN and 30u S) for consistency with the vari-
ables available from the C4MIP models. Aside from the years imme-
diately after the volcanic eruptions24 of Mount Agung, El Chichon and
Mount Pinatubo, the IAV in the growth rate of atmospheric CO2 is
linearly correlated with the IAV in the tropical temperature (r 5 0.65
(correlation coefficient), P , 0.0001; Fig. 2b), with a best-fit ‘IAV sensi-
tivity’ of 5.1 6 0.9 GtC yr 21 K21. Excluding these volcano-affected
years has an impact on the best-fit sensitivity of less than 5%, but avoids
the complication of diffuse-light fertilization of plant growth29, which
is not included in any of the C4MIP models. We also find a similar
sensitivity regardless of which tropical temperature reconstruction we
use. There is a greater sensitivity to the choice of the global atmospheric
CO2 data set, but this does not affect our overall conclusions (Sup-
plementary Table 1).

A similar calculation is made for each of the coupled climate–
carbon-cycle models, to derive the sensitivity of the CO2 growth rate
to tropical temperature for the period 1960–2010. Compared with the
observational data, models tend to overestimate the IAV in the tropical
temperature by a factor of up to two, and to overestimate the IAV in
the CO2 growth rate by a factor of up to three. The correlation between
these variables is underestimated in some models (F, B and D) and
overestimated in others (A, E and C). Hence, IAV sensitivity varies
across the C4MIP model ensemble, from 2.9 6 1.4 GtC yr21 K21

(model F) to 9.7 6 0.7 GtC yr21 K21 (model A), with most of this
range resulting from differences in the sensitivity of heterotrophic
respiration to climate (Supplementary Fig. 1b). The three HadCM3

Table 1 | Summary data for climate-carbon cycle projections
Model Change in global atmospheric CO2 (p.p.m.v.) Change in tropical land carbon (GtC) Change in tropical temperature (K)

Coupled Uncoupled Coupled Uncoupled

A HadCM3LC 689 477 211 354 3.93
B IPSL 453 381 177 365 2.70
C MPI 524 443 242 413 4.36
D CCSM1 483 465 319 364 1.53
E FRCGC 589 465 118 271 3.61
F LOOP 489 460 185 263 3.30
G HadCM3C-st 599 331 2148 317 4.41
H HadCM3C-a 445 333 26 168 3.76
I HadCM3C-h 589 246 2165 251 4.08

Changes in atmospheric CO2, tropical land carbon and tropical near-surface air temperature (30uN–30uS), as simulated by the nine climate–carbon GCMs analysed in this study. Models A to F are from the C4MIP
study3, which prescribed the SRES A2 CO2 emissions scenario. For these models, the changes are calculated over the period 1960–2099.Models G to I are from a land carbon-cycle parameter ensemble carried out
with the HadCM3 model under the SRES A1B scenario14, and were run only to 2080, so differences here are for 1960 to 2080. In all cases, model runs were carried out both including and excluding climate effects
on the carbon cycle (‘coupled’ and ‘uncoupled’, respectively), so that the impacts of climate–carbon-cycle feedbacks could be diagnosed.
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Figure 1 | Projected changes in land carbon storage in the tropics from
coupled climate–carbon-cycle models. a, Upper and lower estimates from the
C4MIP models3 (A–F in Table 1) for uncoupled (black lines) and coupled
simulations (red lines). b, Impact of changes in tropical temperature versus
impact of changes in atmospheric CO2 on tropical land carbon, for the C4MIP
models (black letters) and three variants of the HadCM3C model14 (red letters).
The horizontal lines represent the new constraint presented in this study.
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Figure 2 | Observed relationship between variations in the growth rate of
atmospheric CO2 and tropical temperature. a, Annual anomalies in CO2

growth rate (black) and tropical temperature (red) versus year. b, Sensitivity of
CO2 growth rate to tropical temperature, with numbers representing the
individual years in a and the dashed line showing the best-fit straight line, which
has a gradient of 5.1 6 0.9 GtC yr21 K21. The years in red were not included in
this fit because they directly followed major volcanic perturbations to the climate.

RESEARCH LETTER

3 4 2 | N A T U R E | V O L 4 9 4 | 2 1 F E B R U A R Y 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013



ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Choice of models and variables. To make use of the observed interannual vari-
ation in atmospheric CO2 as a constraint, we need climate–carbon-cycle simula-
tions that model CO2 as a ‘free’, fully prognostic variable. We therefore make use of
the C4MIP simulations3, which used prescribed SRES A2 CO2 emissions but
calculated the global mean atmospheric CO2 concentration interactively. We have
augmented the C4MIP results with free CO2 runs from a carbon-cycle parameter
ensemble carried out with HadCM3 (ref. 14). These HadCM3 runs allow the
emergent constraint derived from the C4MIP models to be tested over a wide
range of possible future carbon losses from tropical land.

To derive an emergent constraint, it is of paramount importance that equivalent
variables are compared from the models and observations. Therefore, because the
C4MIP models reported global mean atmospheric CO2, and mean land-plus-
ocean near-surface temperatures, we compute the same diagnostics from the
observational data sets (see below).
Diagnosis of cLT. The sensitivity of tropical land carbon storage to temperature,
cLT, is calculated as in previous studies3,13. First, the sensitivity of tropical land
carbon storage to direct CO2 effects, as given by the parameter bLT, is diagnosed
from the uncoupled simulation for each model, bLT~DCu

LT=DCu
a , where

DCu
LT~Cu

LT(t1){Cu
LT(t0) is the change in tropical land carbon storage (in GtC)

and DCu
a ~Cu

a (t1){Cu
a (t0) is the change in global atmospheric CO2 concentration

(in p.p.m.v.), in both cases between time t0 and time t1 for the uncoupled simulation.
This value of bLT is then used to isolate cLT from the coupled simulation of each

model, using the equation

cLT~
DCc

LT{bLTDCc
a

DTc
T

where DCc
LT~Cc

LT(t1){Cc
LT(t0) is the change in tropical land carbon storage (in

GtC), DCc
a~Cc

a(t1){Cc
a(t0) is the change in global atmospheric CO2 concentra-

tion (in p.p.m.v.) and DTc
T~Tc

T(t1){Tc
T(t0) is the change in mean tropical

(30uN–30u S) temperature (in K), in all cases between time t0 and time t1 for
the coupled simulation.

We define the changes relative to 1960 in all cases (that is, t0 5 1960), and use
the longest possible common simulation periods over which to diagnose bLT and
cLT for the C4MIP models (t1 5 2099) and the HadCM3C ensemble members
(t1 5 2080), respectively.
Sensitivity of CO2 growth-rate anomaly to tropical temperature anomaly. The
sensitivity of the atmospheric CO2 growth rate to tropical temperature is calcu-
lated over the period 1960–2010 inclusive, for the observations and all models.
However, for the observational data, and the HadCM3C simulations, which
included volcanoes, we exclude the years 1963, 1964, 1982, 1983, 1991 and
1992, which were heavily influenced by the volcanic eruptions24 of Mount
Agung (in 1963), El Chichon (in 1982) and Mount Pinatubo (in 1991). There
are two reasons for removing volcanoes. First, not all the models in our ensembles
include the climatic effects of volcanic eruptions. Second, volcanoes are believed to
affect the land carbon sink through the effects of diffuse radiation fertilization29,
but these effects are not included in the generation of models considered here. We
therefore removed ‘volcano years’ from the observations to maximize consistency
between models and observations.

For comparability with the outputs available from the C4MIP models, we also
use the global CO2 concentration and the mean tropical (30uN–30u S) temper-
ature, including both land and ocean points.

As in previous studies24, the annual CO2 growth rate for the nth year, dCa/dt(tn),
is defined as the difference between the annual mean CO2 concentrations for the
nth and (n 2 1)th years: dCa/dt(tn) 5 Ca(tn) 2 Ca(tn21). The CO2 growth rate is
therefore centred in time at the beginning of year n. To align the tropical temper-
ature anomalies, we take the associated tropical mean temperature, �TT(tn), to be
the mean of the annual mean tropical temperatures for years n and n 2 1:

�TT(tn)~
TT(tn)zTT(tn{1)

2

For all model and observational time series, the annual CO2 growth rate, dCa/dt,
and the associated mean tropical temperature, �TT, were detrended using an 11-yr
running mean, with the residuals defining the annual anomalies (Supplementary
Fig. 2). In each case, a least-squares linear regression was found between these
anomalies in the CO2 growth rate and the anomalies in the tropical temperature,
with the gradient of the best fit defining the IAV sensitivity (see below).

The IAV sensitivity was calculated for a range of data sets of tropical temper-
ature and atmospheric CO2 (see below), to explore the uncertainty in the estimate
of the IAV sensitivity arising from uncertainties in the observational data. These
different estimates are listed in Supplementary Table 1.

To isolate the separate contributions of the tropical net primary productivity
and soil respiration, similar regressions against tropical temperature anomalies
were carried out separately for each of these fluxes as diagnosed from the C4MIP
models (Supplementary Fig. 1). This showed that the IAV sensitivity across the
model ensemble is correlated with the response of tropical soil respiration
(Supplementary Fig. 1b), rather than net primary productivity (Supplementary
Fig. 1c). By contrast, the wide range of longer-term projections of changes in land
carbon storage is known to be in part due to the different responses of net primary
productivity to climate change3.
Observational data. Observed annual global CO2 concentration26 for 1980 to
2010 was downloaded from the NOAA website (http://www.esrl.noaa.gov/gmd/
ccgg/trends/global.html#global_data). Because this data set covers only the period
from 1980, global CO2 concentrations for 1960–1979 were taken from the histori-
cal data sets derived for use with the RCP scenarios27 (http://www.pik-potsdam.de/
,mmalte/rcps/index.htm#).

Tropical (30uN–30u S) annual mean temperatures were calculated from NCDC
data28 (http://www.ncdc.noaa.gov/ghcnm/maps.php), from the CRU/Met Office
HadCRU3 data set (http://www.metoffice.gov.uk/hadobs/hadcrut3/) and from the
GISS data set (http://data.giss.nasa.gov/gistemp/).
Least-squares linear regression. Least-squares linear regressions were calculated
using well-established formulae (see, for example, http://mathworld.wolfram.com/
LeastSquaresFitting.html). The linear regression, fn, between a time series given by
yn and a time series given by xn is defined by a gradient, b, and intercept, a: fn 5

a 1 bxn. Minimizing the least squares error for yn involves minimizing

s2~
1

N{2

XN

n~1

fyn{fng2

where N is the number of data points in each time series. In this case, the best-fit
gradient is given by �b~s2

xy=s2
x . Here s2

x~
PN

n~1 fxn{�xg2=N is the variance of xn

and s2
xy~

PN
n~1 fxn{�xgfyn{�yg=N is the covariance of the xn and yn time series,

which have means of �x and �y, respectively. The standard error of b is given by
sb~s=sx

ffiffiffiffi
N
p

, which defines a Gaussian probability density for b:

P(b)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
b

p exp {
(b{�b)2

2sb

� �

The ‘prediction error’ of the regression is the following function of x:

sf (x)~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

1
N

z
(x{�x)2

Ns2
x

s

This expression defines contours of equal probability density around the best-fit
linear regression, which represent the probability density of y given x:

Pfyjxg~ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

f

q exp {
(y{f (x))2

2sf

� �

where sf 5 sf(x), as above.
Calculation of the PDF for cLT. The emergent constraint derived in this study is a
linear regression across the C4MIP GCMs between the temperature sensitivity of
land carbon storage in the tropics, cLT, and the sensitivity of the annual growth rate
in atmospheric CO2 to the annual tropical temperature anomaly, which we label
here as cCO2. In the context of the least-squares linear regression presented above,
cLT is equivalent to y and cCO2 is equivalent to x.

The linear regression therefore provides an equation for the probability of cLT

given cCO2 (that is, the equation for P{y j x} above). Supplementary Fig. 3 shows the
best-fit straight line (thick dashed red line) and the plus and minus sf prediction
error contours (as thin dashed red lines) on the same scales as in Fig. 3a.

In addition, the linear regression between the observed annual anomalies in the
atmospheric CO2 growth rate25,26 and the tropical mean temperature27 provides an
observation-based PDF for cCO2 (via the equation for P(b) above). The best-fit
cCO2 from these observations is shown by the thick dashed vertical line in
Supplementary Fig. 3, and the uncertainty in this fit is shown by the thin dashed
vertical lines representing plus and minus 1 s.e. about the best-fit value.

Given these two PDFs, P{cLT j cCO2} and P(cCO2), the PDF for cLT is

P(cLT)~

ð
?

{?
PfcLTjcCO2gP(cCO2) dcCO2

The integrand, PfcLTjcCO2gP(cCO2), is shown by the continuous black contours in
Supplementary Fig. 3, and the integral is the basis for the black PDF for cLT shown
in Fig. 3b.
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