Relevance of multi-case SCM simulations for climate and weather-forecast model improvement

Catherine Rio¹, Frédéric Hourdin², Fleur Couvreux¹, Romain Roehrig¹, Pascal Marquet¹, Quentin Rodier¹, Eric Bazile¹, Marie-Pierre Lefebvre¹ for the DEPHY community

¹Centre National de Recherches Météorologiques, Toulouse, France ²Laboratoire de Météorologie Dynamique, Paris, France

1D/LES workshop – 15 June 2020 – Video conference

SCM/LES-CRM framework

A GCSS strategy (GEWEX Cloud System Study) from the early 1990s

Browning et al. (1993): The GEWEX Cloud System Study (GCSS), Bull. Amer. Meteor.

Randall et al. (1996): Single-column models and cloud ensemble models as links between observations and climate models. Journal of Climate.

European EUCREM (1996-1997) and EUROCS (2000-2003) projects

EUROCS special issue, QJRMS, 2004.

Field campaign

Several case-studies and intercomparisons :

Krueger et al. (2016) : Cloud-Resolving Modeling: ARM and the GCSS Story. Meteor. Monogr.

Boundary-layer :

DYCOMS, FIRE, ARM, ASTEX, BOMEX, RICO, SANDU, GABLS, ...

Deep Convective clouds :

TOGA-COARE, LBA, EUROCS, AMMA, TWP-ICE, DYNAMO,...

Polar clouds :

SHEBA, ISDAC, MPACE, ...

To what extent are those existing case-studies used in model development teams ?

Neggers, R. A. J. (2015) : Attributing the behavior of low level clouds in large-scale models to subgrid-scale parameterizations, J. Adv. Model. Earth Syst.

Gettelman et al. (2019): The Single Column Atmosphere Model version 6 (SCAM6): Not a scam but a tool for model evaluation and development, J. Adv. Model. Earth Syst.

3D explicit simulations (LES/CRM)

Development and Evaluation of PHYsical parameterizations for atmospheric models DEPHY : French national LEFE project (2010-2017) Since 2019 : National Research Group (supported by CNRS and Météo-France)

- Bring closer the communities of observation, high-resolution, weather-forecast and climate modelling
- Coordinate the pooling of codes, tools, methodologies within the French model development community
- → Achieve tangible and significant improvements in weather forecasting and climate models

One of the deployed strategies :

Mean occurrence of low clouds averaged over january to march obtained from CloudSat/calipso (Chepfer et al, 2008)

Base parameterization development on a close comparison between SCM and LES/CRM

a) GOCCP low $90^{\circ}N$ $60^{\circ}N$ $30^{\circ}N$ 0° $30^{\circ}S$ $60^{\circ}S$ 90°*S* 180° $60^{\circ}E$ $120^{\circ}W$ 60° $120^{\circ}E$ 180° **0**°

Large-scale coud scheme based on lognormal

00000000000

K-diffusion + counter-gradient term

૱૱૮

1-α

α

K-diffusion + Thermal plume model coupled with a bi-gaussian cloud-scheme

LMDZ5A

Madeleine et al., JAMES, 2020

Madeleine et al., JAMES, 2020

Madeleine et al., JAMES, 2020

Tuning of uncertain parameters

Formulation of the exchange coefficient at the inversion in ARPEGE :

Representation of the diurnal cycle of continental deep convection

Highlighting error compensations : an exemple from the stable boundary-layer

Development of a new mixing length depending on wind shear in AROME

Improvement on one case may highligth **compensation errors** at other locations over the globe due to other misrepresented processes like orography, bounday-layer/surface coupling, ... *(Sandu et al., JAMES, 2013)*

Importance of having a variety of cases

Conclusions

The **SCM/LES-CRM** approach promoted by GCSS/GASS since almost 30 years is still very relevant nowadays.

Improve parameterizations at the process level to assure model improvement for good reasons and avoid compensating errors.

Maybe it is **under-used** in the development strategy of climate and weather-forecast modelling groups

A lot can be done with 1D cases to :

- → Test parameterization development
- → Identify reasonable parameter range to be used for the tuning of 3D models

Importance of having multiple diverse cases

Revisit set-ups (coupling with the surface, radiation, large-scale,...)

Among **DEPHY** targets :

Develop a common input format for all existing 1D cases

- → clean our codes of all existing if (case==) then ...
- → formalize 1D/LES forcing
- → facilitate future implementation of new cases
- → facilitate the **systematic use** of 1D cases in the development stage of atmospheric models