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Abstract21

The development of parameterizations is a major task in the development of weather and22

climate models. Model improvement has been slow in the past decades, due to the dif-23

ficulty of encompassing key physical processes into parameterizations, but also of cal-24

ibrating or tuning the many free parameters involved in their formulation. Machine learn-25

ing techniques have been recently used for speeding up the development process. While26

some studies propose to replace parameterizations by data-driven neural networks, we27

rather advocate that keeping physical parameterizations is key for the reliability of cli-28

mate projections. In this paper we propose to harness machine learning to improve phys-29

ical parameterizations. In particular we use Gaussian process-based methods from un-30

certainty quantification to calibrate the model free parameters at a process level. To achieve31

this, we focus on the comparison of single-column simulations and reference large-eddy32

simulations over multiple boundary-layer cases. Our method returns all values of the free33

parameters consistent with the references and any structural uncertainties, allowing a34

reduced domain of acceptable values to be considered when tuning the 3D global model.35

This tool allows to disentangle deficiencies due to poor parameter calibration from in-36

trinsic limits rooted in the parameterization formulations. This paper describes the tool37

and the philosophy of tuning in single-column mode. Part 2 shows how the results from38

our process-based tuning can help in the 3D global model tuning.39

1 Introduction40

Atmospheric global or regional circulation models used either for numerical weather

prediction (NWP) or climate studies encompass a dynamical core and a physical com-

ponent. The dynamical core computes the spatio-temporal evolution of atmospheric state

variables by solving a discrete version of the fluid dynamic equations. The physical com-

ponent quantifies the impact on the resolved variables of radiative, thermodynamical and

chemical processes, as well as dynamical processes that occur at scales smaller than the

computational grid. These processes are handled by a suite of sub-models, most often

referred to as parameterizations, which provide source terms in the resolved-scale equa-

tions. Parameterizations (e.g., turbulence, convection, radiation, microphysics) are of-

ten based on a mixture of physical principles and heuristic description of the involved

processes, of their interactions and of their impact on the larger resolved scales. Although

it is difficult to trace back the origin of the term “parameterization” in climate model-
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ing, it semantically points to the fact that the sub-models summarize the processes as

functions of the model state vector x (typically the value of zonal and meridional wind,

temperature and water phases at each point of the 3D model grid) that depends on some

free parameters. These free parameters arise from the simplification of the complex na-

ture of the subgrid processes (e.g., assuming a bulk thermal plume instead of a popu-

lation of plumes, stationarity). The atmospheric model can be summarized as

∂x

∂t
= D(x) +

∑
p

Pp(x,λp) (1)

where D stands for the discretized form of the fluid dynamic equations, Pp for the source41

term provided by the parameterization of the process p and λp for the associated free42

parameters. This equation may however be too simplistic, as, in reality, a given param-43

eterization often depends on intermediate variables provided by other parameterizations44

(e.g., cloud fraction used in radiation, turbulence variance used in the cloud scheme) and45

computes additional prognostic variables (e.g., turbulence kinetic energy). Nevertheless,46

with this simplified framework, improving models through parameterization development47

means both to propose more appropriate functional forms Pp and to identify acceptable48

or better values of the free parameters λp.49

Among the different parameterizations, those involved in the representation of tur-50

bulence, convection and clouds still challenge state-of-the art NWP and climate mod-51

els (Holtslag et al., 2013; Nam et al., 2012; Nuijens et al., 2015; Klein et al., 2017; Ran-52

dall et al., 2003; Bony et al., 2015). Innovative and diverse concepts and ideas have been53

proposed over the past decade to improve this representation (Rio et al., 2019). A de-54

tailed understanding of the physical processes leading to the formation of low-level clouds55

can be obtained by Large-Eddy Simulations (LES) (Guichard & Couvreux, 2017), which56

reproduce, with high fidelity, the turbulent dynamics within the clouds (e.g., Siebesma57

& Cuijpers, 1995; Neggers, Duynkerke, & Rodts, 2003; Wang & Feingold, 2009). LES58

are therefore increasingly used to derive and evaluate the conceptual models at the root59

of boundary-layer and shallow cloud parameterizations. The choice of the parameter-60

ization free parameters is also crucial for the simulation of clouds. Their calibration or61

“tuning” consists in searching for acceptable or optimal values of these parameters, such62

that the associated model configuration has a realistic behavior under various conditions63

and compared to a suite of observations (Mauritsen et al., 2012). Calibration is there-64

fore a fundamental aspect of NWP or climate model development (Bellprat et al., 2012;65
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Duan et al., 2017; Schmidt et al., 2017). However, it is often conducted without much66

control on the way it modifies the parameterization behavior at the process level as the67

calibration focuses more on regional or global constraints, such as the radiative balance68

of the Earth System for climate models, or performance metrics (e.g. root mean square69

error, skill scores) for NWP models. Hourdin et al. (2017) compile the tuning strategies70

of several climate groups and emphasize that most of the parameters used to tune cli-71

mate models (droplet size, fall velocity, entrainment rate) are related to clouds (see also72

Golaz et al., 2013), i.e. the most uncertain processes that affect radiation, the primary73

engine of the atmospheric circulation.74

Given the societal needs for reliable climate simulations and weather forecasts, the75

progress achieved by the global atmosphere modeling community has been found slow76

(Jakob, 2010). Several systematic errors in state-of-the-art models have been modestly77

reduced, such as those regarding the surface temperature over the eastern oceans (Richter,78

2015), the rainfall distribution in the Tropics (Flato et al., 2013), the variability of the79

liquid water path (Jiang et al., 2012) and the low clouds (Nam et al., 2012). The dead-80

lock of the cloud parameterization, highlighted by Randall et al. (2003), is still an issue81

today. This too slow improvement of models can be attributed to remaining deficiencies82

in the structure of the parameterization itself (the function Pp) but also to the calibra-83

tion of model parameters that can be considered as a bottleneck in model development.84

On the one hand, the calibration may not be done efficiently enough, and on the other85

hand, tuning may induce error compensations that contribute to slow model develop-86

ment. Indeed, a new model development usually starts with a model score degradation87

by breaking this compensation, as often experienced in the weather prediction centers88

where strong weight on well-established metrics slows down the implementation of new89

model development in the operational version (Sandu et al., 2013).90

Various avenues have been proposed to get around these difficulties and acceler-91

ate climate model improvement. A first avenue seeks to exploit the high resolution, ex-92

plicitly resolving convection, to reduce the number of involved parameterizations. With93

the recent increase of computer power, it is nowadays possible to run global kilometer-94

scale resolution simulations over a few months (Satoh et al., 2008, 2019; Stevens et al.,95

2019). However, the explicit simulation of the fluid dynamics associated with the life cy-96

cle of a cumulus requires grid resolution of the order of several tens of meters. Such res-97

olution will not be accessible in the foreseeable future for climate change projections which98
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require simulations of the global Earth System covering at least several hundreds of years99

(model spin-up plus transient simulations in response to anthropogenic forcing). The super-100

parameterization approach (Randall et al., 2003) proposes an intermediate pathway by101

introducing a convection-permitting model in each column of a conventional general cir-102

culation model (GCM) to replace the deep convection parameterization (Khairoutdinov103

et al., 2005). The use of a large-eddy model instead of a convection-permitting model104

in such framework further removes the boundary-layer and shallow convection param-105

eterizations (Grabowski, 2016; Parishani et al., 2017). A second avenue recently explored106

the potential of machine learning approaches, which ultimately envisions to replace some107

parameterizations by neural networks or similar algorithms, properly trained on convection-108

permitting model simulations or superparameterized GCM (Krasnopolsky et al., 2013;109

Brenowitz & Bretherton, 2018; Gentine et al., 2018).110

A third proposition consists in retaining parameterizations in models but adjoin-111

ing new tools relying on machine learning to accelerate model development. This choice112

is motivated by the fact that parameterizations summarize our current understanding113

of the dynamics and physics of atmospheric processes and offer the power of interpre-114

tation, crucial to build our confidence in the extrapolation beyond observed conditions115

realized by any climate projections. The ESM2.0, proposed by Schneider et al. (2017),116

belongs to this category. The authors defend that the major progress in Earth-System117

model development should come from a more systematic use of global observations and118

high-resolution simulations thanks to machine learning algorithms. They also underline119

the importance of climate model calibration. In particular, they stress that their new120

Earth System modeling framework comes with challenges such as developing innovative121

learning algorithms, identifying the best metrics, combining information from observa-122

tions and high-resolution, innovating in the design of parameterizations to more easily123

benefit from new observations or evolution of the models (e.g., refinement of resolution).124

Along the same lines, we propose, in this paper, a new approach which allows the125

development of the parametrizations and their calibration to be tackled at the same time.126

We argue that a major slowdown of model improvement resides in the difficulty to clearly127

identify parameterization deficiencies and to properly disentangle them from the inher-128

ent calibration of their adjustable parameters at the process and global scales. It is likely129

that process-scale parameterization improvements are often hidden by the unavoidable130

full model re-tuning, required to maintain a reasonable radiative balance or acceptable131
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scores. In the proposed approach, machine learning is harnessed in a principled way to132

calibrate parameterizations at process level. We promote a more systematic use of the133

multi-case comparison between Single-Column Model (SCM) and LES to evaluate and134

calibrate parameterizations. Such a systematic use is not feasible however without more135

objective and automatic methods than the traditional trial/error approach used to fix136

parameter values during the parameterization development. Indeed, this trial/error ap-137

proach is only applicable to one piece of a particular parameterization and one or two138

relevant cases at most. Here, we aim at assessing a set of parameterizations Pp for a se-139

ries of test cases, which can be formalized as the question of the existence of a sub-space140

of the parameters λp that allows to match metrics between SCM and LES results for the141

series of cases, within a given tolerance to error.142

Hourdin et al. (2017) reviewed the general practice for climate model calibration143

and proposed three different levels of calibration in a model development: a first cali-144

bration at the level of individual parameterizations, then a calibration of each compo-145

nent of the Earth System model and eventually a calibration of the full Earth System146

model. Distinguishing those three levels may avoid compensating errors that could arise147

if the calibration is only done at the last level. In this paper, we propose a methodol-148

ogy to address the first phase, i.e. the process-level calibration and defend that it can149

be part of the elaboration of a well-defined calibration strategy based on solid physical150

and statistical methodologies. By doing so, we tackle model development and param-151

eter calibration together rather than independently as currently done for most climate152

model development.153

Machine learning has already been proposed to calibrate free parameters (e.g., en-154

semble Kalman filters as in Schneider et al., 2017). The methodology retained here for155

model calibration uses history matching with Gaussian processes. History matching is156

an efficient way to explore and reduce the domain of free parameters λp and document157

how a model physics, namely the suite of functions Pp, behaves within this domain. Williamson158

et al. (2013) applied history matching to tune the Hadley Climate Model and stressed159

its advantage: it accounts for the various sources of uncertainties in assessing the com-160

patibility of the model with the reference: namely the reference uncertainty itself, the161

uncertainty introduced by the Gaussian process representation of the parameterization,162

and the intrinsic ability of the model to represent the reference (often referred to as struc-163

tural error or model discrepancy). History matching inherently deals with the overcon-164

–6–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

fidence issue, which emerges when model calibration is addressed as an optimization prob-165

lem (Salter et al., 2019). It has been widely used to calibrate models in astrophysics (Vernon166

et al., 2010), epidemiology (Andrianakis et al., 2017) and hydrocarbon reservoirs (Craig167

et al., 1996). It has been applied to climate models (Williamson et al., 2015, 2017) and168

is starting to be used to find biases in models (McNeall et al., 2019).169

Whilst history matching has been applied to calibrate 3D models, it has not been170

harnessed for process-level tuning, as we advocate here through application to SCM/LES171

comparison. The SCM approach provides confidence in the model’s ability to represent172

some of the key processes whereas a direct calibration of the 3D global model targeting173

large-scale constraints may hide compensating errors (as discussed in Williamson et al.,174

2017). SCM calibration is able to reduce the domain of the free parameters for a param-175

eterization, information that can be used for efficiently calibrating the full 3D global model176

(as we demonstrate in part II). The breakthrough proposed here was only possible thanks177

to a strong collaboration between the Uncertainty Quantification community and the at-178

mospheric modelers.179

The present paper focuses on parameterizations involved in the representation of180

boundary-layer clouds. Indeed, well-established case studies exist for such regimes and181

LES have been shown to realistically represent the main processes. However, this method-182

ology can be easily expanded to other parameterizations and other objectives in the Earth183

System.184

The paper is organized as follows: the next section describes the SCM/LES frame-185

work highlighting its advantages, recalls the different steps used in the development of186

a parameterization and details the new philosophy advocated here. Section 3 presents187

the statistical tool, with a focus on its philosophy and its main ingredients. Section 4188

presents a guideline for its use based on a simple illustration. The paper ends with con-189

clusions in section 5. A companion paper (part II) illustrates the significant advances190

in model development offered by this tool. It exploits process-based calibration for model191

development and shows how this tool provides guidance for the tuning of a 3D global192

model.193
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2 A systematic use of the SCM/LES comparison194

Although observations, especially combinations of observations, nowadays provide195

detailed information at high temporal and spatial resolution on the characteristics of con-196

vection and clouds (Masunaga, 2012; Kumar et al., 2015; Bouniol et al., 2016; Masunaga197

& Luo, 2016), their use for process-level analysis is still hampered by the difficulty of (i)198

comparing model output to what the satellite measurements exactly sample (although199

the model to satellite approach with simulators partly resolves this issue) and (ii) iden-200

tifying the physical processes responsible for such characteristics. Here, we promote the201

use of Large-Eddy Simulations for the following reasons. LES have the advantage of pro-202

viding coherent 3D fields characterizing the dynamical and thermodynamical state of the203

atmosphere. Of course, LES models include turbulence and microphysics parameteri-204

zations and thus contain modeling uncertainties, but they have been shown to reproduce205

the turbulent dynamics of the clouds with high fidelity (e.g., Neggers, Duynkerke, & Rodts,206

2003; Heus et al., 2009). As a result, LES have become a central tool in the development207

of parameterizations of convection and clouds. Their analysis has helped in building the208

conceptual models behind several parameterizations (e.g., Neggers et al., 2002; Rio et209

al., 2010). LES are also used for the evaluation of the parameterizations in particular210

those involved in the representation of boundary layers and shallow clouds (e.g., Ay-211

otte et al., 1996; Golaz et al., 2002; Hourdin et al., 2002; Neggers et al., 2004; Siebesma212

et al., 2007; Rio & Hourdin, 2008; Caldwell & Bretherton, 2009; Neggers, 2009; Pergaud213

et al., 2009; Rio et al., 2010; Suselj et al., 2013; Neggers et al., 2017; Tan et al., 2018;214

Suselj et al., 2019).215

For their evaluation, parameterizations are often tested in a single-column frame-

work, particularly relevant for global circulation model parameterizations, which are fun-

damentally 1D. SCMs are built by extracting, from a 3D model, a single atmospheric

column, which integrates the same set of subgrid parameterizations (boundary-layer, shal-

low convection, deep convection and microphysics schemes) and is run in a constrained

large-scale environment (Zhang et al., 2016). The state vector of the SCM simulation

is then a restriction to one column xc of the full 3D state vector x and Eq. 1 reduces

to Eq. 2. The dynamical term D(x) becomes a source term Fc specified as a function

of time and altitude z; we however discard this dependency in the notation for simplic-

ity. It can also depend on the column full state vector, Fc(xc), if for instance the large-

scale advection is separated between a prescribed horizontal advection and a vertical ad-
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vection computed as -w∂xc/∂z, where w is an imposed vertical velocity. During the SCM

integration, some parameterizations can be deactivated in which case the correspond-

ing source term is either neglected or included in the forcing Fc. It is the case for instance

when the radiative heating is imposed rather than being computed interactively by the

model radiation scheme or when turbulent surface fluxes are imposed rather than com-

puted by the model bulk parameterizations. What really matters in the SCM/LES ap-

proach is that both models use the exact same initial and boundary conditions and forc-

ing terms. In a simplified formalism, the SCM thus corresponds to

∂xc
∂t

=
∑

p∈pactivated

Pp(xc,λp) + Fc(xc) (2)

and the LES to

∂y

∂t
= L(y) + F∗c (y) (3)

with

xc(t = 0) = y(t = 0) (4)

where y stands for the full LES state vector, L(y) to the LES model equations (which216

include the LES parameterizations), y to the horizontal-domain average of the LES state217

vector and F∗c provides a 3D field but consists of the same forcing as the SCM, Fc ap-218

plied identically on each individual column of the LES. The SCM/LES framework thus219

provides a rigorous comparison between both simulations, as it removes the uncertain-220

ties, which may arise from different initial conditions or large-scale forcing when directly221

comparing SCM to observations. This constrained framework also avoids the need to dis-222

entangle parameterization contributions from their coupling with the large-scale dynam-223

ics. Another important aspect of the method is that SCM simulations are computation-224

ally very cheap. The joint utilization of LES and SCM was first advocated by Randall225

et al. (1996); Ayotte et al. (1996) and has been, since then, widely used within the Global226

Energy and Water Exchanges (GEWEX) Cloud System Study (GCSS; Browning et al.227

(1993) community, now renamed the Global Atmospheric System Studies, GASS, com-228

munity). One of the most important legacies of this group for the atmospheric model-229

ing community is an ensemble of test cases that connect observations, LES and SCM,230

and which sample many typical situations over the globe, thought to be of importance231

for the climate system (e.g., Siebesma & Cuijpers, 1995; Brown et al., 2002; Duynkerke232

et al., 2004). As such, this framework has been increasingly used in model development233

(e.g., Hourdin et al., 2013; Gettelman et al., 2019; Hourdin et al., 2020; Roehrig et al.,234
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2020), all the more so as SCM simulations have been shown to reproduce uniquely the235

behavior of their GCM justifying the use of SCM simulations for improving weather and236

climate models (Hourdin et al., 2013; Neggers, 2015; Gettelman et al., 2019).237

Traditionally, parameterizations are often tested over a few specific cases for which238

high-resolution simulations are available (e.g., Ayotte et al., 1996). Recently, the im-239

portance of using a wide benchmark of cases covering the different regimes encountered240

in reality instead of only a limited number of cases has been stressed (e.g., Neggers et241

al., 2012). We also highlight here the importance of using an extensive ensemble of cases.242

The use of multi-case is indeed essential for exploring the various degrees of freedom of243

the parameterization package. A stable boundary-layer case will constrain the turbulent244

diffusion; the combination of cloud free and cumulus topped convective boundary lay-245

ers will ensure that cloud cover is obtained for a good representation of convection; tran-246

sition cases from stratocumulus to cumulus will ensure the extension to stratocumulus247

regimes, etc. Combining multi cases and multi metrics is a much more robust assessment248

of model performance as also highlighted by Neggers et al. (2017). To better use multi-249

cases, one important technical aspect is a common definition, in a predefined acknowl-250

edged format, for the description of the setup of reference cases, to be used both to per-251

form SCM simulations or LES. This definition should include the description of the ini-252

tial profiles and large-scale forcing but also contain information on the configuration to253

be used (e.g. the type of surface boundary conditions, the existence of any nudging to-254

wards reference vertical profiles, the way large-scale forcing are provided). An interna-255

tional initiative is ongoing to agree on the description of the format for this definition256

file. Such a standard format to define cases will ease the realization of cases by any model257

and facilitate the share of new cases. The importance of creating libraries of high-resolution258

simulations representing different climate is another important aspect already identified259

as a goal by the GCSS community and stressed in Schneider et al. (2017). A common260

format and the libraries of LES are an important pre-requisite for the tool presented here.261

In addition, both will contribute to bringing the process-scale community and the com-262

munity developing global models more closely together.263

When comparing SCM and LES, the modeler has to decide which metrics to con-264

sider. Various types of metrics can be used. One can directly compare components of265

the SCM state vector xc to their equivalent in LES, the horizontal domain-average state266

vector y (e.g., vertical profiles of potential temperature, specific humidity and less of-267
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ten wind components). Assessing the ability of the parameterizations to reproduce the268

time evolution of xc for a given forcing is indeed the ultimate goal. By doing so, one not269

only tests the behavior of one particular parameterization but also its coupling with the270

other parameterizations activated in the SCM. This may make the determination of the271

behavior of the targeted parameterization more difficult and can hide compensating er-272

rors: for example, a given temperature turbulent flux can be obtained by different con-273

tributions from organized structures and small-scale turbulence when represented by two274

different parameterizations such as in the Eddy-Diffusivity Mass-Flux framework (Hourdin275

et al., 2002; Siebesma et al., 2007; Neggers, 2009; Pergaud et al., 2009). Another type276

of metrics targets parameterization-oriented variables, such as mass fluxes, heating source277

associated with one part of the motion only, subgrid-scale distribution of temperature278

or water, cloud vertical structure, updraft vertical velocity, area fraction or entrainment279

and detrainment rates. The metric, from the SCM point-of-view, is no-longer derived280

from the model state variables but corresponds to a variable internal to the parameter-281

izations. However, additional uncertainty arises from the way such variables and asso-282

ciated metrics can be derived from LES. For example, clouds can be characterized in an283

LES as all the grid cells containing condensed water (e.g., Siebesma & Cuijpers, 1995).284

Combined with thresholds on the vertical velocity, cloudy updrafts can be separated from285

cloudy downdrafts. The analysis of the joint distribution of variables or the use of ad-286

hoc passive tracers can also be used in the LES to identify objects relevant with the con-287

ceptual model of the parameterization (e.g., Couvreux et al., 2010; Rio et al., 2010; Chinita288

et al., 2018; Brient et al., 2019). Such parameterization-oriented diagnostics have helped289

in the refinement of the conceptual model at the root of the parameterization (e.g., Rio290

et al., 2010; Jam et al., 2013; Rochetin et al., 2014). However, a question arises if such291

diagnostics should also be used as metrics in the calibration process. Answering this ques-292

tion on the relative importance to give to one type of metrics or another requires effi-293

cient algorithms, as the one proposed here, to explore the various options. Note also that294

using state vector-based metrics on a large set of cases that are more or less sensitive to295

one aspect of the parameterization may help avoid the error compensation issue.296

In line with Neggers et al. (2012), we advocate that, although not a new approach,297

the power of SCM/LES comparisons is largely underestimated and under-exploited. Ap-298

plying history matching to this comparison is a way to fully take advantage of the SCM/LES299

on a large multi-case ensemble and explore whether there exists a sub-space of the pa-300
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rameter space for which the SCM is able to reproduce a series of LES simulations within301

a given uncertainty. Note that the metrics can be different from one case to the other.302

This tool offers the possibility to revisit the different intercomparison exercises documented303

in the literature and to benefit from this rich database still underused.304

Eventually, a point that becomes crucial when using LES for parameterization eval-305

uation and tuning is the assessment of LES reliability and its uncertainties. Although306

it has been shown, through the comparison to observations, that LES is able to correctly307

reproduce boundary-layer processes and shallow clouds (Couvreux et al., 2005; Neggers,308

Jonker, & Siebesma, 2003; Heus & Jonker, 2008), LES, as in many models, come with309

uncertainties associated to the advection scheme and the parameterizations still active310

in such simulations concerning small-scale turbulence, microphysics, radiation and sur-311

face fluxes. Sullivan and Patton (2011) have shown that a horizontal resolution of a few312

tens of meters for convective boundary layers is enough to get convergence for the mean,313

fluxes and variances but 10m resolution is needed in order to get convergence on skew-314

ness. The sensitivity of LES of shallow convection to resolution, size of the domain, sub-315

grid model and advection scheme has been widely investigated (Brown, 1999; Matheou316

et al., 2011; Pressel et al., 2017; Zhang et al., 2017; Wurps et al., 2020). In particular,317

it has been shown that most of the ensemble-averaged turbulence statistics are reason-318

ably insensitive, allowing one to use LES results to develop and evaluate convection pa-319

rameterizations. However, some characteristics of the cloud fields (e.g. size distribution320

of individual clouds) are more sensitive to resolution, advection scheme or subgrid-scheme321

(Brown, 1999; vanZanten et al., 2011; Pressel et al., 2017). For example, LES at 5-10m322

vertical resolution still have large uncertainties in boundary-layer regimes with sharp in-323

versions where the LES subgrid turbulence parameterization is significantly active. Un-324

certainty around this reference should be documented so that history matching can ex-325

plicitly take it into account.326

3 High-Tune Explorer (htexplo), a statistical tool to calibrate model327

parameters and more328

3.1 Overview329

The present section describes the tool proposed to perform process-based calibra-330

tion. Its objective is twofold: (i) characterize the domain of the model parameter val-331

ues that allows the model to appropriately capture process-level metrics and which can332
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be used for subsequent calibration of the global model, and (ii) identify the model pa-333

rameters that limit model performance and thus highlight the need for model param-334

eterization revision. The tool relies on history matching approach developed by Vernon335

et al. (2010) and first used for climate studies by Williamson et al. (2013). This method336

aims at removing “unphysical” regions of parameter space iteratively, refocusing the search337

for “acceptably tuned” models at each step. The tool finds the subspace of the model338

parameter space containing simulations consistent with the reference metrics, acknowl-339

edging the various sources of uncertainty. This tool has already been successfully applied340

to identify the acceptable range of model parameter values in the 3D configuration of341

the Hadley Centre climate model (Williamson et al., 2013, 2015) or in the NEMO oceanic342

model (Williamson et al., 2017). It is here used for the first time in the context of the343

SCM/LES comparison for a given set of cases.344

As already stated in the previous section, we focus here on the parameterizations345

involved in the representation of boundary-layer clouds (turbulence, convection, cloud346

micro and macrophysics, radiation). However, this methodology can be easily expanded347

to other parameterizations and other objects of the Earth system as soon as reliable ref-348

erences are available.349

Figure 1 sketches the main steps of the High-Tune Explorer (htexplo in the follow-350

ing for an explorer to use High-resolution simulation to improve and Tune parameter-351

izations) tool:352

• 1. Metric selection and references First, the cases and associated target met-353

rics are selected. The relevant reference for each metric is then identified and the354

associated uncertainty is estimated. In the present case, the reference is an LES355

and the associated uncertainty is based on an LES ensemble. Observations could356

also be used with an associated error when an LES is not available. This phase357

is not model-specific and could be shared between different models.358

• 2. Selection of model parameters The model parameters to be calibrated are359

identified and their possible range of values are determined.360

• 3. Experimental design and SCM runs The experimental design consists of361

defining the ensemble of experiments (or SCM) to be run. The goal is to optimally362

sample the parameter space and provide a small set of parameter values for which363
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the single-column model will be run. Metrics are computed from each of the SCM364

simulations and form the training data-set on which emulators are built.365

• 4. Building emulators, i.e. construction of surrogate models, also called “em-366

ulators”, one for each metric. Each emulator is based on a Gaussian Process (GP)367

and predicts the corresponding metric value at any point of the full parameter space,368

without running the SCM. The GP statistical model also provides a probability369

distribution of its prediction, thus quantifying the prediction uncertainty for use370

in calibration.371

• 5. History matching The comparison between the reference metrics and those372

inferred with the emulators is based on a distance that accounts for reference un-373

certainty, modeler tolerance to error or model discrepancy (induced by e.g., mis-374

representation of specific processes, inaccuracy of numerical solvers, model reso-375

lution) and emulator uncertainty. History matching rejects parameter values that376

lead to unacceptable model behavior (too large distance from the reference) and377

thus defines a not-ruled out yet (NROY) space, the model parameter space that378

cannot be further reduced given the sources of uncertainty.379

• 6. Iterative refocusing To reduce the emulator uncertainty, but only where needed,380

new iterations (or waves) following steps 3 to 5 are performed, sampling the NROY381

space obtained at the end of the previous wave for the design and only construct-382

ing emulators over the NROY domain.383

This tool is available freely under: https://svn.lmd.jussieu.fr/HighTune. Details on the384

different steps are given below. For simplicity, we first describe them for the first iter-385

ation and only one metric. Subsequent iterations and the addition of other metrics are386

discussed in section 3.7. This section ends with a discussion about the relationship be-387

tween the present tool and more common tools used for calibration and sensitivity anal-388

ysis.389

3.2 Step 1: Metric selection and references390

The metrics used to evaluate the SCM behavior depend on the physical situation391

considered and the parameterization hypothesis. Scalar metrics based on a dynamical392

or thermodynamical variable (e.g., potential temperature, water vapor mixing ratio, wind393

speed, cloud fraction) sampled at a given time can be used, such as the value at a given394
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Figure 1. Schematic of the different steps of the htexplo tool

vertical level, the average or the maximum over a given layer (e.g., boundary layer, cloud395

layer), or the maximum over the whole atmospheric column. Radiation-oriented met-396

rics are particularly relevant to enhance the link between the present process-oriented397

model calibration and the calibration of the corresponding 3D configuration. Ideally, the398

chosen metric should be as insensitive as possible to the model vertical resolution. In that399

regard, integrals (or averages) are good candidates for scalar metrics, as will be illustrated400

in Part II. Root-mean square errors are not encouraged for two reasons, i/ there are usu-401

ally associated to a smaller signal to noise ratio and ii/ the implausibility (see section402

3.6) is already a kind of root-mean square error. The number of metrics to be used is403

generally of the order of ten, but it can be many more.404

More complex metrics such as vertical profiles, time series or spatial fields, can also405

be considered. In that case, methods are used to reduce the dimensions of the outputs406

and principal component decomposition is one option (e.g., Salter et al., 2019). How-407

ever, scalar metrics, taken at a given time, or averaged over a short period of time, seem408
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often sufficient to robustly constrain most of the SCM simulations. Therefore, in the present409

paper and in Part II, only scalar metrics will be used.410

References and their associated uncertainty are estimated from an LES ensemble.411

There are a priori two possibilities to build such an ensemble, which can be combined.412

The first consists in building the ensemble from simulations performed by different large-413

eddy models, as has been done in several GCSS intercomparison exercises (Brown et al.,414

2002; Siebesma et al., 2003; Stevens et al., 2005; vanZanten et al., 2011; de Roode et al.,415

2016). The reference thus corresponds to the LES ensemble mean, while the uncertainty416

is quantified by the LES ensemble variance. The second option, used in this paper, re-417

lies on only one large-eddy model and estimates the uncertainty around the reference model418

configuration by performing sensitivity experiments to horizontal and vertical resolution,419

domain size, and parameterization options (e.g., turbulence, microphysics, surface fluxes,420

radiation). In this study, we have chosen to use the simulation realized with the higher421

resolution over the largest domain and with the most relevant parameterization options422

as the reference, but the ensemble mean could also be used. The large-eddy model is the423

LES-configuration of Meso-NH (Lac et al., 2018). It makes use of a fourth-order centered424

discretization associated with an explicit fourth-order Runge-Kutta time integration. Fig-425

ure 2 illustrates the spread obtained from a Meso-NH LES ensemble exploring the sen-426

sitivity to horizontal, vertical resolution, domain size and options in the turbulence and427

cloud schemes for one given case, namely the ARM Cumulus case, which is a golden case428

for the study of continental cumulus (Brown et al., 2002). Table A2 in the Appendix de-429

scribes the different simulations used to estimate the uncertainty. Consistently with the430

literature (Brown et al., 2002; Matheou et al., 2011; vanZanten et al., 2011; Zhang et al.,431

2017), domain-average conserved thermodynamical quantities are weakly sensitive to changes432

in resolution, domain size and parameterization choices while the domain-average liq-433

uid water content and cloud fraction exhibit more spread. Metrics derived from those434

latter quantities will therefore be associated to a larger uncertainty. Figure 2 also indi-435

cates in grey shading the spread obtained from the LES intercomparison of Brown et al.436

(2002) highlighting a similar uncertainty estimate between the two methods mentioned437

above. Similar results are obtained for LES ensembles of other intercomparison exercises438

(not shown). For a given metric f , rf is the reference metric value, estimated from the439

reference LES simulation or the average of the LES ensemble and σ2
r,f is the associated440

square error estimated from the LES ensemble. Note that, in the absence of available441
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Figure 2. Vertical profile of (a) potential temperature, (b) water vapor mixing ratio, (c) liq-

uid water content and (d) cloud fraction averaged over the horizontal domain at the 10th hour of

the simulation (1530 LT) and time series of (f) the cloud top and (e) the maximum cloud fraction

over the atmospheric column. The grey shading corresponds to the results of the Brown et al.

(2002) intercomparison. The different color lines correspond to different sensitivity tests realized

with Meso-NH changing either, one by one, the size of the domain, the vertical or horizontal reso-

lution and some option in the cloud scheme, microphysics scheme or turbulence scheme (detailed

in Table A2).

LES, observations can also be used as a reference to be compared to the SCM runs as442

illustrated in Ahmat Younous et al. (2018) but the observation error needs to be quan-443

tified.444

3.3 Step 2: Selection of model parameters445

The number of model parameters can be large (generally on the order of 10 for each446

parameterization). Estimating the prior range of values that needs to be explored for447

each of them requires the modeler’s expertise. The definition of this range is an impor-448

tant step as the results are only valid in this predefined parameter space (Williamson449
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et al., 2013). So, we advise to choose a range as wide as possible in the absence of phys-450

ical reasons or numerical concerns for constraining it. Nevertheless, the user might con-451

sider some tradeoff as the smaller the ranges, the smaller the space to explore.452

As the tool samples any parameter independently from the others (see Step 3), the453

method remains efficient even though a parameter with no influence on the results was454

included. A sensitivity analysis (Oakley & O’Hagan, 2004) could be used as a prelim-455

inary step in order to reduce the number of selected parameters but may not be a good456

idea in general (see section 3.8). The user can consider either linear or logarithmic vari-457

ations of the parameter values.458

In the following, we consider a set of parameters λ = (λk), where the k param-459

eters are a subset of the model parameters involved in the different parameterizations460

(see section 1).461

3.4 Step 3: Experimental design and SCM runs462

Once the model parameters are selected and their range of values defined, an ex-463

perimental design is built. It corresponds to the selection of a relatively small set of val-464

ues for the model parameters (λi)i=1,...,n, usually on the order of ten times the number465

of parameters, as discussed in Loeppky et al. (2009). It explores the initial (or input)466

space of the parameter values in the range given for each parameter. An SCM simula-467

tion is performed for each of them and provides the state vector xc(λi). The objective468

is to ”fill” the parameter space as uniformly as possible maximizing the minimum dis-469

tance between points. Here, as classically used for the design of computer experiments,470

a Latin Hypercube (LHC) (Williamson et al., 2015) is used to efficiently sample the in-471

put parameter space. Classically, a LHC for a n-member ensemble uniformly divides each472

dimension of the input space into n bins that are sampled once each and only once. All473

the parameters are thus varied simultaneously in contrast to other sensitivity analysis474

approaches such as in the Morris sensitivity analysis (Saltelli, 2002), where parameters475

are varied one by one. The LHC sampling used here maximizes the minimum distance476

between the selected points of the input space.477

More precisely, here we use k-extended latin hypercubes as proposed by Williamson478

(2015). It consists in producing several LHCs, added sequentially, which ensure that each479

additional LHC samples an area of the space that has not been sampled yet by the pre-480
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vious LHCs. Such a design provides the advantage of being able to robustly check the481

GP performance on well-designed sub-LHCs.482

3.5 Step 4: Building emulators483

The selected metric (see Step 1) is computed for each SCM simulation, noted f(λi)484

for i = 1, . . . , n. These numbers serve as a training dataset for the building of an em-485

ulator. The emulator is then used to predict the metric values f(λ) for any vector of pa-486

rameter values λ in the input space. A separate emulator is constructed for each met-487

ric.488

Specifically, we use a Gaussian process (GP), a well known statistical model which

has the advantage of interpolating observed model runs and provides a probabilistic pre-

diction. The emulator gives a probability distribution for f written as:

f(λ) | β, σ2, δ ∼ GP
(
m(λ,β), k(·, ·, σ2, δ)

)
,

where m(λ,β) is a prior mean function with parameters β = (βi)i and k a specified

kernel (a covariance function describing the covariance between any 2 points). The ker-

nel has a parameter that normally controls variance, σ2, and parameters δk for each di-

mension of the input parameter λk that control the correlation attributed to each input.

To start with, we assume a stationary kernel, i.e., the covariance only depends on the

distance between points and not the absolute position. The GP is such that any finite

collection f(λ1), . . . , f(λn) has a multivariate normal distribution with mean vector m(λ1,β), . . . ,m(λn,β),

and variance matrix Σ with Σij = k(λi,λj , σ
2, δ). Let the training data be F = (f(λi))i=1,...,n,

then

f(λ) | F ,β, σ2, δ ∼ GP
(
m∗(λ,β), k∗(·, ·, σ2, δ)

)
,

where there are well-known closed form expressions for m∗ and k∗ (Williamson et al.,489

2017). Note that m∗ and k∗ are the updated mean and covariance representing what the490

emulator has ‘learned’ from the data, F .491

Whilst there are many possible prior choices of m and k, htexplo uses a 2-phase492

approach. First, we impose a structured mean surface m(λ,β) = βTg(λ) as a linear493

combination of simple functions of the input parameters contained in the vector g(λ)494

(e.g. monomials, Fourier functions and interaction terms are chosen through the forwards495

selection and backwards elimination method described in Williamson et al., 2013)). In496
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the second stage, we use the squared exponential kernel function and Hamiltonian Monte497

Carlo (HMC, implemented in Stan – Carpenter & Coauthors, 2017) to sample from the498

posterior distribution of the parameters β, σ2, and δ given F (note that the mean sur-499

face m(λ,β) is not directly fitted in phase 1, but its structure is chosen, with Bayesian500

inference ultimately used in fitting for phase 2).501

The choice of HMC implemented in Stan was motivated by requiring robust au-502

tomation of emulator building across many metrics and cases. Stan affords us with the503

ability to specify flexible and intuitive priors, and we use weakly informative priors as504

advocated by Gelman (2006). With the exception of the intercept term (which is uni-505

form), our prior for each β is N(0, 10) and we use the ordinary least squares (OLS) fit-506

ted values as starting values for the HMC. We set δk ∼ Gamma(4, 4) for all k to allow507

a wide range of potential correlation structures (this is a weakly informative prior) whilst508

penalizing very small values that typically have high likelihoods, but lead to emulators509

with no predictive power (for discussion, see Volodina, 2020). Our prior for σ2 is a trun-510

cated Normal (at 0), with mean at the residual from our OLS fits, and variance set us-511

ing the variability of the ensemble (full details for these choices in Volodina, 2020).512

The emulator is then tested using standardized Leave One Out diagnostics (e.g.513

Rougier et al., 2009) on the training data. These tests remove one point at a time from514

the training set and use the emulator fitted on the remaining data to predict the removed515

point. Repeated over the training set, we then check whether the majority of left out points516

lie within 95% prediction intervals (we would expect 5% to miss). Another check con-517

sists in removing a subdesign of the training set and attempting to predict it based on518

the new reduced training set. If the emulator fails these checks we revisit the computa-519

tion of the emulator. For example, the procedure described in Volodina and Williamson520

(2020) (and available in htexplo ) can be used to derive an appropriate non-stationary521

kernel k before refitting the emulator by HMC. Once fitted, the GP expectation E [f(λ)]522

provides an estimation of the metric for any given λ, and its variance Var [f(λ)] provides523

an uncertainty around this estimation.524

SCM runs are computationally cheap, but the fitted emulators are even cheaper525

and thus allow the computation of millions of predictions, with associated uncertainties,526

in a short time (a few minutes). This enables us to numerically define the space contain-527

ing acceptable sets of parameters with respect to the chosen metrics and in particular,528
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to visualize it (Step 5). The choice of Stan has proven effective for this project, though529

it does not scale well to larger ensembles. Going forward, a new version of the tools de-530

faulting to MAP estimation and using efficient parallel implementation has just been re-531

leased enabling millions of predictions in just a few seconds (Williamson & Volodina, 2020).532

3.6 Step 5: History matching533

The htexplo tool relies on the history matching technique, which seeks to rule out

parameter values from the input space that are “implausible”, given the SCM behav-

ior for these parameter values and the sources of uncertainty. These sources include the

reference (observation) error, treated as a random quantity with mean 0 and variance

σ2
r,f , and the SCM discrepancy, which has mean 0 (unless the user knows the direction

in which the model is biased) and variance σ2
d,f (Sexton et al., 2011). The emulator is

used to estimate the model behavior on a much larger sample of the input space than

possible with the SCM. To history match the SCM behavior, we introduce the “implau-

sibility” measure for the metric f (Williamson et al., 2013), If (λ), which is a distance

between the metric prediction f(λ) by the emulator at λ, and the reference metric value,

rf , with respect to the norm induced by our second-order uncertainty specification, noted

|| ||H below. The implausibility reads

If (λ) = ||rf − f(λ)||H =
|rf − E [f(λ)] |√

Var [rf − E [f(λ)]]

=
|rf − E [f(λ)] |√

σ2
r,f + σ2

d,f + Var [f(λ)]
.

(5)

The model discrepancy for the metric f , σd,f , accounts for the model structural534

error due to the inherent inability of the SCM to reproduce the LES exactly (due to un-535

resolved physics or missing processes, for example). It could be defined as the minimum536

error possible when exploring the full set of parameters, however, this could permit the537

SCM to be close to the reference for the wrong reasons and does not account for mul-538

tiple metrics and cases, so we avoid this definition. Instead it is typically defined to be539

the uncertainty left in the difference between the SCM metric when the parameters are540

fixed at their best values (fixed the same for all metrics) and the references. This quan-541

tity is perhaps the target of model development in the first place and, as such, is unknown.542

For example, suppose we want to test the ability of a new parameterization to capture543

the behavior of the reference. With the standard definition of discrepancy, the uncer-544

tainty needed so that the new parameterization captures the behavior of the reference,545
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it is not clear how to proceed with testing. Our approach instead is to treat model dis-546

crepancy as a “tolerance to error” as detailed in Williamson et al. (2017). The tolerance547

to error is the distance between model results and the reference that the modeler would548

be satisfied with, enabling modelers to place confidence in certain metrics/parts of their549

parameterization, and relax restrictions on others as needed. As illustrated in section550

4 and Part II, defining this tolerance to error can be a difficult a-priori task; however ex-551

perimenting with this value provides important insights into the behavior of the model552

and its inherent limitations. The most attractive feature of this approach to discrepancy553

is that, for a given tolerance to error, if the induced NROY space is empty it means that554

the parameterization is not able to reproduce the reference under the given tolerance.555

Either the tolerance can be relaxed, accepting the limitations of the current set of pa-556

rameterizations, or the parameterization can be revisited.557

The implausibility defines a membership rule for NROY space after the first iter-

ation:

NROY1
f = {λ | If (λ) < T}.

where T is a chosen threshold (or cutoff). For scalar metrics, it is standard to use T =558

3 justified using Pukelsheim’s rule that states 95% of the probability density for any uni-559

modal distribution is within 3 standard deviations of the mean (Pukelsheim, 1994). Us-560

ing this threshold makes it unlikely that good parameter values are ruled out by chance.561

To measure and visualize NROY space the implausibility If (λ) is calculated on a ran-562

dom LHC sampling of a large number (on the order of hundreds of thousands or millions)563

of vectors λ.564

Note that If (λ) can be smaller than the chosen threshold T either because E [f(λ)]565

is close to the reference or because the sum of the different errors is large. When the un-566

certainty of the emulator is larger than the tolerance to error and observation error, points567

that should be ruled out are kept in the NROY. In this case, further iterations are de-568

sirable in order to increase the density of the sampling of NROY and hence improve the569

emulator quality and reduce the associated uncertainty.570

3.7 Iterative refocusing and multi-metrics571

One advantage of this method is to progressively optimize the design of simulations572

to be run. New simulations are iteratively added only where it is useful to increase the573
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emulator accuracy. This is performed by iterating the same process previously described574

several times in ”waves”, (this is termed ”iterative refocusing” and is a fundamental part575

of the history matching approach). Each new iteration n starts from the remaining space576

NROYn−1
f estimated at the end of the previous wave. Because of its complex geometry,577

a LHC sampling, as in the first wave, cannot be applied, and therefore the remaining space578

is re-sampled uniformly. A new SCM simulation ensemble is performed with this design579

and is used to proceed with steps 4 and 5. The new emulator is only valid in the new580

parameter space, namely NROYn−1
f . Outside this space, we rely on the emulators from581

the previous waves. As in Step 5, to measure and visualize NROYn
f , the implausibility582

is computed over a large number of points in the input space. The threshold T may be583

varied between waves, but we advise to keep it to 3 as long as the process has not con-584

verged (i.e. the emulator variance within the current NROY space remains large – see585

also section 4 and Part II). The iterative refocusing stops when the convergence of the586

sequence (NROYn
f )n has been qualitatively achieved.587

So far, we have considered only one metric, but several metrics (fk)k can be com-

bined at the same time. An implausibility is then computed for each metric and the to-

tal NROYn space is the intersection of the NROYn
fk

associated with each metric:

NROYn =
⋂
k

NROYn
fk

=
{
λ | #{k | Infk(λ) > T} ≤ τ

}
,

# represents the number of metrics fulfilling the condition indicated into brackets (where588

the implausibility is greater than the threshold) and τ , the number of metrics for which589

the model is allowed to be far from the reference while still kept in the NROY space. If590

τ = 0, all metrics must satisfy our implausibility cutoff. If there are a large number of591

metrics then τ should be increased (τ ≥ 1) to avoid multiple testing problems mean-592

ing that too many good parameter values are ruled out by chance. If a modeler seeks593

to prioritize certain metrics, they can either be introduced in early waves, ensuring that594

the NROY space satisfies priority metrics first before introducing new ones, or the tol-595

erance to error, which is defined for each metric, can be used to impose priorities (a larger596

tolerance to error induces a less constraining metric).597

3.8 Sensitivity analysis provided by the tool598

The htexplo tool provides its own sensitivity analysis, which, due to the use of multi-599

wave history matching, is rather different from traditional methods applied to models600
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throughout the literature (Bastidas et al., 2006; Guo et al., 2014; Johnson et al., 2015).601

Traditional methods, either derivative-based (Saltelli, 2002), or variation-based (Oakley602

& O’Hagan, 2004), essentially seek to identify which parameters modify model output.603

This can help focus further study, model development or even observation collection to604

help understand these parameters. Note that the htexplo tool provides at the first it-605

eration a sensitivity analysis over the entire space where correlation among parameters606

is included as the parameters are not varied one at a time.607

However, for calibration purposes, once history matching is considered as a valid608

approach for a given model, the sensitivity analysis should not be done on the full model609

input space. By using history matching, we acknowledge that there is a large part of the610

model parameter space that is not useful for understanding reality. The Gaussian pro-611

cesses remove this uninformative space in order to target the space where the model be-612

comes useful. Once we have this useful subspace, the usual and important questions that613

are posed by sensitivity analysis should be considered. For example, how is the model614

output changing as we move through parameter space and which parameters are respon-615

sible for these changes? As will be illustrated in section 4, the NROY visualization al-616

lows us to see, as we move in two dimensions of a parameter space, in addition to the617

possible values of each parameters, which combinations of parameters it is important to618

get right. As all models within the NROY space are consistent with our metrics, sen-619

sitivity analysis as described here is now really focused on the relevant subspace. Note620

that sensitivity analysis on the original input space does not answer these questions. Seen621

through the history matching lens, on the full space, sensitivity analysis is showing us622

which parameters are responsible for the variability in the space we are about to cut. Whilst623

informative for helping us cut the space efficiently, sensitivity analysis is not necessary624

at this stage. Our methods are already efficiently able to do this. As well as all of the625

benefits we have for tuning, we would argue that history matching is achieving many of626

the same things that a sensitivity analysis achieves in terms of informing the modeling,627

but concentrated only on the model input space that is consistent with the observations.628

Performing variance-based sensitivity analysis in NROY space is not trivial and we629

are not aware of any methods that are currently able to do this. Variance-based sensi-630

tivity analysis requires independent input spaces (which is what we always start with631

in Wave 1). But after cutting space, we have complex relationships between the param-632

eters. NROY space may not even be simply connected, and can be highly non-linear. Ef-633
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ficient methods for calculating sensitivity in these unusual spaces would be interesting634

to apply for history matching as an avenue for further research.635

3.9 On the use of history matching and the avoidance of optimization636

Whilst history matching is well established and is being used in a growing num-637

ber of climate studies, other methods of calibration are more popular and we believe should638

be avoided for process-based model development. Whilst many methods based on op-639

timizing a cost function exist (Hourdin et al., 2017), the most popular in the UQ com-640

munity is Bayesian calibration (Kennedy & O’Hagan, 2001). Bayesian calibration requires641

a similar set up to history matching (emulators, observation errors and model discrep-642

ancy) and then jointly finds the posterior probability distribution of the “best” value of643

the input parameters and the model discrepancy (strong prior information on the dis-644

crepancy is required to make this sensible, Brynjarsdóttir & O’Hagan, 2014). Optimiza-645

tion methods like these do not afford us with the chance to falsify a parameterization646

(they always find the best value), nor do they give all parameter values that are consis-647

tent with the observations (in our case reference LES) that can then be used when tun-648

ing the 3D model (see Part II).649

4 Illustration of htexplo on a simple case650

In this section, the use of htexplo is illustrated for the ARPEGE-Climat 6.3 atmo-651

spheric model (Voldoire et al., 2019; Roehrig et al., 2020) based on a single 1D case. More652

comprehensive exploitation of the tool will be given in Part II.653

4.1 Model, parameters and case-study654

We use the SCM version of ARPEGE-Climat 6.3, the atmospheric component of655

the CNRM-CM6-1 climate model (Voldoire et al., 2019; Roehrig et al., 2020) and aim656

at analyzing the importance of the values of free parameters of the turbulence scheme657

(based on Cuxart et al., 2000) on the simulation of an idealized clear boundary layer.658

Details on the ARPEGE-Climat atmospheric component, the turbulence scheme and the659

used configuration are given in the Appendix B. Among the different free parameters of660

the turbulence scheme, three are selected for this analysis. Aε controls the expression661

of the dissipation length-scale as a function of the mixing length-scale; AU and AT re-662
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spectively enter into the expression of the exchange coefficient in Eq. B3 for the wind663

and the temperature (the same coefficient, AU , is used for both the zonal and meridional664

component of the wind). The range of variation explored for each parameter is indicated665

in Table 1 and the parameters are varied linearly in those ranges. The turbulence pa-666

rameterization includes other free parameters but the three most influential parameters667

for this case have been selected and no free parameters of the mass-flux scheme are con-668

sidered.669

Table 1. List of the free parameters of the turbulence scheme that are varied in this example

with default values and range of variation

Names Default Minimum Maximum Parameter Description

AU 0.126 0.01 0.4 Affects the eddy-diffusivity of momentum

Aε 0.85 0.1 3. Controls the dissipation length-scale

AT 0.14 0.01 1. Affects the eddy-diffusivity of temperature

To keep the example simple, only one case is used here. This case is a dry ideal-670

ized case of a convective boundary layer with a constant-in-time large surface sensible671

heat flux of 270 W m−2 (Q∗ = 0.24 K m s−1 in, Ayotte et al., 1996) with a strongly capped672

boundary layer, called 24SC in the following. The importance of combining different cases673

will be illustrated in part II.674

We first document a sequence of three waves where additional metrics are added675

at each iteration (Experiment 1). We will then discuss the results obtained when adding676

all the metrics directly at Wave 1 (Experiment 2), varying the threshold used to deter-677

mine the NROY (Experiment 3 see also section 3.5), using more SCM runs (Experiment678

4), and varying the tolerance to error (Experiments 5 and 6).679

4.2 Three consecutive waves adding metrics progressively680

For the first iteration (or wave in the following) of Experiment 1, 30 SCM simu-681

lations of the 24SC case were realized by varying values for the three parameters explor-682

ing at best (using a LHC sampling, see section 3.4) the range of each parameters (Ta-683

ble 1). Figure 3 illustrates that the parameters are randomly sampled as indicated by684
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the distribution of the black dots along the different x-axes. Three different metrics are685

used to characterize the turbulent mixing in the boundary layer and are progressively686

introduced through the successive waves. The first chosen metric is the potential tem-687

perature averaged over the layer 400-600 m. It is a good proxy for the boundary-layer688

potential temperature, which is well mixed between the surface and the boundary-layer689

top, located around 1300 m. This metric is computed for the 30 SCM runs; these com-690

putations serve as training data for the construction of the emulator. The prior mean691

function (see section 3.5), m, for this emulator is a sum of linear and quadratic functions692

of the parameters. The stationary squared-exponential kernel provides a sufficient fit to693

the data according to the leave-one-out methodology. Figure 3 presents the variation of694

the metric as a function of the parameters: some first-order relationships appear with695

the boundary-layer potential temperature increasing with AU and AT to a lesser extent696

(due to an increased mixing associated to a larger diffusivity and larger fluxes) and de-697

creasing with Aε (due to a reduced mixing because of the increased dissipation). For this698

metric, we have chosen a tolerance to error of 0.5 K. This may be a bit large for this very699

idealized case (with no moisture, an already convective initial state) but this is an er-700

ror we will be satisfied with generally for boundary-layer potential temperature. Given701

this tolerance to error (indicated by the dashed horizontal grey line), the metric does not702

provide much constraint on the model behavior and the entire initial parameter space703

is kept (c.f. Table 2). Note that this tolerance to error is much larger than the uncer-704

tainty around the LES (σr,f = 0.075 K) and the emulator (this uncertainty varies across705

the values of the parameters; it is quantified here as the mean of the standard deviation706

for all the points of the dataset during the LOO experiment. For wave 1 and the first707

metric, it is 0.042 K). Section 4.3 details the effect of a reduced tolerance to error.708

A second wave is realized, with 30 runs sampling the NROY space of the first wave

(the previous 30 SCM runs could also have been used for efficiency), which is in fact the

entire initial parameter space as the first metric did not constrain the parameter space.

Two metrics are computed from those 30 runs: the potential temperature averaged be-

tween 400 m and 600 m as in the first wave and the entrainment metric, A, quantify-

ing the overshoot of the boundary layer relative to the initial profile as defined in Ayotte

et al. (1996). A is computed as:

A =

∫H
zi(t0)

(θ(z, tf )− θ(z, t0))dz

tf − t0
=

∫H
0

(max(θ(z, tf )− θ(z, t0), 0))dz

tf − t0
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Table 2. Description of the model discrepancy (Disc.) of the given metric (indicated in the

2nd, 3rd and 4th columns), the Cutoff, threshold used for implausibility (5th column) and the

Not-Ruled-out-Yet Space (fraction in % of initial space of parameters, 6th column) for each

metric (7th column) for each Experiment and wave.

No Expt σd,θBL σd,Ayθ σd,wsBL Cutoff NROY

No Wave [K] [Kms−1] [m s−1] (%)

Exp1-1 0.5 - - 3 100

Exp1-2 0.5 0.05 - 3 30

Exp1-3 0.5 0.05 1 3 23

Exp1-4 0.5 0.05 1 3 20

Exp1-5 0.5 0.05 1 3 18

Exp2-1 0.5 0.05 1 3 40

Exp2-2 0.5 0.05 1 3 38

Exp2-3 0.5 0.05 1 3 27

Exp2-4 0.5 0.05 1 3 17

Exp3-1 0.5 0.05 1 3 72

Exp3-2 0.5 0.05 1 3 32

Exp3-3 0.5 0.05 1 2.5 22

Exp3-4 0.5 0.05 1 2. 15

Exp4-1 0.5 0.05 1 3 25

Exp4-2 0.5 0.05 1 3 19

Exp5-1 0.25 0.025 0.5 3 32

Exp6-1 0.1 0.01 0.25 3 31
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Figure 3. The three metrics, boundary-layer potential temperature (a–c), entrainment metric

(d–f) and boundary-layer windspeed (g–i) are plotted as a function of the value of each param-

eter, AU (a, d, g), Aε (b, e, h) and AT (c, f, i). A different color is used for the different waves

of Experiment 1 (black for Wave 1, red for Wave 2, green for Wave 3 and blue for Wave 4). The

vertical dashed blue line corresponds to the default value of the parameter used in the model,

the horizontal thin full grey line correspond to the reference metric and the dotted lines indicates

the uncertainty around this reference from the different LES simulations while the dashed lines

indicate the tolerance to error around the reference.
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t0 being the initial time, tf the time at which the metric is computed and H the top of709

the model or a level largely above the boundary-layer top. This metric is less commonly710

used for evaluating models and it was more difficult to specify a tolerance to error, which711

was taken as 0.05 K.m s−1. An emulator is built for each metric. The second metric is712

more restrictive and the NROY space is now reduced to 30% of the initial parameter space713

(Table 2). The obtained NROY (not shown) is not very different from the one obtained714

for the third wave. It excludes values of the parameters that lead to simulations with715

too large or too small entrainment metric as indicated by the differences between the red716

dots and the green ones in Fig. 3.717

A third wave is realized, with 30 new SCM runs sampling the new NROY. Three718

metrics are computed from those 30 runs: the two previous ones plus the wind speed av-719

eraged between 400 m and 600 m. For this last metric, we fixed the tolerance to error720

to 1 m s−1. After this third iteration, the NROY is 23% of the initial space. As shown721

in Fig. 4, the spread of the different simulations that sampled the parameter values re-722

duces progressively throughout the different waves and this tool allows to discard val-723

ues of parameters that induce a too deep boundary layer. The wind-speed profiles did724

not completely converge and this is associated to the tolerance to error, which has been725

fixed to 1 ms−1.726

The uncertainty around the LES obtained from eight different LES runs with slightly727

different configurations, detailed in the appendix A, is 0.075 K for θBL, 0.014 K m s−1728

for Aθ and 0.083 m s−1 for wsBL, on the same order of magnitude of the emulator un-729

certainty. For the first and third metrics, the tolerance to error is much larger than the730

reference and emulator uncertainties while for the second metric the three uncertainties731

are of the same order of magnitude.732

The final NROY space after the third wave is visualized in Fig. 5. This figure shows,733

on the upper right side, the two-dimensional density plots of the acceptable parameter734

space for each pair of parameters. For a given point in each sub-figure the shading in-735

dicates the percentage of the domain in the other dimensions (n-2, here only one as only736

three parameters are considered) that is acceptable. The metrics tend to reject prefer-737

entially low values of Aε with high values of AU or high values of Aε with low values of738

AU underlying some correlation between these two parameters. As a practical tool, those739

density plots provide their own type of second-order sensitivity analysis. They allow us740
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Figure 4. Vertical profile of (a) potential temperature and (b) wind speed for the last hour of

the simulation with the spread of the ensemble of simulations used for the different waves indi-

cated in different color shadings for Exp 1, the default simulation is in black, the reference LES

in thick dark blue and the different elements of the LES ensemble in thin blue lines.

–31–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

to see, as we move in two dimensions of the parameter space, how the shape is chang-741

ing and, moreover, which combinations of parameters it is important to get right and,742

not usually included in a sensitivity analysis, how they need to be set in order to get sen-743

sible answers. The default values of the parameters are within the NROY space confirm-744

ing that they correspond to an acceptable calibration of the turbulence scheme, given745

the chosen tolerance to error and the LES uncertainty. This is also confirmed by the sim-746

ulations of the last wave having a behavior similar to the default simulation as shown747

in Fig. 4.748

4.3 Robustness749

In this subsection, we analyze the sensitivity of the results to i) the sequence of in-750

troduction of metrics (Experiment 2 uses the three metrics directly at Wave 1), ii) the751

threshold used to determine the NROY space (Experiment 3), iii) the number of SCM752

runs used to form the training dataset (Experiment 4), and, iv) the tolerance to error753

(Experiments 5 and 6).754

If the three metrics are introduced directly in the first wave (Experiment 2), the755

NROY space is similar in shape to the one obtained after three waves (see Table 2 and756

Fig. 5) although the NROY space is larger (40% against 23%). Repeating more waves757

with the same metrics allows to progressively converge to the same NROY space. Note758

that a test with only one metric but the most constraining one, namely the entrainment759

metric, leads to very similar result (NROY = 43%) for the first wave (not shown). Al-760

though not illustrated for this case, introducing the metrics one by one, is sometimes im-761

portant: i/ it can allow us to give some priority among the metrics, first finding a space762

consistent with the first metric in which the second metric is then used as a constraint763

and ii/ if one metric has a strong non-linear behavior reducing the initial parameter spaces764

with other metrics may increase the capacity of the emulator to reproduce the metric765

behavior. These results also indicate that adding a new metric in the core of the pro-766

cess does not alter the selection, allowing us to add supplementary metrics if one real-767

izes that some behavior of the SCM is not constrained enough, a fundamental aspect of768

history matching. Defining when to stop the iteration is not easy. We recommend to stop769

iterations when the NROY stops to significantly decrease. At this stage, one can reduce770

the cutoff used to define the implausibility and re-iterate with this new cutoff. This is771

illustrated with more detail in part 2. Here, Table 2 shows that a NROY of 18% is ob-772
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tained after Wave 5 for Experiment 1, Wave 4 for Experiment 2 or Wave 2 for Exper-773

iment 4. We can assume that for this cutoff the convergence is reached at those waves.774

In Experiment 3, we first realize two waves as in Experiment 2 and then progres-775

sively reduce the threshold used to determine the NROY space from 3 to 2.5 in Wave776

3 and from 2.5 to 2 in Wave 4 (see Table 2) to explore the impact of less conservative777

threshold (a threshold of 3 corresponds to ruling out what exceeds three times the un-778

certainties and keeps 95% of the probability for any unimodal probability distribution).779

The differences in the NROY space of the first wave with Exp2-1 indicates that 30 SCM780

runs are probably not enough to robustly constrain the first iteration and more itera-781

tions are needed. Then, reducing the cutoff induces a smaller NROY space but the change782

is not radical. This was expected from the lower left figures of Fig. 5 that show the min-783

imum value of the implausibility for any variations of the other parameters (here, the784

third parameter). Indeed, the area with minimum value of If (λ) > 3 (i.e. the points785

that are excluded from the NROY space whatever the value of the third parameter) is786

very similar to the area with minimum value of If (λ) > 2.787

All of the previous experiments have been realized using a rather small training dataset788

of 30 SCM runs (ten times the number of parameters). Experiment 4 has tested the im-789

pact of using 90 SCM runs instead of 30 for wave 1. This experiment produces directly790

a smaller NROY space (NROY=25%; Fig. 6) at the first wave than obtained from 30 SCM791

runs (see Exp3-1 or Exp2-1 in Table 2). A compromise must be found between a larger792

ensemble of simulations that increases robustness but is more costly.793

The sensitivity to the tolerance to error is illustrated in Table 2 and Fig. 6 with794

Experiments 5 and 6. When reducing the tolerance to error by a factor of two the NROY795

space is 32% of the initial space in Exp5-1 (using the three metrics at once, so to be com-796

pared to 40%). The NROY space (31% of the initial space) is not much reduced further797

when reducing the tolerance to error twice more (Exp6-1), because the tolerance to er-798

ror is not anymore the limiting uncertainty. It is interesting to note that even when strongly799

reducing the tolerance to error, the default values for the three selected parameters are800

still in the NROY space validating the choice of parameter values used in the control sim-801

ulation. The lower left panel of the subfigures in Fig. 5 and Fig. 6 indicates the mini-802

mum implausibility along the other dimensions of the space and as illustrated in Fig. 6,803
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Figure 5. The left panel corresponds to the result of Exp1-3 and the right panel to Exp2-1.

The upper right triangle contains 3 subfigures showing 2D sub-matrix. Each sub-matrix is a re-

striction to 2 parameters, the name of which are given in the diagonal of the main figure, and

presents in colors the fraction of points with implausibility smaller than the threshold (here a

value of 3). This fraction is obtained by fixing the two parameters at values of the x-axis and

y-axis of the plotted location and searching the other dimensions (here the third dimension as

we have only three parameters) of the parameter space. This allows to visualize in 2-D the full

NROY which is 3-D here but can be n-D if n parameters are selected. The lower left triangle

(with also 3 subfigures) presents the minimum value of the implausibility when all the parame-

ters (here only one) are varied except those used as x- and y-axis. These plots are orientated the

same way as those on the upper triangle, for easier visual comparison. The black dots correspond

to the default values used in the model.

reducing the tolerance error (when larger than the other errors) induces a reduction of804

the denominator in the implausibility and therefore an increase of implausibility.805

5 Conclusion806

In this paper, we make a proposal to accelerate weather and climate model devel-807

opment. Our proposal tackles model development and calibration jointly. For that pur-808

pose, we have developed a tool that formalizes a process-based calibration, the High-Tune809

Explorer made available to the other modeling groups. It extensively exploits the SCM/LES810

comparison on a multicases, multi-metrics basis and benefits from machine learning tech-811
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Figure 6. Same as Fig. 5 but for the sensitivity to the number of SCM runs (Experiment 4,

left panel) and to the tolerance error (Experiment 5, right panel).

niques. In contrast with other recent proposals to use machine learning techniques in cli-812

mate modeling, we keep parameterizations as key ingredients of these models because813

they summarize our current understanding of the main physical processes. This choice814

is motivated in particular by the confidence needed when extrapolating the model re-815

sults to a future climate.816

The tool allows us to define the sub-domain of the parameter values for which SCM817

matches LES on selected metrics for a series of cases within a given uncertainty. The ex-818

ploration of the free-parameter space is facilitated using Gaussian process emulators. These819

emulators, once trained on a limited number of real simulations, predict the SCM with820

uncertainty for any value of the parameters in a much shorter time than required to run821

the SCM. History matching using the emulator is performed iteratively to progressively822

shrink the space of acceptable parameter values. This iterative approach contrasts with823

the more traditional tuning strategy based on optimization, which seeks an individual824

“best” value where the SCM minimizes a cost function computed for a set of given met-825

rics. The latter approach strongly depends on the weights given to each metric and is826

highly sensitive to the choice of metrics. By pursuing a strategy for discarding param-827

eter values, we are left with a free parameter domain that is (i) consistent with the met-828

rics we have chosen, (ii) can be further reduced by introducing new metrics or altering829
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our tolerance to model error, and (iii) does not claim a single best simulation which may830

be over-fitted to one or more metrics, needlessly biasing the simulation and potentially831

leading to less physical behavior than other choices in our not-ruled-out-yet space when832

the model is projected into different regimes. Our tool formalizes the consideration of833

the different sources of uncertainties associated to the reference, the statistical tool and834

the model. For the latter, we take a “tolerance to error” approach, allowing the ques-835

tion of whether a parameterization can match our reference as well as we think it ought836

to, and enabling us to understand the model’s limitations throughout the process.837

In the present study, we present applications of the High-Tune Explorer to the SCM/LES838

framework, focused on the representation of the atmospheric boundary layer. We have839

illustrated how this tool allows us to objectively verify choices that have been made by840

model developers for the free-parameter values. Experimenting with the combination of841

the metrics with this tool allows us to clarify the importance of a given metric, the num-842

ber or combination of metrics that should be used, and the possible redundancy between843

metrics all in an efficient way that was not possible before. The tool also enables us to844

include new metrics at a new iteration so that we can pursue the calibration exercise,845

even though one realizes an important deficiency of the model is not addressed by the846

previously selected metrics. Our framework allows a progressive addition of metrics, cases847

or a gradual reduction of the tolerance to error and is therefore very flexible.848

Although this new framework is tested here for the improvement of boundary-layer849

processes (turbulent transport in Part I and cloud representation in Part II) by running850

the full atmospheric physics on one model column considering well established test cases851

for which LES are particularly relevant, it has much broader application. It can be used852

for instance to calibrate elementary pieces of parameterization (e.g., entrainment formu-853

lation) without time integration. This methodology can be easily expanded to other pa-854

rameterizations as well. The key ingredient for doing this is a reliable reference with doc-855

umented uncertainty. This reference could come either from a detailed modeling of the856

process, as done here with LES, or from observations as long as the other sources of dis-857

crepancy, as the uncertainty coming form the case definition, are documented. Propos-858

ing new relevant metrics and estimation of associated uncertainties will become valuable859

now that we know how to include them in the model improvement process. An effort is860

currently done in that direction in parallel to the work presented here, consisting in pro-861

viding reference radiative transfer computations on the classical cloud test cases currently862
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used for parameterization development. The development of the parameterization of bound-863

ary layer and clouds based on SCM/LES comparisons focused so far on the representa-864

tion of atmospheric transport and macrophysics of clouds, but the radiative transfer com-865

putations run in LES models were often not more reliable than those used in GCM, pre-866

venting the use of radiative metrics. By developing fast and accurate radiative tools that867

account for the full 3D radiative transfer in LES cloud scene, as proposed by Villefranque868

et al. (2019), we can compute many types of radiative metrics, from monochromatic, lo-869

cal, and directional observable to integrated energetic quantities. The use of such radia-870

tive metrics will allow us to tackle calibration of radiative parameterizations but also to871

better link the calibration realized at the level of the parameterizations itself with the872

one realized for the final full 3D model calibration, which mainly targets the radiative873

forcing of the atmospheric general circulation.874

To conclude, the application of the High-Tune Explorer on SCM/LES comparisons875

allows us: (i) to quantify the parametric uncertainty at process level, (ii) to identify pa-876

rameters which limit model performance, whatever their value, and should be replaced877

by a more physical parameterization (i.e. when combining different cases, it may appear878

that no value of a parameter is found acceptable for all cases and therefore suggests that879

this parameter can not be kept constant but instead should depend on environmental880

conditions), and (iii) to reduce the domain of acceptable values of free parameters used881

in the final tuning of the global model.882

We show indeed in Part II how the tool applied first to SCM/LES comparisons,883

on a multicase basis, can be used to reduce the range of acceptable values for the cal-884

ibration of the complete 3D model configuration and considerably accelerate the resource885

and time consumption for this step of model development. The final 3D tuning becomes886

a part of the history matching process, by adding new metrics or constraints using the887

exact same codes.888

We believe that this tool is a breakthrough for model development as it allows us889

to place the importance of the physical understanding of the processes at the heart of890

model development, based on an extensive use of the SCM/LES comparison, whilst har-891

nessing important techniques in machine learning and uncertainty quantification. We892

advocate that the approach presented here leads to a well-defined strategy for calibra-893

tion of the full model that may result in a significant acceleration in model improvement.894
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Table A1. List of the different LES runs of the Ayotte case used to determine the uncertainty

around the reference

Name Resolution White noise Turbulence Diffusion

Name Dx, Dz Standard deviation (K) length-scale Timescale

Reference 50 m,nested <25 m 0.01 K Deardorff length scale 1800 s

WhiteNoise ” 0.1 K ” ”

WhiteNoiseLL ” 0.5 K ” ”

Turb ” ” size of the grid ”

Difshort ” ” ” 300 s

Diflong ” ” ” 7200 s

Dx 25 m, ” ” ” ”

Dz ”, nested <12.5 m ” ” ”

Appendix A The different Large-Eddy Simulations895

Different simulations have been run with Meso-NH (Lac et al., 2018), varying the896

resolution, domain size, turbulence formulation, intensity of the white noise introduced897

at the first level and initial time to trigger turbulence, activation of subgrid condensa-898

tion and changes in the microphysics scheme for the cloudy cases. The Table A1 lists899

the different simulations of the Ayotte case used in section 4 to estimate the uncertainty900

associated to the reference LES and the Table A2 lists the different simulations of the901

ARMCU case used in section 3 to estimate the uncertainty associated to the reference902

LES. The reference LES is highlighted in bold.903

Appendix B ARPEGE-Climat 6.3 and its turbulence parameteriza-904

tion905

ARPEGE-Climat 6.3 is the atmospheric component of the CNRM-CM6-1 climate906

model (Voldoire et al., 2019; Roehrig et al., 2020). It has 91 vertical levels, 15 of them907

below 1500 m. The model time step is 15 minutes. Here, we use its SCM version and908

focus on its representation of a clear convective boundary layer. To simulate the processes909

involved in the boundary layer, the model combines a turbulence scheme with a mass-910
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Table A2. List of the different LES runs of the ARMCU case used to determine the uncer-

tainty around the reference; the names indicated in the left column are those used in the legend

of Figure 2

Name Horizontal Vertical Domain Subgrid Microphysics Turbulence

Resolution Resolution side Condensation mixing length

12Dx25z25 25 m 25 m 12.8 km No Warm (ICE3) Deardorff

6Dx25z25 ” ” 6.4 km ” ” ”

6Dx40z25 40 m 25 m 6.4 km ” ” ”

6Dx40z40 40 m 40 m 6.4 km ” ” ”

6Dx25zvar 25 m stretched grid 6.4 km ” ” ”

6Dx100z40 100 m 40 m 6.4 km ” ” ”

25Dx100z40 100 m 40 m 25.6 km ” ” ”

51Dx100z40 100 m 40 m 51.2 km ” ” ”

6DelDx25z25 25 m 25 m 6.4 km ” ” (Dx ∗Dy ∗Dz)1/3

6SbgDx25z25 25 m 25 m 6.4 km Yes ” Deardorff

6NprDx25z25 25 m 25 m 6.4 km No Only saturation ”

adjustment
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flux scheme, thus following the Eddy-Diffusivity Mass-Flux framework (e.g. Hourdin911

et al., 2002; Soares et al., 2004; Siebesma et al., 2007; Pergaud et al., 2009). The mass-912

flux scheme represents convection in a unified way from the clear convective boundary913

layer regime to the shallow cumulus and deep convection regimes (Piriou et al., 2007;914

Gueremy, 2011). In the illustration, we aim at analyzing the importance of the values915

of free parameters of the turbulence scheme on the simulation of an idealized clear bound-916

ary layer. A boundary-layer-top vertical entrainment is activated in the default version917

of ARPEGE-Climat 6.3 (see Roehrig et al., 2020)). For the sake of simplicity of the present918

illustration, and also because this parameterization is weakly active in the analyzed case,919

it is fully deactivated. Similar results are obtained when it is activated.920

The turbulence scheme is based on Cuxart et al. (2000) which provides the verti-

cal turbulent fluxes from which the turbulent source term is derived for the prognostic

variables (see more details in Roehrig et al., 2020). The scheme relies on a prognostic

equation of the grid-scale turbulence kinetic energy, e:

∂e

∂t
=
−1

ρ

∂(ρw′e′)

∂z
− (w′u′

∂u

∂z
+ w′v′

∂v

∂z
) + βw′θ′vl −

e3/2

Lε
(B1)

where the advection terms, the pressure fluctuations and the diffusion transport have

been neglected. ρ is the air density, w the vertical velocity, u and v the zonal and merid-

ional wind components, β is the buoyancy parameter (equal to g

θ
with g the gravitational

constant, θ being the potential temperature), θvl is the liquid virtual potential temper-

ature and Lε the dissipation length. Primes indicate fluctuations with respect to the grid-

scale values indicated with overbars. The different turbulent vertical fluxes are diagnosed

using e following, for any variable ϕ:

w′ϕ′(z) = −Kϕ
∂ϕ(z)

∂z
(B2)

with

Kϕ =
√
eLmAϕΦϕ (B3)

with Φϕ a stability function also computed at each altitude (for more details see Cuxart921

et al. (2000)) and Aϕ a free parameter. The mixing length, Lm, is computed following922

Bougeault and Lacarrere (1989); it consists in computing the vertical displacement an923

air parcel can travel upwards and downwards with its available turbulence kinetic en-924

ergy according to the thermal stratification. Also, Lε in Eq. B1 is defined by Lε = 1
Aε
×925

Lm with Aε another free parameter.926

–40–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Acknowledgments927

This work received funding from grant HIGH-TUNE ANR-16-CE01-0010. It was sup-928

ported by the DEPHY2 project, funded by the French national program LEFE/INSU929

and the GDR-DEPHY. Daniel Williamson was funded by NERC grant: NE/N018486/1.930

Daniel Williamson and Victoria Volodina were funded by the Alan Turing Institute project931

Uncertainty Quantification of multi-scale and multiphysics computer models: applica-932

tions to hazard and climate models as part of the grant EP/N510129/1 made to the Alan933

Turing Institute by EPSRC. The authors would like to thank Ignacio Lopez-Gomez and934

an anonymous reviewer for their constructive comments. We also thank S Barbier, T Costabloz,935

S Nicolau and S Richet for their work during a short internship on that subject. Beyond936

the presentation of a new approach that we think could constitute a break through in937

climate model improvement, we intend to provide a tool for the climate community. All938

the programs, scripts and reference LES are publicly available via a Subversion through939

”svn checkout http://svn.lmd.jussieu.fr/HighTune”; a fixed version of this code is pro-940

vided under http://doi.org/10.14768/70efa07b-afe3-43a4-8334-050354f9deac. Note, how-941

ever, that this tool is a new research tool, and, as such, is still evolving. The code, the942

SCM runs and the LES used to produce Experiment 1 is available at http://doi.org/10.14768/29fbfe70-943

a8e8-41db-914c-b14be9a6f90b.944

References945

Ahmat Younous, A.-L., Roehrig, R., Beau, I., & Douville, H. (2018). Single-column946

modeling of convection during the cindy2011/dynamo field campaign with947

the cnrm climate model version 6. Journal of Adavnces in Modeling Earth948

Systems, 10 , 578–602.949

Andrianakis, I., McCreesh, N., Vernon, I., McKinley, T. J., Oakley, J. E., Nsub-950

uga, R. N., . . . White, R. G. (2017). Efficient history matching of a high951

dimensional individual-based hiv transmission model. SIAM/ASA Journal on952

Uncertainty Quantification, 5 (1), 694–719.953

Ayotte, K. W., Sullivan, P. P., Andren, A., Doney, S. C., Holtslag, A. A., Large,954

W. G., . . . Wyngaard, J. C. (1996). An evaluation of neutral and convective955

planetary boundary-layer parameterizations relative to large eddy simulations.956

Boundary-layer Meteorol., 79 , 131–175.957

Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H. V., & J, S. W. (2006).958

–41–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Parameter sensitivity analysis for different complexity land surface models959

using multicriteria methods. Journal of Geophysical Research, 111 . doi:960

10.1029/2005JD006377961

Bellprat, ., Kotlarski, S., Luthi, D., & Schar, C. (2012). Objective calibration of re-962

gional climate models. Journal of Geophysical Research, 117 . doi: 10.1029/963

2012JD018262964

Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R.,965

. . . Webb, M. J. (2015, April). Clouds, ciruclation and climate sensitiv-966

ity. Nature Geoscience, 8 (20), L20806. (WOS:000233104900005) doi:967

10.1038/NGEO2398968

Bougeault, P., & Lacarrere, P. (1989). Parameterization of orography induced turbu-969

lence in a mesobeta-scale model. Mon. Wea. Rev., 117 , 1872–1890.970

Bouniol, D., Roca, R., Fiolleau, T., & Poan, E. (2016). Macrophysical, microphysical971

and radiative properties of tropical mesoscale convective systems over their life972

cycle. Journal of Climate, 29 . doi: 10.1175/JCLI-D-15-0551.1973

Brenowitz, N. D., & Bretherton, C. S. (2018, June). Prognostic validation of a974

neural network unified physics parameterization. Geophysical Research Letters,975

45 (12), 6289–6298. (WOS:000438499100052) doi: 10.1029/2018GL078510976

Brient, F., Couvreux, F., Villefranque, N., Rio, C., & Honnert, R. (2019). Object-977

oriented identification of coherent structures in large eddy simulations: Im-978

portance of downdrafts in stratocumulus. Geophysical Research Letters, 46 ,979

2854–2864.980

Brown, A. R. (1999, January). The sensitivity of large-eddy simulations of shallow981

cumulus convection to resolution and subgrid model. Quarterly Journal of the982

Royal Meteorological Society , 125 (554), 469–482. (WOS:000079350100004) doi:983

10.1002/qj.49712555405984

Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, M., J.985

C. Khairoutdinov, Lewellen, D. C., . . . Stevens, B. (2002). Large-eddy simu-986

lation of the diurnal cycle of shallow cumulus convection over land. Q. J. R.987

Meteorol. Soc., 128 , 1075–1093.988

Browning, K., Betts, A., Jonas, P., Kershaw, R., Manton, M., Mason, P.,989

. . . Simpson, J. (1993, March). The GEWEX Cloud System Study990

(GCSS). Bulletin of the American Meteorological Society , 74 (3), 387–399.991

–42–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(WOS:A1993KU53500004)992
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