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a b s t r a c t 

In 2013, Galtier et al. [1] theoretically revisited a numerical trick that had been used since the very 

beginning of linear-transport Monte-Carlo simulation: introducing “null” scatterers into a heterogeneous 

field to make it virtually homogeneous. 

The rigorous connection between null-collision algorithms and integral formulations of the radiative 

transfer equation led to null-collision algorithms being used in distinct contexts, from atmospheric or 

combustion sciences to computer graphics, addressing questions that may strongly depart from the initial 

objective of handling heterogeneous fields (handling large spectroscopic databases, non-linearly coupling 

radiation with other physics). 

We briefly describe here some of this research and we classify it by proposing three alternative view- 

points on the very same null-collision concept: an intuitive, physical point of view, called similitude ; a 

viewpoint built on the probability theory, where the null-collision method is seen as rejection sampling ; 

and a more formal writing where the nonlinear exponential function is expanded into an infinite sum of 

linear terms. 

By formulating the null-collision concept under three distinct formalisms, our intention is to increase the 

reader’s awareness of its flexibility.The idea defended and illustrated in this paper is that the ability to 

explore null-collision algorithms under their different forms has often led to a broadening of the solution 

space when facing difficult problems, including ones where the Monte Carlo method was consensually 

considered inapplicable. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the origin of numerical simulations of radiative transfer, it 

as been claimed that statistical approaches such as Monte Carlo 

ere the only practical “way or path” towards the simultaneous 

andling of all the spectral and geometric complexity of radiation 

n 3D realistic systems. This complexity tends to infinity as soon as 

ither 

1. the degree of detail that describes the heterogeneous medium 

of propagation tends to infinity, 

2. the spectral resolution of the optical properties of the medium 

tends to zero, 
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3. Fredholm integral equations are involved, e.g., in the context 

of multiple scattering, which theoretically yields an integration 

domain of infinite dimension. 

The reason why “Monte Carlo is the only numerical tool that 

asses infinite dimension” is the use of the double randomization 

echnique: the expectation of a linear function of another expecta- 

ion is still just one expectation, or 

 [ h (E [ X ])] = E [ h (X )] (1)

here h is a linear function and X a random variable. This is triv- 

al and can be easily demonstrated using the linearity of the in- 

egral operator. However, the most immediate implication of this 

roperty is the key to the renowned power of Monte Carlo: when 

stimating the expectation of a random variable that is a linear 

unction h of the expectation of other random variables (repre- 

enting, for example, spectral, spatial or directional variables), then 

https://doi.org/10.1016/j.jqsrt.2020.107402
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2020.107402&domain=pdf
mailto:mouna.elhafi@mines-albi.fr
https://doi.org/10.1016/j.jqsrt.2020.107402


M. El Hafi, S. Blanco, J. Dauchet et al. Journal of Quantitative Spectroscopy & Radiative Transfer 260 (2021) 107402 

o

p

i

i

e

w

“

t

o

p

t

m

t

e

t

d

T

n  

o

c

s

v

t

t

r

p

f

p

i

b

t

f

l

t

fi

i

f

p  

l

t

i

t

a

m

c

b

c

a

a

e

i

m

g

(  

m

e

v

s

n

t

p

r

n

a

t

m

W

2

i

o

p

t

m

m

s

a

nly one sample of each “secondary” random variable is needed to 

rovide one sample of the global random variable. This technique 

s described in detail in Sabelfeld [2] and identified as a key point 

n the Monte Carlo community of applied mathematics (see, for 

xample, [3,4] ). 

However powerful, this property is strictly limited to cases 

here the h function is linear. Radiative transfer is, of course, 

linear transport” and the exponential extinction of a beam (af- 

er Beer’s law) is a signature of this linearity. But in the context 

f Monte Carlo methods, with the necessary writing of the com- 

uted quantity as an expectation, the nonlinearity of the exponen- 

ial function is at the origin of severe difficulties as soon as the 

edium of propagation is spatially heterogeneous. Indeed, the in- 

egral over the heterogeneous extinction field appears within the 

xponential function, whereas the integration over multiple scat- 

ering optical paths appears “outside” the exponential (these paths 

efine the line-of-sight along which Beer’s extinction is applied). 

he integrals are combined nonlinearly; double randomization can 

o longer be employed ( Eq. (1) is no longer true); a crucial feature

f the Monte Carlo technique is lost (see [5] for more advanced 

onsiderations on the matter). 

A solution to bypass this nonlinearity without biasing the re- 

ults or decreasing convergence rates has been commonly used in 

arious parts of the Monte Carlo literature [6–11] . The main idea is 

o make use of “null colliders”, fictitious particles that are added to 

he true extinction field in order to make it homogeneous, which 

educes the optical-depth integral to a simple product. When a 

ath encounters one of these null colliders, it simply continues 

orward as if the collision had not occurred. From an intuitive or 

hysical point of view, null colliders are pure scatterers character- 

zed by a strictly-forward phase function. In the scope of proba- 

ility theory, null collisions can be seen as the rejected samples 

hat come from sampling a density function that overestimates the 

requency of collisions instead of the true distribution of free-path 

engths, as per a standard rejection method. 

The null-collision method has long been considered a numerical 

rick to avoid a heavier, deterministic integration of the extinction 

eld. The fact that the line-of-sight integration was shifted from 

nside to outside the exponential in the underlying mathematical 

ormulation was only recently made explicit, in the seminal pa- 

er of Galtier et al. in 2013 [1] . Subsequently, the authors and col-

eagues have highlighted the important implications of this rein- 

erpretation for a diversity of research and applied fields, includ- 

ng combustion, spectroscopy, solar energy, atmospheric radiative 

ransfer and image rendering [5,12–15] . 

Some examples of the new ideas that could only be explored 

nd implemented thanks to the revisiting of the null-collision 

ethod are listed hereafter: 

• Villefranque et al. [15] investigated the question of the accelera- 

tion of path tracing in spatially heterogeneous media using null 

collisions in combination with tools from the computer graph- 

ics community. At the junction of physics and computer graph- 

ics, they structured the data describing highly heterogeneous 

extinction fields into octrees to allow both fast traversal of the 

arbitrarily complex spatial domain and limited time spent in 

sampling null-collision events. In the same way, the field of im- 

age rendering has largely benefited from the formal framework 

that resulted from Galtier et al.’s work in 2013, bringing them 

to develop and implement new null-collision algorithms with 

renewed efficiency and confidence [16,17] . 
• Tregan et al. [18] propounded a solution to avoid a convergence 

issue due to the use of null-collision algorithms to compute 

sensitivity estimates of a radiative quantity. This was only pos- 

sible by shifting from the intuitive to the probabilistic point of 

view on the null-collision method, thereby modifying the in- 
2 
tegral formulation associated with the first null-collision algo- 

rithm into a new formulation (and hence, algorithm) yielding 

better statistical properties. 
• Galtier et al. [13] have recently applied the idea of using null 

collision algorithms to spectrally integrate radiative quantities 

without pre-computing the absorption spectra. In this proposi- 

tion, the null collisions are again a way to bypass the nonlinear- 

ity of the exponential: by shifting the sum over the energetic 

transition line contributions to the local absorption coefficient 

from inside to outside the exponential function, the double ran- 

domization technique can again be used where it could not 

have previously been applied without the null-collision method. 

In the conception of this algorithm, the formal or mathematical 

point of view was infinitely more helpful than the intuitive or 

physical one. 

Obviously, since their first apparition in the literature, justifi- 

ations for the use of null-collision algorithms (NCA) have been 

ased on various arguments, depending on the community and 

ontext of the application. As the method enjoys growing interest 

nd is used by many scientists from fields as diverse as those cited 

bove, we find it interesting to suggest a classification of the differ- 

nt interpretations of the concept of null collisions. Our intention 

s not to compare or rank these viewpoints, but rather: 

1. to try and reduce the classification to a limited number of ideas 

(that is, three points of view); 

2. to argue that although the second and third viewpoints are 

less immediate than the similitude viewpoint (the most stan- 

dard definition of null collisions), they produce quite different 

theoretical developments toward the same conclusions, offering 

new formal perspectives; 

3. to illustrate the practical benefits that can be expected from 

these new perspectives (algorithms that would be difficult to 

establish from only the similitude viewpoint). 

In the following sections, we present three readings of the 

ethod that we think allow convenient changes in perspective re- 

arding the concept of null collisions: from the physical viewpoint 

 Section 2 , a similitude), to the statistical ( Section 3 , a rejection

ethod), to the mathematical ( Section 4 , a Taylor expansion of the 

xponential). To illustrate the practical signification of these three 

iewpoints, we briefly describe recent research that was made pos- 

ible or facilitated by a shift in the mental representation of the 

ull-collision concept. 

The ideas behind these examples and the supporting illustra- 

ions are not always original, in the sense that some have been 

ublished already. The originality of this work rather resides in the 

eformulation of the null-collision concept, as well as in the con- 

ections that are made between the reported studies. Furthermore, 

s this research covers a wide range of scientific fields, publica- 

ions were sometimes addressed to specialists of a particular do- 

ain rather than to the community of radiative transfer scientists. 

ith this paper, we hope to facilitate access to this literature. 

. Adding forward-scatterers: a similitude 

Fig. 1 illustrates this first viewpoint. It is the most prevalent one 

n the literature of radiative transfer, and also the most intuitive 

ne, as it can be enunciated entirely within the framework of the 

hysics of transport: fictitious particles are added to the medium 

o make it homogeneous, without interacting with radiation. 

Indeed, designing a Monte Carlo code raises the question of 

aking the best computer-science choices for fast tracking of 

ultiple-scattering and multiple-reflection paths in complex 3D 

cenes. Path tracing requires finding the location of the next event 

long the simulated path: it is at the shortest distance between i/ 
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Fig. 1. Null-collision methods seen under the physical viewpoint where a purely forward-scattering species is added to the medium to make it homogeneous. 
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he distance to the next collision in the volume and ii/ the distance 

o the next surface intersection. Sampling the next volume colli- 

ion is not straightforward in a heterogeneous medium because the 

ransmittance law is not invertible analytically. 

A common solution is to compute the “line-of-sight” optical 

epth by numerically integrating the extinction along the path, un- 

il a sampled value of “free” optical depth is reached. Often, the 

eld of extinction coefficient (the input data) is meshed, with a 

onstant value in each gridcell (see Fig. 2 for an illustration). Com- 
3 
uting the line-of-sight optical depth in a deterministic way then 

omes back to iterating over the crossed gridcells, and for each 

ne: computing the length of the ray in the gridcell, accessing 

he data to retrieve the local extinction coefficient, and adding the 

urrent-gridcell length-coefficient product to the cumulated optical 

epth. 

In this regular tracking method, the original field is the support 

f the path-tracing algorithm, which is by construction intrinsically 

ependent upon the data structure and size. If the field is highly 
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Fig. 2. a) Regular tracking, where the original medium is the support of the path- 

tracing algorithm. b) Null-collision methods, where the field has been virtually ho- 

mogenized, yielding data – algorithm independence. Adapted from Fig. 2 of [15] . 
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Fig. 3. Examples of hierarchical grids for fast path-tracing. Above: 3D view of a hi- 

erarchical grid for a cumulus clouds scene. Below: 2D cross-section of a hierarchical 

grid for a congestus clouds scene. 
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depths; 
esolved and heterogeneous with a large range of extinction varia- 

ions, then many gridcells might be crossed with negligible contri- 

ution to the optical depth. For a given field, doubling the spatial 

esolution of the data implies that finding the next collision in the 

olume requires at least twice the computational time. 

The first benefit of null collisions is undoubtedly that the result- 

ng path-tracing algorithms are strictly independent of the original 

epresentation of the field, as in Fig. 2 -b). This independence was, 

or example, pointed out in the Appendix of Marshak et al.’s 1995 

aper [19] in the context of atmospheric radiative transfer, and 

as at the heart of Eymet et al.’s work [12] for combustion ap- 

lications. More recently, research groups in the main animation 

tudios of the cinema industry have clearly greeted the proposal to 

ntroduce null-collision with considerable enthusiasm [16,17,20] . 

Indeed, data-algorithm orthogonality (independence) is a well- 

nown concept in the image-rendering community who have been 

apitalizing on its benefits for years, as far as surface rendering is 

oncerned [21] . Most of the recent advances in computer graph- 

cs for the cinema industry are direct results of this orthogonal- 

ty: they are mainly related to a hierarchical reorganization of the 

riginal data, which allows fast crossing of the resulting structure, 

ielding fast testing of the ray-surface intersection for a large set 

f surfaces [22–24] . These advances benefit the artists and mod- 

llers who can freely design their numerical scenes, regardless of 

ow the renderer will eventually handle the millions of elementary 

urfaces that they output. 

Since null-collision techniques preserve data-algorithm orthog- 

nality, many of the tools developed to accelerate path-tracing in 

omplex surfaces can now be used for path-tracing in complex vol- 

mes. In practice, accelerating structures are built prior to path 

racing by merging gridcells from the original highly-resolved field 

nto larger voxels that efficiently capture the heterogeneous fea- 

ures of the true field. An example of such a structure is presented 

n Fig. 3 . The structure is filled in the spirit of the null-collision

ethod: in each merged voxel, the field of extinction coefficient 

s homogeneous, i.e. it is set to the maximum coefficient value 

ound among the merged gridcells. Using a null-collision algorithm 

eans that the paths will travel through this new medium, where 

ull collisionners have been added. When a collision is found, the 
4 
lgorithm samples the nature (true or null) of the collision and 

roceeds accordingly, much as in the examples of Fig. 1 . 

A striking example of a complex volume is the cloudy at- 

osphere, as shown in Fig. 4 -a). Clouds occupy a small region 

f a scene, and are made up of thousands of microscopic wa- 

er droplets. Here, the extinction field is structured into a regu- 

ar 3D mesh with a uniform extinction coefficient in each gridcell 

one gridcell volume is 25 × 25 ×25 m 

3 and the domain volume 

s 6.4 × 6.4 × 4 km 

3 ). A large number of rays will only inter- 

ect non-cloudy, empty gridcells, while others will visit the cloudy, 

ptically-deep parts of the scene, where thousands of collisions can 

ccur. 

In Villefranque et al. [15] , it is shown that the efficiency of 

ull-collision algorithms relies on a compromise between two ex- 

remes: 

1. not merging any gridcells, as in the regular tracking method il- 

lustrated in Fig. 2 -a): null collisions will never happen but a lot 

of time will be spent crossing the regular mesh and accessing 

the relevant data in memory; 

2. merging the whole field into one homogeneous voxel, as illus- 

trated in Fig. 2 -b): the null-extinction coefficient might be very 

large in some regions of the scenes, where a lot of time would 

be spent testing collision nature and re-sampling free optical 
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Fig. 4. Using null collision algorithms implemented in Monte Carlo codes to simulate radiative transfer in highly heterogeneous cloudy atmospheres. 

5 
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Fig. 5. Insensitivity of computing time to scene complexity is achieved when using hierarchical grids to organize the surface data. Reproduced from Fig. 1 of [15] . 
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Figs. 1 and 5 of [15] , reproduced here as Figs. 5 and 6 , present

vidence of the data-algorithm orthogonality: computing time is 

nsensitive to the complexity of the scene description, for both sur- 

ace and volume. 

The computer graphics community organises its developments 

round open-source libraries that are available to our community 

nd can be used on a regular basis [25,26] . With their growing 

nterest in the null-collision method, new libraries will probably 

e developed and distributed to physicists. An example of this has 

een described and illustrated in [15] , in the field of atmospheric 

cience. Their implementation is also illustrated in Fig. 4 where 

 library-based renderer is used to compute a physically-correct 

ynthetic image of a cloudy field that is the output of a high- 

esolution Large Eddy Simulation; and in Fig. 4 b in which similar 

ools are used to compute pixel-averaged ground fluxes, each es- 

imated using an independent reverse Monte Carlo simulation in- 

olving 10 5 samples. Also displayed is the corresponding statistical 

ncertainty. These simulations are then used to analyse the radia- 

ive effects of clouds at the surface, to improve their representation 

n climate models. Using null-collision algorithms allows radiative 

ransfer to be simulated in large datasets, in which computations 

ould otherwise be impracticable. 

At this stage, we have retained a viewpoint under which all 

e see is a rigorous similitude between the original radiative- 

ransfer problem and a new one in which additional scatterers 

ith a strictly-forward phase function have been introduced in the 

edium. The benefits associated with this similitude are essen- 

ially in terms of computer implementation. 

. Rejection sampling 

An alternative way of describing the use of null collisions is to 

onsider that when a null collision is encountered, the sampling of 

he collision’s location is rejected . This viewpoint is illustrated in 

ig. 7 . The problem of the extinction coefficient heterogeneity ap- 

earing within the exponential can indeed be reduced to the diffi- 

ulty of sampling a collision location x according to the probability 
6 
ensity function 

p(x ) = k e (x ) exp 

(
−

∫ x 

0 

k e (y ) dy 

)

Thus, the algorithm that rejects null collisions until a true colli- 

ion is found is nothing more than a rejection-sampling algorithm. 

nder this viewpoint, no similitude is used, no “forward scatterers”

re added to the field. Null collisions are only a statistical method 

o sample p(x ) when it is not analytically invertible. 

In our practice, we observe that there are cases in which 

witching from one viewpoint to the other leads to the designing 

f quite distinct Monte Carlo algorithms. This is particularly true 

hen we work on the integral form of the algorithm. In this frame- 

ork, any Monte Carlo algorithm can be translated into its math- 

matical counterpart (and reciprocally). This integral formulation 

an be rigorously transformed using simple operations, and trans- 

ated back into a new algorithm with better properties (usually 

ith reduced variance [14] ) or into one that computes entirely new 

uantities (for instance, the partial derivatives (or sensitivities ) of 

he initial quantity with respect to any model parameter [27,28] ). 

With the first viewpoint (the similitude), each null collision is a 

ampling event that appears in the integral formulation. With the 

econd one (rejection sampling), the only retained events are the 

rue collisions; null collisions do not appear at all in the integral 

ormulation. The difference is very significant as soon as sensitivi- 

ies are considered. 

The principle of Monte Carlo estimation of parametric sensitiv- 

ties (or Jacobians) in radiative transfer is quite simple [27,28] . Any 

onte Carlo algorithm can be expressed under an integral form. 

his integral can be derived as a function of any parameter to 

ive another integral formulation that can again be evaluated using 

onte Carlo. 

The sensitivity evaluation is simultaneous as soon as the very 

ame random sampling algorithm can be used for both the ad- 

ressed quantity and its sensitivity. Roger et al. [28] have shown 

hat this is always possible, regardless of the parameter type, and 

ven when the parameter affects the integration domain. However, 
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Fig. 6. Insensitivity of computing time to scene complexity is achieved when using hierarchical grids with null collisions (full line with squares, ˜ τ = 1 ). ˜ τ is the merging 

criterion for the construction of the hierarchical grids: the voxels are merged while the resulting optical depth is below the value of ˜ τ . For ˜ τ = 0 , (dashed line with circles) 

the voxels are never merged, yielding hierarchical grids that are the same resolution as the input data. Reproduced from Fig. 5 of [15] . 
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espite being thoroughly general, this proposition can cause prac- 

ical difficulties in some contexts, in particular as far as numerical 

onvergence is concerned [18] . 

An example of such difficulty can easily be pictured using a 

imple example. Let us assume that we want to evaluate the direct 

ransmissivity of a semi-transparent column of length L starting at 

he position x 0 (Beer-Lambert law for heterogeneous medium), as 

isplayed in Fig. 8 . 

 dir (x 0 ) = exp 

(
−

∫ x 0 + L 

x 0 

k e (y ) dy 

)

Using a NCA, a collision location x will be sampled as if the ex- 

inction coefficient k e were uniform and equal to ˆ k = k e + k n , and

ejected with probability 

 N (x ) = 

k n (x ) 

ˆ 
= 

ˆ k − k e (x ) 

ˆ 
k k 

7 
Retaining the similitude point of view for the NCA, one 

ould write the following formulation, which is demonstrated in 

29] (see Fig. 9 ): 

 dir (x 0 ) = 

∫ + ∞ 

0 

d x ˆ k exp 

(
−ˆ k x 

)
×

{
H(L − (x − x 0 )) 

{
P N (x ) T dir (x ) + (1 − P N (x )) { w 0 } 

}
+ H((x − x 0 ) − L ) { w 1 } } (2) 

here w 0 = 0 represents the null contribution to the transmissiv- 

ty of an absorption in the medium, and w 1 = 1 the weight associ- 

ted with a contribution to the transmissivity. To evaluate the sen- 

itivity of the transmissivity to any parameter ζ on which depends 

 e , the integrand in Eq. (2) is derived with respect to ζ . Then, in

rder to be able to use the same samples for T dir and its deriva-

ives, thus making the computation of these quantities simultane- 

us, the derivative formulation must be rewritten under the same 
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Fig. 7. Textboxes (a) and (b) highlight the close link between the rejection sampling method and the NCA. Indeed, one can notice that X and X NCA have the same mathematical 

expression. In both cases, one realization of the random variable X or X NCA is seen as a series of realizations of another random variable Y, each of which are successively 

rejected until one is retained. The difference lies in the random variable X NCA itself, which has to be exponentially distributed, while X may correspond to any random 

variable. This major difference allows for the use of the NCA, in which each subsequent realization of Y makes use of the previous realizations. In terms of practical use, 

while a realization y i is only used to reject or retain the event y i in the case of the rejection sampling method, it is also used to evaluate the next realization y i +1 in the case 

of NCA. This also means that every sub-realization y i of X NCA improves the chances of the following step y i +1 being the final one. 
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orm as Eq. (2) . This yields the logarithmic derivative of P N with 

espect to ζ in the sensitivity Monte Carlo weight: 

∂ ζ P N 

P N 
= − ∂ ζ k e 

ˆ k − k e 

here ∂ ζ k e is the derivative of k e with respect to ζ (see Lataillade 

t al. [27] ). It can be easily seen that − ∂ ζ k e 

ˆ k −k e 
tends towards infinity 

hen 

ˆ k tends towards k e (for more details, see Tregan et al. [18] ), 

hat is, when the probability of null collisions decreases. For this 

eason, the variance of the sensitivity estimator becomes infinite 

nd convergence is impossible. 

This means that when 

ˆ k is well adjusted (which is required in 

rder to reduce the number of useless null collisions), the sensi- 

ivity estimation becomes less accurate. Fig. 8 illustrates this con- 

ergence difficulty. It also illustrates a solution that could easily be 
8 
ound by changing the viewpoint on null-collisions, which is de- 

cribed in thorough detail in Tregan et al. [18] . In the first case, 

he null-collision probability needs to be derived, leading to the 

roblematic − ∂ ζ k e 

ˆ k −k e 
mentioned above; in the second case, only p(x ) 

eeds to be derived, in which 

ˆ k does not appear, and the conver- 

ence difficulty associated with − 1 
ˆ k −k e 

vanishes (see Fig. 8 ). 

Another illustration of sensitivity computation can be found on 

he previously presented maps of ground-fluxes ( Fig. 4 b). In order 

o better understand and characterize cloud radiation interactions, 

he ground-flux density was computed along a line on the ground 

see Fig. 4 c, along with the sensitivity to 1 − ω, where ω is the 

ingle scattering albedo ( ω is assumed uniform within the clouds). 

hese two quantities were simultaneously computed, using the ex- 

ct same technique as described above to avoid convergence diffi- 
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Fig. 8. Top figure Profile of the extinction coefficient k e within a heterogeneous column of length L . Bottom figures In the particular case where the extinction coefficient k e 
is uniform, number of samples required for a 1% accurate evaluation of the sensitivity to k e of the column transmissivity, using a null-collision algorithm. In the left-hand 

figure, we start from an integral formulation in which null-collisions are viewed as forward-scattering events, which leads to convergence difficulties when k n is close to 0 

(the number of required samples tends to infinity). In the right-hand figure, we start from an integral formulation in which null-collisions are viewed as a rejection-sampling 

method: the convergence difficulty vanishes. 
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. Transforming the nonlinearity of the exponential into a 

inear problem of infinite dimension 

The principle underlying this third point of view is exposed 

n detail in Dauchet et al. [5] and described in Fig. 9 . The depar-

ure point is that double randomization can no longer be used as 

oon as integrals are combined through nonlinear functions. The 

rst idea is that nonlinear functions can be developed into infinite 

ums of monomials using a Taylor series. The second idea is that 

 monomial of order n of a random variable X can be written as 

he product of n independent variables X i identically distributed as 

. To compute one realisation of X n , one only needs to compute 

 samples distributed according to the probability density function 

f X and retain their product. The entire algorithm corresponding 

o the evaluation of a Taylor series consists in sampling n, the or- 
9 
er of the monomial, and then compute one realisation of X n , thus 

etrieving the power of double randomization. 

In this third viewpoint, the nonlinearity of the exponential is 

ead and treated with this exact idea in mind. Let us consider 

p(x ) = k e (x ) exp 

(
−

∫ x 

0 

k e (x ′ ) dx ′ 
)

nd introduce the function f (u ) = exp (−u ) . Then p(x ) = k e (x ) f (τ )

ith τ = 

∫ x 
0 k e (x ′ ) dx ′ the optical thickness of a line segment of 

ength x . f can be expanded in its Taylor series around τ = 0 : 

p(x ) = k e (x ) 
+ ∞ ∑ 

n =0 

(−1) n 

n ! 

(∫ x 

0 

k e (x ′ ) dx ′ 
)n 

= k e (x ) 

[
1 −

∫ x 

0 

dx ′ 1 k e (x ′ 1 ) + 

1 

2 

∫ x 

0 

d x ′ 1 
∫ x 

0 

d x ′ 2 k e (x ′ 1 ) k e (x ′ 2 ) 
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Fig. 9. Key ideas on the transformation of the exponential’s nonlinearity of the direct transmissivity into an infinite-dimension linear problem. Textbox (a) shows the 

regular approach to transforming such a non-linearity into an infinite-dimension linear problem by making use of Taylor series. Textbox (b) shows how the ACN for the 

same transmissivity can also be transformed into an infinite sum of lookalike terms. However, a term-by-term comparison shows that both approaches do not lead to the 

same expressions, and therefore interpretations. The mathematical proof that both expressions are equal can be found in [29] . The approach (in textbox (a), Eq. (7)) is not 

implemented here for its lack of performance in terms of CPU time and convergence, compared to ACN (in textbox (b), Eq. (8)). 

10 
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∫ x 

0 

d x ′ 1 
∫ x 

0 

d x ′ 2 
∫ x 

0 

d x ′ 3 k e (x ′ 1 ) k e (x ′ 2 ) k e (x ′ 3 ) . . . 
]

In Monte Carlo terms, the nonlinearity of the exponential has van- 

shed and been replaced by an infinite sum over the order n and 

n increase up to n of the dimension of the integration domain at 

ach order. Consequently, a Monte Carlo algorithm evaluating p(x ) 

ould simply sample a value of n and then sample n values of x ′ 
1 
,

 

′ 
2 

... x ′ n on the [0 , x ] interval and retain the product of the n values

f k e evaluated at x ′ 1 , x ′ 2 ... x ′ n . 
Of course, the purpose of a radiative-transfer Monte Carlo al- 

orithm is seldom to evaluate p(x ) and several modifications to 

his initial idea are needed before reconstructing a standard null- 

ollision algorithm. These ideas are all detailed in Longo [29] and 

ere we only state the most important: the removal of the sign al- 

ernation. If the above decomposition was used as such, the Monte 

arlo weight would be positive when sampling even values of n 

nd negative for odd values, and evaluating the average of these 

ositive and negative weights would require a large number of 

amples (the variance would be large). To avoid this, the form of 

p(x ) is first modified in the following way: 

p(x ) = k e (x ) exp (−ˆ k x ) g( ̂ k x − τ ) 

ith g(u ) = exp (u ) , where ˆ k is an overestimate of k e at all loca-

ions. The function f was a negative exponential applied to τ pos- 

tive. The function g is a positive exponential applied to ˆ k x − τ, 

gain positive. When expanding g, the Monte Carlo weight remains 

ositive for all values of n . 

The fundamental point here is that the integral structure is lin- 

arized and that standard Monte Carlo approaches can be used to 

valuate it without further reformulation (see Fig. 9 ). Since k e is 

ow outside of the nonlinear exponential, it can in turn be writ- 

en as an integral or a discrete sum, while double randomization 

ontinues to ensure that the algorithm is practicable. 

In Galtier et al. [13] , this was used to address the question of

andling large spectroscopic databases for molecular gases: it was 

o longer required that the contribution of all lines be first added 

o construct the absorption coefficient at a given wavenumber; as 

his sum was shifted out of the exponential, it could be handled by 

he Monte Carlo algorithm itself, by sampling line transitions and 

onsidering the sampled line’s contribution to the local absorption 

nly. 

In Galtier et al. [30] the same approach allowed the application 

ange of so-called “symbolic” Monte Carlo algorithms to be signif- 

cantly extended. Consider a radiative transfer problem in which a 

uantity A needs to be evaluated knowing a set of field parameters 

1 , π2 . . . that determine the temperature and the optical proper- 

ies. Symbolic algorithms do not only compute A for a given set of 

arameter values e.g., π1 = π comp 
1 

, π2 = π comp 
2 

. . . , they also evalu- 

te the coefficients of a functional form that makes it possible to 

ater evaluate A for any other value of π1 , π2 . . . . This was claimed 

o be very difficult for the parameters defining the absorption and 

cattering coefficients of a heterogeneous field because they appear 

ithin the exponential of Beer’s law. Galtier et al. [30] made a suc- 

essful use of the above-described Taylor expansion to solve this 

ifficulty. 

. Conclusion 

In this text, ongoing and published research that makes use of 

he null-collision method has been classified into three families 

hat reflect different readings of the same concept. The similitude 

iewpoint is the most intuitive one for it is related to physics, and 

riginally opened the door to computational efficiency in hetero- 

eneous media. The rejection approach compares the null-collision 

ethod to a classical rejection sampling method and has proved 
11 
seful in handling variance issues in the estimation of partial 

erivatives. Finally, Taylor’s expansion, initially used to handle non- 

inear physics, fundamentally allows the shifting of the optical 

epth integral out from the nonlinear exponential. This opens up 

any perspectives, for instance through the combination of trans- 

ort with other physics underlying the computation of the optical 

roperties: uncertainty and sensitivity estimations can thenceforth 

e propagated one step further than transport. 

The other examples described in Dauchet et al. [5] go at least 

artially beyond radiative transfer. One is related to the solution 

f Maxwell’s equations with the objective of evaluating the ab- 

orption and scattering properties of an ensemble of complex- 

hape particles. Another one deals with the extension to nonlinear 

ransport (the Boltzmann equation) of the null-collision algorithms 

hat are described in the present text. Two further examples illus- 

rate the potential of these approaches, which we believe might be 

idely used in future research: the coupling of radiative transfer 

ith other processes inside a single Monte Carlo algorithm. This 

dea has already been presented in Fournier et al. [31] for cou- 

ling radiation with other heat-transfer modes, but the coupling 

as linear. In Dauchet et al. [5] solar radiation within a concen- 

rated solar plant is coupled with a nonlinear photochemical con- 

ersion process, and, very similarly, solar radiation within a pho- 

obioreactor is coupled with a nonlinear photosynthesis process. In 

hese examples, there is only a one-way coupling but it is nonlin- 

ar. Coupling radiation, conduction and convection heat-transfers 

as effective, but it was in a linear context. Altogether, we do not 

ee any conceptual hurdle forbidding the design of Monte Carlo al- 

orithms that would couple radiative transfer with other physical, 

hemical or biological processes, including nonlinear ones. 
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ppendix A. Expanded development of NCA to Taylor 

xpression 

 dir (x 0 ) = 

∫ ∞ 

0 

d y 1 ˆ k exp (−ˆ k y 1 ) [ H(y 1 − L ) { 1 } + H(L − y 1 ) 

{ 

k e ( 

x 1 ︷ ︸︸ ︷ 
x 0 + y 1 ) 

ˆ k 
{ 0 } + 

(
1 − k e (x 1 ) 

ˆ k 

)
T dir (x 1 ) 

} 

⎤ 

⎥ ⎦ 

(A.1) 

 

∫ ∞ 

d y 1 ˆ k exp (−ˆ k y 1 ) + 

∫ L 

d y 1 ˆ k exp (−ˆ k y 1 ) 

L 0 
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[  

[  
[ 
k e (x 1 ) 

ˆ k 
{ 0 } + 

(
1 − k e (x 1 ) 

ˆ k 

)
T dir (x 1 ) 

] 

= exp (−ˆ k L ) + 

∫ L 

0 

d y 1 ˆ k exp (−ˆ k x 1 ) 
ˆ k − k e (x 1 ) 

ˆ k 
T dir (x 1 ) 

= exp (−ˆ k L ) + 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)

T dir (x 1 ) 

= exp (−ˆ k L ) + 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)

[∫ ∞ 

0 

d y 2 ˆ k exp (−ˆ k y 2 ) 

{
H(y 1 + y 2 − L ) { 1 } 

+ H(L − y 1 − y 2 ) 
[ 

k e ( 

x 2 ︷ ︸︸ ︷ 
x 1 + y 2 ) 

ˆ k 
{ 0 } + 

(
1 − k e (x 2 ) 

ˆ k 

)
T dir (x 2 ) 

] }]

= exp (−ˆ k L ) + 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)

[∫ ∞ 

L −y 1 

d y 2 ˆ k exp (−ˆ k y 2 ) + 

∫ L −y 1 

0 

d y 2 ˆ k exp (−ˆ k y 2 ) 

{ 

k e (x 2 ) 

ˆ k 
{ 0 } + 

(
1 − k e (x 2 ) 

ˆ k 

)
T dir (x 2 ) 

} 

]

= exp (−ˆ k L ) + 

∫ L 

0 

d y 1 

(
ˆ k − k e (x 1 ) 

)∫ ∞ 

L −y 1 

d y 2 ˆ k exp (−ˆ k (y 1 + y 2 ))

+ 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)∫ L −y 1 

0 

d y 2 ˆ k exp (−ˆ k y 2 ) { 

k e (x 2 ) 

ˆ k 
{ 0 } + 

(
1 − k e (x 2 ) 

ˆ k 

)
T dir (x 2 ) 

} 

= exp (−ˆ k L ) + exp (−ˆ k L ) 

∫ L 

0 

d y 1 

(
ˆ k − k e (x 1 ) 

)

+ 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)∫ L −y 1 

0 

d y 2 

exp (−ˆ k y 2 ) 
(

ˆ k − k e (x 2 ) 
)

T dir (x 2 ) 

= exp (−ˆ k L ) + exp (−ˆ k L ) 

∫ L 

0 

d y 1 

(
ˆ k − k e (x 1 ) 

)

+ exp (−ˆ k L ) 

∫ L 

0 

d y 1 exp (−ˆ k y 1 ) 
(

ˆ k − k e (x 1 ) 
)

∫ L −y 1 

0 

d y 2 exp (−ˆ k y 2 ) 
(

ˆ k − k e (x 2 ) 
)

+ 

∫ L 

0 

d y 1 

(
ˆ k − k e (x 1 ) 

)∫ L −y 1 

0 

d y 2 

(
ˆ k − k e (x 2 ) 

)
∫ L −y 1 −y 2 

0 

d y 3 

(
ˆ k − k e (x 3 ) 

)
e −ˆ k (y 1 + y 2 + y 3 ) T dir (x 3 ) 

= exp (−ˆ k L ) 
L ∑ 

n =0 

∫ L 

0 

d y 1 

(
ˆ k − k e (x 1 ) 

)∫ L −y 1 

0 

d y 2 

(
ˆ k − k e (x 2 ) 

)

. . . 

∫ L ···−y n −1 

0 

d y n 

(
ˆ k − k e (x n ) 

)
(A.2)
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