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Abstract18

We demonstrate a new approach for climate model tuning in a realistic situation. Our19

approach, the mathematical foundations and technical details of which are given in20

Part I, systematically uses a single-column configuration of a global atmospheric model21

on test cases for which reference large-eddy-simulations are available. The space of22

free parameters is sampled running the single-column model from which metrics are23

estimated in the full parameter space using emulators. The parameter space is then24

reduced by retaining only the values for which the emulated metrics match large eddy25

simulations within a given tolerance to error. The approach is applied to the 6A26

version of the LMDZ model which results from a long investment in the development27

of physics parameterizations and by-hand tuning. The boundary layer is revisited by28

increasing the vertical resolution and varying parameters that were kept fixed so far,29

which improves the representation of clouds at process scale. The approach allows30

us to automatically reach a tuning of this modified configuration as good as that of31

the 6A version. We show how this approach helps accelerate the introduction of new32

parameterizations. It allows us to maintain the physical foundations of the model33

and to ensure that the improvement of global metrics is obtained for a reasonable34

behavior at process level, reducing the risk of error compensations that may arise from35

over-fitting some climate metrics. That is, we get things right for the right reasons.36

Plain language summary37

In view of the importance of global numerical models for the anticipation of future38

climate changes, their improvement is often considered too slow. We present a new39

approach that we believe could boost model improvement significantly. This approach40

promotes the use of machine learning techniques developed by the ”uncertainty quan-41

tification” community for the adjustment of model free parameters, or tuning. These42

techniques are applied to physics improvement at process scale, represented through43

parameterizations. In this approach, the tuning of the global atmospheric model is44

preconditioned by calibration of the model free parameters on a series of well docu-45

mented cloud scenes for which explicit very high resolution simulations are available.46

We demonstrate on a real example how the reduction of the parameter space with this47

approach allows us to save a large amount of computer resources and detract from the48

long and tedious by-hand phase of model tuning. By automating part of the tuning49

process, the approach enables climate modeler expertise to focus on understanding50

and improving the model physics through parameterization.51

1 Introduction52

Given the high expectation on global circulation models, both for numerical53

weather prediction and anticipation of climate change, their improvement is often con-54

sidered too slow. Among the main reasons, one finds the poor job done by convective55

parameterizations in summarizing convective motions that can not be resolved with56

grid meshes larger than 300 m for boundary-layer convection, or 2 km for deep convec-57

tion. A parameterization can be seen as a mathematical function Pp that expresses the58

effect on the model state variables x of the collective behavior of unresolved processes,59

which at the end appears as a source term Sx = Pp(x,λp) in the discretized form of60

the fluid dynamic equations. The different parameterizations are often connected to61

each other. For instance, a first one computes convection from the vertical profile of62

potential temperature and humidity, then a second one deduces the fractional cover of63

clouds and cloud water content, which are finally integrated in a radiative calculation64

(third parameterization) to provide a vertical heating profile. Each parameterization65

depends on a set of free parameters λp, some of which have a physical meaning (e. g.66

fall speed of ice crystals), some others resulting from the simplifications inherent to67
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any parameterization (e. g. representing an ensemble of plumes by a single plume68

for example). Convective and cloud parameterizations are often developed in a single69

column model (SCM) framework by comparison with large eddy simulations (LES)70

of the same atmospheric column, in which convective motions are explicitly resolved.71

This SCM/LES comparison is used both to inspire parameterization development and72

to choose, calibrate or “tune” the model free parameters λp at process level. Once in-73

tegrated in operational models, those parameterizations are active in each atmospheric74

column of the model, influencing both the global radiation budget and the large-scale75

circulation.76

The development of a reference configuration of a climate model, as those in-77

volved in the Coupled Model Intercomparison Program (Taylor et al., 2012, CMIP),78

requires an intense phase of adjustment – including grid choice, bug corrections, ac-79

tivation of some parameterizations or code modifications – in which the tuning or80

calibration of free parameters is key (Mauritsen et al., 2012; Schmidt et al., 2014). A81

survey on climate model tuning revealed rather standard priorities, which consist of82

targeting the radiative forcing of the atmospheric circulation, thereby using model free83

parameters that most affect radiation, i. e. cloud parameters (Hourdin et al., 2017).84

The complexity of the tuning process, given the large number of free parameters, the85

large number of possible targets and the computational cost of global climate sim-86

ulations, probably partly explain the slowness of climate model improvements. One87

promising avenue is the use of more automatic and objective methods for tuning.88

However, although specific applications of such methods have been proposed for nu-89

merical weather forecast (Duan et al., 2017) or regional climate modeling (Bellprat90

et al., 2012), their direct use for global climate models remains challenging and most91

CMIP-class models are indeed hand-tuned so far. Typically, the tuning phase of the92

IPSL coupled model configuration for CMIP6 (IPSL-CM6A-LR) took more than two93

years, with repeated tuning phases targeting improvement of the radiative forcing of94

the circulation: global radiation, decomposed in terms of short-wave (SW) and long-95

wave (LW), clear-sky and cloud radiative effect (CRE), and some spatial variations96

of those fluxes like contrasts between mid-latitude and tropics, or between convective97

and subsiding regimes in the tropics. Such a tuning was done in practice each time98

a new version of the coupled model with significant changes was proposed. In total,99

15 successive versions were tuned this way. For each version, systematic sensitivity100

experiments to 3–10 parameters were done with the stand-alone-atmospheric model101

forced by imposed sea surface temperature (SST) on a couple of years, changing the102

parameters one by one. Then diagnostics were computed and, by trial and error, a new103

radiative tuning was proposed and tested. Each of the 15 versions of the global model104

typically needed one to five iterations of this tedious sensitivity analysis. This later105

approach is done only by local perturbation around the previous tuning and explores106

independently the dependency to each individual parameter, hiding any compensating107

effects between them. During all of these processes, a series of SCM test cases were108

run and compared with LES in order to ensure that the model tuning was not pushed109

too far, at the risk of deteriorating the model behavior at process level.110

To help accelerate this phase of model tuning and tackle model development111

and tuning together, Hourdin et al. (2017) identified at least three different levels of112

calibration in a model development: a first calibration at the level of individual pa-113

rameterizations, then a calibration of each component of the Earth system model and114

eventually a calibration of the full Earth system model. In line with this proposal, we115

advocate in the first part of this paper (Couvreux et al., 2020, referred to as Part I116

hereafter) that a systematic comparison between LES and SCM simulations on a se-117

ries of benchmark cases, making use of state-of-the-art machine learning techniques118

issued from the Uncertainty Quantification community may help accelerate model de-119

velopment and tuning at process scale. The history matching approach, used in this120

systematic comparison, consists in reducing iteratively the space of acceptable param-121
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eters by conserving parameter vectors for which the SCM results match LES values122

to a given tolerance error. The parameter space is explored using an “emulator”, a123

statistical tool capable of estimating the value of some SCM metrics (with uncertainty)124

in the full parameter space, based on sampling with the true SCM.125

Part I presents the rationale for the proposed approach and places it in the con-126

text of other approaches for model calibration and climate model tuning. The review127

of existing literature on the subject is not repeated here. Part I also provides the math-128

ematical basis and technical details for the particular method used for calibration, and129

therefore only the information necessary to understand the results is repeated here.130

The objective of this second part is to demonstrate how this framework can be used to131

speed up the process of model development, from the inspiration of new process-based132

parameterizations to the full development of a 3D GCM. Beyond streamlining and133

accelerating the tuning process, and helping to avoid some of the compensating errors134

that can result from over-adjusting the climate metrics, we illustrate, using state-of-135

the-art boundary layer and cloud parameterizations, how the method can inform us136

about the functioning of the climate model and the link between its climate perfor-137

mance and its physical content. We revisit more specifically choices made during the138

development phase of the so called “thermal plume model” (Hourdin et al., 2002), a139

parameterization of the convective boundary-layer transport and associated cumulus140

clouds (Rio & Hourdin, 2008), based on a mass flux representation of a mean ther-141

mal plume coupled to a bi-modal representation of the subgrid scale distribution of142

the saturation deficit (Jam et al., 2013). This thermal plume model was developed143

over a number of years using LES to inspire new pieces of parameterizations, to assess144

the proposed formulations and to propose acceptable values of the free parameters.145

Successive versions of this thermal plume model were introduced in the global LMDZ146

atmospheric model, giving rise in particular to the recent LMDZ 6A version (Hourdin147

et al., 2019, 2020; Hourdin et al., 2020) used as the atmospheric component of the148

Institut Pierre Simon Laplace Coupled Model, IPSL-CM6A-LR, which participated149

to the recent sixth phase of CMIP (CMIP6). With the increasing complexity of this150

parameterization suite, it became clear that further sophistication leading to demon-151

strable improvement was not possible without somewhat automatic tools to explore152

the parametric dependency of the results. In order to prove that a new parameteri-153

zation suite P1(x,λ1) behaves better than an old version P0(x,λ0), one should show154

in principle that there exists at least one vector λ1 for which P1 gives globally better155

results than P0, whatever the value retained for λ0.156

In this study we illustrate the deployment of a well-defined calibration strategy157

based on two steps. The first step consists of a process-oriented calibration of the free158

parameters using SCM/LES comparisons combined with the “High-Tune Explorer”159

described in Part I (Couvreux et al., 2020). This SCM calibration is able to reduce160

the domain of acceptable values and this information is used in step 2 for the calibration161

of the global 3D configuration. A great advantage of history matching indeed is that162

it can be used to iteratively reduce the parameter space, taking new constraints into163

account. This saves important resources as the SCM/LES comparison is relatively164

computationally inexpensive, and does not require supercomputer time. With this165

new approach, we revisit here the parameter values involved in the formulations of166

lateral entrainment and detrainment that control the mass flux computation (Rio et167

al., 2010), and hence the convective transport as well as the bi-Gaussian cloud scheme168

(Jam et al., 2013).169

After a description of the LMDZ model and cloud parameterizations in Section170

2, we present a first illustration in Section 3, in which we revisit the calibration of171

three of the parameters systematically used for the 3D GCM tuning. They all concern172

the representation of boundary layer convection and clouds. We show that using173

systematic SCM/LES comparisons on a few contrasted test cases makes it possible to174
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Figure 1. Sketch of the parameterizations and tuning parameters used in the present study.

The sketch on the left hand side presents the view of the boundary layer clouds and transport of

water by boundary layer turbulence and convection, as well as the entrainment and detrainment

at the boundaries of clouds and top of the boundary layer. These processes are represented in a

model layer from the interplay between the thermal plume model (combining vertical diffusion

with a mass flux scheme), a bi-gaussian representation of subrgid scale water distribution and the

so-called “large scale” condensation scheme. The scheme internal variables are shown in red and

the tuning parameters as bold fonts. δt = δt∂t is an increment over one time step of a state vari-

able and δzP the vertical variation of precipitation P over the depth of the layer. The complete

formulas and notations are given in the text.

find a setting of the parameters very close to the one obtained after a long and tedious175

phase of manual tuning, demonstrating the capability of the tool in saving time and176

resources. In Section 4, we show an example of model retuning after some modifications177

are introduced in the model, here the increase of the vertical resolution in the first178

kilometers above surface. By doing this, we explore the impact of changing some179

key parameters of the mass-flux scheme, which were kept fixed so far, in view of the180

difficulty to explore a multi-dimensional space. Section 5 summarizes the main results181

and discusses the gain obtained from this revisiting of 15 years of model development.182

2 Shallow convection parameterization in LMDZ183

The representation of boundary layer convection, shallow cumulus and stratocu-184

mulus clouds is unified in the LMDZ model by using a combination of eddy diffusion185

and a mass flux scheme to parameterize the boundary layer transport. This approach186

is often referred to as an EDMF approach (see e. g. Köhler et al., 2011), for eddy-187

diffusivity and mass-flux. In LMDZ, the mass flux scheme is coupled to a bi-Gaussian188

representation of the sub-grid scale distribution of the saturation deficit, from which189

cloud cover and condensed water are deduced. The mass flux scheme and bi-Gaussian190

scheme, the two targeted parameterizations of the parameter exploration presented in191

this study, are detailed hereafter. We identify the free parameters, which are used for192

the parametric exploration with bold font in the text. A sketch of the main elements193

of the parameterizations and associated free parameters is given in Fig. 1.194
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2.1 The thermal plume model195

The “thermal plume model” under consideration in the present study summarizes
the collective behavior of a population of thermal plumes (or cells, or rolls) through a
unique bulk thermal plume. Each atmospheric column is divided into a mean ascending
thermal plume of mass flux f = ραwth (where ρ is the air density, α is the fractional
cover and wth is the vertical velocity of the plume), and a compensating subsidence
in the environment of mass-flux −f . The value of a model state variable ψ within the
thermal plume ψth is computed using the stationary plume conservation equation:

∂fψth
∂z

= eψ − dψth + ρSψ (1)

where e and d are the lateral entrainment and detrainment of air toward and away196

from the plumes (the quantity is assumed to enter the thermal plume with its large197

scale value ψ). For variables conserved by the convective transport, such as liquid198

potential temperature θl or total water qt, the source term is set to Sψ ≡ 0. The199

plume vertical velocity wth is computed with the same equation with a source term200

that includes buoyancy and a drag term. The fraction of the horizontal surface covered201

by plumes at altitude z is then deduced as α = f/(ρwth).202

The total boundary layer vertical transport of ψ is

ρw′ψ′ = f(ψth − ψ)−Kz
∂ψ

∂z
, (2)

where Kz = lmixS(Ri)
√

TKE is the eddy diffusivity, lmix being a turbulent mixing
length and S(Ri) a stability function that depends upon the local gradient Richardson
number Ri. The turbulent kinetic energy TKE is integrated in time from a local
prognostic equation, following Yamada (1983). The technical implementation details
are given by Vignon et al. (2017). Given this framework, the mass flux part is entirely
defined by the specification of e and d from which f is deduced from the continuity
equation for the plume

∂f

∂z
= e− d (3)

In the original version of the thermal plume model (Hourdin et al., 2002) the203

plume is fed laterally by warm air from the surface boundary layer, with e > 0 when204

∂zθv > 0 in the first unstable layers above the surface. Above this surface layer,205

entrainment is null and detrainment is viewed as a shedding due to lateral mixing.206

It consists in reducing the width of the thermal plume with height, compared to the207

width that would correspond to a conservative thermal plume (∂f/∂z = 0). Those208

formulations were inspired by physical considerations and tested a posteriori on a series209

of LES cases of dry convection proposed by Ayotte et al. (1996).210

2.2 Entrainment and detrainment derived from LES sampling211

The subsequent versions of the entrainment and detrainment formulations were212

largely inspired and adjusted in the SCM/LES framework. In order to use LES to213

inspire the development of mass flux convective parameterizations, one has to identify214

and sample the thermal plumes in the LES, in a way that matches with the EDMF215

framework. The classical approach consists in applying a combination of thresholds on216

water vapor or condensed water in clouds, vertical wind or a virtual tracer emitted at217

the surface for that specific purpose (Couvreux et al., 2010). Once the plume region is218

identified, the plume vertical velocity, fractional cover and mass flux can be computed219

as well as the composite value ψth of any conserved quantity ψ inside the plume.220

Knowing f , ψ and ψth, one can then invert the conservation equation of the mass flux221

(Eq. 3) and ψ (Eq. 1 with Sψ = 0) to deduce e and d.222
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Such a sampling was used to estimate the vertical profiles of entrainment and223

detrainment in LES for standard cases of continental and marine cumulus (Rio et al.,224

2010). The analysis of the results showed that the entrainment was strong in regions225

of positive buoyancy, and that detrainment was dominating in regions of negative226

buoyancy of the plume. This would be the case for a plume with a value of ρα227

that would not vary vertically (almost constant fractional cover), which would entrain228

air where it accelerates and detrain where it decelerates. From the LES sampling,229

it appears that the entrainment and detrainment values lie in between the plume230

obtained with the constant fractional cover approximation and a conservative plume231

(∂f/∂z = 0, e = 0, d = 0). A parameter B1, assumed to range between 0 and 1, was232

therefore included as a scaling factor of the entrainment and detrainment computed233

with the constant fractional cover approximation.234

Like most convective parameterizations, we use a momentum equation which235

assumes that subplume turbulent fluctuations and non-hydrostatic pressure perturba-236

tions reduce buoyancy and act as a drag term proportional to entrainment (Simpson237

& Wiggert, 1969; de Roode et al., 2012). The plume vertical velocity wth is ob-238

tained by solving Eq. 1 for ψth = wth and ψ = 0, with a source term specified as239

Swth
= A1 B − A2 w2

th where B = g(θv,th − θv)/θv is the buoyancy (θv being the240

virtual potential temperature) that accelerates the plume and the second term a drag241

effect, with A1 = 2/3 and A2 = 0.002 m−1.242

The entrainment rate ε = e/f depends on the plume buoyancy and vertical
velocity:

ε = max

[
0.,

B1

1 + B1

(
A1

B

w2
th

−A2

)]
(4)

where B1 = 0.9, a value consistent with previous studies (Gregory, 2001; Siebert &243

Frank, 2003). The plume is mainly entraining in regions of positive buoyancy. It is the244

opposite for the detrainment rate δ = d/f which is favored in regions where buoyancy245

is negative, as suggested by observations (Bretherton & Smolarkiewicz, 1989). A246

satisfactory correlation is obtained between LES results and parameterization with247

the following definition of δ:248

δ = max

[
0.,−A1×B1

1 + B1

B

w2
th

+ CQ(
∆qt/qt

(wth/w0)2
)D
]
, (5)

where ∆qt is the contrast in humidity between the plume and its environment, with249

CQ = 0.012 m−1 (the vertical velocity being normalized by w0 = 1 m s−1) and250

D = 0.5. The first term corresponds to the buoyancy contribution to the detrainment251

rate while the second term accounts for the fact that evaporation around the clouds252

can reinforce the negative buoyancy of extracted air parcels, a mechanism enhanced253

when ∆qt increases.254

2.3 Modification for stratocumulus clouds255

A recent modification of the scheme targeted the representation of stratocumulus
clouds (Hourdin et al., 2019). Indeed, the previous version of the mass flux model was
destroying stratocumulus clouds, by overshooting too far above the strong inversion
at the stratocumulus cloud top. Based on a combination of numerical and physical
arguments, this deficiency was overcome by computing the plume buoyancy as the
difference of the virtual potential temperature within the thermals at an altitude z
with the virtual potential temperature in the environment at a higher altitude z + δz
(rather than at the same level), so that buoyancy reads:

B′ = g
θv,th(z)− θv(z + δz)

θv(z + δz)
. (6)
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With this modification, the detrainment is “aware” of the inversion before reaching it,256

and starts to detrain below it.257

In the current version, δz = DZ × z, DZ being considered as a new adjustable258

parameter. Based on a systematic sensitivity analysis to this single parameter in both259

SCM and 3D configurations, we identified a range of acceptable parameter values260

between 0.06 and 0.15. The value was finally fixed to 0.07 in the 6A version of LMDZ.261

One objective of the present paper is to revisit the value of this parameter whilst262

simultaneously adjusting the other parameters. This has not been possible previously,263

and can now be done systematically using the High-Tune Explorer described in Part I.264

2.4 The cloud scheme for boundary-layer clouds265

In order to compute the cloud fraction and in-cloud condensed water, we use a266

probability distribution function for the sub-grid scale saturation deficit, s. This distri-267

bution F (s) is approximated by a bi-Gaussian distribution. Thanks to a tracer-based268

sampling of LES results, Jam et al. (2013) demonstrated that one mode corresponds269

to the contribution from the thermal plumes and the second one to contribution from270

their environment. Based on these findings, a statistical cloud scheme was derived271

using five variables: the plume fraction α, the mean saturation deficits within environ-272

ment, senv, and plumes, sth (which are directly given by the thermal plume model),273

and their associated standard deviations, σs,env and σs,th, for which a parameterization274

was proposed. Considering that the major contribution to both standard deviations of275

s is the exchange of air between the plume and its environment and that the dispersion276

of s values is enhanced when the contrast sth− senv increases, standard deviations are277

parameterized as follows:278

σs,th = BG2 (α+ 0.01)
−γ1 (sth − senv) + b qtth (7)

and

σs,env = BG1
αγ2

1− α
(sth − senv) + b qtenv

, (8)

where b, BG1, BG2, γ1 and γ2 are free parameters, and the last term, bqt,th or bqt,env,279

is a minimum width of the distribution introduced for a value of α ≈ 0. It was shown280

in preliminary tests that the three parameters, b, γ1 and γ2 do not have a dominant281

role and their values were kept fixed in the results presented here.282

The values of b = 2 × 10−3, BG1 = 0.92, BG2 = 0.09, γ1 = 0.4 and γ2 = 0.6283

were chosen using LES results by fitting independently the in-thermal and environment284

Gaussian distributions.285

The thermal plume model is activated before the cloud scheme. The condensation286

is taken into account in the computation of liquid potential temperature (considered287

as conserved variable in Eq. 1) and virtual potential temperature involved in the288

buoyancy computation. Once e, d and f are determined, Eq. 1 and Eq. 2 are applied289

to the total water and liquid potential temperature to compute tendencies associated290

with the boundary-layer transport. From the thermal plume model computation, the291

parameters of the bi-Gaussian sub-grid scale distribution, F (s), for the saturation292

deficit can be estimated as explained above. From this distribution, the cloud fraction293

αcld =
∫∞
0
F (s)ds and cloud liquid content ql =

∫∞
0
sF (s)ds at the grid scale are294

finally computed. Note that the same cloud scheme is applied with a single mode of295

width σs,env = b qtenv
when the thermal plume model is not activated (for stratiform296

clouds for instance) while a different scheme is used for deep convection. Equations297

and details on the cloud scheme are given in Hourdin et al. (2013).298

The computation of the conversion from cloud water to rainfall follows Sundqvist
(1978): rainfall starts to precipitate significantly above a critical value CLC for the in-
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name min max ref sampling controls
A1 0.5 1.2 2./3. linear contribution of buoyancy to the plume acceleration
A2 1.5e-3 4.e-3 2.e-3 linear drag term in the plume acceleration
B1 0. 1. 0.95 linear scaling factor for entrainment and detrainment
CQ 0. 0.02 0.012 linear influence of humidity contrast on detrainment
DZ 0.05 0.2 0.07 linear environmental air altitude shift for buoyancy computation
BG1 0.4 2. 1.1 linear width of the environment subgrid scale water distribution
BG2 0.03 0.2 0.09 linear width of the plume subgrid scale water distribution
EVAP 5e-5 5e-4 1e-4 log reevaporation of rainfall
CLC 1e-4 1e-3 6.5e-4 linear autoconversion of cloud liquid water to rainfall

Table 1. Parameters involved in the iterative refocusing. The minimum and maximum values

explored are given as well as the reference value used in the 6A configuration of LMDZ, the in-

formation on whether the parameter is explored with a linear or logarithmic sampling and the

meaning of each parameter.

cloud liquid water ql, fixed to 0.65 g/kg in the 6A configuration, with a time constant
τ of half an hour. The associated sink for liquid water is

dql
dt

= −ql
τ

[1− e−(ql/CLC)2 ] (9)

Following Sundqvist (1988), a fraction of the precipitation is re-evaporated in
the layer below and added to the total water of this layer before the statistical cloud
scheme is applied. The associated reduction of the precipitation flux P with altitude
z is given as

∂P

∂z
= −EVAP[1− qt/qsat]

√
P (10)

where qt is the total water mixing ratio, qsat the water mixing ratio at saturation and299

EVAP a free parameter.300

A summary of the parameters finally retained as free parameters in the present301

study are given in Tab. 1.302

3 Experimental setup303

3.1 The 6A version of LMDZ304

The parameterizations described here are a crucial piece of the physical pa-305

rameterizations of the LMDZ atmospheric global model. The recent modification306

of the detrainment formulation presented above produced a major improvement in307

the 6A version, the atmospheric component of the IPSL-CM6A-LR used for CMIP6.308

This version is extensively described by Hourdin et al. (2020, accepted in James,309

DOI:10.1029/2019MS001892). Beyond controlling boundary layer clouds, the thermal310

plume model provides a lifting energy and lifting power to a mass flux parameteriza-311

tion of deep convection, which itself can be self-maintained through its coupling with a312

parameterization of the cold pools created below cumulonimbus by rainfall evaporation313

(Grandpeix & Lafore, 2010). Deep convection and cold pools only indirectly affect the314

boundary layer convection and shallow cumulus, by modification of their environment.315

They are not active at all in the test cases considered in the present study.316

As explained in the introduction, the development and tuning of the 6A version317

of LMDZ resulted from a long iterative process. The final adjustment of the top-of-318

atmosphere (TOA) net radiation was based for a large part on the adjustment of the319
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Figure 2. Vertical discretization : standard L79 grid of the 6A version and refined L95 dis-

cretization. The figure shows the layer thickness (x-axis) as a function of altitude (y-axis). The

left panel shows the whole atmospheric column and the right panel is focused on the first three

km above surface.

conversion rate of cloud liquid water to rainfall CLC. This parameter very efficiently320

modifies the net balance because it affects only liquid (thus essentially low) clouds and321

has thus a much larger impact on the SW than on the LW radiation at TOA.322

Two vertical discretizations are used in the present study. The first one, based on323

79 layers (L79) corresponds to the standard vertical grid in the 6A version of LMDZ.324

In the first 3 km, the layer thickness is typically ∆z ' 0.12z. A L95 grid is defined325

for the present study to refine the vertical resolution in the first few km above surface.326

The layer thickness is typically ∆z ' 0.067z. The dependency of layer thickness upon327

altitude is given in Fig. 2.328

The motivation for using these two vertical grids here is to illustrate the approach329

both on a revisit of previous results and on a predicted evolution for the next model330

generation. The vertical resolution is key for the representation of boundary layer331

clouds which are often not much thicker than one or a few model layers. It also allows332

us to illustrate the significance of the structural error in the simulation of the cloud333

altitude and its link with the model vertical resolution.334

3.2 SCM/LES test cases and associated metrics335

For the SCM calibration, we consider four test cases among the cases listed in336

Part I, including one that consists of three sub-cases.337

The first case, IHOP/REF, corresponds to an almost cloud-free convective bound-338

ary layer observed during the International H2O Project (IHOP) field-experiment.339

This case is derived from observations collected on 14 June 2002 over the Southern340

Great Plains (Couvreux et al., 2005).341
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The second case, ARMCU/REF, is derived from observations collected on 21342

June 1997 at the Atmospheric Radiation Measurement site in Oklahoma, U.S.A.343

(Brown et al., 2002). This idealized case is typical of the diurnal cycle of shallow344

convection over land with well developed fair weather cumulus.345

The RICO (Rain In Cumulus over the Ocean, vanZanten et al., 2011) experiment346

focuses on precipitation processes at play in the trade-wind shallow cumulus. During347

RICO, significant precipitation was frequently observed, offering a unique opportunity348

to study the dynamics of shallow cumuli and precipitation.349

We finally use the composite stratocumulus-to-cumulus transition case discussed350

by Sandu and Stevens (2011). This case was built by compositing the large-scale con-351

ditions sampled along a set of individual Lagrangian 3-day trajectories that occurred352

over the northeastern Pacific during the summer months of 2006 and 2007. The stra-353

tocumulus deck presents a pronounced diurnal cycle and begins to break-up during the354

second day while the boundary layer deepens. Two variations of this SANDU/REF355

case, corresponding to a slower and a faster transition in cloud fraction were derived in356

a similar manner by compositing over the trajectories experiencing the fastest and the357

slowest decrease in cloud fraction over the first two days respectively (FAST and SLOW358

hereafter). The setup of the REF, FAST and SLOW cases and the LES simulations359

are described in more detail in Sandu and Stevens (2011).360

The ARMCU/REF and RICO/REF cases were used extensively for the inspira-361

tion, development and assessment of the thermal plume model and bi-gaussian cloud362

scheme (Couvreux et al., 2010; Rio et al., 2010; Jam et al., 2013). The SANDU cases363

were at the heart of the work on the modification of the thermal plume model to364

represent stratocumulus clouds (Hourdin et al., 2019).365

Various metrics were tested and considered during preliminary experiments. Here366

we retain metrics directly linked to the mean thermodynamical conditions targeted, as367

the mixed layer potential temperature and humidity, indicative of the mixing efficiency368

of the EDMF scheme. For all the cloudy cases, we retain either the total cloud cover369

(αcld,max, computed as a maximum on the vertical) or the height of clouds. For the370

latter, two diagnostics are used: an average height zcld,ave =
∫∞
0
αcldzdz/

∫∞
0
αclddz371

and a height that better emphasizes the height of the maximum cloud fraction, com-372

puted as zcld,max =
∫∞
0
zαcld

4dz/
∫∞
0
αcld

4dz. This choice is rather arbitrary and was373

shown to work well in practice. Such integral metrics are less dependent on the model374

vertical resolution than maximum cloud height for instance. The metrics are averaged375

in time over a few hours in order to smooth out possible numerical oscillations. The376

choice of a particular set of metrics is rather arbitrary and thus critically relies on the377

modeler’s expertise and objectives. The particular set of metrics retained here is given378

in Tab. 2.379

As will be highlighted by the ensemble of simulations run with the High-Tune380

Explorer, two aspects are particularly critical and are thus targeted by the retained381

metrics. The first one concerns the RICO case which, depending on the parameter382

values, can have a maximum cloud fraction at 3 km varying from a few to 100%.383

This altitude corresponds to a second maximum, while the cloud fraction at cloud384

base is much less sensitive to the tuning. The second aspect targeted by the metrics385

is the vertical development of the boundary layer in the transition cases. It was386

shown in particular in Hourdin et al. (2019) that this growth is very sensitive to the387

DZ parameter, introduced on purpose to improve the representation of stratocumulus388

clouds. In particular, it was more difficult to represent correctly the SANDU/SLOW389

case. For those cases, the height of the maximum cloud fraction, which is located just390

below the boundary-layer top, was used.391
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Case IHOP ARMCU RICO SANDU SANDU SANDU
subcase REF REF REF REF SLOW FAST

time 7-9 7-9 19-25 50-60 50-60 50-60

θ400−600m X X X

qv,400−600m X

αcld,max X X

zcld,ave X X

zcld,max X X X X

Table 2. Metrics retained for the SCM/LES tuning. The time retained for time average is

given in hours from the beginning of the simulation.

  

Total rad. TOA (rt)
Swup TOA (rsut)

Glob

Convective,           intermediate,        subsiding Circum Antact. anomaly

Mask Variable Metrics target error
W m−2 W m−2

glob.rt 2.5 0.2
glob.rsut 99.6 5
circAa.rsut 24.0 5
circAa.rlut -48.6 5
subs.rsut 84.9 5
weak.rsut 81.8 5
conv.rsut 103.2 5
subs.rlut 274.6 5
weak.rlut 264.3 5
conv.rlut 235.8 5
etoa.rsut 11.0 5

Figure 3. Metrics retained for the GCM tuning consisting in radiative fluxes at top-of-

atmosphere averaged over a mask, shown in red on the left hand side of the figure, or a differ-

ence between a red and blue mask (anomalies). The target and σ error retained for the history

matching are shown in the table on the right hand side. The target values are computed from the

CERES-EBAF L3b observational data-set (Loeb et al., 2009).
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3.3 Setup of GCM simulations and associated metrics392

For the global simulations, we used stand-alone atmospheric simulations forced393

by SST and Sea Ice Cover (SIC) mean seasonal cycle, following the “amip” protocol394

(twelve SST and SIC maps, one per month, interpolated in time with splines). Sim-395

ulations are run on the standard low resolution (LR) horizontal grid made up of 144396

points in longitude and 143 in latitude.397

The metrics retained for the GCM simulations are typically those which were398

prioritized during the effective tuning of the 6A version of IPSL-CM6A-LR. They399

consist of radiation at top-of-atmosphere computed in annual mean and averaged over400

spatial masks as illustrated in Fig. 3, using as a reference the CERES-EBAF L3b401

observational dataset (Loeb et al., 2009).402

The global total radiation (imbalance between SW and LW) is of course a priority403

target. Note that the global radiative balance is not constrained by observations. It is404

assumed that it should be zero in a climate which would have reached an equilibrium405

(or quasi equilibrium). Because the climate is currently warming under the effect of406

green house gas increase, it is assumed that there is in fact currently an imbalance407

in the global top-of-atmosphere radiation of about 0.5-1 W/m2, which is equal to408

the “oceanic heat uptake”, a downward net flux at the atmosphere-ocean interface,409

associated with the slow oceanic warming. Those values are, however, not observed;410

the typical uncertainty on the global SW and LW top-of-atmosphere fluxes being of411

the order of 4 W/m2 (Loeb et al., 2009). In fact, rather than tuning the global412

radiation to the theoretical value of 0.5-1 W/m2, we rather tuned it to a global413

imbalance of about 2.5 W/m2. We know indeed that, for our particular model, an414

imbalance of 2.5 W/m2 in forced-by-SSTs stand-alone atmospheric simulations leads415

to a global mean SST in the coupled model that matches present-day observation. The416

inconsistency between the tuning in stand-alone and coupled simulations may be due417

in part to some global energy leak in the model (typically of the order of 0.5 W/m2
418

in the current IPSL-CM model) and changes in the mean climate that may induce419

changes in the global balance (like a different location of the mid-latitude jet, which420

may modify the latitudinal distribution of the CRE).421

In addition to the global radiative balance, we also consider the global TOA SW422

upward radiation, assuming that the downward one is well constrained, and that the423

global LW outgoing radiation will be constrained automatically by the constraint on424

the SW and total radiation.425

Additional constraints are considered by defining masks on the top-of-atmosphere426

outgoing LW and SW radiation, considering separately convective, subsiding and in-427

termediate regimes in the tropics (defined by a threshold on the mean vertical velocity428

in ERAI reanalysis) and a contrast in latitude between the roaring forties and tropical429

oceans. These last metrics target a classical circum Antarctic warm bias in coupled430

ocean-atmosphere simulations. Similarly, a specific metric is dedicated to the SW con-431

trast between Eastern Tropical Oceans and mean tropics: the ETO Anomaly, defined432

by Hourdin et al. (2015), in relation with the East Tropical Ocean classical warm433

biases.434

3.4 Setup for the history matching435

The history matching sequence consists in the following steps which are described436

in detail in Part I (Couvreux et al., 2020).437

1. The metric selection and references were just detailed for both SCM (Sec-438

tion 3.2) and GCM (Section 3.3) simulations.439
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2. The selection of model parameters to be adjusted and the a priori param-440

eter ranges were presented in Section 2.441

3. The experimental design then consists of defining the ensemble of SCM or442

GCM experiments on which metrics are effectively computed. The goal is to443

optimally sample the parameter space with a set of parameter values as small444

as possible (in practice a few tens to hundreds).445

4. An emulator or surrogate model is then built for each metric, based on a Gaus-446

sian Process (GP). The emulator gives a statistical estimate of the corresponding447

metric value at any point of the full parameter space, without running the SCM448

or GCM, providing both the expectation of the metrics and an estimate of the449

uncertainty associated with the fact that only part of the parameter space was450

effectively sampled.451

5. By comparing the reference metrics and those inferred with the emulators, his-452

tory matching then rejects parameter values that lead to unacceptable model453

behavior (too large distance from the reference) and thus defines a not-ruled out454

yet (NROY) space, the model parameter space that cannot be further reduced455

given the sources of uncertainty.456

6. Iterative refocusing finally consists in sampling the NROY space thus ob-457

tained and rerunning steps 3 to 5, constructing a refined emulator with smaller458

associated uncertainty inside this previous NROY. This new emulator is used459

to reduce the NROY space iteratively, each iteration being called wave.460

Note that the NROY space is not a well defined geometrical object. It can only be461

defined by sampling the hypercube (with a much larger sample than the one used for462

the experimental design) and runing the emulators to select which parameter vector463

is acceptable or not. The NROY at wave #N is defined in practice by applying464

sequentially all the emulators computed during the N waves, which have thus to be465

stored along the iterative procedure. The sample used for experimental design at wave466

#N+1 is a sub-sample, chosen randomly inside this selection.467

Mathematically, the definition of the NROY space of parameters is based on468

implausibility derived from Gaussian process emulators fitted to each metric, as de-469

tailed in Part I. The implausibility itself (Williamson et al., 2013), I(λ), is defined as470

the absolute difference between the observed metrics (target) and expectation of the471

emulator for the same metrics, divided by the standard deviation of this difference,472

comprising observational uncertainty, model structural uncertainty and uncertainty473

associated to the emulator (cf. Part I for a complete presentation). A point of the474

parameter space is kept in the NROY space when the implausibility is smaller than475

a threshold or cutoff. In all the applications presented below, a series of iterations476

or waves is done, keeping the same list of metrics at each iteration. The cutoff on477

implausibility defining the NROY space is progressively reduced from 3 for the first478

4 waves, to 2.5 in the following 3 and finally 2 for wave number larger or equal to479

8. Reducing the implausibility cutoff along the consecutive waves, accompanying the480

progressive reduction of the emulator uncertainty, is a normal part of the sequential481

calibration procedure (see Williamson et al., 2017, for discussion). After a series of482

waves based on SCM simulations, additional waves are optionally completed with full483

3D GCM simulations, adding the 3D GCM metrics to the SCM ones.484

The iterative refocusing is applied here first on 20 or 30 waves in SCM mode,485

as described in Part I using the automatic High-Tune Explorer tool. For SCM/LES486

comparisons, the observational error is estimated from the intra-model spread in an487

ensemble of LES simulations. This variability is generally much smaller than the488

discrepancy (structural error) between LES and SCM simulations. The discrepancy489

error is not known, and so we use history matching whilst prescribing a “tolerance to490

error” as presented in Part I (and in Williamson et al., 2015, 2017). This tolerance491

determines the existence of a non-empty NROY space. As we move through the492
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waves, tolerance to error can be reduced when we see that the model is capable of493

getting to within previous tolerances of target metrics, if there is a good physical494

reason for the model being able to reduce target metrics (for example, there may495

be inherent limitations with the vertical resolution of the SCM that would prevent a496

metric from being as close to a reference LES at some altitude without compromising497

the performance elsewhere in the column and hence getting the metric “right for498

the wrong reasons”; our tolerance to error should reflect those cases when they are499

understood). Four numbers are used to characterize the tolerance to error in the SCM500

experiments presented here. For the potential temperature and specific humidity in501

the mixed layer, we directly prescribe the tolerance in terms of an absolute tolerance502

ΣT and Σq while a relative error is prescribed on the height of clouds Γz = Σz/z503

and cloud fraction Γαcld
= Σαcld

/αcld. For the height of clouds, the choice of relative504

rather than absolute error specification is motivated by the fact that the layer thickness505

depends almost linearly upon altitude, so that a relative error in terms of altitude is506

an absolute error in fraction of layer thickness.507

For a subset of experiments, a couple of waves of iterative refocusing are run508

with the full 3D GCM, starting from a sampling of the model parameters, inside the509

NROY space obtained at wave 20 or 30 of the iterative refocusing in SCM mode. The510

GCM tolerance to error is fixed to the values given in Fig. 3.511

4 Revisiting the tuning of low clouds in LMDZ6A512

In this section, we revisit the tuning of the 6A version of LMDZ without modify-513

ing the parameters that control detrainment and entrainment, except for the coefficient514

DZ, the only one that was used as a free parameter during the tuning phase of this515

model configuration. The two other parameters used for this first illustration are the516

threshold value for the auto-conversion of in-cloud water into rainfall, CLC, and the517

factor put on the re-evaporation of rainfall coming from layers above, EVAP, two518

parameters which were extensively used as well during the 3D tuning of this version.519

Succinctly, we automatically retune 3 of the model free parameters assuming that all520

the others are fixed to the values of the standard LMDZ6A configuration. This exam-521

ple is thought as a first proof of concept of our approach, and to illustrate on a simple522

case the added value of preconditioning 3D GCM tuning with SCM simulations. It523

is also an opportunity to revisit the choice of the DZ parameter which was tuned by524

hand, as documented in Hourdin et al. (2019). It was shown in that study with both525

a L79 and L95 vertical grid configurations (the adjustment of the altitudes of this L95526

configuration being slightly more refined in the first kilometers than the one used here,527

which is more refined in the upper atmosphere, anticipating a use in the 3D global528

model) that there was an optimal value of parameter DZ, somewhere between 0.05529

and 0.15. A value of 0.07 was finally retained in the 6A version.530

4.1 1D history matching531

For this first example, we use five metrics, the ones shown with bold crosses in532

Tab. 2. 20 waves are run iteratively following the protocol described in Section. 3.4.533

0.56% of the parameter space is retained at wave 20 and the history matching appears534

to converge.535

Fig. 4 shows the “implausibility matrices” obtained for wave 1, 5 and 20 from536

left to right. Implausibility matrices constitute an attempt to visualize a n-parameter537

NROY space (here n = 3). The matrix itself is divided into 2D sub-matrices, each one538

being a restriction to two parameters, the names of which are given in the diagonal of539

the main matrix. To fix ideas, the x-axis in the upper-right sub-matrix corresponds540

to CLC and the y-axis to DZ. Each axis spans the initial [min,max] range for the541

parameter considered. Each axis of the sub-matrix is divided into 15 sub-intervals542
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Figure 4. Implausibility matrices for wave 1, 5, and 20 of an history matching exploration,

run with the L79 vertical grid and Γz=0.2. The upper-right triangle is made of sub-matrices

that display the fraction of points with implausibility lower than the chosen cutoff while the

sub-matrices of the lower-left triangle show the minimum value of the implausibility when all the

parameters are varied except those used as x- and y-axis, the name of which are given on the

diagonal of the main matrix (additional details given in the text).
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Figure 5. Reduction of the volume fraction of the NROY space (compared to the full initial

hypercube volume, y-axis) remaining after N waves of history matching (x-axis) for the L79 and

L95 vertical grids and with a relative tolerance to error on the cloud height of Γz=0.12 and 0.2.

The cutoff for implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as

indicated on the figure.
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(this number is adjustable within the tool), so that the matrix is made of 225 pixels.543

From a random sampling of (here) 106 vectors λ, we compute the fraction of points544

with implausibility lower than the cutoff, when varying the n − 2 (=1 here) other545

parameters. This fraction is displayed on the sub-matrices of the upper-right triangle.546

The total fraction of the volume of the NROY space relative to the initial n-dimension547

hypercube corresponding to the a priori [min,max] values of the parameters is the548

average over the sub-matrix, which should be the same for all the sub-matrices of the549

upper-right triangle and which is also indicated in text below the figure. A dark grey550

color means that there is no way to fit the observations by varying the n-2 unfixed551

parameters while a value of 100% means that values of the two parameters in x and y552

axis can be retained whatever the values of these n-2 parameters.553

The sub-matrices of the lower-left triangle are displaying for each pixel the min-554

imum implausibility obtained when varying the n − 2 other parameters. They are555

orientated the same way as those on the upper-right triangle, for easier visual com-556

parison, so that the labeling of the axis should be inverted for this lower-left triangle,557

compared to the names given on the diagonal (i. e. CLC corresponds to the x-axis558

and DZto the y-axis for the lower-left sub-matrix as for the upper-right sub-matrix).559

We note that, though we have performed 20 waves, here, the objective is not to560

find a single good simulation, which could be done using a Bayesian procedure within561

NROY space (Salter & Williamson, 2016), but to identify all good matches in order562

to use this subspace for the tuning of the 3D GCM.563

The values of the three parameters retained for the 6A version of LMDZ6A,564

shown as dots in the figure, lie within the final NROY space. This result suggests that565

the long and slow expert tuning process of the 6A version was successful, at least for566

boundary-layer clouds and regarding the chosen metrics. It gives us confidence that567

in this case we did not miss a different tuning which could have significantly improved568

the results.569

The size and shape of the final NROY space of course depends on the subjective570

choice of metrics and associated model tolerance, as well as on the vertical resolution.571

In the example shown here, we tested in particular the sensitivity of the NROY space572

to the addition of the slow and fast varying transition cases, to the resolution and573

to the tolerance error of the metrics associated with the height of clouds. Fig. 5574

compares the evolution with wave number of the size of the NROY space relative575

to the initial hyper-cube size with two values for the tolerance on the cloud height576

metrics, Γz=0.12 and 0.2, for vertical resolution L79 and L95. In both cases for L95577

resolution, the initial tuning of the 3 parameters lies in the NROY space. For the578

L79 grid, the NROY space becomes empty after 12 waves indicating that it is not579

possible to match the metrics with the lower resolution vertical grid for Γz=0.12. For580

the L79 resolution, the error given by Γz = 0.12 corresponds to one layer depth. It is581

to say that, for a coarser grid the tolerance to errors has to be larger. Although not582

a surprise, this point is quantified here by our approach. Adding the SANDU/SLOW583

case to this history matching sequence with the L79 grid results in an empty NROY584

before convergence, for both Γz = 0.12 and 0.2 (results not shown). This is the reason585

why the SANDU/SLOW case was not included in this first sequence.586

Note that only the sensitivity of the history matching sequence to the tolerance587

to errors on cloud height metrics was tested because of the rather straightforward link588

with vertical resolution. However, the sensitivity to the tolerance to errors for the589

other variables would deserve investigation as well.590
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Figure 6. Zonally average latitudinal variation (left) and latitudinally averaged (between

20S and 5S) zonal variation (right) of the SW Cloud Radiative Effect (CRE) at TOA for 45 L79

GCM simulations run with the sample of parameters used for wave 1 (grey) and a sampling of

the NROY space remaining at wave 20 of the SCM history matching (red). The blue curves cor-

respond to year 1 to 10 of a simulation run with the nominal values of the 3 parameters. The

EBAF observations are superimposed in black. The location of continents, oceans and stratocu-

mulus (Stcu) regions are indicated on the bottom of the right figure.

4.2 3D test of the SCM-based tuning591

The reduction of the NROY space based on a series of SCM simulations for four592

test cases is a very interesting result in practice, as it may save both time of scientific593

experts and computer resources needed for the full 3D global tuning.594

In order to illustrate this point further, we run two sets of 45 2-year long ex-595

periments with the 3D GCM with the samples of the parameter space used for wave596

1 (before any reduction) and for wave 20. The left panel of Fig. 6 shows the mean597

latitudinal variations of the TOA SW CRE averaged both zonally and annually. While598

the spread across models is of 30 W/m2 before NROY selection, it reduces to less599

than 10 W/m2 at wave number 20. All the simulations using wave 20 parameters600

are close to the nominal 6A model configuration (blue) and in reasonable agreement601

with EBAF observation (black). This shows that a very similar tuning to the final602

one would have been obtained by tuning in 1D only, once the other model parameters603

are fixed. The right panel of Fig. 6 shows the longitudinal variation of the same SW604

CRE in the southern tropics. This diagnostic underlines the contrast between a weak605

reflection of SW radiation (weak negative CRE) in the regions of trade winds cumulus,606

at around 130W in the Pacific ocean and 40W over the Atlantic, and strong reflection607

in the regions of stratocumulus, at 100W over the Pacific and at Greenwich longitude608

over the Atlantic. The large range of SW CRE explored (from -20 to -110 W m−2)609

in the stratocumulus regions before any parameter selection (wave 1, grey curves) is610

consistent with the strong impact of the value of DZ (Hourdin et al., 2019) on the611

thickness of the stratocumulus clouds or even its disappearance. All the simulations612

using wave 20 parameters (red curves) produce results consistent with the control613

simulation (blue).614

We present in Fig. 7 the implausibility statistics obtained after considering 3D615

simulations using the 3D metrics presented in Fig. 3. The left panel shows the implau-616

sibility matrix, which would be obtained with one single wave without preconditioning617

by 1D tuning. In this simple case, the selection is already quite efficient. The second618
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Figure 7. Implausibility matrices for wave 1 using only the 3D GCM simulations and metrics

(left), wave 1 using both SCM and GCM metrics (middle) and wave 20 with both SCM and 3D,

i. e. adding 3D GCM metrics after 20 waves run with the SCM only (right). Both the SCM and

GCM use the L79 vertical grid.

panel shows the combination, on this first wave, of 1D and 3D metrics (using 45 param-619

eter vectors used in parallel in 1D and 3D simulations), illustrating the significant gain620

of adding 1D metrics in the 3D tuning. However, in this case, the cost is essentially the621

same (the 45 GCM simulations). Finally, the last panel shows how adding one wave622

with the 45 3D simulations performed on wave 20 of the 1D multi-wave tuning shown623

in Fig. 4 reduces the NROY space to a small and well defined region which includes624

the tuning finally retained for the LMDZ6A version.625

5 Improving the representation of boundary-layer clouds626

In this second example, we setup and tune a new version of the global model627

after modifications have been done to improve the representation of boundary-layer628

clouds at process level. The modification of the model consists here in both increasing629

the model vertical resolution and varying internal parameters of the thermal plume630

model that were kept fixed so far. The sensitivity of the parameterization behavior631

to the value of those parameters was partly explored during this development phase,632

by comparing SCM and LES results (Rio et al., 2010; Jam et al., 2013). However,633

without the tools presented here, it was not possible to fully explore the parameter634

space and some arbitrary values were finally retained, which have not been modified635

since. Indeed, even in the SCM framework, and even for a subset of parameterizations,636

exploring the full parameter space without tools such as those presented here is not637

practicable.638

Here we explore the sensitivity to parameters A1, A2, B1, CQ, BG1, BG2639

(see Tab. 1). The tuning process is applied by varying these parameters together with640

those used in the previous section: DZ, EVAP, and CLC.641

5.1 SCM history matching with 9 parameters642

We first perform a 30-wave SCM history match with the extended set of param-643

eters. Note that 20 or 30 waves may sound like a large number, though this has been644

done in epidemiological studies (Andrianakis et al., 2017), and is inexpensive using the645

SCM. The NROY matrices are shown in Fig. 8 for Γz=0.12 and Fig. 9 for Γz=0.03.646
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Figure 8. Implausibility matrix for the 9-parameter history match after 30 waves, vertical

grid L95 and with a relative tolerance to error on the cloud height Γz=0.12
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Figure 9. Same as Fig. 8 (wave #30, vertical grid L95) but with a relative tolerance error on

the cloud height of Γz=0.03.
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Figure 10. Reduction of the NROY volume fraction (compared to the full initial hypercube

volume, y-axis) remaining after N waves of history matching (x-axis) for the L79 and L95 ver-

tical grid and relative tolerance error on the cloud height Γz=0.03, 0.06 and 0.12.The cutoff for

implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as indicated on

the figure. For the case with the L95 grid and Γz=0.03, two additional waves are added with 3D

GCM simulations.
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The decrease of the NROY fraction with increasing wave number is shown in Fig. 10647

for three values of Γz (0.12, 0.06 and 0.03) and the two vertical grids.648

The following lessons can be drawn from this new history matching sequence:649

1. The history matching seems to converge and to produce a rather smooth and650

consistent picture of the NROY space.651

2. Due to the freedom given by the additional parameters, it is now possible to652

keep a significant NROY even with Γz=0.03 for the L95 resolution. With this653

value of Γz, the ±2Σ tolerance to error is 0.06×z, which is close to the layer654

thickness.655

3. For the coarser grid, L79, only the Γz=0.12 case is able to maintain a non zero656

NROY space after 30 waves, i. e. for a ±1Σ tolerance to error close to the layer657

thickness.658

4. The NROY is obtained for values of the B1 parameter much smaller than ini-659

tially assumed, compensated by a larger value of A1 and of DZ. So, in this660

case the tuning retained for CMIP6 was probably sub-optimal. The physical661

interpretation of this different tuning will be discussed later on.662

5. In particular , the value retained for CMIP6 of the DZ parameter is now out663

of the final NROY space. This is due to the fact that the tolerance has been664

reduced and the number of metrics increased. In particular, it is now possible665

to include the SANDU/SLOW case, which was too badly represented to be666

considered in the previous section.667

6. In the final NROY, the range of some parameters is quite narrow, as that of B1,668

DZ or CQ, but others like CLC give room for a further tuning of the radiative669

balance in the full 3D global model.670

We show in Fig. 11 and Fig. 12, for waves number 1 (grey), 3 (pink), 7 (yellow)671

and 30 (green), the envelope of the vertical profiles of potential temperature, specific672

humidity and cloud fraction for the 90 SCM simulations run to build the emulator673

with the L95 configuration and smallest tolerance to error. For the cumulus cases674

(Fig. 11), the history matching converges to a narrow envelope (green) which contains675

the nominal 6A configuration (black). The improvement compared to the original676

profile is significant for the transition cases (Fig. 12). Allowing the thermal plume677

parameters to vary allows the boundary layer to grow higher, in particular for the678

SANDU/SLOW case. The red curve on these figures is the best of the simulations run679

to build the emulators for the 30 waves, best in the sense that the maximum (across680

metrics) value of the ratio of the distance to observations divided by the tolerance681

to error is the smallest. This best simulation was obtained as the 76th element of682

wave 26 (named SCM-26-076 on the graph). Note that the best simulation is not in683

wave #30 which is not a surprise. Because the iterative refocusing converges with a684

weak decrease of the NROY space in the last waves, the probability of sampling good685

simulations is not very different for these last waves.686

5.2 3D history matching687

We present here the results of two subsequent waves of history matching with688

the 3D GCM. As explained in Section 3.4, the experimental design of the first wave689

in 3D is taken as a sub-sample of the sampling of the final NROY space obtained690

from the 30-wave history matching with the SCM, here with the L95 vertical grid691

and Γz = 0.03. For the exeprimental design of waves 31 and 32, 90 SCM and GCM692

simulations are run with the same sets of model parameters, from which the previous693

12 SCM metrics and the 11 3D GCM metrics presented in Fig. 3 are computed. The694

implausibility graph of wave 32 is shown in Fig. 13. The fraction of the NROY space695

compared to the initial parameter hyper-cube is reduced from 2 10−4 at wave 30 to696
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Figure 11. Evolution of envelopes of the vertical profiles of potential temperature (first row),

specific humidity (second row) and cloud fraction (third row) for the IHOP, ARMCU and RICO

cumulus cases obtained with the L95 vertical grid and Γz=0.03. Individual curves are super-

imposed for: LES (blue), LMDZ6A with nominal values of the parameters (black), the best

simulation obtained with SCM tuning (red, the 76th simulation of wave #26 named SCM-26-076)

and the BEST cases retained after subsequent 3D GCM tuning (gold).
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Figure 12. Evolution of envelopes of the vertical profiles of potential temperature (first row),

specific humidity (second row) and cloud fraction (third row) for the three SANDU transition

sub-cases. Same conventions as in Fig. 11.
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Figure 13. Implausibility matrix for the 9-parameter history match, at wave 32, built by

adding 2 iterations with SCM and GCM metrics after 30 waves of SCM history matching, ob-

tained with the L95 vertical grid.
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Figure 14. Zonally average latitudinal variation (left) and latitudinally averaged (between

20S and 5S) zonal variation (right) of the SW cloud Radiative Effect (CRE) at TOA for 90 L95

GCM simulations run with the sample of parameters used for wave 31 (red, i. e. after selection

based on SCM/LES comparisons only) and wave 32 (green). The blue curves correspond to

year 1 to 10 of a simulation run with the nominal values of the 9 parameters. The gold curves

correspond to the 5 BEST simulations (see text for details). The EBAF observations are super-

imposed in black.

4 10−5 at wave 32. Some parameters known to control the global radiative balance697

seem to contribute to this space reduction as seen for instance by a slight reduction of698

the NROY space in the (EVAP,CLC) subspace. As for the previous set of 3D GCM699

experiments (Fig. 6) we first illustrate the GCM behavior in terms of mean latitudinal700

variations of the SW CRE averaged both zonally and annually (left panel of Fig. 14),701

and of longitudinal variations in the southern tropics (right panel) of the same SW702

CRE.703

The spread across models of wave 31 is not reduced as much as for wave 21 in the704

previous experiments where the sensitivity to three parameters only was explored. The705

gain compared to no preconditioning by SCM tuning (gray curves in Fig. 6 gives an706

underestimation of the dispersion with no preconditioning since only three parameters707

were varied) is however significant, as is the reduction in the spread in the latitudinal708

variation when going from wave 31 to wave 32.709

We show in Fig. 15 the normalized (by the tolerance to error) error for the GCM710

metrics for the 90 GCM simulations run for wave 32. The simulations are ranked711

according to the maximum value of this normalized error. For most of the simulations,712

the global net radiative balance ’glob.rt’ dominates the error, which is of course partly713

attributable to the fact that we took an arbitrarily small error of 0.2 W/m2 for this714

particular metrics (targeting a 0.2 K in coupled simulations). After the global radiative715

balance, some metrics are particularly difficult to get within the tolerance to errors,716

such as the LW circum Antarctic anomaly. It is interesting since this metric was717

introduced on purpose, targeting classical warm biases in coupled ocean-atmosphere718

models.719

Five “BEST” simulations were selected from the ranking of Fig. 15. By doing720

so, we go further than theoretically authorized by the history matching philosophy,721

i.e. not going beyond the constraints imposed by the predefined tolerance in order to722

avoid over-fitting and subsequent compensating errors. It is done here to accelerate723

the tuning process and be sure to select simulations with a well balanced global net724
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Figure 15. For each 3D GCM metrics, the ratio error/σ is shown, where σ is the tolerance to

error used for history matching. The 90 L95 GCM simulations of wave 32 are ranked according

to the maximum value of error/σ.

radiation, in order to run one of them in coupled atmosphere-ocean mode. The five725

simulations are superimposed with gold color in Fig. 11, Fig. 12 and Fig. 14.726

The agreement with observations is at least as good for those BEST simulations727

as it is for the standard LMDZ6A configuration. In order to characterize further the728

behavior of these selected simulations, we show in Fig. 16 for the SW CRE (left) ,729

the LW CRE (middle) and the precipitation (right) the mean bias and root-mean-730

square error computed on the mean seasonal cycle. The CMIP5 and CMIP6 multi-731

model ensembles are displayed (first two rows from bottom) in order to contextualize732

those results with respect to the state-of-the-art. The 5A, 5B and 6A versions of the733

IPSL model (based on LMDZ for the atmosphere) are identified in blue, violet and734

red respectively. A general improvement is visible from CMIP5 to CMIP6, from the735

narrowing of the bias distribution and reduction of the mean RMSE. For the IPSL736

model, the 6A version behaves much better than the 5A and 5B versions, except737

for the rainfall. For rainfall, this has to be related to the fact that we struggled to738

reduce the mean rainfall in the 5A and 5B versions to compensate for a tendency739

of global models to overestimate the mean rainfall. Because it is not clear whether740

this mean bias is outside the observational errors (the observed mean rainfall may be741

significantly underestimated, see e. g. Stephens et al., 2012; Berg et al., 2010), we742

decided to abandon this target for the 6A version.743

For the 6A version, we show as well 10 consecutive years run on climatological744

SSTs in order to illustrate the error and dispersion that come form this different setup745

(the CMIP diagnostics correspond to the mean seasonal cycle over the period 1979-746

2005). The mean bias is not significantly affected by the different setup, and its inter-747

annual variability is weak, a very important point for the tuning strategy adopted here.748

The root-mean-square error, on the opposite is significantly degraded when considering749

1-year long simulations on climatological SSTs. It is why we decided to rerun the BEST750

simulations on amip SSTs as well (upper row in the graphs). The scores of the SW751

and LW CRE is very similar as for the standard LMDZ6A configuration, and even752

better for the root-mean-square error for rainfall, without clear explanation for it so753

far.754
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Figure 16. Mean bias and root-mean-square error (RMSE) of the SW CRE (left), LW CRE

(middle) and rainfall (right) in LMDZ and CMIP simulations. The RMSE is computed on the

mean seasonal cycle (i. e. from twelve monthly values on each grid cell after interpolation on

a common 2o × 2o longitude latitude grid). On each graph, from bottom to top, we show: the

CMIP5 and CMIP6 multi-model ensembles (amip simulations over the period 1979-2005). For

CMIP5 simulations, the blue and violet colors correspond respectively to the 5A and 5B versions

of LMDZ (the 5A version was run with two different resolutions) and red color is used for the

6A version of the LMDZ model. The line labeled ”6A 1YR” shows 10 individual years with the

standard LMDZ6A (L79 vertical grid) configuration run on climatological SSTs. The lines with

label starting with ”Exp” show the second year of a 2-year long simulation run on climatological

SSTs for waves 1 and 20 of the first set of experiments (L79 vertical grid) and wave 31 and 32

of the second set (L95 vertical grid). The 5 “BEST” simulations are identified with green color.

The two upper lines show the results of simulation obtained with the BEST configurations, when

run over 10 years with climatological SSTs (“BEST 10YR”) or over the 1979-2005 period with

annually varying SSTs (amip protocol as for CMIP simulations, “BEST AMIP”). The orange

color corresponds to the “BEST1” simulation. The vertical lines correspond to a zero bias (black)

and RMSE of the CMIP6 IPSL-6A-LR configuration (red dashed). The EBAF observations are

used for the CRE and Global Precipitation Climatology Project (GPCP, Huffman et al., 2001)

data-set for precipitation.
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Fig. 16 also shows the results of wave 1 and 20 for the first 3-parameter tuning755

and wave 31 and 32 for the 9-parameter tuning. The reduction of the dispersion in756

the mean bias is clearly visible in this graph.757

5.3 Test in coupled atmosphere-ocean configuration758

Finally, the “BEST1” simulation (the first one in the ranking of Fig. 15) is run in759

coupled mode, over 50 years, starting from initial conditions with present day forcing.760

A trick is used in this simulation to compensate the global oceanic heat uptake (of761

about 0.5-1 K in the present-day warming climate). It consists in increasing of the762

oceanic albedo by 0.007.763

The seasonal cycle of SSTs is almost stabilized at the fifth decade. Fig. 17764

shows the mean bias and root-mean-square error of SST computed on a mean seasonal765

cycle of the BEST1 simulation (gold), compared to the other CMIP5 (green) and766

CMIP6 (black) simulations with IPSL simulations highlighted with different colors.767

The BEST1 simulation itself is a bit too warm. A second simulation is then run by768

just readjusting the CLC parameter by hand, by running one sensitivity experiment769

in forced mode to estimate the sensitivity of the global mean radiative balance to770

the parameter (without worrying about whether all the parameters are in the NROY771

space). For both simulations, the results are quite close to the 6A simulation. The772

results are better in the tropics (35S:35N) than for the full globe (65S:65N, removing773

latitude beyond 65 degrees to avoid questions related to the sea-ice mask). This better774

performance when focusing on the tropics is probably due to the fact that the East775

Tropical Ocean warm bias is rather reduced in the BEST simulation compared to the776

6A version while the circum-Antarctic warm bias is somewhat increased as illustrated777

in Fig. 18.778

6 Discussion779

Both in the 3-parameter and 9-parameter history matching, a multi-wave tuning780

in SCM configuration is enough to partly constrain the radiative fluxes. It provides an781

avenue for process-based improvement of climate models, from SCM to global coupled782

model, following a systematic and rigorous approach.783

6.1 Benefit for 3D GCM tuning784

Though the 9-parameter history matching with increased vertical resolution does785

not significantly improve the agreement with observations of the top-of-atmosphere786

distribution of radiative fluxes in a 3D GCM, it should be kept in mind that we did787

not include any parameters affecting the high clouds in the tuning procedure, which788

of course would make the retuning easier by benefiting from a reasonable tuning of789

the high clouds. It could be, for example, that there are some compensating errors790

in the 6A configuration between high and low clouds, in mid and high latitudes. In791

addition the control simulation considered here was the product of a long phase of a792

careful tuning of the global model, in which the metrics used here were explicitly high793

priority targets. Though we can be confident in the processes resulting from our tuning794

(for low clouds), additional parameters may need to be exposed to tuning for the full795

3D model (or similar strategies for process based tuning with relevant parameters for796

other processes) to work around existing compensating errors and to fully benefit from797

our strategy.798

Altogether, our results confirm that the proposed strategy is able to provide799

reasonable tuning of a coupled model, by applying a rather systematic procedure800

making use of machine learning techniques and starting from LES/SCM comparisons.801

This study shows how a 3D GCM can be retuned after some modifications with an802
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CNRM-CM6-1
ACCESS1-0
ACCESS1-3

SAM0-UNICON
MRI-ESM2-0

CESM2
IPSL-CM6A-LR

CESM2-WACCM
UKESM1-0-LL
CESM1-CAM5
GFDL-ESM4

HadGEM3-GC31-LL
GFDL-CM4

RMSE
BIAS

Figure 17. SST mean bias and root-mean-square error computed from the mean seasonal

cycle (12 monthly means) after interpolation on a 120×90 regular longitude-latitude grid. The

diagnostics are shown for tropical latitudes (left, 35S:35N) and for the global ocean (latitudes

65S:65N). All the CMIP5 (green) and CMIP6 (black) models available to us are shown. The

color code for the IPSL CMIP configurations is: 5A (blue), 5B (violet), 6A (red), BEST (gold).

The two gold points correspond to the best tuning (simulation CM62-LR-01 corresponding to

simulation 35 of wave 32) and a second one with the parameter CLC slightly increased (simula-

tion CM62-LR-02, after a by-hand tuning) to cool the simulations.
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CMIP5 CMIP6

5A-MR 5B-LR

6A-LR BEST1

Figure 18. SST (K) mean bias for the CMIP5 and CMIP6 multi-model ensemble, for the 5A-

MR, 5B-LR and 6A-LR and for the BEST1 simulation (with retuning of the CLC parameter).

The global mean of the bias is removed to highlight the structure of the bias.
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automatic procedure, avoiding a long phase of by-hand retuning. The model evolution803

tested here consists in increasing the vertical resolution together with allowing us to804

vary some additional free parameters. In this case, it was possible to improve the805

representation of clouds at process level, in particular by reproducing better the 1D806

“transition cases”, with a 3D tuning at least as good as the previous one.807

6.2 Enlightening the representation of cloud processes808

In order to interpret further the modification induced by this new tuning at the809

process scale, we show in Fig. 19 the internal variables of the thermal plume model810

obtained with the ARM cumulus and SANDU/REF cases. The results are averaged811

on the same time period as that used for the metrics computations shown in Tab. 2:812

between hour 7 and 9 of the simulation for the ARMCU case which corresponds to813

0030-0230 PM local time, and between hour 50 and 60 for SANDU, in the afternoon814

and evening of the third day. The vertical velocity is overestimated throughout the815

depth of the cloud for the control simulation, when compared to the plume velocity816

sampled in LES, and slightly underestimated near the surface. The retuned version817

amplifies the overestimation in the cloud. This could be seen as a degradation of the818

scheme or question the way thermals are sampled in LES. We could have selected more819

active parcels by using a more restrictive sampling threshold as illustrated by retaining820

only points with positive buoyancy (core sampling, blue dots). In the end, what really821

matters for the transport is the mass flux. It appears that the vertical velocity increase822

is in part compensated by a reduction of the fractional cover attributed to convective823

plumes leading to a very similar mass flux, constrained by the requirement to faithfully824

represent the clouds, as imposed through the history matching procedure.825

We observe that the procedure tends to favor tuning with stronger velocity,826

which can be related to the use of values of coefficient B1 much smaller than one.827

This coefficient enters in the definition of both entrainment and detrainment, and828

would be 0 for a plume with conserved mass flux, which would just accelerate without829

entraining air from the mixed layer (in which case the plume fractional cover decreases830

when the plume accelerates), and 1 for a plume that would entrain enough air to keep831

its fractional cover constant.832

With this stronger vertical velocity, the plumes are able to overshoot a bit higher833

above inversion, helping the clouds to develop more efficiently on the vertical, without834

significantly affecting the other aspects.835

A possible interpretation of the above result, therefore, is that the air parcels836

that really contribute to vertical transport and should then be targeted by the pa-837

rameterization, are the core of the plumes, which are less subject to entrainment.838

This highlights the importance of being able to sample structures responsible for the839

vertical transport in LES but also raises the question about the degree to which the840

internal variables should be tuned against some equivalent diagnostic in the LES. As841

already explained, LES were used to inspire the parameterizations, i. e. to identify842

the mathematical functions that relate internal variables to the large scale state vari-843

ables, and then to compute the tendencies to be incremented on those state variables.844

The representation of this final tendency, and its dependency to input state variables845

may be seen as more important targets than the accurate representation of internal846

variables, suggesting not to push too far the procedure of fitting the details of those847

internal variables. However, a correct profile of vertical velocity or entrainment may be848

needed if these variables are used in other parts of the model, e.g. parameterizations849

of micro-physics. The automatic tools presented here now permit us to address such850

questions in more detail.851
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AMRCU/REF

SANDU/REF

Figure 19. Vertical profiles of the internal variables of the mass flux scheme for the ARM

cumulus simulation averaged between hour 7 and 9 of the simulation and for the SANDU/REF

case, averaged between hour 50 and 60 of the simulation. As in Fig. 11, we show both the evo-

lution of envelopes of the vertical profiles obtained with the L95 vertical grid and Γz=0.03 for

successive waves as well as individual curves: LES (blue), LMDZ6A with nominal values of the

parameters (black), the best simulation obtained with SCM tuning (red, the 76th simulation of

wave #26 named SCM-26-076) and the BEST cases retained after subsequent 3D GCM tuning

(gold). For the LES, we consider only one simulation and show for each case two ways of sam-

pling the LES results. For the ARM case, we use the tracer-based sampling used for instance

by Jam et al. (2013). For the SANDU case, in the absence of tracers in the simulations, we use

the sampling retained by Hourdin et al. (2019). Compared to the standard sampling, the core

sampling imposes that the sampled points show an excess of virtual potential temperature when

compared to the horizontal average, retaining only points with positive buoyancy.
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Figure 20. Range of parameters selected by history matching with iterative refocusing with

the various configurations tested. For each of the 9 parameters varied in this study, we show:

the nominal value (full blue line) and the a priori [min,max] range used for history matching;

the range of parameters obtained at the end of the 20-wave 3-parameter history matching of

Section 4 (dashed line, computed as the minimum and maximum values of the 45-member ex-

perimental design of wave #20) and at the end of the 30-wave 9-parameter history matching of

Section 5 (full lines, computed from the 90-member experimental design), showing results for

the L79 (black) and L95 (red) configurations when the NROY was not empty at the end of the

process; the parameters of the BEST simulations (gold markers). For the BEST1 simulation (cir-

cles), the retuned value of the CLC parameter chosen for the coupled simulation is shown as well

(blue). On each graph, the x-axis shows the Γz parameter and the y-axis the parameter value.
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6.3 Learning from the various configurations tested852

In order to check the importance of vertical resolution change versus the fact853

of varying parameters which were fixed so far, we superimpose in Fig. 20 for the 9854

parameters explored, the range of parameter values obtained at the end of the multi-855

wave history matching when the NROY space was not empty.856

Consistently with the lesser reduction of the NROY space seen in Fig. 5 and857

Fig. 10, using a finer grid (L95, red) reduces less the parameter range compared to858

the coarser grid (L79, black) when the same setup is used for the history matching,859

both for the 3-parameter tuning of Section 4 with Γz = 0.2 (dashed curves) or for the860

9-parameter tuning of Section 5 with Γz = 0.12. For the 3 parameters which were861

varied in both setups on the other hand, allowing for varying the other parameters or862

not matters more than the vertical resolution. As said above, the acceptable values863

of the B1 parameter are much smaller than the nominal value (less entraining plume)864

compensated by a larger value of DZ (to favor detrainment below inversion). Note865

also that, by giving a non zero value of the CQ parameter, with a range which is866

relatively both narrow and consistent across configurations, the history matching done867

here demonstrates unambiguously the need for a dependency of the detrainment on868

the contrast of water between the cloud and its environment. Note also that the 1D869

test cases and associated metrics used here are much more constraining for the BG1870

parameter that controls the width of the the sub-cloud distribution outside the plume871

that for BG2 associated with the in-plume distribution.872

The values of the BEST simulations are shown as well (gold markers). By con-873

struction, these values are inside the NROY space of the 30-wave history matching874

done with the SCM, that corresponds to the last full red line on the right of each875

panel (for Γz = 0.03) of Fig. 20. However, it may happen that the value shown on the876

graph is slightly out of this range (for DZ and BG1). It is due to the fact that the877

range shown here are based on the 90-member experimental design used to run the878

SCM or GCM, which is too small a number to really explore the full parameter range.879

A bit surprisingly maybe, the BEST simulations do not seem to favor a particular sub-880

range of parameters. This may be related to the fact that the BEST simulations are881

those which have the good compensation to obtain the right global radiative balance882

at TOA.883

6.4 Keeping physics at the model heart884

Note that having a reasonable representation of mass fluxes at the core of boundary-885

layer parameterizations is important to ensure the robustness of the parameterizations886

when exploring very different regimes from those which were explored in the SCM/LES887

machine learning sequence. It also allows us to transport any sort of tracer with the888

mass flux without needing an additional tuning of the tracer tendencies. On the other889

hand, a direct application of machine learning to predict the vertical profiles of heat-890

ing, moistening and wind acceleration from the model state variables, as proposed by891

Krasnopolsky et al. (2013); Brenowitz and Bretherton (2018); Gentine et al. (2018),892

would offer no guarantee that the model behavior would be at all physical for these893

“out of sample” situations, and would require an independent learning for any new894

combination of atmospheric constituents.895

7 Conclusions896

This paper presents a first proof of concept of the use of history matching to897

go from an improvement at process level to a new model configuration applying a898

systematic and objective approach. It uses in particular the High-Tune Explorer tool899

that we intend to distribute freely to the community of climate modelers.900
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The availability of this tool does not in any way detract from the importance901

of the modelers expertise. It must be underlined indeed that the results presented902

here were obtained after significant work was done by the authors in tuning the 6A903

version of the LMDZ model by hand. So a good idea of the relevant metrics to be904

used and associated error was already there, a key ingredient for the success of the905

history matching procedure. We must, therefore, underline the following point: the906

tool is automatic and objective in the sense that, once one has specified physically-907

relevant and useful metrics, their measurement errors and tolerance to model error,908

the procedure will locate the conforming parameter space automatically. The choice of909

those metrics and tolerances is and will remain, however, a subjective expert judgment.910

The number of uses of a climate model is almost infinite (let’s just consider so-called911

impact studies on any location over the globe), and so is the number of possible metrics.912

Discussing the advantages and rationale for the choice of particular sets of metrics and913

tolerance will not disappear. However, it is now possible to quantify the impact of914

such choices and to do so far more quickly than before.915

A by-product of the present study is to suggest that the standard 6A version of916

the LMDZ model was probably rather well tuned, at least for the parameters considered917

here. Note that the 3D retuning presented here was obtained without varying the918

parameters that control convection and high clouds. Including such parameters in919

the tuning process may allow the 3D tuning to be pushed further. In parallel to920

the illustrations presented here, we have already run 20-parameter history matching921

experiments with the 3D GCM that show very promising results.922

Altogether, this tuning process may seem quite costly. Each SCM simulation used923

here lasts between half a day and three days depending on the case (typically 1 second924

CPU time on an intel processor). Typically 10 days altogether for one parameter925

choice. With 20 waves of 100 simulations, it is like running 1 day of simulation on a926

200x100 grid (typically a lower bound of the current CMIP grid size). Even with a927

larger number of cases, days and parameter space, this step will remain cheap. The928

following 3D waves are much more costly. This cost is proportional to the required929

sample size, itself being typically proportional to the number of parameters. A lot930

can be done for radiative effect of clouds with 1-year long simulations forced by SST,931

which already means hundreds of simulations. Note however that those hundreds932

simulations can be run with a perfect scalability on large parallel computers. Note also933

that control coupled atmosphere-ocean simulations typically last 1000 years to reach934

a quasi-steady state of the deep ocean. The tuning of the IPSL-CM6A configurations,935

including atmospheric tuning and long-term coupled simulations is equivalent to about936

20 000 years run over the 2 years of the model preparation. In order to save computer937

time, various strategies are foreseen like using coarser grid for preconditioning the finer938

grid tuning, using short-term simulations with nudged winds, etc. The transition from939

forced-by-SST to coupled simulations will be an important practical issue as well.940

One point to notice in terms of cost, is that more metrics than presented here941

can be applied to each wave, once a series of GCM or SCM simulations have been942

run. It was not that easy so far with the version of the High-Tune Explorer tool used943

for the present paper, but a much faster one (by orders of magnitude) is available944

now. However, by increasing the number of constraints, in particular issued from945

the increasing number of global satellite reference products, or the number of SCM946

test cases, it may become difficult to find parameter ranges that overlap enough to947

achieve agreement across the board. This issue however is not a limitation of the948

method. On the contrary, the proposed method makes it possible to start address949

it. Determining which tolerance to error is needed to find a not empty NROY space,950

knowing the other sources of errors, is a way to give access to a quantification of951

the model structural error concerning the metrics added in the process, i.e. on the952

limits of the model physical content and its ability to match so many metrics. We953
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intentionally limited the number of global metrics here, with a focus on radiation.954

Our belief is that the requirement we put on the radiative forcing of the circulation955

is a minimum prerequisite to get a reasonable distribution of SSTs in the coupled956

model, which in turn will condition many aspects of the climate. However, we are957

already experimenting with a different setup than the one presented here the addition958

of global metrics, in particular with respect to rainfall. Independently of finding a959

better configuration for our next generation model version, we would like to explore,960

within a NROY space constrained by SCM cases and global radiative metrics, the961

possible worlds that the GCM is able to produce in terms of rainfall distribution,962

tropical variability or climate sensitivity.963

Without anticipating the research spaces thus opened, we can already see that964

the preconditioning of 3D GCM tuning by SCM simulations is extremely efficient and965

should be generalized. It requires a rigorous definition of the LES and SCM setups,966

to avoid compensating for setup errors during the tuning process, as well as testing967

the model in a configuration that creates some unwilled numerical problems specific968

to the 1D framework.969

Extension of the set of LES test cases is an issue as well. In particular, it would970

be very important to share well-established and validated LES configurations with971

deep convection and high clouds if wanting to obtain for the tuning of convection and972

high clouds a similar gain in efficiency as the one obtained here for boundary layer973

convection and associated clouds.974

By carrying out this systematic work and sharing the tools with other teams, and975

by promoting this approach of tuning combining a series 1D cases with 3D simulations,976

we hope to achieve a faster and more efficient improvement of the climate models977

involved in the anticipation of climate change. We hope that, relieved of the burden978

of manual calibration, model developers will spend far more time proposing new ideas979

for physics-based parameterizations and testing them in global models.980
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