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When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to 
slightly modify the algorithm so that it evaluates simultaneously A and the derivatives 
∂ς A of A with respect to each problem-parameter ς . The principle is the following: 
Monte Carlo considers A as the expectation of a random variable, this expectation is an 
integral, this integral can be derivated as function of the problem-parameter to give a new 
integral, and this new integral can in turn be evaluated using Monte Carlo. The two Monte 
Carlo computations (of A and ∂ς A) are simultaneous when they make use of the same 
random samples, i.e. when the two integrals have the exact same structure. It was proven 
theoretically that this was always possible, but nothing ensures that the two estimators 
have the same convergence properties: even when a large enough sample-size is used 
so that A is evaluated very accurately, the evaluation of ∂ς A using the same sample can 
remain inaccurate. We discuss here such a pathological example: null-collision algorithms 
are very successful when dealing with radiative transfer in heterogeneous media, but they 
are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We 
analyse theoretically these convergence difficulties and propose an alternative solution.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

When numerically simulating linear-transport physics using Monte Carlo algorithms, one of the most recurrent difficul-
ties is the handling of highly non-homogenous or fast-variating media. This difficulty was encountered since the beginning 
of neutron-transport and plasma-physics modelling. The first strategy considers that the medium is homogeneous by pieces 
in order to make an efficient and simple resolution. However, to validate this approximation, we have to consider a large 
number of cells which involves an increase in computation times, as a consequence of the mesh-crossing procedure. Several 
techniques have been developed to accelerate this mesh-crossing as in [1]. But a quite elegant trick was soon identified 
as a way to bypass this difficulty without approximation: virtual collisionners can be added where the true collisionners 
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are scarce so that the total collisionner-density is homogeneous. Of course, in order to ensure that the physical problem is 
unchanged, when a particle interacts with a virtual collisionner, it simply continues its path as if no collision had occurred 
[2–5]. This is the meaning of the denomination null-collision algorithm or fictitious-collision algorithm.1 The first practical ben-
efit is that the next collision event can be sampled as if the medium was homogenous. Then the choice is made to select 
a true-collision or a virtual-collision as function of their local respective-amounts and this is how the spatial information 
is recovered. But several other benefits were recently foreseen in [2] and practically tested in [6–22], mainly for radiative-
transfer applications. The main idea is that null-collision algorithms transform the non-linearity of Beer-extinction into a 
linear-recursive problem that Monte Carlo handles without approximation [15]. This was for instance used in [6] to deal with 
absorption-spectra of molecular gases combining very numerous transitions: the summation over all transitions could be 
treated by the Monte Carlo algorithm itself, which was previously assumed impossible because this summation was inside 
the exponential of Beer-extinction. Similarly, the vanishing of the exponential allowed the extension of implicit Monte Carlo 
algorithms for inversion of absorption and scattering coefficients from intensity measurements [7]. Outside radiative trans-
fer, a very similar idea was used to solve Electromagnetic Maxwell equations for energy propagation in particle-ensembles 
of statistically-distributed shapes despite of the nonlinearity associated to the square of the electric field [14]. Again similar 
is the algorithm proposed in [15] solving Boltzmann equation for micro-fluidics applications despite of the nonlinearity of 
the collision operator.

Back to radiative-transfer applications, the ideas suggested in [2] have motivated significant developments in the 
computer-graphics community for the cinema industry. Here the benefit of using null-collisions is that it extends to par-
ticipating media (aerosols or clouds) the orthogonality between data-description and data-treatment that was at the heart 
of the most recent use of Monte Carlo for rendering complex scenes [8,10,9,11]. The algorithm is indeed processed without 
any knowledge of the exact spatial-information, and it is only when a collision occurs that access to the field is required: 
the interaction between the radiative-transfer algorithm and the field-data is strictly restricted to this very moment. This 
allows the implementation of numerous acceleration techniques with little changes by comparison with those developed 
for handling complex surfaces. One of these techniques consists in the setting of an acceleration grid, adjusting the amount 
of virtual collisionners so that the total collisionner-density is both homogeneous in each cell of the grid and close enough 
to the real density-field. This avoids the sampling of too many useless virtual-collisions. This is one of the starting points 
of the present paper: null-collision algorithms allow the use of any amount of virtual-collisionners but numerical efficiency 
justifies that one tries to reduce them to the minimum.

However, we show here that reducing the amount of virtual-collisionners to a minimum leads to convergence difficul-
ties when evaluating sensitivities. Sensitivity evaluation is a very general feature of Monte Carlo techniques: when a Monte 
Carlo algorithm is used to evaluate a physical observable A, it is always possible to modify the algorithm in such a way 
that it evaluates both A and the derivatives ∂ς A of A with respect to each problem-parameter ς , and most commonly the 
corresponding implementation is quite straightforward [23–29].2 But we will show that evaluating sensitivities using null-
collision algorithms is rapidly pathological: the better we adjust the acceleration grid, the worse the statistical convergence 
rate. This was experienced for instance with radiative transfer in cloudy atmospheres [30]. In Sec. 2 we will illustrate this 
pathological behaviour evaluating the transmissivity of a beam through a non-homogeneous column. Then we propose an 
alternative approach in Sec. 3 where the design of the sensitivity-evaluation algorithm starts from the standard integral so-
lution of the Boltzmann equation, i.e. without virtual-collisionners. The resulting sampling requirements are then addressed 
with the null-collision approach viewed as a simple rejection-sampling approach. This introduces the cost of sampling an 
additional random variable, but at this cost the convergence difficulties vanish. We illustrate the numerical behaviour of this 
modified algorithm is Sec. 4 using a benchmark inspired of [2].

2. Convergence difficulties when evaluating sensitivities

In this section we design a Monte-Carlo algorithm using the standard null-collision approach for the evaluation of the 
distribution function f , i.e. the solution of Boltzmann equation, and apply the technique of [25,23] for simultaneous evalu-
ation of a sensitivity ∂ς f with respect to ς , where ς is a parameter appearing in the absorption and scattering coefficients. 
The Boltzmann equation that we use is linear with constant speed particles. It matches the monochromatic radiative-transfer 
equation exactly and all application examples will be restricted to radiative transfer. We choose to make use of the notation 
f instead of the more radiative-transfer oriented notation I = hνcf (the specific intensity) in order to simplify the access 
for readers of the plasma and neutronics communities. The monochromatic radiative-transfer equation becomes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂t f + c �ω. �∇ f = −(ka + ks)cf + kacf eq +

∫
4π

ksc f ′pS(−�ω′| − �ω)dω′, ∀�x ∈ �,∀�ω ∈ S2

f (�y, �ω+) = f∂�(�y, �ω+), ∀�y ∈ ∂�, ∀�ω+ ∈ S2+
f (�x, �ω,0, ς) = f0(�x, �ω), ∀�x ∈ �,∀�ω ∈ S2

(1)

1 Similar keywords are pseudo-collision, null-events, fictitious-events, null-collisions, Woodcock tracking, delta tracking and maximum cross-section.
2 This is not at all straightforward for domain-deformation sensitivities [25,26], but we here stick to pure parametric sensitivities.
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where f ≡ f (�x, �ω, t, ς) with �x the location, �ω the propagation direction and t the time. For incoming scattering in any 
direction �ω′ of the unit sphere S2, we write f ′ ≡ f (�x, �ω′

, t, ς) and pS is the single scattering phase function, i.e. pS (−�ω′| −
�ω)dω′ is the probability density that the scattering direction is �ω for this incoming direction �ω′ . The constant particle-
speed is c and the coefficients ka ≡ ka(�x, t, ς), ks ≡ ks(�x, t, ς) and ke = ka + ks are the absorption coefficient, the scattering 
coefficient and the extinction coefficient respectively. f eq ≡ f eq(�x, t) is the equilibrium distribution (following the Planck 
function). � is the geometrical domain and ∂� its boundary at which the distribution function f∂� is known for all locations 
�y and all directions �ω+ of the incoming hemisphere S2+ . f0 is the initial condition.

Introducing null-collisions. In order to design a null collision algorithm (NCA) [2] we add a field of virtual collisionners such 
that the total extinction coefficient is practicable, in the sense that we can sample the corresponding Beer extinction:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂t f + c �ω. �∇ f = −k̂c f + kacf eq +

∫
4π

ksc f ′pS(−�ω′| − �ω)dω′ +
∫

4π

kncf ′δ( �ω − �ω′
)dω′, ∀�x ∈ �,∀�ω ∈ S2

f (�y, �ω+) = f∂�(�y, �ω+), ∀�y ∈ ∂�,∀�ω+ ∈ S2+
f (�x, �ω,0, ς) = f0(�x, �ω), ∀�x ∈ �,∀�ω ∈ S2

(2)

where kn ≡ kn(�x, t, ς) is the null-collision coefficient, k̂ = ka + ks + kn is the total extinction-coefficient and δ is the Dirac 
distribution. Equation (2) is strictly equivalent to Eq. (1) because of the Dirac distribution that ensures 

∫
4π kncf ′δ( �ω −

�ω′
) dω′ = kncf .

When numerically addressing the solution f (�x0, �ω0) of this transport equation at (�x0, �ω0) (also solution of Eq. (1)) using 
the Monte Carlo method, one of the most standard approach consists in a simple statistical interpretation that allows to 
view f (�x0, �ω0) as an average over radiative paths that are tracked backward from the observation location (�x0, �ω0) to the 
sources [2]. In this reading, the pure transport term ∂t f + c �ω. �∇ f corresponds to the spatial and temporal propagation of 
f in direction �ω at constant-speed c. The collisional term −k̂c f corresponds to either an absorption or a scattering event 
(including the null-collision events that are forward scattering events). When combining it with the transport term this 
leads to collision locations that are distributed exponentially along the line of sight (Beer law). Tracking the path backward, 
this means that the preceding collision at �x1 is at a distance λ0 that is a realisation of a random variable 
0 of probability 
density p
0 (λ0) = exp(−k̂λ0) (see Fig. D.1). Once �x1 is sampled, the collision type is sampled in turn to decide wether an 
absorption, a true scattering or a null collision occurs. In the backward tracking picture, this corresponds respectively to the 
three remaining terms

• with kacf eq an absorption event is translated into thermal emission and the algorithm stops with the Monte Carlo 
weight f eq(�x1) (the source at �x1),

• with 
∫

4π ksc f ′ pS (−�ω′| − �ω) dω′ a scattering event is translated into the sampling of a “previous” direction �ω1 and the 
algorithm continues recursively as if evaluating f (�x1, �ω1),

• with 
∫

4π kncf ′δ( �ω − �ω′
) dω′ and its Dirac function, a null collision event is translated into a pure forward scattering 

event, i.e. the “previous” direction �ω1 is equal to �ω0.

Of course the statistical translation includes the boundary conditions: when backward reaching the boundary at a location 
�xi and direction �ωi , the algorithm stops with the Monte Carlo weight f (�xi, �ωi) (the incoming source at the boundary). The 
corresponding Monte Carlo algorithm is detailed in Algorithm 1 and illustrated in Fig. D.1.

Integral formulation. This null-collision algorithm belongs to the family of analog Monte Carlo algorithms, i.e. algorithms that 
can be designed without any formal development because they only numerically-implement the well established statistical 
pictures of radiation physics. However, in the present context it is very much useful to also choose a viewpoint under which 
the same algorithm appears as a statistical estimate of the integral solution of Eq. (2). For sake of clarity we only write this 
integral solution at the stationary limit:

f (�x, �ω, ς) = exp

⎛
⎝−

λ∂�∫
0

k̂
(�̃x)dλ̃

⎞
⎠ f∂�(�y, �ω)

+
λ∂�∫
0

exp

⎛
⎝−

λ∫
0

k̂
(�̃x)dλ̃

⎞
⎠
⎛
⎜⎜⎜⎜⎝

ka(�x′
, ς) f eq(�x′

)

+ ks(�x′
, ς)

∫
4π

pS(−�ω′| − �ω)dω′ f (�x′
, �ω′

, ς)

+ kn(�x′
, ς) f (�x′

, �ω, ς)

⎞
⎟⎟⎟⎟⎠dλ

(3)

where �̃x = �x − λ̃ �ω, �x′ = �x − λ �ω, �y = �x − λ∂� �ω, with λ∂� the distance to the first boundary-intersection starting at �x in the 
direction −�ω, i.e. λ∂� = min{∥∥�x − z

∥∥; z ∈ Vect−(�x, �ω) ∩∂�} where Vect−(�x, �ω) = {�x−λ′ �ω; λ′ ∈R+}. This standard Fredholm 
equation, typical of the formal solution of linear-transport physics, can be transformed using the following property
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exp

⎛
⎝−

λ∂�∫
0

k̂
(�̃x)dλ̃

⎞
⎠=

+∞∫
λ∂�

k̂(�x′
)exp

⎛
⎝−

λ∫
0

k̂
(�̃x)dλ̃

⎞
⎠dλ

to give

f (�x, �ω, ς) =
+∞∫

λ∂�

k̂(�x′
)exp

⎛
⎝−

λ∫
0

k̂
(�̃x)dλ̃

⎞
⎠ f∂�(�y, �ω)dλ

+
λ∂�∫
0

k̂(�x′
)exp

⎛
⎝−

λ∫
0

k̂
(�̃x)dλ̃

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

ka(�x′
,ς)

k̂(�x′
)

f eq(�x′
)

+ ks(�x′
,ς)

k̂(�x′
)

∫
4π

pS(−�ω′| − �ω)dω′ f (�x′
, �ω′

, ς)

+ kn(�x′
,ς)

k̂(�x′
)

f (�x′
, �ω, ς)

⎞
⎟⎟⎟⎟⎟⎟⎠

dλ

(4)

Then

• p

̂
(λ) = k̂(�x′

) exp
(
− ∫ λ

0 k̂
(�̃x)dλ̃

)
can be viewed as the probability density function of the free path 
̂ (the distance 

until next collision),
• P A = ka

k̂
, P S = ks

k̂
and P N = kn

k̂
can be viewed as the probabilities that the collision is an absorption, a scattering event 

or a null-collision respectively,
• and the two integrals over [0, λ∂�[ and [λ∂�, +∞[ can be gathered into a single integral over [0, +∞[ using the 

Heaviside function H

to give

f (�x, �ω, ς) =

+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)w∂�

+ H(λ∂� − λ)

⎛
⎜⎜⎜⎜⎝

P A(�x′
, ς)w A

+ P S(�x′
, ς)

∫
4π

pS(−�ω′| − �ω)dω′ f (�x′
, �ω′

, ς)

+ P N(�x′
, ς) f (�x′

, �ω, ς)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

with w∂� = f∂�(�y, �ω) and w A = f eq(�x′
). This last equation is the integral formulation that we needed in order to con-

struct Algorithm 1 at the stationary limit: Algorithm 1 is indeed nothing more than the algorithmic-reading of Eq. (5) (and 
reciprocally Eq. (5) is nothing more than the integral translation of Algorithm 1, [24]):

• ∫ +∞
0 p


̂
(λ)dλ stands for the sampling of the distance of the collision (according to the k̂-field),

• H(λ − λ∂�) stands for the case where the sampled collision is outside the boundary, then the algorithm stops at the 
boundary with the Monte Carlo weight w∂� (the value of f corresponding to the incoming radiation),

• H(λ∂� − λ) stands for the case where the sampled collision is at a location �x′ inside the volume, and then three 
collision types are possible:
– P A(�x′

, ς) stands for the case where the collision is an absorption, then the algorithm stops at the boundary with the 
Monte Carlo weight w A (the value of f eq at the collision location),

– P S (�x′
, ς) stands for the case where the collision is a scattering event, then 

∫
4π pS (−�ω′| − �ω) dω′ stands for the 

sampling of a new direction �ω′ according to the phase function and the algorithm continues recursively with the 
estimation of f at �x′ in direction �ω′ ,

– P N(�x′
, ς) stands for the case where the collision is null, then the algorithm continues recursively with the estimation 

of f at �x′ in the unchanged direction �ω

Straightforward application of sensitivity-evaluation techniques. Now that we have constructed the integral formulation of Al-
gorithm 1 we can apply the sensitivity-evaluation technique introduced in [23,25,26]. It consists in derivating Eq. (5) with 
respect to ς and multiplying and dividing by each of the probabilities and probability density functions that depend on ς . 
This leads to an integral formulation of the sensitivity that has the very same structure as that of Eq. (5):
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∂ς f (�x, �ω, ς) =
+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)wς
∂�

+ H(λ∂� − λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)wς

A

+ P S(�x′
, ς)

∫
4π

pS(−�ω′| − �ω)dω′
⎛
⎝ ∂ς ks(�x′

,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎠

+ P N(�x′
, ς)

⎛
⎝ ∂ς kn(�x′

,ς)

kn(�x′
,ς)

f (�x′
, �ω, ς)

+ ∂ς f (�x′
, �ω, ς)

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

with wς
∂� = 0 and wς

A = ∂ς ka(�x′
,ς)

ka(�x′
,ς)

f eq(�x′
) because k̂ is independent of ς . Because of their identical structure, we can gather 

Eq. (5) and (6) into one using the vectorial notation 
{

w; wς
}

:

{
f (�x, �ω, ς); ∂ς f (�x, �ω, ς)

}=
+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)
{

w∂�; wς
∂�

}

+ H(λ∂� − λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

{
w A; wς

A

}
+ P S(�x′

, ς)

∫
4π

pS(−�ω′| − �ω)dω′
⎧⎨
⎩ f (�x′

, �ω′
, ς);

⎛
⎝ ∂ς ks(�x′

,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎠
⎫⎬
⎭

+ P N(�x′
, ς)

⎧⎨
⎩ f (�x′

, �ω, ς);
⎛
⎝ ∂ς kn(�x′

,ς)

kn(�x′
,ς)

f (�x′
, �ω, ς)

+ ∂ς f (�x′
, �ω, ς)

⎞
⎠
⎫⎬
⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

The algorithmic-reading of (7) leads to Algorithm 2 that evaluates simultaneously f and ∂ς f . The recursive nature of this 
algorithm comes from the fact that the final brackets in the scattering and null-collision terms contain f and ∂ς f at the 
same location in the same direction. The fact that their sensitivity part includes a summation is translated into an algorithm 
incrementing the Monte Carlo weight as explained in Appendix A.

Simulation examples. At this stage, we designed a null-collision algorithm, constructed the corresponding integral formula-
tion and applied the proposition of [23,25,26] in a straightforward manner so that the algorithm also evaluates sensitivities. 
We now test this simulation strategy by evaluating the transmissivity of a non-diffusive heterogeneous column and also 
evaluating the sensitivity of this transmissivity w.r.t. ς , a parameter influencing the absorption coefficient. Hereafter this 
configuration is called heterogeneous-slab (see Fig. D.2): � is a column of length L with �ex the normal incoming at loca-
tion y = 0. The equilibrium distribution is null (cold medium, f eq ≡ 0). The boundary conditions are f ∂�(0, �ex) = 0 and 
f∂�(L, − �ex) = f inc . The absorption and scattering coefficients are ka(x, ς) = (ς − γ )

−atan(α(x−β))+ π
2

π/2 + γ and ks ≡ 0. Algo-
rithm 2 is used to evaluate both f (0, �ex, ς) and ∂ς f (0, �ex, ς) that correspond to the transmissivity T and its derivative ∂ς T
respectively: T = f (0, �ex, ς)/ f inc and ∂ς T = ∂ς f (0, �ex, ς)/ f inc . We chose this particular profile of ka , because it is possible 
to calculate T and ∂ς T analytically (see the caption of Fig. D.2). Example Monte Carlo results, using N = 10000 samples, are 
compared to the analytical solution in Tables D.5a and D.5b. The statistical uncertainty is noted σ (the standard deviation 
of the Monte Carlo estimator). In Table D.5b we also provide the number of samples N1% required to achieve a 1% accuracy. 
The simulations were made using five different k̂-profiles (each overestimating ka at all locations), with acceleration-grids, 
k̂ being uniform within each mesh (see Fig. D.2):

• for k̂20% no grid is used: the profile of k̂ is uniform, equal to 1.2 time the maximum ka-value.
• for k̂1 no grid is used: the profile of k̂ is again uniform, exactly equal to the maximum ka-value.
• for k̂10 the grid is constructed in such a way that across each mesh the variations of ka are 1/10 of the maximum 

ka-value, and the profile of k̂ is uniform within each mesh, exactly equal to the maximum ka-value inside the mesh.
• for k̂100 and k̂1000 the grid is constructed the same way with 1/100 and 1/1000 variation respectively.

The transmissivity results of Table D.5a confirm that the estimation of T is insensitive to the adjustment of the k̂-field 
(only the computation time is affected). But the sensitivity results of Table D.5b clearly show the opposite: the statistical 
convergence is worse when k̂ is close to k and the number of samples required to reach a given accuracy level can be 
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risen up to infinity when matching k̂ to k exactly. This is the pathological behaviour that we announced in introduction: 
sensitivities cannot be evaluated accurately when using acceleration grids reducing the number of virtual collisions.

The variance of the sensitivity estimate. For a better understanding of this behaviour, we studied a homogeneous-slab for which 
the variance of the Monte Carlo estimate can be calculated analytically. This case is identical to the previous one (trans-
missivity of a purely absorbing column) but now k = ka is uniform: ka(ς) ≡ ς , T = exp(−ς L) and ∂ς T = −LT . Of course, 
there is no need to make use of a null-collision algorithm as soon as k is uniform. We only do it for theoretical reasons 
(with k̂ > k uniform). This allows us to fully identify the reasons why the variance of the sensitivity estimate rises when 
reducing kn = k̂ − k. This may sound trivial as soon as when encountering a null-collision event, the Monte Carlo weight of 
the sensitivity algorithm includes a factor ∂ς kn(�x′

,ς)

kn(�x′
,ς)

= 1/kn (see Eq. (7)), but reducing kn also reduces the number of such 
null-collision occurrences. This may lead to a compensation, maintaining the variance at a finite value. The developments of 
Appendix B.1 show the opposite: the statistical uncertainty is indeed

σ∂ς T =

√
L2e−ka L

(
kn+1/L

kn

)
− L2e−2ka L

√
N

(8)

Fig. D.3 illustrates the meaning of this dependence of σ∂ς T with the problem parameters. In this idealised case, looking at 
the behaviour of such an algorithm applying sensitivity-evaluation techniques in a straightforward manner, the difficulty 
is well identified: when kn

k̂
approaches zero, the number of samples required for a 1% accurate evaluation of the sensi-

tivity tends to infinity (see Fig. D.3c). This figure also displays the behaviour of an algorithm implementing the very same 
sensitivity-evaluation technique, but without the use of null-collisions (which is possible here in this idealised uniform case). 
Without null-collisions, the relative value of the standard deviation of the sensitivity-estimate (Fig. D.3b) is identical to that 
of the main quantity (the transmissivity-estimate, Fig. D.3a). This is an ideal behaviour: the sensitivity is estimated with the 
same relative accuracy as that of the main quantity. Altogether in this simple example, we see that evaluating sensitivities 
can be perfectly costless before using null-collisions and may become pathological when null-collisions are introduced.

Note that in the general case, even without null-collisions, evaluating sensitivities can be truly difficult. Understanding 
the relative variance of sensitivity estimates and comparing them to the relative variance of the algorithm estimating the 
main quantity was indeed one of the main concerns of the initial work of De Lataillade [23]. Essentially, serious difficulties 
arise as soon as the scattering optical-thickness is high. The objective of the present paper is not at all to address this 
specific issue: at the end of the following section, when an alternative solution will be proposed for evaluating sensitivities 
in null collisions algorithms, the problems associated to highly scattering media will remain unsolved.

3. An alternative approach

The preceding section identifies convergence difficulties when evaluating sensitivities using null-collisions. Theses diffi-
culties are not associated to the standard sensitivity-evaluation algorithm itself: considering slab transmission, we have seen 
that when we do not make use of null-collisions, the sensitivity-evaluation algorithm converges as well as the algorithm 
evaluating the main quantity. So the observed difficulties are only the consequences of introducing virtual-collisionners. At 
this stage, null-collision algorithms appear therefore as perfect tools for handling heterogeneous fields, but are incompatible 
with the simultaneous evaluation of sensitivities.

We have seen that this problem is related to the term 1
kn

appearing in the Monte Carlo weight of the sensitivity algo-

rithm. At which stage did this term appear and can we bypass this step? Clearly, 1
kn

appeared when derivating with ς the 
null-collision probability P N (ς) = 1 − P A(ς) − P S(ς), with P A(ς) = ka(ς)/k̂ and P S = ks(ς)/k̂. A first way to suppress this 
1

kn
term consists in making k̂ dependent on ς . This is always possible because k̂ is a free parameter and we can therefore 

adjust it to the variation of ka(ς) + ks(ς) so that P N does not depend on ς anymore. We first tested this solution and it 
proved itself already quite practical: the corresponding details are provided in Appendix C. But we finally retained another 
algorithm more efficient in all the cases that were studied, starting from the integral solution of the original Boltzmann 
Eq. (1), i.e. prior to the introduction of virtual-collisionners. The idea consists in first designing an algorithm evaluating si-
multaneously f and ∂ς f as if the heterogeneity of the field could be handled without difficulty and only introduce null-collisions 
in a second stage. For this, we can simply rewrite Eq. (5) with kn = 0 (no virtual collisionners):

f (�x, �ω, ς) =
+∞∫
0

p
(λ)dλ

⎛
⎜⎜⎜⎝

H(λ − λ∂�)w∂�

+ H(λ∂� − λ)

⎛
⎜⎝

P A(�x′
, ς)w A

+ P S(�x′
, ς)

∫
pS(−�ω′| − �ω)dω′ f (�x′

, �ω′
, ς)

⎞
⎟⎠
⎞
⎟⎟⎟⎠

(9)
4π
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The only differences with Eq. (5) are that

• P N = 0,

• the random variable 
̂ of probability density p

̂
(λ) = k̂(�x′

) exp
(
− ∫ λ

0 k̂
(�̃x)dλ̃

)
(the free path in the k̂-field) is replaced 

with the random variable 
 of probability density p
(λ) = ke(�x′
, ς) exp

(
− ∫ λ

0 ke(
�̃x, ς)dλ̃

)
(the free path in the original 

ke-field).

This equation can then be derivated with respect to ς and multiplied/divided by each of the probabilities and probability 
density functions that depend on ς (exactly the same way Eq. (7) was constructed from Eq. (5)) to give

∂ς f (�x, �ω, ς) =
+∞∫
0

p
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)

⎛
⎝−w∂�

λ∂�∫
0

∂ςke(xl, ς)dl + wς
∂�

⎞
⎠

+ H(λ∂� − λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

⎛
⎝−w A

λ∫
0

∂ςke(xl, ς)dl + wς
A

⎞
⎠

+ P S(�x′
, ς)

∫
4π

pS(−�ω′| − �ω)dω′

⎛
⎜⎜⎜⎜⎜⎜⎝

−
λ∫

0

∂ςke(xl, ς)dl f (�x′
, �ω′

, ς)

+ ∂ς ks(�x′
,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

A main point of the present paper is that this integral equation, although it was derived the same way as Eq. (7), cannot 
be interpreted in algorithmic terms: the integral pattern 

∫
∂ςkedl is not yet transformed into a statistical expectation. An 

additional random generation will be required. At this stage let us introduce an arbitrary random variable L of probability 
density function pL and write 

∫
∂ςkedl = ∫

pL(l)dl
∂ς ke
pL(l) . Reporting this into Eq. (10) and using 

∫
pL(l)dl = 1 leads to

∂ς f (�x, �ω, ς) =
+∞∫
0

p
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)

λ∂�∫
0

pL(l|λ∂�)dl

(
−w∂�

∂ςke(xl, ς)

pL(l|λ∂�)
+ wς

∂�

)

+ H(λ∂� − λ)

λ∫
0

pL(l|λ)dl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

(
−w A

∂ς ke(xl,ς)

pL(l|λ)
+ wς

A

)
+ P S(�x′

, ς)

∫
4π

pS(−�ω′| − �ω)dω′

⎛
⎜⎜⎜⎝

− ∂ς ke(xl,ς)

pL(l|λ)
f (�x′

, �ω′
, ς)

+ ∂ς ks(�x′
,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

At this stage, null-collisions have not been introduced. Therefore, the algorithmic reading of Eq. (11) would not be practical 
as soon as the ke-field is heterogeneous: the difficulty would come from the sampling of 
. The objective of introducing 
null collisions will therefore be to replace 
 with another path-length 
̂, shorter in average but easy to sample, and 
compensate the too many collisions by the fact that some of them are null. However, this not as trivial as in the algorithm 
for the main quantity because of the new random variable L that we needed to introduce when transforming Eq. (10) into 
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Eq. (11) (transforming it into an expectation). Indeed ∂ςke needs to be integrated along the whole path, now including null 
collisions. In statistical terms, this means that the recursivity of the path-sampling algorithm is only insured if the Monte 
Carlo weight associated to null collisions includes the term −∂ς ke(xl, ς)/pL(l|λ) f (�x′

, �ω, ς), exactly like for true scattering 
events:

∂ς f (�x, �ω, ς) =
+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)

λ∂�∫
0

pL(l|λ∂�)dl

(
−w∂�

∂ςke(xl, ς)

pL(l|λ∂�)
+ wς

∂�

)

+ H(λ∂� − λ)

λ∫
0

pL(l|λ)dl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

(
−w A

∂ς ke(xl,ς)

pL(l|λ)
+ wς

A

)
+ P S(�x′

, ς)

∫
4π

pS(−�ω′| − �ω)dω′

⎛
⎜⎜⎜⎝

− ∂ς ke(xl,ς)

pL(l|λ)
f (�x′

, �ω′
, ς)

+ ∂ς ks(�x′
,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎟⎟⎟⎠

+ P N(�x′
, ς)

(
− ∂ς ke(xl,ς)

pL(l|λ)
f (�x′

, �ω, ς)

+ ∂ς f (�x′
, �ω, ς)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

Equations (5) and (12) have now a similar structure: all the samples used to evaluate f can also be used for the evaluation 
of ∂ς f . But in order to complete the evaluation of sensitivity, we must add one sample (of L) per collision. Thanks to this 
similar structure, we can gather them into a single vectorial writing (exactly the same way Eq. (7) was constructed from 
Eq. (5) and (6)):

{
f (�x, �ω, ς) ; ∂ς f (�x, �ω, ς)

}=
+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)

λ∂�∫
0

pL(l|λ∂�)dl

{
w∂� ; − w∂�

∂ςke(xl, ς)

pL(l|λ∂�)
+ wς

∂�

}

+ H(λ∂� − λ)

λ∫
0

pL(l|λ)dl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

{
w A ; − w A

∂ς ke(xl,ς)

pL(l|λ)
+ wς

A

}
+ P S(�x′

, ς)

∫
4π

pS(−�ω′| − �ω)dω′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (�x′
, �ω′

, ς) ;

⎛
⎜⎜⎜⎝

− ∂ς ke(xl,ς)

pL(l|λ)
f (�x′

, �ω′
, ς)

+ ∂ς ks(�x′
,ς)

ks(�x′
,ς)

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ P N(�x′
, ς)

{
f (�x′

, �ω, ς) ;
(

− ∂ς ke(xl,ς)

pL(l|λ)
f (�x′

, �ω, ς)

+ ∂ς f (�x′
, �ω, ς)

)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

The algorithmic-reading of (13) leads to Algorithm 3 that is an alternative to Algorithm 2 for evaluating simultaneously f
and ∂ς f . As explained in the algorithmic reading of Eq. (7), the recursive nature of this algorithm comes from the fact that 
the final brackets in the scattering and null-collision terms contain f and ∂ς f at the same location in the same direction. 
The fact that their sensitivity part includes a summation is translated into an algorithm incrementing the Monte Carlo 
weight as explained in Appendix A. It is interesting to note that the integral 

∫
pL(l)dl ∂ςke(xl, ς)/pL(l) can be more or less 

difficult to evaluate depending on the profile of ∂ςke . But this can be easily handled using importance sampling based on 
the k̂-adjustment grid, as explained in Appendix D.
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4. Simulations using the alternative approach

4.1. Transmissivity of a purely absorbing column

Applying the alternative approach of Sec. 3 to the evaluation of column-transmissivities leads to the content of Fig. D.3d 
and Table D.5c. For the homogeneous-slab configuration, Fig. D.3 shows that not only the pathological behaviour of Sec. 2
is removed, but the sensitivity is estimated with a statistical uncertainty that is perfect for a simultaneous evaluation: its 
dependence on the parameters of the problem is identical to that of the main quantity. As above, in this very simple case, 
this uncertainty can be expressed analytically (see Appendix B.2) and indeed

σ∂ς T

∂ς T
= σT

T
=
√

1 − e−ka L
√

N

For the heterogeneous-slab configuration, the uncertainty cannot be predicted theoretically, but the conclusions of Fig. D.5 are 
identical to those of Fig. D.3: in terms of relative accuracy, the convergence rate is equal to that of the algorithm evaluating 
the main quantity. It is therefore strictly independent of the adjustment of k̂ to k. The use of an acceleration grid does only 
what we expect: it reduces the number of null-collisions but does not impact the variance anymore.

4.2. Full radiative transfer in a 3D configuration

In [2], a cubic benchmark configuration was used to test null-collision algorithms when dealing with three-dimension 
highly-heterogeneous fields for all ranges of optical thickness and single-scattering albedo. We here make use of the 
same configuration, named heterogeneous-cube hereafter, in order to test our alternative approach with 3D radiation (see 
Fig. D.4):

• radiation is monochromatic;
• the cube is of side 2L, with 0K black faces;
• the inside-temperature field is such that f eq varies from f eq = f eq

max (at the centre of the face at x = −L) to f eq = 0 (at 
x = L and (y = ±L, z = ±L)) and mimics the shape of flame: f eq(x, y, z) = η(x, y, z) f eq

max (see the η profile in Fig. D.4);
• the fields of absorption and scattering coefficients follows the same spatial dependence: ka(x, y, z) = η(x, y, z)ka,max and 

ka(x, y, z) = η(x, y, z)ks,max;
• The single-scattering phase function is that of Henyey-Greenstein with a uniform value of the asymmetry parameter g;
• k̂ is adjusted to k using a regular cubic-grid (k̂ uniform within each mesh): the only parameter for k̂ is therefore the 

number of mesh per direction.

The evaluated quantity A(x, y, z) is the stationary net-power density and the free physical parameters are ka,max L, ks,maxL
and g . In Table D.7 we reproduce the computations of Table 1 in [2], i.e. testing wide ranges of optical thicknesses but 
fixing g = 0 (isotropic scattering). In the same table we also provide two sensitivities, ∂ka,max and ∂ks,max , that we evaluated 
simultaneously with A. As in [2], although they are not displayed, we checked that simulation results with non-isotropic 
scattering lead to the exact same conclusions.

These conclusions are very similar to those reached on the slab-transmissivity example: Table D.8 highlights the same 
features as Fig. D.5, the standard deviation of Algorithm 3 being independent of k̂, whereas it increases when k̂ gets close 
to ke for Algorithm 2.

5. Conclusion

The simulation examples of the preceding section show that the solution proposed in Sec. 3 is practical. Sensitivities 
can be accurately evaluated even when using null-collision algorithms. We still face convergence difficulties for highly-
scattering media, but this is an open question identified in all linear-transport physics, independently of the use of null-
collisions.

The way we bypassed the convergence difficulties specific to null-collisions is in rupture with the principle of evaluating 
sensitivities ∂ς A simultaneously with the main quantity A: in all previous works, the two evaluations were truly simulta-
neous in the sense that the very same samples were used in the A and ∂ς A Monte Carlo algorithms. Here, all the samples 
used to evaluate A are also used for the evaluation of ∂ς A, but in order to complete the evaluation of ∂ς A, some additional 
random variables must be sampled. The sensitivity evaluation has therefore a specific computation-cost. In all our test-cases, 
this cost was very small compared to the total computation cost, and considering the wide range of tested optical depths 
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we may state that this additional cost has no practical significance for radiative transfer applications. Other linear-transport 
domains of applications would have to be investigated specifically.

In the present text, we only gave very little indications about absolute computer-requirements. We provided some 
computation-time examples in Fig. D.7, without the use of any acceleration grid. Most of our analysis was made with 
another measure: the average number of random generation per path, which should be proportional to the computation 
time, but only once all optimisations will be implemented. As illustrated in [8,10,9,11], such data-access considerations in 
relation with null-collision algorithms (i.e. the time associated to a close adjustment of k̂ to k) is an ongoing computer-
science research. The question of implementing the corresponding tools (developed by the computer-graphics community) 
together with the present sensitivity evaluation algorithm will be discussed in a separate paper.
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Appendix A. Incrementation of the Monte Carlo weights

The standard approach of Algorithm 2 is designed from the algorithmic-reading of Eq. (7) and the recursive nature of 
this algorithm comes from the fact that the final brackets in the scattering and null-collision terms contain f and ∂ς f at 
the same location in the same direction. As the integral formulation of f and ∂ς f have identical structures, we can just 
use one unique sampled-path to evaluate simultaneously f and ∂ς f . For a better understanding of the meaning of this 
unique sampled-path, we express here the Monte Carlo weight for one path example: the path displayed in Fig. D.1, i.e. 
one null-collision at location �x1 , two scatterings at location �x2 and �x3 , and one boundary-collision at location �y4 . Instead of 
using the notations of the Monte Carlo weights w∂ς f and w f , we write directly ∂ς f and f in the following development. 
Reading the algorithm of Eq. (7), after one null-collision at location �x1 , we have

∂ς f ( �x0, �ω0, ς) = ∂ς f ( �x1, �ω0, ς) + ∂ςkn( �x1, ς)

kn( �x1, ς)
f ( �x1, �ω0, ς) (A.1)

At this stage, ∂ς f and f need to be evaluated at the same location ( �x1) in the same direction ( �ω0). According to Eq. (7), 
it’s possible to use the same path to evaluate ∂ς f and f . Therefore, after one scattering-collision at location �x2 in direction 
�ω2 , we have ∂ς f ( �x1, �ω0, ς) = ∂ς f ( �x2, �ω2, ς) + ∂ς ks( �x2,ς)

ks( �x2,ς)
f ( �x2, �ω2, ς) and f ( �x1, �ω0, ς) = f ( �x2, �ω2, ς),

∂ς f ( �x0, �ω0, ς) = ∂ς f ( �x2, �ω2, ς) + ∂ς ks( �x2,ς)

ks( �x2,ς)
f ( �x2, �ω2, ς) + ∂ς kn( �x1,ς)

kn( �x1,ς)
f ( �x2, �ω2, ς)

= ∂ς f ( �x2, �ω2, ς) +
(

∂ς ks( �x2,ς)

ks( �x2,ς)
+ ∂ς kn( �x1,ς)

kn( �x1,ς)

)
f ( �x2, �ω2, ς)

(A.2)

Similarly, after one scattering at location �x3 in direction �ω3 ,

∂ς f ( �x0, �ω0, ς) = ∂ς f ( �x3, �ω3, ς) + ∂ς ks( �x3,ς)

ks( �x3,ς)
f ( �x3, �ω3, ς) +

(
∂ς ks( �x2,ς)

ks( �x2,ς)
+ ∂ς kn( �x1,ς)

kn( �x1,ς)

)
f ( �x3, �ω3, ς)

= ∂ς f ( �x3, �ω3, ς) +
(

∂ς ks( �x3,ς)

ks( �x3,ς)
+ ∂ς ks( �x2,ς)

ks( �x2,ς)
+ ∂ς kn( �x1,ς)

kn( �x1,ς)

)
f ( �x3, �ω3, ς)

(A.3)

and after the boundary-collision at location �y4 in direction �ω3 ,

∂ς f ( �x0, �ω0, ς) = w∂ς f ( �x0, �ω0,ς) = wς
∂� +

(
∂ς ks( �x3,ς)

ks( �x3,ς)
+ ∂ς ks( �x2,ς)

ks( �x2,ς)
+ ∂ς kn( �x1,ς)

kn( �x1,ς)

)
w∂� (A.4)

http://www.umr-cnrm.fr/high-tune
http://www.umr-cnrm.fr/high-tune
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where wς
∂� = 0 and w∂� = f∂�( �y4, �ω3, ς). The summation of f and ∂ς f is therefore translated into an algorithm incre-

menting the Monte Carlo weight. This is how the Monte Carlo weight is incremented in the fully recursive algorithm of 
Algorithm 3.

Appendix B. Analytical variances for homogeneous-slab

� is a slab of length L with �ex the incoming normal at location �y = 0 and f∂�(L, − �ex, .) = f inc as boundary condition 
(see Fig. D.2). The equilibrium distribution f eq is null (no emission) and the absorption and scattering coefficients are ka ≡ ς
and ks ≡ 0. The transmissivity is T = f (0, �ex, ., ς)/ f inc .

B.1. For the standard approach

Using Eq. (7),

∂ς T (L, ς) =
∞∫

0

k̂e−k̂λ dλ

⎧⎪⎨
⎪⎩

H(λ − L) 0

+ H(L − λ)

{
P A(ς) 0

+ P N(ς)
( −1

kn(ς)
T (L − λ,ς) + ∂ς T (L − λ,ς)

)) }
⎫⎪⎬
⎪⎭ (B.1)

To get the analytical variance for the standard approach (Algorithm 2) in homogeneous-slab, we started by designing a 
countable categorisation of paths: Cm (m ∈N∗) is the set of paths that crossed the column and met m null-collisions and C
all other paths (path without null-collisions). The probability pm that a path belongs to the Cm category is

pm = k̂m
n

m! Lme−k̂L

The Monte Carlo weight wm obtained at the end of a path belonging to the Cm is

wm = −m
kn

The weight of a path belonging to C is zero. Therefore, the variance of the Algorithm 2 is

V arAlg.2(∂ς T (L, ς)) =∑∞
m=1 pm w2

m −
(∑∞

m=1 pm wm

)2

= L2e−ka L
(

kn+1/L
kn

)
− L2e−2ka L

(B.2)

B.2. For the alternative approach

Using Eq. (13),

∂ς T (L, ς) =
∞∫

0

k̂e−k̂λ dλ

⎧⎨
⎩

H(λ − L) (−L)

+ H(L − λ)

{
P A(ς) 0

+ P N(ς) ∂ς T (L − λ,ς)

} ⎫⎬⎭ (B.3)

The variance of a Bernoulli law of p parameter is p(1 − p), and therefore the variance of Algorithm 3 is

V arAlg.3(∂ς T (L, ς)) = L2e−ka L
(

1 − e−ka L
)

(B.4)

Similarly for Algorithm 1,

V arAlg.1(T (L, ς)) = e−ka L
(

1 − e−ka L
)

(B.5)

Appendix C. Another possible approach: k̂ varying with ke

In Eq. (5), we chose to use a constant upper bound of ke noted k̂. Nevertheless, nothing prevents us from varying k̂
according to the parameter ς , while preserving the fact that k̂(., ς) is independent of space in order to still enable an easy 
sampling of 
̂. Thus, we have complete freedom in the choice of these variations, and we will choose them to reduce the 
variance as much as possible.
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In addition, we have shown that the explosion is due to the fact that Monte Carlo’s weight includes a factor 1/kn . This 
factor appeared when applying the sensitivity evaluation technique to Eq. (5), especially because of the term ∂ς

(
kn

k̂

)
.

Therefore, and now that k̂ depends on ς , we may impose ∂ς

(
kn

k̂

)
= 0, which implies the following relation:

∂ς k̂ = ∂ςke k̂

ke

Thus, by derivating Eq. (5), we obtain:

∂ς f (�x, �ω, ς) =

+∞∫
0

p

̂
(λ)dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(λ − λ∂�)

⎡
⎣−w∂�

λ∂�∫
0

∂ς k̂(�xl, ς)dl + wς
∂�

⎤
⎦

+ H(λ∂� − λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P A(�x′
, ς)

⎡
⎢⎢⎢⎣

ψ(�x, λ,ς)w A

+
(

∂ς ka
ka

− ∂ς k̂

k̂

)
|�x′

,ς

w A

+ wς
A

⎤
⎥⎥⎥⎦

+P S(�x′
, ς)

∫
4π

pS(−�ω′| − �ω)dω′

⎡
⎢⎢⎢⎢⎣

ψ(�x, λ,ς) f (�x′
, �ω′

, ς)

+
(

∂ς ks
ks

− ∂ς k̂

k̂

)
|�x′

,ς

f (�x′
, �ω′

, ς)

+ ∂ς f (�x′
, �ω′

, ς)

⎤
⎥⎥⎥⎥⎦

+P N(�x′
, ς)

[
ψ(�x, λ,ς) f (�x′

, �ω, ς)

+ ∂ς f (�x′
, �ω, ς)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.1)

with ψ(�x, λ, ς) =
⎛
⎝ ∂ς k̂(�x′

,ς)

k̂(�x′
,ς)

−
λ∫

0

∂ς k̂(�xl, ς)dl

⎞
⎠

We have implemented the algorithm resulting from this integral formulation and compared it with the approach pro-
posed in the core of the present paper. Whatever the case, it was always less efficient.

Appendix D. The additional sampling

To evaluate ∂ς T with the alternative approach of Algorithm 3, we must evaluate 
λ∫

0

∂ςke( �xl, ς)dl. We make use of one 

additional sampling:

λ∫
0

∂ςke( �xl, ς)dl =
λ∫

0

pL(l)dl ∂ςke( �xl, ς)/pL(l) (D.1)

However, depending on the profile of ∂ςke , this integral can be source of variance if the spatial variations of pL(l) do not 
sufficiently match those ∂ςke( �xl). We did not yet address this importance-sampling issue and bypassed it using stratified 
sampling: we increased the number of “collisions” by including the grid-intersections to write

λ∫
0

∂ςke( �xl, ς)dl =
β1∫

0

pL(l1)dl1 ∂ςke( �ζ 1, ς)/pL(l1)

+
β2∫

pL(l2)dl2 ∂ςke( �ζ 2, ς)/pL(l2)
0
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Algorithm 1. The initial backward tracking null-collision algorithm. The objective of simultaneously evaluating sensitivities will be discussed on the basis 
of this initial algorithm, with the idea that only small algorithmic modifications should be required to reach this goal. N is the number of samples used 
to produce one Monte Carlo estimate of f (�x, �ω, t, ς) along the algorithmic reading of Eq. (5). This estimate is noted f̄ N . ka , ks , kn and k̂ = ka + ks + kn

are respectively the absorption coefficient, the scattering coefficient, the null-collision coefficient and the total extinction coefficient. At a given collision, 
P A(�x, t, ς) = ka(�x,t,ς)

k̂
, P S (�x, t, ς) = ks(�x,t,ς)

k̂
and P N (�x, t, ς) = kn(�x,t,ς)

k̂
are respectively the absorption probability, the scattering probability and the null-

collision probability. x0 = x is the initial position, ω0 = ω is the initial direction, and t0 = t is the observation time. � is the geometrical domain, ∂�

its boundary at which the distribution function f∂� is known for all locations �y and all directions �ω+ of the incoming hemisphere S2+ . f eq is the 
equilibrium distribution (following the Planck function) and f0 is the initial condition. For all j ∈N , x j+1 = x j − λ jω j , t j+1 = t j − λ j

c , y j+1 = x j − λ
j
∂�ω j

s.t. λ j
∂� = min{∥∥x j − �y∥∥ ; �y ∈ Vect−(x j , ω j) ∩ ∂�} where Vect−(�x, �ω) = {�x − λ �ω; λ ∈R+}.

+...

+
βn∫

0

pL(ln)dln ∂ςke( �ζn, ς)/pL(ln) (D.2)

where n is the number of grid-intersections along the path [ �x0, �xλ]. For all i ∈ [1, n], �zi is the location of the ith “collision”, 
βi is the length between two successive “collisions” and �ζ i = �zi − li �ω (see Fig. D.9).

This stratified sampling is only meaningful if we assume that the grid is sufficiently refined to capture the spatial vari-
ation of ∂ςke( �xl). But initially, the grid was only designed to reduce the amount of null-collisions. Therefore, another 
grid-refinement criterium should be introduced if this strategy is retained. But again, stratified sampling is not the only 
possible solution and the grid may be used differently: make pre-computations in each mesh and sample L only once along 
the whole path using importance sampling, which would suppress the increase of computation costs when refining the grid 
in Fig. D.5 (R increasing in Fig. D.5c).
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Algorithm 2. The standard approach to the simultaneous evaluation of f and its sensitivity. ∂ς f̄ N is a Monte Carlo estimate of ∂ς f (�x, �ω, t, ς) corresponding 
to the algorithmic reading of Eq. (7). It is constructed together with f̄ N . Notations are described in the caption of Algorithm 1. The incrementation of the 
Monte Carlo weight w is detailed in Appendix A.

Fig. D.1. Example of a backward-sampled path obtained from Algorithm 1, 2 or 3. � is the geometrical domain and ∂� its boundary. �x0 and �ω0 are the 
position and direction when starting the backward tracking (i.e. the end of the path). This path is composed of one null-collision at location �x1 = �x0−λ0 �ω0
(the initial direction �ω1 is kept and therefore �ω0 = �ω1), two scatterings at locations �x2 (from direction �ω2 to direction �ω1) and �x3 (from direction �ω3 to 
direction �ω2), and one boundary intersection at location �y4 = �x3 − λ3

∂�
�ω3 .
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Algorithm 3. The alternative approach to the simultaneous evaluation of f and its sensitivity. It corresponds to the algorithmic reading of Eq. (13). Notations 
are described in the captions of Algorithm 1 and Algorithm 2. The incrementation of the Monte Carlo weight w is detailed in Appendix A. As a reminder, 
the sampling of L depends of the sampled value of λ j .
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Fig. D.2. The heterogeneous-slab configuration: a non diffusive heterogeneous column of length L. The absorption coefficient profile is ka(�x, ς) =
(ς − γ )

−atan(α
(�x−β

)
)+ π

2
π/2 + γ . Different k̂ profiles are used, closer and closer to ke ≡ ka: k̂20% is equal to 1.2max (ke) and k̂n is constant in pieces on 

the grid: k̂ is exactly equal to the maximum ke -value inside a mesh and the grid is constructed in such a way that the variations of ke are identical across 
each mesh). α, β , ς and γ are arbitrary parameters that allow us to choose the shape of the absorption coefficient profile, in particular, ς is the problem-
parameter. The equilibrium distribution f eq is null (no emission) and the boundary conditions are f∂�(L, − �ex) = f inc and f∂�(0, �ex) = 0. By choosing this 
ke -profile, we can calculate the transmissivity and the sensibility analytically: T = exp (− (ς − γ ) K − γ L) and ∂ς T = −K exp (− (ς − γ ) K − γ L) where 
K = 1

π/2

(
(L − β) atan (−αL + αβ) + βatan (αβ) − 1

2α log
(

1+(αβ)2

1+(−αL+αβ)2

))
+ L. (For interpretation of the colours in the figure(s), the reader is referred to 

the web version of this article.)

Fig. D.3. Statistical convergence for the homogeneous-slab configuration: number of samples required to reach a 1% accuracy (N1%) when evaluating the 
slab transmissivity or its sensitivity as function of the ratio kn

k (i.e. the amount of null-collisions), for optical-thicknesses ke L ≡ ka L ranging from 0.01 to 
9. In this particular case the variances of Algorithm 1, 2 and 3 are known analytically (see Appendix B and therefore N1% is also known analytically. It 
is displayed using solid lines. Also displayed are some example Monte Carlo simulations, only confirming that the analytical prediction is correct. These 
theoretical analyses of statistical convergence are provided for the following four algorithms: (a.) transmissivity estimation, with null-collision, using Algo-
rithm 1 (the standard null-collision algorithm described in Section 2); (b.) sensitivity estimation, without null-collision, using Algorithm 2 (the standard 
sensitivity evaluation algorithm described in Section 2), here with kn ≡ 0 which is possible in this particular case because ke is homogeneous; (c.) sensi-
tivity estimation, with null-collision, using the same standard approach as in (b.) (i.e. Algorithm 2, but now with kn �= 0); (d.) sensitivity estimation, with 
null-collision, using the alternative approach (i.e. Algorithm 3 described in Section 3).
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Fig. D.4. The heterogeneous-cube configuration: the cube is of side 2L, centred on �O , with 0K black faces perpendicular to the three axes of a cartesian 
coordinate system ( �O , x, y, z). The inside-temperature field is such that f eq varies from f eq = f eq

max (at the centre of the face at x = −L) to f eq = 0 (at 
x = L and (y = ±L, z = ±L)): f eq(x, y, z) = η(x, y, z) f eq

max with η(x, y, z) = L−x
2L

(
1 −

√
y2+z2

2L2

)
. The fields of absorption and scattering coefficients follow 

the same spatial dependence: ka(x, y, z) = η(x, y, z)ka,max and ka(x, y, z) = η(x, y, z)ks,max . The single-scattering phase function is that of Henyey-Greenstein 
with a uniform value of the asymmetry parameter g. The total extinction coefficient k̂n is chosen constant in pieces on a n × n × n-regular grid, exactly 
equal to the maximum ke -value inside each mesh. In particular, k̂1 is uniform on the whole cube and equal to ka,max + ks,max .

Transmissivity
k̂ T σ C̄ R̄

k̂1 0.363 4.802E-03 1.345 0.997

k̂5 0.366 4.818E-03 0.770 0.701

k̂10 0.367 4.823E-03 0.711 0.669

k̂100 0.372 4.810E-03 0.645 0.637

k̂1000 0.379 4.822E-03 0.631 0.636

(a) Evaluation of transmissivity T with Algorithm 1.

Sensitivity with the standard approach
k̂ ∂ς T σ N1% R̄

k̂1 -0.395 5.166E-02 134E+03 0.997

k̂5 -0.336 7.959E-02 206E+03 0.701

k̂10 -0.407 9.385E-02 243E+03 0.669

k̂100 -0.468 1.296E-01 - 0.637

k̂1000 -0.207 1.224E-01 - 0.636

(b) Evaluation of sensitivity ∂ς T with Algorithm 2.

Sensitivity with the alternative approach
k̂ ∂ς T σ N1% R̄

k̂1 -0.367 5.902E-03 16E+03 2.04

k̂5 -0.375 4.849E-03 14E+03 3.27

k̂10 -0.373 4.838E-03 14E+03 5.43

k̂100 -0.369 4.827E-03 13E+03 44.6

k̂1000 -0.370 4.828E-03 13E+03 434

(c) Evaluation of sensitivity ∂ς T with Algorithm 3.

Fig. D.5. Simulation results for the heterogeneous-slab configuration: evaluation of the transmissivity T of a non diffusive heterogeneous column of length L

where the absorption coefficient profile is such that ka(�x, ς) = (ς − γ )
−atan(α

(�x−β
)
)+ π

2
π/2 +γ with ς = 1, γ = 0.0, α = 10, β = 0.5L. T and ∂ς T are evaluated 

using N = 10000 samples. The exact solution can be obtained by solving the radiative transfer equation analytically: Texact = 0.368 and ∂ς Texact = −0.368. 
N1% is the number of paths that need to be sampled in order to reach σ = Texact

100 for transmissivity or σ = ∂k Texact
100 for sensitivity. C̄ is the average number 

of null-collision per path and R̄ the average number of random generation per path. Table D.5a confirms that the computation time decreases when k̂
gets closer to ka: the average number of random generation per path decreases when k̂ is well adjusted because there are less null-collisions. Table D.5b 
highlights the fact that the better k̂ is adjusted, the greater is the standard deviation of the sensitivity estimator. With Table D.5c we see that with the 
alternative approach the standard deviation of the sensitivity estimator is independent of k̂. The fact that R̄ increases when adjusting k̂ in Table D.5c is 
associated to the repeated sampling of L each time a mesh is crossed. This could be replaced with only one sample along the complete path but using 
importance sampling on the basis of the information carried by the acceleration grid (see Appendix D).
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Transmissivity
k̂ T σ C̄ R̄

k̂20% 0.327 5.179E-03 116.65 235.2

k̂1 0.327 5.358E-03 96.64 194.6

k̂5 0.327 5.264E-03 20.06 38.7

k̂10 0.332 4.984E-03 9.86 20.5

k̂100 0.335 5.285E-03 1.45 3.4

k̂1000 0.322 4.815E-03 0.72 1.8

(a) Evaluation of transmissivity T with Algorithm 1.

Sensitivity with the standard approach
k̂ ∂ς T σ N1% R̄

k̂1 -1.915E-03 5.910E-05 95E+03 194.6

k̂5 -1.8357E-03 6.347E-05 120E+03 38.7

k̂10 -1.868E-03 1.008E-04 304E+03 20.5

k̂100 -1.852E-03 2.250E-04 1516E+03 3.4

k̂1000 -1.491E-03 5.083E-04 - 1.8

(b) Evaluation of sensitivity ∂ς T with Algorithm 2.

Sensitivity with the alternative approach
k̂ ∂ς T σ N1% R̄

k̂1 -1.801E-03 2.836E-05 24E+03 288.4

k̂5 -1.838E-03 2.745E-05 22E+03 63.4

k̂10 -1.819E-03 2.720E-05 22E+03 37.7

k̂100 -1.822E-03 2.703E-05 22E+03 83.6

k̂1000 -1.807E-03 2.622E-05 20E+03 792.4

(c) Evaluation of sensitivity ∂ς T with Algorithm 3.

Fig. D.6. Simulation results for the heterogeneous-slab configuration with steep profil: evaluation of the transmissivity T of a non diffusive heterogeneous 
column of length L where the absorption coefficient profile is such that ka(�x, ς) = (ς − γ )

−atan(α
(�x−β

)
)+ π

2
π/2 + γ with ς = 200, γ = 0.0, α = 1000, β =

0.0005L. T and ∂ς T are evaluated using N = 10000 samples. The exact solution can be obtained by solving the radiative transfer equation analytically: 
Texact = 0.326 and ∂ς Texact = −1.827E − 03. N1% is the number of paths that need to be sampled in order to reach σ = Texact

100 for transmissivity or 
σ = ∂k Texact

100 for sensitivity. C̄ is the average number of null-collision per path and R̄ the average number of random generation per path. Table D.6a 
confirms that the computation time decreases when k̂ gets closer to ka : the average number of random generation per path decreases when k̂ is well 
adjusted because there are less null-collisions. Table D.6b highlights the fact that the better k̂ is adjusted, the greater is the standard deviation of the 
sensitivity estimator. With Table D.6c we see that with the alternative approach the standard deviation of the sensitivity estimator is independent of k̂. The 
fact that R̄ increases when adjusting k̂ in Table D.6c is associated to the repeated sampling of L each time a mesh is crossed. This could be replaced with 
only one sample along the complete path but using importance sampling on the basis of the information carried by the acceleration grid (see Appendix D).

Alternative approach
ka,max L ks,max L A σA ∂ka,maxA σ∂ka,max A ∂ks,maxA σ∂ks,max A t(s)

0.1 0.1 -0.483582 8.58E-05 0.160386 8.37E-04 0.002091 1.72E-04 0.79
0.1 1.0 -0.481834 9.00E-05 0.176627 8.74E-04 0.001992 5.89E-05 1.28
0.1 3.0 -0.477867 9.92E-05 0.212956 9.53E-04 0.002097 4.17E-05 2.69
0.1 10.0 -0.463074 1.26E-04 0.342196 1.17E-03 0.002190 3.82E-05 10.91
1.0 0.1 -0.366069 2.09E-04 0.106597 1.69E-04 0.010256 4.19E-04 0.91
1.0 1.0 -0.356424 2.13E-04 0.110277 1.70E-04 0.010256 1.42E-04 1.31
1.0 3.0 -0.335872 2.20E-04 0.116637 1.72E-04 0.009890 9.37E-05 2.31
1.0 10.0 -0.276546 2.28E-04 0.125441 1.91E-04 0.007140 6.91E-05 7.16
3.0 0.1 -0.219088 2.21E-04 0.049387 6.51E-05 0.011163 5.03E-04 1.04
3.0 1.0 -0.209163 2.18E-04 0.047957 6.92E-05 0.010262 1.63E-04 1.28
3.0 3.0 -0.190149 2.10E-04 0.044937 7.74E-05 0.008717 9.89E-05 1.90
3.0 10.0 -0.143655 1.83E-04 0.035626 9.88E-05 0.005079 6.15E-05 4.16
10.0 0.1 -0.071489 1.19E-04 0.008151 3.47E-05 0.003764 4.13E-04 1.00
10.0 1.0 -0.068583 1.15E-04 0.007778 3.54E-05 0.002880 1.30E-04 1.08
10.0 3.0 -0.063426 1.06E-04 0.006771 3.69E-05 0.002478 7.59E-05 1.27
10.0 10.0 -0.050710 8.50E-05 0.004806 4.00E-05 0.001365 4.27E-05 1.93

Fig. D.7. The heterogeneous-cube configuration: f eq
max = 1, g = 0, �x0 = (0, 0, 0), and N = 106 samples. Evaluation of A = A

4πka( �x0) f eq
max

(the stationary net-power 
density) and its sensitivities ∂ka,maxA and ∂ks,maxA using the alternative approach of Algorithm 3 for k̂1 = ka,max + ks,max . We check here that the alternative 
approach recovers the results of Table 1 in [2] with ζ = 1 (the extinction criterion defined in [6]). The computation times displayed in the last column 
correspond to an Intel Core i5 - 2.5 Ghz without parallelization.
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Standard approach Alternative approach
∂ka,maxA σ∂ka,max A ∂ks,maxA σ∂ks,max A ∂ka,maxA σ∂ka,max A ∂ks,maxA σ∂ks,max A

k̂1 0.110196 1.97E-04 0.010612 1.75E-04 0.110236 1.69E-04 0.010652 1.43E-04

k̂23 0.110598 2.25E-04 0.011006 2.06E-04 0.110258 1.69E-04 0.010666 1.44E-04

k̂103 0.110202 3.95E-04 0.010506 3.85E-04 0.110345 1.69E-04 0.010649 1.43E-04

k̂1003 0.109576 1.04E-03 0.010004 1.03E-03 0.110104 1.69E-04 0.010532 1.43E-04

k̂10003 0.114101 2.72E-03 0.014621 2.72E-03 0.110199 1.69E-04 0.010719 1.43E-04

(a) ζ = 1

Standard approach Alternative approach
∂ka,maxA σ∂ka,max A ∂ks,maxA σ∂ks,max A ∂ka,maxA σ∂ka,max A ∂ks,maxA σ∂ks,max A

k̂1 0.110457 8.41E-05 0.010622 1.02E-04 0.110407 8.79E-05 0.010572 8.14E-05

k̂23 0.110434 1.15E-04 0.010648 1.21E-04 0.110365 9.99E-05 0.010579 7.92E-05

k̂103 0.110251 2.19E-04 0.010490 2.17E-04 0.110393 1.17E-04 0.010632 7.26E-05

k̂1003 0.110180 5.92E-04 0.010401 5.90E-04 0.110406 1.22E-04 0.010627 6.99E-05

k̂10003 0.112980 1.82E-03 0.013008 1.82E-03 0.110533 1.22E-04 0.010560 6.95E-05

(b) ζ = 0.1

Fig. D.8. The heterogeneous-cube configuration for ka,max L = 1, ks,max L = 1, f eq
max = 1, g = 0, �x0 = (0, 0, 0) and N = 106 samples. ζ = 1 in Table D.8a and 

ζ = 0.1 in D.8b. Simulations are made for various adjustments of the k̂ profile to the true profile of ke = ka + ks (using the k̂n notation as defined in 
Fig. D.2). These Tables confirm the conclusion of Fig. D.5: the standard deviation of the alternative approach is independent of k̂ whereas it was increasing 
when k̂ was getting close to ke in the standard approach.

Fig. D.9. In this 2D sketch, � is partitioned into four areas and k̂ is constant in pieces on these areas. We denote k̂1, k̂2, k̂3 and k̂4 these constants. �x and 
�ω are the location and direction at the start of the backward tracking of the path. �x′ = �z3 is the location of a scattering event (from �ω′ to �ω). �z1 and �z2

are grid-collisions. β1 = || �z1 − ��x||, β2 = || �z2 − �z1|| and β3 = || �z3 − �z2||.
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