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Abstract22

Process-scale development, evaluation and calibration of physically-based param-23

eterizations of clouds and radiation are powerful levers for improving weather and cli-24

mate models. In a series of papers, we propose a strategy for process-based calibration25

of climate models that uses machine learning techniques. It relies on systematic com-26

parisons of single-column versions of climate models with explicit simulations of boundary-27

layer dynamics and clouds (LES). This paper focuses on the calibration of cloud geom-28

etry parameters (vertical overlap, horizontal heterogeneity and cloud size) that appear29

in the parameterization of radiation. The solar component of a radiative transfer scheme30

that includes a parameterization for 3D radiative effects of clouds (SPARTACUS) is run31

in offline single-column mode on an ensemble of input cloud profiles synthesized from32

LES outputs. The space of cloud geometry parameter values is efficiently explored by33

sampling a large number of parameter sets (configurations) from which radiative met-34

rics are computed using fast surrogate models that emulate the SPARTACUS solver. The35

sampled configurations are evaluated by comparing these radiative metrics to reference36

values provided by a 3D radiative transfer Monte Carlo model. The best calibrated con-37

figurations yield better predictions of TOA and surface fluxes than the one that uses pa-38

rameter values computed from the 3D cloud fields: the root-mean-square errors averaged39

over cumulus cloud fields and solar angles are reduced from ∼ 10 Wm−2 with LES-derived40

parameters to ∼ 5 Wm−2 with adjusted parameters. However, the calibration of cloud41

geometry fails to reduce the errors on absorption, which remain around 2 to 4 Wm−2.42

Plain Language Summary43

A way to improve the accuracy of climate models is to improve the physical for-44

mulations that represent the effects of small-scale processes on the evolution of atmo-45

spheric state. Processes that involve clouds and radiation are particularly important due46

their key role on climate. Choosing values for the parameters inherent to these formu-47

lations is a difficult task. This series of papers presents a rigorous strategy for calibrat-48

ing models. It is based on comparisons between high-resolution models that accurately49

represent clouds and single-column versions of a climate model, on the basis of process-50

oriented metrics such as cloud height. A set of acceptable parameters is efficiently found51

using machine learning techniques. In this third part, the parameters that control the52

radiative effects of cloud geometry are calibrated. A recent radiation model that includes53

realistic representation of the radiative effect of cloud heterogeneity, cloud vertical struc-54

ture and cloud size is evaluated and calibrated using references that are provided by a55

ray-tracing algorithm that tracks virtual photons in virtual cloud fields produced by high-56

resolution models (LES). Calibration improves the model with respect to using param-57

eters diagnosed in the LES. Good agreement is found only when interception of sunlight58

by cloud sides is represented.59

1 Introduction60

Cloud–radiation interactions, through their strong impact on the Earth’s global en-61

ergy balance (Ramanathan et al., 1989), are key processes in the evolution of the Earth’s62

climate. The radiative effect of cumulus clouds is particularly important due to their per-63

manent presence in large regions of the Earth’s troposphere and their large optical thick-64

ness (Berg et al., 2011). They are responsible for a large proportion of the uncertainty65

around climate sensitivity (Dufresne & Bony, 2008; Bony et al., 2015). Cloud–radiation66

interactions are also key for climate model tuning. A common practice involves adjust-67

ing cloud parameters to match the observed cloud radiative effect (CRE) (Hourdin et68

al., 2017). This can lead to selecting model configurations in which errors in cloud prop-69

erties and in the parameterization of radiative transfer (RT) compensate for each other.70

A famous example of that is the “too few too bright” syndrome found in numerous cli-71
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mate models (Karlsson et al., 2008; Nam et al., 2012), in which the underestimated cover72

and overestimated optical depth of low clouds yield an acceptable global CRE.73

Accurately predicting the radiative effects of cumulus clouds is, therefore, of ma-74

jor importance, yet remains challenging, particularly when the detailed 3D structure of75

these geometrically complex clouds is unknown, as is the case in large-scale models (see76

e.g. Barker et al. (2003)). The effects of cloud geometry are most often separated into77

three aspects: the vertical overlap of cloudy regions occupying distinct model layers, which78

controls the total cloud cover; the horizontal variability of in-cloud water content, which79

controls the mean transmissivity of the cloudy region of the layer (inhomogeneous clouds80

are less opaque than their homogeneous counterpart; Newman et al. (1995)); and the cloud81

size which controls the intensity of radiative transfers between clouds and their “clear-82

sky” environment, called 3D effects. Examples of 3D effects include the interception of83

direct sunlight by cloud sides when the sun is not at zenith (McKee & Cox, 1974), which84

decreases transmission; or the channelling of downward flux and entrapment of upward85

flux towards the surface (Várnai & Davies, 1999; Hogan et al., 2019), which both increase86

transmission. The sign of resulting 3D effects depends on solar zenith angle. Gristey et87

al. (2020) found that 3D effects of sub-tropical land cumulus fields act to heat the sur-88

face when averaged over a diurnal cycle; neglecting these effects in climate models might89

introduce significant errors in the predicted evolution of the system.90

Various propositions have emerged in recent years to take these effects into account.91

In the Monte Carlo Independent Column Approximation (McICA) of Pincus et al. (2003),92

1D radiative transfer is solved in sub-columns that are sampled based on vertical over-93

lap and horizontal heterogeneity assumptions. The representation of cloud geometry is94

hence separated from the resolution of radiative transfer. In SPARTACUS (Hogan & Shonk,95

2013; Schäfer et al., 2016; Hogan et al., 2016, 2019), the 3D structure of clouds are in-96

trinsically mixed with the two-stream equations that are used to solve RT within the cloudy97

column. SPARTACUS is the only parameterization that includes 3D effects in addition98

to overlap and heterogeneity effects. This paper is dedicated to the evaluation and cal-99

ibration of SPARTACUS, with specific attention paid to its internal modelling of cloud100

3D geometry.101

This is the third part of a series of papers in which a novel approach for climate102

model tuning is defended. A first calibration step is advocated for, during which Single103

Column Models (SCM) and Large-Eddy Simulations (LES) are compared using process-104

scale metrics in order to eliminate regions of the parameter space where the SCM pa-105

rameterizations produce unsatisfying results. During the final global model tuning, only106

the parameter values that were not rejected during the first step are explored. This en-107

sures that only model configurations that reach the calibration target for the good rea-108

sons (for instance, produce the right CRE for the right clouds) can be selected, thereby109

limiting compensation errors. Part I (Couvreux et al., 2020) describes this approach and110

the associated numerical tools. Part II (Hourdin et al., 2020) applies them to the cal-111

ibration of a 3D climate model after prior calibration of the parameterization of shal-112

low convection in the SCM/LES framework.113

Here, we go one step further in this effort to untangle the sources of uncertainties114

in climate models by calibrating SPARTACUS cloud geometry parameters assuming per-115

fect cloud profiles.116

In practice, 3D RT is solved by Monte Carlo (MC) in 3D cloud field outputs from117

LES of four idealized cumulus cases to provide reference radiative metrics. These same118

3D cloud fields are summarized to a handful of vertical profiles (most importantly cloud119

fraction and liquid water content (LWC)) that are provided as inputs to SPARTACUS,120

whose outputs are compared to the MC references. SPARTACUS also requires the spec-121

ification of parameters related to cloud geometry. As these parameters have a physical122

interpretation, values can be derived from the LES cloud fields. Alternatively, they can123
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Table 1. Configuration of ecRad in the following work.

Property Option Reference

Gas model RRTMG-IFS Iacono et al. (2008)
Aerosols None
Liquid cloud optics SOCRATES Manners et al. (2017)
Liquid water content distrib. shape Gamma
Cloud overlap scheme Exp-Ran Hogan and Illingworth (2000)
Solver SPARTACUS Schäfer et al. (2016); Hogan et al. (2016)
Entrapment Explicit Hogan et al. (2019)

be adjusted using the calibration tool described in Part I (Couvreux et al., 2020). This124

latter approach is arguably more appropriate given the structural errors in the model125

(see discussion in Section 4).126

The paper is organised as follows: Section 2 describes the ecRad RT scheme, the127

MC model, the 3D LES and the resulting 1D profiles. In Section 3, the High-Tune:Explorer128

calibration tool is briefly described before being applied to SPARTACUS. Four calibrated129

configurations are then analysed. The main results are discussed in Section 4.130

2 Radiative Transfer Models and Cloudy Atmosphere Data131

This section presents the SPARTACUS solver of the ecRad radiation scheme we132

are calibrating (Hogan & Bozzo, 2018), the MC model (Villefranque et al., 2019) that133

serves as reference, the LES clouds and the methodology used to translate these 3D fields134

into the 1D profiles used as inputs to ecRad.135

2.1 ecRad136

The ecRad scheme (Hogan & Bozzo, 2018) has been operational in the Integrated137

Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts138

(ECMWF) since 2017. Recent efforts have led to a notable increase in flexibility as well139

as in efficiency compared to previous schemes. Another important step was the devel-140

opment of SPARTACUS (Schäfer et al., 2016; Hogan et al., 2016, 2019), a two-stream141

based solver that explicitly represents the 3D effects of clouds. An offline version of ecRad142

is freely avalaible at https://github.com/ecmwf/ecrad. The configuration used in this143

paper is summarized in Table 1.144

Three parameters need to be provided to SPARTACUS in addition to standard cloud145

profiles. They relate to the three main aspects of cloud geometry mentioned in the in-146

troduction: vertical overlap, horizontal heterogeneity and cloud size.147

1. Overlap decorrelation length. Following Hogan and Illingworth (2000), the148

cloud cover Ci,i+1 of two adjacent layers of cloud fractions ci, ci+1 is expressed149

as150

Ci,i+1 = αi,i+1Cmax(ci, ci+1) + (1− αi,i+1)Crand(ci, ci+1) (1)

where Cmax and Crand are two cloud covers computed respectively from the “max-151

imum” and “random” overlap of cloud fractions and α is the overlap parameter.152

It is modeled as an exponential function:153

αi,i+1 = exp(−∆z(i, i+ 1)

z0
) (2)
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where ∆z(i, i+1) is the vertical distance that separates the center of the two lay-154

ers and z0 is the overlap decorrelation length.155

2. Fractional standard deviation of in-cloud liquid water. Following the Triple-156

clouds model of Shonk and Hogan (2008), the effect of horizontal variations of LWC157

on radiation is accounted for by dividing each layer’s cloudy region into two thin158

and thick sub-regions. To distribute the LWC into the two sub-regions of a given159

layer and infer their respective optical depths, a gamma-shaped distribution of the160

liquid water is assumed, characterized by a mean and a standard deviation σ. The161

fractional standard deviation (FSD) of the distribution (ratio of σ to the mean in-162

cloud LWC) is used to characterize the horizontal variability of LWC in each layer.163

164

3. Radiatively effective cloud scale. Following Hogan and Shonk (2013); Hogan165

et al. (2016, 2019), terms are added in the two-stream equations of Tripleclouds166

to account for horizontal transport. These terms are proportional to the length167

of the interface between clear and cloudy regions: for a given cloud fraction, 3D168

effects will be larger for a large number of small clouds than for a single large cloud.169

The cloud perimeter density p (perimeter length per surface units) is modeled as:170

p =
4c(1− c)

Cs
(3)

where c is the cloud fraction and Cs is the radiatively effective cloud scale (or size).171

2.2 Monte Carlo reference computations of solar 3D RT172

A Monte Carlo (MC) method is used to compute solar 3D RT in 3D cloud fields,173

considered as the “truth” in comparisons to ecRad estimates.174

MC methods are widely used to accurately compute 3D RT in complex media (see175

for example Marchuk et al. (1980), Mayer (2009) or Marshak and Davis (2005)). The176

model used here is based on the High-Tune library described in Villefranque et al. (2019),177

and is freely available online at https://gitlab.com/najdavlf/scart project. The178

algorithm consists in tracking a large number of virtual photon paths throughout a vir-179

tual medium, explicitly simulating all radiative processes such as emission, absorption,180

scattering and surface reflection. Whenever a path hits the ground or the TOA, its weight181

is added to a virtual sensor. Paths are terminated upon absorption or escape in space.182

In this work, each simulation consists of ten million paths so that the Monte Carlo183

errors in our metrics are around 0.1%. Fewer paths would have been necessary to esti-184

mate the boundary fluxes to the same accuracy. The relative error on absorption is larger185

because absolute absorption is small and because absorption is computed from TOA and186

surface fluxes, therefore the error on the absorption is the sum of errors for TOA and187

surface estimates.188

The optical properties input to the MC model are the same as in ecRad, that is,189

RRTM-G data for gas (Iacono et al., 2008) and SOCRATES data for clouds (Manners190

et al., 2017). Spectral integration is performed in both models on the 0.2 – 12.2 µm in-191

terval. This prevents compensating errors between cloud geometry effects and mismatched192

optical properties.193

Three important differences between SPARTACUS and the MC model remain. First,194

SPARTACUS is a two-stream model that relies on the asymmetry parameter g instead195

of the detailed angular scattering phase function that is used in the MC model (see Sup-196

plemental Information for details). Second, SPARTACUS (as with many atmospheric197

two-stream RT solvers) is based on the δ-Eddington approximation of Joseph et al. (1976),198

which corresponds to scaling the optical properties of the clouds to account for large amounts199
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of energy scattered in a very small solid angle around the forward direction. Third, SPAR-200

TACUS only sees vertical profiles that summarize the 3D structure of clouds while the201

MC model acts upon the fully detailed 3D cloud field. Using this MC model as a ref-202

erence to adjust geometry parameters will mask compensating errors between geome-203

try effects and pure radiative transfer. We argue that this is legitimate since these as-204

pects are fundamentally entangled in SPARTACUS.205

2.3 3D fields from LES206

For this study, four idealized cumulus cases have been simulated using the French207

LES model Meso-NH (Lafore et al., 1997; Lac et al., 2018):208

• ARM-Cumulus (ARMCu; Brown et al. (2002)), a case of continental cumulus de-209

veloping over the Southern Great Plains, with a clear signature of the diurnal cy-210

cle of the boundary layer in the cloud characteristics. Cloud cover ranges from 0211

to 30%;212

• BOMEX (Siebesma et al., 2003), a case of marine shallow cumulus forced with213

constant surface fluxes through the simulation. Cloud cover ranges from 10 to 20%;214

• RICO (vanZanten et al., 2011), a second case of marine cumulus, forced with con-215

stant sea surface temperature through the simulation. Cloud cover ranges from216

15 to 25%;217

• SCMS (Neggers et al., 2003), a case of continental cumulus developing in Florida,218

with strong moisture advection into the domain caused by the nearby ocean. Cloud219

cover ranges from 0 to 45%.220

All simulations were performed on small domains (6.4 km × 6.4 km × 4 km) with221

high spatial resolution (25 m × 25 m × 25 m). The horizontal boundary conditions are222

periodic. The four cases are standards of the literature used in LES intercomparison ex-223

ercises. Detailed descriptions of the setups, initial conditions and forcings can be found224

in the reference papers. From these four simulations, thirty-five 3D fields of tempera-225

ture, pressure, mixing ratio of water vapor and liquid water are used in this study, among226

which eight will be used in the calibration process of Section 3 (the colored entries in Ta-227

ble 2).228

Using an object-identification tool (freely available at https://gitlab.com/tropics/229

objects; Brient et al. (2019)), individual clouds are labelled in each field. A cloud is de-230

fined as an ensemble of contiguous cells where the liquid mixing ratio is greater than 10−6231

kg/kg. Each scene is then described in terms of cloud characteristics, some of which are232

presented in Table 2. The cloud cover is the fraction of cloudy columns in the domain.233

To first order, cloud cover controls the transmitted and reflected solar fluxes. The num-234

ber density is the total number of identified clouds in the scene divided by the horizon-235

tal surface of the domain. For a given cloud cover, a larger number density indicates a236

longer interface between clouds and clear sky, hence more 3D radiative effects. The max-237

imum depth is the highest minus lowest altitudes at which clouds are present. When the238

sun is not at zenith, the “effective” cloud cover (that is, the cloud cover projected in the239

sun’s direction) depends on the cloud layer depth. Surface CREs computed by MC are240

also provided at solar zenith angles (SZA) 0 and 77 degrees. CREs are computed as the241

difference between a full-sky simulation (including clouds) and a clear-sky simulation (where242

clouds are removed).243

Some of the cloud fields might not be realistic because of the small domain size or244

other numerical constraints (see e.g. Gristey et al. (2020)). Calibration tests have been245

performed with a wider domain showing only weak sensitivity (not shown). Another lim-246

itation of the LES is that clouds were simulated using a one-moment microphysical scheme247

that did not predict droplet concentrations, hence no detailed information on droplet size248

was directly available in the 3D fields. In the radiation computations, the droplet size249
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Table 2. Cloud characteristics from the 35 scenes issued from four standard cumulus cases

simulated by LES. Scenes selected for the calibration process are in bold and colors.

Case Hour Cover [%] Number density [km−2] Max depth [km] Surface CRE [Wm−2]
SZA 0◦ SZA 77◦

ARMCu 04 2.722 0.73 0.175 -1.10 -1.35
ARMCu 05 13.174 1.59 0.300 -7.79 -8.63
ARMCu 06 27.139 1.39 0.525 -53.36 -30.74
ARMCu 07 29.416 2.00 0.825 -74.24 -38.08
ARMCu 08 26.343 1.64 1.225 -69.87 -38.32
ARMCu 09 26.180 1.44 1.050 -63.63 -39.03
ARMCu 10 23.499 1.61 1.375 -61.15 -33.63
ARMCu 11 23.029 1.15 1.275 -71.51 -41.70
ARMCu 12 12.663 0.81 1.450 -36.79 -19.32

BOMEX 04 13.884 2.71 1.025 -20.03 -18.63
BOMEX 05 16.301 2.17 1.200 -30.29 -22.15
BOMEX 06 18.001 2.71 1.200 -28.67 -22.10
BOMEX 07 18.204 2.69 1.125 -35.71 -25.26
BOMEX 08 19.081 2.25 1.375 -37.20 -27.50
BOMEX 09 14.175 2.39 1.075 -23.52 -17.64
BOMEX 10 16.585 2.05 0.975 -34.17 -23.67
BOMEX 11 10.318 2.00 0.775 -14.40 -11.16
BOMEX 12 14.294 2.15 0.650 -20.23 -15.05

RICO 04 13.933 2.27 0.950 -18.30 -18.68
RICO 05 13.802 2.15 0.850 -19.84 -17.41
RICO 06 17.195 2.25 1.025 -27.90 -26.22
RICO 07 18.054 2.34 1.175 -33.32 -27.50
RICO 08 19.252 2.69 1.225 -40.16 -29.69
RICO 10 23.451 2.20 1.425 -59.46 -31.64
RICO 11 21.048 2.25 1.125 -41.24 -30.15
RICO 12 16.768 2.32 1.350 -34.01 -25.02

SCMS 04 44.035 4.86 1.050 -103.42 -56.07
SCMS 05 37.947 3.71 1.450 -104.15 -55.75
SCMS 06 32.010 2.78 1.400 -90.75 -42.64
SCMS 07 29.108 2.51 1.450 -78.74 -44.19
SCMS 08 20.961 2.05 1.725 -52.24 -34.19
SCMS 09 15.678 1.88 1.600 -33.70 -22.65
SCMS 10 18.272 1.81 1.200 -38.85 -26.65
SCMS 11 11.980 0.93 1.050 -28.47 -18.79
SCMS 12 1.502 0.51 0.325 -1.24 -1.20
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distribution is therefore assumed to be the same everywhere within the clouds, with an250

effective radius of 10 µ m. In both cases, what matters the most for the calibration is251

that ecRad and MC see exactly the same clouds.252

2.4 1D profiles from 3D fields253

From each 3D cloud field output from LES, 1D profiles are derived to serve as in-254

puts to ecRad. Temperature, pressure, vapor and liquid mixing ratios are horizontally255

averaged from the 3D fields on each vertical level and extended above the LES domain256

top using the I3RC (Cahalan et al., 2005) mid-latitude summer (MLS) cumulus profiles257

provided in the ecRad package. There is no cloud above the LES domain. Gas mixing258

ratios (other than water vapor) are set as in the I3RC MLS cumulus case. Cloud frac-259

tion is computed at each level as the fraction of cells where the liquid mixing ratio is pos-260

itive in the 3D field. The three parameters needed to characterize cloud geometry for261

SPARTACUS can also be estimated directly from the LES fields.262

The overlap parameter can be computed from a 3D cloud field between each pair263

of layers by inverting Equation (1). Vertical profiles of overlap diagnosed in the 35 LES264

scenes are illustrated in Figure 1a. Overlap is most often greater than 0.7, with an av-265

erage value (over the scenes and the vertical levels) of 0.876. It shows relatively small266

variations on the vertical as well as between the different scenes. Inverting Equation (2)267

for the average α yields an average decorrelation length z0 of around 189 meters, close268

to the values found by Neggers et al. (2011) in LES cumulus fields yet much smaller than269

the range reported by Hogan and Illingworth (2000), probably because of our smaller270

vertical resolution as hinted by the sensitivity analysis presented in their Table 1.271

The FSD, that is, the ratio of in-cloud LWC horizontal standard deviation to mean272

in-cloud LWC is easily diagnosed in each layer of the LES 3D fields since the LWC hor-273

izontal distribution is directly accessible. Computed FSD profiles are illustrated in Fig-274

ure 1b. Again, relatively small variations are observed as both height and scenes change.275

The FSD ranges from 0.3 to 1 with an average value of 0.7, in agreement with the lit-276

erature (see e.g. Shonk et al. (2010)).277

In 3D cloud fields, the true (resolution-dependent) cloud perimeter could be diag-278

nosed in each layer. However, Schäfer et al. (2016) have shown that accounting for small-279

scale fluctuations of cloud edges leads to an overestimation of the radiatively effective280

perimeter and hence of 3D effects. They advocate the use of a cloud perimeter correspond-281

ing to the perimeter of an ellipse fitted to the cloud. Following this recommendation, the282

total cloud perimeter is computed in each layer as follows: for each labeled cloud in the283

layer, the length of the semi-major axis of the fitted ellipse is taken as the maximum dis-284

tance between the cloud geometric barycenter and any cell that belongs to the cloud. The285

area of the ellipse is taken as the cloud area. The perimeter of the ellipse is then com-286

puted from its area and the length of its semi-major axis. The individual ellipse perime-287

ters are summed to obtain the total radiatively effective cloud perimeter and to derive288

Cs by inverting Equation (3). Vertical profiles of diagnosed Cs are illustrated in Figure 1c.289

Cs ranges from 50 to 600 meters with some variability both in height and between the290

different cloud fields, with an average value of 249 m. They are slightly smaller than those291

found by Hogan et al. (2016) and Fielding et al. (2020) in the I3RC LES cumulus cloud292

field of Hinkelman et al. (2005). Their simulation is also based on the ARMCu case, with293

the same forcings and domain size, but their larger resolution of (67 m)2× 40 m explains294

the differences.295

3 Parametric exploration of SPARTACUS296

This section presents a parametric exploration of the SPARTACUS parameteriza-297

tion of 3D radiation. Can we find a set of cloud geometry parameters for which SPAR-298
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Figure 1. Vertical profiles of the three geometric parameters, scaled on the cloud layer depth

(height 0 is the base of the cloud layer, height 1 is the top of the cloud layer). Gray and colored

curves are for individual cloud scenes (colored curves are the fields used for calibration) and

dashed black line is the average value over all cloud scenes and heights.
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TACUS predictions of CREs lie within a reasonable distance from reference Monte Carlo299

estimates of the same quantities? How accurately can a unique configuration of SPAR-300

TACUS predict different radiative metrics computed in a large sample of cumulus fields301

under various illumination conditions? Does the best choice for cloud parameters match302

the LES-derived values of Section 2? The High-Tune:Explorer calibration tool (Couvreux303

et al., 2020; Hourdin et al., 2020) is used in the following to answer these questions. The304

tool is fully described in Part I. We give here only the information needed to understand305

the calibration procedure, before presenting the results.306

3.1 Setup of High-Tune:Explorer307

High-Tune:explorer (htexplo) is a statistical tool that automatically explores the308

behaviour of a model throughout an arbitrarily large parameter space. It is based on Gaus-309

sian process surrogates and implements history matching to reduce the parameter space310

to a sub-space of parameter vectors, or model configurations, that are “acceptable” in311

view of a given set of predetermined reference targets. The tool automatically performs312

most of the computations but the results crucially depend on the choices made for the313

calibration setup: the parameters to adjust, the metrics that will measure the model qual-314

ity, the reference target and its associated uncertainty, and the uncertainty associated315

with the model structural error.316

The SPARTACUS parameters that enter the calibration process are the three pa-317

rameters described in Section 2.1: the overlap vertical decorrelation length z0; the frac-318

tional standard deviation of the horizontal distribution of in-cloud liquid water FSD; and319

the cloud scale Cs. The parameter ranges that define the original parameter space P (a320

3D space formed by the cartesian product of parameter ranges) were determined from321

numerical stability constraints in ecRad and other calibration experiments (not shown)322

in which larger ranges of parameter values were explored without adding value to the323

calibration exercise. Finally,324

• z0 ranges in [50, 500] (mean LES-derived value : 189 m)325

• FSD ranges in [0.1, 2] (mean LES-derived value : 0.704)326

• Cs ranges in [50, 1000] (mean LES-derived value : 249 m)327

Three metric types were used in the calibration of SPARTACUS, all based on so-328

lar fluxes horizontally averaged over the LES domain: the reflected flux at the TOA F ↑t ;329

the total absorbed flux in the atmosphere Fabs and the atmospheric radiative effect mea-330

sured at the surface which is the difference between downward flux at TOA and down-331

ward flux at the surface, F ↓t −F ↓s . For each of these fluxes, three solar angles are used332

to explore the different mechanisms that drive the radiative effect of clouds under dif-333

ferent illumination conditions. These angles were chosen arbitrarily: 0, 44 and 77 degrees334

from zenith. Each of these nine metrics (three fluxes × three solar angles) are computed335

in eight different cloud fields selected among the 35 available cumulus fields described336

in Table 2. These eight scenes, illustrated in Figure 2, were chosen for their contrasting337

characteristics to enable us to explore the distribution of available cumulus fields.338

The reference values used as targets for these 72 metrics (nine metrics × eight cloud339

fields) are provided by the Monte Carlo model described in Section 2. The associated340

uncertainty is taken as the standard deviation of the MC estimate, typically smaller than341

0.1%.342

The structural error of SPARTACUS is unknown. In a sense, it is the error that343

would remain after the parameters are well calibrated. However, its characterisation is344

a prerequisite to the calibration process, as it prevents the tool from rejecting configu-345

rations that predict metric values within the structural error around the reference tar-346

get. We hence rather use the term “tolerance to error”: an acceptable distance between347
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the parameterization estimate and the reference target, arbitrarily set by the modeler.348

Here, it is set as the third quartile of the distributions of relative errors between MC and349

SPARTACUS runs using the mean LES-derived parameter values, for each type of met-350

ric and solar angle:351

• for the atmospheric radiative effect at the surface (F↓t - F↓s), the relative tolerances352

to error are 3% for SZAs 0 and 44, and 4% for SZA 77353

• for the absorbed flux in the atmosphere, the relative tolerances to error are 1%,354

2% and 4% respectively for SZAs 0, 44 and 77355

• for the reflected fluxes at SZAs 0, 44 and 77, the relative tolerances to error are356

set to 6%, 3% and 4% respectively.357

Once this setup is fixed, the htexplo tool automatically computes the following:358

1. An “experimental design” is built by sampling a small number of points (around359

ten times n, here 45 at the first iteration and 80 in the following ones) in the pa-360

rameter space. A maximin Latin Hypercube sampling method is used that max-361

imizes the minimum distance between samples (Williamson, 2015). ecRad is run362

for the sampled configurations on the eight selected cloud scenes with the three363

selected solar zenith angles.364

2. The chosen metrics are computed from the model outputs and used as a training365

set in the construction of emulators (one per metric, each based on a Gaussian Pro-366

cess). These fast surrogate models are then used to compute estimates (the ex-367

pectation of the process) for the metrics on a large sample of points in the param-368

eter space (here, 105), along with the associated statistical uncertainties (the stan-369

dard deviation of the process).370

3. For each sampled parameter vector λ̌, the distance between emulated and refer-371

ence values is computed for each metric f (fk is the kth metric). The samples where372

this distance is larger than a threshold for at least one of the Nmet metrics are re-373

moved from the parameter space. The new parameter space is called the Not-Ruled-374

Out-Yet (NROY) space. In htexplo, this distance, called the implausibility If (λ̌),375

is defined as follows:376

If (λ̌) =
|rf −E[f(λ̌)]|√

σ2
r,f + σ2

d,f + σf (λ̌)2
(4)

where E[f(λ̌)] is the emulator estimate, rf is the reference value, σr,f is the un-377

certainty associated with the reference, σf (λ̌) is the statistical uncertainty asso-378

ciated with the emulator estimate and σd,f is the model structural error. The im-379

plausibility threshold for rejecting points from the parameter space was set to three.380

This means that points were kept in the parameter space only if the distance be-381

tween SPARTACUS and MC was closer than three standard deviations (accord-382

ing to all three uncertainties) for each of the 72 metrics.383

4. A new experimental design is built from a sub-sample of the parameter vectors384

that were not rejected at the previous step, and the whole procedure is repeated385

until the NROY space converges. With each iteration, called “wave”, the uncer-386

tainties associated with the emulators decrease until convergence, since the sam-387

pling of model configurations that serve to build the emulators is denser (the pa-388

rameter space is smaller and the number of sampled points is unchanged).389
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Figure 2. Maps of optical depths for the eight selected scenes. The shading uses a logarithmic

scale and the black lines are the zero contours. The optical depth was estimated from the liquid

water path field of the LES.

3.2 Reduction of the parameter space and global sensitivity analysis390

Thirteen iterations were applied, reducing the NROY space from 11.7% of the orig-391

inal space after the first wave, to 8.40% after the twelfth wave and 8.39% after the thir-392

teenth wave, where the process was assumed to have reached convergence. It would have393

been possible to further reduce the NROY space by decreasing the rejection threshold394

or adding new constraints (new metrics), as was done in Couvreux et al. (2020) and Hourdin395

et al. (2020). However, the aim of this study is not to determine a unique set of accept-396

able parameters but rather to analyse the structure of the parameter space and compare397

various configurations that are acceptable given the arbitrarily chosen tolerance.398

Figure 3 illustrates the parametric dependency of the downward flux at the sur-399

face under the ARMCu 8th hour clouds at SZA 0◦ and 77◦ (two of the 72 metrics used400

in the calibration), obtained from the ∼1000 SPARTACUS configurations explored dur-401

ing the thirteen waves of history matching.402

Large surface fluxes at high sun are only obtained when clouds are sufficiently het-403

erogeneous (when FSD is large enough; Figure 3a), while the effect of heterogeneity in404

grazing sun conditions is less obvious (Figure 3d). The transmitted flux at 0◦ is strongly405

related to the decorrelation length (Figure 3b), but the transmitted flux at 77◦ does not406

seem driven by this parameter (Figure 3e). Indeed, when the decorrelation length increases,407

the overlap gets closer to maximum and the total cloud cover decreases. This leads to408

more energy reaching the surface, in particular for high sun. As the sun gets closer to409

the horizon, it is not the total cloud cover that matters but the effective cloud cover, pro-410

jected in the direction of the sun, to which cloud sides contribute largely. At high sun,411

3D effects (inversely proportional to cloud size Cs) lead to an increase in surface flux (Fig-412

ure 3c), a signature of escape of light from cloud sides and entrapment. At low sun they413

lead to a decrease in surface flux (Figure 3f), explained by the interception of light by414

cloud sides. In multi-layered cloud scenes or with larger ground albedo, the entrapment415

effect would be stronger and the balance between positive and negative 3D effects as a416

function of SZA could be affected (entrapment leads to an increase of surface flux at all417

solar angles; Hogan et al. (2019)).418
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Downward surface flux in ARMCu 8th hour field

Figure 3. Downward flux at surface for various ecRad runs, as a function of three parameter

values: (a,d) fractional standard deviation FSD, (b,e) overlap decorrelation length z0, (c,f) cloud

scale Cs, and of solar zenith angle: (a-c) 0◦ and (d-f) 77◦. Full black horizontal lines represent

the Monte Carlo reference value, dashed horizontal lines represent the tolerances to error. Full

vertical lines represent the mean parameter value diagnosed in the LES. Different colors represent

parameter sets sampled at different waves.
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Metrics computed at different iterations in the calibration process are represented419

in different colors in Figure 3, showing that part of the parameter ranges are no longer420

sampled after a certain number of waves. For instance, after the first wave (red points),421

decorrelation length values smaller than ∼180 m have been excluded from the param-422

eter space, independently of the values of the other two parameters. This is because for423

this subrange of decorrelation length values (in which the cloud cover is large) the 0◦ sur-424

face flux emulator predicts values that are too small compared to the MC estimate.425

The implausibility matrix presented in Figure 4 reveals the structure of the NROY426

space obtained after the thirteenth wave. A large number of points was sampled in the427

original 3D space parameter, and the largest implausibility computed over the 72 met-428

rics was associated with each sampled point, thereby building a unique implausibility429

cube. The NROY space corresponds to the regions of this cube filled with values smaller430

than 3 after wave 13 (note that points exceeding 3 at earlier waves have their implau-431

sibilities fixed at the value of their first excedence (when they were ruled out). To vi-432

sualize the information contained in this cube, it is successively projected along each of433

the three dimensions to produce three 2D maps. The upper triangle of Figure 4 displays434

projections of the number density of points belonging to the NROY space. The lower435

triangle displays projections of the implausibility values, by taking the minimum value436

along the reduced dimension. The upper triangle gives the density of acceptable config-437

urations, while the lower triangle informs on the quality of the “best” configurations.438

The gray (red) zones in the upper (lower) triangle subplots represent the regions439

of the parameter space where no configuration is acceptable given the two parameter val-440

ues that correspond to the pixel, whatever the value of the third parameter. For instance,441

the upper-left and lower-right subplots show that small values of the decorrelation length442

have been rejected, independently of the values of the other two parameters. This was443

already illustrated in Figure 3. Here, the plots additionally show that the set of param-444

eter values derived from the 3D LES cloud fields do not belong to the NROY space of445

the thirteenth wave, in particular due to too small value of the FSD and/or of z0.446

On the upper-right subplot, we see that many (FSD, Cs) pairs have been rejected.447

The pairs that lead to acceptable configurations of the parameterization are cleary iden-448

tified: small values of Cs are paired with large values of FSD and conversely (although449

very large values of Cs were all rejected). This means that an increase in heterogeneity450

can be compensated by a decrease in cloud size (more intense 3D effects), and that the451

uncertainties associated with the target metrics do not allow to determine which mode452

should be favored between small heterogenous or large homogeneous clouds.453

The variations of implausibility in the parameter space reveal more of the param-454

eterization behaviour than the implausibility absolute values, which are highly depen-455

dent on the arbitrarily set tolerance to error (see Equation 4). However, the subplots of456

the lower triangle show that for any configuration, there is always at least one metric that457

is farther away from its target than 1.5 times the root square sum of its uncertainties,458

which is dominated by the tolerance to error at wave thirteen. They also show that the459

best configurations have small heterogeneous clouds rather than large homogeneous ones,460

associated with large decorrelation lengths.461

3.3 Evaluation of flux estimates in calibrated configurations462

The various configurations that were sampled to construct emulators from true ecRad463

runs are evaluated using scores associated with each metric and configuration. It is the464

error between ecRad and the reference MC divided by the tolerance to error. For each465

SPARTACUS simulation run during waves three to thirteen, the RMS scores are com-466

puted over all metrics (“global”), and over reflected fluxes (“TOA up”), absorbed fluxes467

(“absorption”) and surface fluxes (“surface down”) separately. Then, the configurations468

with smallest RMS scores of each category are selected as “best” configurations. They469
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Figure 4. Visualization of the implausibility cube: NROY space density (upper triangle) and

minimum implausibility (lower triangle) at wave 13. Implausibility is computed as the maximum

over the metrics. Axes of the upper-triangle subplots are given by the parameter names on the

diagonal. The (x,y) axes of the subplots are: (z0,FSD) in row one, column two; (Cs,FSD) in row

one, column three; (Cs,z0) in row two, column three. The axes of the lower-triangle subplots are

the same as the axes of their symmetric subplot in the upper triangle. Black dots correspond to

the average parameter values derived from the LES cloud fields.
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Table 3. Parameter values for the “best” configurations of ecRad

Parameters FSD z0 [m] Cs [m]

Mean LES-derived 0.705 187 247
Best global 1.079 436 155
Best TOA up 1.646 493 119
Best absorption 0.102 294 821
Best surface down 1.469 374 113

are presented in Table 3, along with the mean LES-derived parameters. Configurations470

that lead to best upward TOA and best downward surface fluxes are relatively similar,471

favoring small heterogeneous clouds. The configuration that leads to the better estimates472

of absorbed fluxes rather favors large homogeneous clouds. The configuration that leads473

to best global RMS is in between these two modes, but still selects smaller more hetero-474

geneous clouds than found in the LES. The overlap decorrelation length parameter is al-475

ways greater than the one diagnosed in the 3D cloud fields, yielding smaller cloud cov-476

ers.477

These four new configurations, obtained from a calibration process using only eight478

cloud fields and three solar angles, were tested on the 35 cloud fields of Section 2.3 and479

11 solar zenith angles from 0 to 77 with step 11. The distributions of errors are repre-480

sented in Figure 5. The RMSEs are given in the legends for each configuration. These481

numbers are different from the configuration scores as they are not divided by the tol-482

erance to error. The configuration using the mean geometry parameters computed from483

the LES cloud fields is also represented.484

The fluxes at TOA and surface are systematically improved compared to the con-485

figuration using the LES-derived parameter values, but all calibrated configurations are486

slightly worse for the absorption. The absorption bias associated with the “Best global”,487

“Best TOA” and “Best surface down” configurations, which all have small heterogenous488

clouds, is always negative. It appears that most of the flux that should have been ab-489

sorbed reaches the surface, inducing a positive mean bias in the transmitted fluxes.490

To understand why small heterogeneous clouds lead to wrong estimates of the ab-491

sorption, the CRE on absorption is analysed for various configurations as a function of492

SZA in one particular cloud field. Figure 6(a) shows results from the Monte Carlo, “Best493

surface down” and “Best absorption” simulations. Three sensitivity tests were performed,494

changing one parameter at a time, from the value corresponding to the “Best surface down”495

configuration to the value corresponding to “Best absorption” configuration, and keep-496

ing the two other parameters to the “Best surface down” values. Results are shown in497

Figure 6(b).498

The “Best surface down” simulation with large 3D effects and important hetero-499

geneity accurately reproduces the absorption dependency to solar angle but with a neg-500

ative bias of 2 to 4 Wm−2. Two-stream errors in plane-parallel homogeneous clouds ab-501

sorption are around -4 Wm−2 on average (see Appendix A), which could explain the neg-502

ative bias observed in the “Best surface down” simulation. The “Best absorption” sim-503

ulation is closer to the Monte Carlo reference at small SZAs, which seems to result from504

the compensating effects of reduced inhomogeneity (smaller FSD increases absorption),505

reduced 3D effects (larger Cs decreases absorption) and structural errors independent506

from cloud geometry (e.g. from the two-stream approximation). At SZA 77◦, reducing507

3D effects increases the absorption which almost entirely cancels out the structural er-508

ror. It thus appears that the “Best absorption” configuration yields correct absorption509

estimates for the wrong reasons, that is, the wrong radiative processes.510
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Figure 5. Histograms representing the distributions of differences between ecRad and Monte

Carlo estimates for the three metrics: (a) upward flux at TOA, (b) absorbed flux in the atmo-

sphere and (c) downward flux at the ground. Errors for all 35 cumulus scenes and 8 solar angles

(from 0 to 77 with step 11 degrees) are distributed together. Each color corresponds to a differ-

ent configuration of ecRad. The parameters values for each configuration are given in Table 3.

Color triangles represent the mean error. The root mean square distances (RMSE) are given in

the legends.
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Figure 6. Absorption CRE in the SCMS 5th hour cloud field. Solid lines represent abso-

lute values of the CRE and dashed lines represent errors compared to the MC reference. (a)

shows the MC reference and two calibrated configurations (“Best surface down”: FSD=1.469,

z0=374 m, Cs=113 m, and “Best absorption”: FSD=0.102, z0=294 m, Cs=821 m). (b) shows

sensitivity tests, with two parameter values as “Best surface down” and one as “Best absorp-

tion”: “Smaller FSD”: FSD=0.102, z0=374 m, Cs=113 m; “Larger Cs: FSD=1.469, z0=374 m,

Cs=821 m, and “Smaller z0”: FSD=1.469, z0=294 m, Cs=113 m.

4 Discussion and outlook511

The htexplo software enables efficient semi-automatic tuning for any aspect of a512

climate model. The “automatic” aspects of the tuning involve implementation of well513

developed techniques from the uncertainty quantification and machine learning commu-514

nities: using Gaussian processes to quickly locate those regions of parameter space that515

are compatible with reference data sets. Yet htexplo is not a black box tuning software,516

and is designed as a tool to be harnessed by an expert physicist to assist with tuning.517

The physicist must define the parameters, metrics, references and their tolerances to er-518

ror (if the structural error of the model is unknown). They must interpret the results519

and then perhaps adapt the tuning (introducing new metrics, adjusting tolerances, recog-520

nise compensating errors etc): htexplo cannot, alone, measure the quality of a model.521

In this section, we first discuss the choices that conditioned the calibration procedure522

of Section 3, and then some implications of the main results of our work.523

A fundamental aspect of the tuning strategy advocated in this series of papers is524

that sources of errors related to different aspects of the model can be disentangled, while525

extending the modeler’s capacity of analysis and level of comprehension. In Part II, this526

is achieved by performing a first calibration step using well-understood study cases in527

the LES/SCM framework to constrain the parameter space to values compatible with528

process-based metrics, before tuning the 3D global model. It is a way to ensure that the529

cloud radiative effect targeted in the 3D calibration is obtained for the right clouds. The530

focus of this paper (Part III) is on getting the right cloud radiative effect for the right531

radiative transfer. This is achieved by offline calibration of the radiative transfer param-532

eterization, in which the cloud fraction and LWC profiles input to ecRad are computed533

directly from the 3D cloud fields that are acted upon by the reference MC model, instead534

of being parameterized.535

We went one step further in our effort to disentangle potential sources of errors,536

by separating internal aspects of the radiative parameterization. Our choice of reference537

has determined the aspects of the parameterization that were allowed to compensate each538

–18–



manuscript submitted to Journal of Adavances in Modeling Earth Systems (JAMES)

other. On the one hand we chose to exclude the question of the representation of opti-539

cal properties of clouds in order to focus on the representation of transport and cloud540

geometry, by computing the reference MC estimates using the same optical properties541

as ecRad. On the other hand, we chose to allow internal compensating errors between542

cloud geometry and pure radiative transfer by targeting MC simulations that use detailed543

Mie phase function instead of a delta-scaled two-stream version of the MC model. We544

also chose to calibrate all the geometry parameters together, although 1D geometrical545

effects could have been treated independently from the effects of horizontal transport.546

These choices were primarily driven by the inextricable aspect of the light transport for-547

mulation and the treatment of cloud geometry effects in the SPARTACUS radiative trans-548

fer model.549

The choice of metrics is also a crucial aspect of the calibration setup. Here, we have550

used three metrics that are not independent from each other: the (known) incoming flux551

at the TOA is entirely distributed into reflected, absorbed by the atmosphere and ab-552

sorbed by the surface fluxes. However, adding a metric that is a combination of the other553

two further constrains the parameters when each metric tolerance to error is smaller than554

the sum of the tolerances associated with the other two metrics.555

The value of the tolerances to error for the different metrics were chosen here so556

as to reject the SPARTACUS configurations that are much less accurate than using the557

LES-derived parameter values. Other choices could have been made such as using a bulk558

value corresponding for instance to the tolerance of a climate model to local radiation559

errors, or to the radiation error that would result from a perturbation of the cloud frac-560

tion profiles typical of the errors found in cloud parameterizations. The results of the561

calibration are sensitive to the tolerance to error, therefore it should be set carefully, in562

concordance with the objectives of the tuning exercise. We also note that error tolerance563

can (and should) be adapted throughout a tuning exercise. We may find that our tol-564

erances were too small, the model could not get close enough to the reference metrics,565

and the whole parameter space is ruled out. We should then increase our tolerance to566

error. We may also find our tolerances are too large (if we were being conservative at567

the beginning of the exercise), and that many of the models compatible with those tol-568

erances are, in fact, poor relative to others in our later waves. It could be argued that569

adapting tolerance to error by observing the results of each wave will lead this tolerance570

to converge towards the true structural error. But the “true” structural error is not triv-571

ial to define; it is a modeler’s judgement and likely has complex dependencies across met-572

rics. It could be thought of as the error that remains once the parameters have been ad-573

justed to remove parametric errors, but we have seen here that this “best” adjustment574

depends on the chosen metrics. Even if a model could be reduced to only one metric,575

say the absorption, the definition of the structural error would still depend on the mod-576

eler’s appreciation: is it preferable to produce the best possible absorption estimates even577

if the representation of internal processes seems wrong as in the “best absorption” con-578

figuration? Or would we rather have a model that behaves slightly worse but for a more579

physical representation of the processes? In this example, the structural error of the for-580

mer model would be smaller than that of the latter. With htexplo, we provide a frame-581

work within which modelers become able to continuously question, define, learn and ex-582

plore the structural error of their model.583

Beyond its implication for the calibration of SPARTACUS, the fact that the “best”584

parameters selected by htexplo do not match the LES-derived parameters questions the585

conceptual constraints that surround climate model development and tuning. The main586

goal of parameterization development is to derive functional forms that can be trusted587

to provide accurate source terms for the explicitly resolved variables of the model over588

a wide range of atmospheric regimes (including regimes that have not been observed yet589

but might appear in different climates). To achieve this, it is essential to base our de-590

velopments on our understanding of physical processes. However, we argue that some591
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flexibility should be allowed in the choice of parameter values. Results reported by Bastidas592

et al. (2006) and Hogue et al. (2006) also support this idea. They show that free param-593

eters should be set to different values through different land surface models even though594

their physical interpretation is the same. Their conclusions were limited to so-called “func-595

tional” parameters that cannot be associated with direct measurements. We argue that596

observational constraints on “physical” parameters should also be alleviated. Indeed, it597

is an effective value of the parameters that is needed in the models. The calibration strat-598

egy advocated here is fundamentally a way to determine possible values for these effec-599

tive parameters. An effective value laying too far from observations (e.g. outside the dis-600

tribution of observed values) could however indicate that the physical images that sup-601

ported the parameterization development are wrong or that important processes are miss-602

ing.603

Eventually, the improvement of SPARTACUS was obtained by calibrating a mean604

parameter, thereby neglecting parameter variations with height and between cloud scenes.605

This was probably only possible because all cloud fields used here represent cumulus clouds,606

with relative resemblance between the cases, although both marine and continental clouds607

were represented. An interesting follow-up would be to repeat this exercise with other608

cloud types, starting with other boundary-layer clouds such as stratocumulus and tran-609

sition scenes involving both cloud types. A possible diagnosis of htexplo might then be610

that a single parameter is not able to represent different clouds. This would mean that611

a sub-parameterization should be developed to make this parameter depend on atmo-612

spheric conditions. Such parameterizations exist for example to predict cloud perime-613

ter length in Fielding et al. (2020), or the degree of overlap in e.g. Sulak et al. (2020).614

Other parameters appear in these formulations, which can in turn be calibrated using615

the same procedure as described in this work.616

Appendix A Estimation of various sources of errors in ecRad617

Various aspects of the radiation scheme were identified in this study as potential618

sources of errors in ecRad flux estimates. The first category (a) groups the approximate619

optical properties and approximate radiative transfer model, that is, the two-stream equa-620

tions and the delta-scaling approximation. A second category (b) relates to the degree621

of complexity in the representation of cloud geometry and horizontal transport. A third622

category concerns the errors due to neglecting inter-level and inter-scene variability of623

the parameters that describe cloud geometry. The last category (d) is the choice of the624

absolute values for these parameters.625

Errors related to these different aspects have been documented throughout the lit-626

erature (see e.g. Barker et al. (2003, 2015) for categories (a) and (b)), although not al-627

ways from the same metrics or clouds, which makes quantitative comparisons difficult.628

In our study, these different errors have been computed in a uniform way from various629

numerical experiments. Plane-parallel homogeneous clouds of several liquid water con-630

tents (yielding optical depths of 0.1, 0.25, 0.5, 1, 2.5, 5, 25, 50 and 100 at 800 nm) were631

used to estimate errors of category (a). The cumulus fields of Section 2.3 were used for632

the three other categories. Each plane-parallel and cumulus cloud field was combined633

into eight illumination conditions (sun at 0 to 77 degrees from zenith with step 11◦). The634

results are displayed in Table A1.635

In category (a), errors were diagnosed from different configurations of the Monte636

Carlo model: using detailed Mie data or the approximate SOCRATES model for cloud637

optical properties, and using detailed Mie phase function or the approximate Henyey-638

Greenstein (HG) phase function that only depends on the asymmetry parameter g, com-639

bined with the δ-Eddington approximation that is also used in ecRad. The difference be-640

tween the Monte Carlo “as ecRad” (approximate optical properties and approximate phase641

function) and ecRad is interpreted as the error related to the two-stream model.642
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In category (b), errors were diagnosed from different configurations of ecRad us-643

ing the 1D solver Tripleclouds (Shonk & Hogan, 2008) in plane-parallel homogeneous max-644

imum overlap mode (PPH max ovp; by setting the overlap parameter to one and the het-645

erogeneity parameter to zero) and in heterogeneous exponentional random mode (Triple-646

clouds (1D), by setting both the overlap and the heterogeneity parameters to LES-derived647

values), as well as the the 3D solver SPARTACUS with LES-derived parameters. These648

different ecRad estimates were compared to the reference Monte Carlo model using ap-649

proximate optical properties and detailed phase functions (also used as the reference in650

Section 3). Figure A1 shows the error distributions for the various solvers.651

In category (c), errors were diagnosed from the SPARTACUS solver parameterized652

with LES-derived values averaged along the vertical dimension (z-averaged) and on both653

the vertical dimension and the different cloud fields (case-z-averaged), compared to the654

SPARTACUS solver parameterized with scene-dependent profiles of parameters as de-655

rived from the LES.656

In category (d), errors were diagnosed from various configurations of the SPAR-657

TACUS solver, with parameter values output from the calibration process.658
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Figure A1. Histograms representing the distributions of differences between ecRad and MC

estimates for the three metrics: (a) upward flux at TOA, (b) absorbed flux in the atmosphere

and (c) downward flux at the ground. Each histogram represents the distribution of 280 data

points: 35 scenes × 8 solar zenith angles (from 0 to 77 with step 11 degrees). Each color corre-

sponds to a different configuration of ecRad. PPH max ovp corresponds to homogeneous clouds

with maximum overlap and no 3D effects. Tripleclouds corresponds to heterogeneous clouds with

FSD and α vertical profiles as diagnosed in the 3D LES field, without 3D effects. SPARTACUS

is as Tripleclouds but with 3D effects, with Cs vertical profiles as diagnosed in the 3D LES fields.

The mean error is represented by colored triangles. The RMSEs are given in the legends.
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Table A1. Relative errors [%] for different aspects of the ecRad radiative transfer scheme.

(i) Experiment (ii) Reference (iii) Model (iv) TOA up (v) Absorbed (vi) Surf. down
RMS bias RMS bias RMS bias

(a) Experiments in plane parallel homogeneous clouds

(1) SOCRATES MC exact MC SOCRATES 1.1 0.8 10.8 -10.5 1.9 -1.5
(2) δ-Eddington MC exact MC δ-Eddington 11.1 4.6 13.1 4.5 11.8 4.6
(3) two-stream MC as ecRad ecRad two-stream 5.4 0.3 15.0 -9.1 4.3 -2.2
Transport (2+3) MC SOCRATES ecRad two-stream 8.3 3.2 15.2 -4.4 7.0 1.0
Total (1+2+3) MC exact ecRad two-stream 8.6 4.1 17.8 -14.5 5.8 -0.7

(b) Experiments in cumulus, MC vs ecRad 1D and 3D solvers, parameters λ = (α,FSD, Cs)

PPH max ovp
MC SOCRATES

1D, λ = (1, 0,∞) 23.4 -20.9 54.2 -53.5 28.6 -27.0
Tripleclouds (1D) 1D, λ(z, case) LES 29.3 23.0 23.8 -18.9 23.7 15.1
SPARTACUS (3D) 3D, λ(z, case) LES 22.7 20.0 20.0 -10.4 18.3 14.4

(c) Experiments in cumulus, ecRad SPARTACUS, with LES-derived profiles vs averaged parameters

z-averaged λ(z, case) LES λ(case) LES 1.4 -0.1 1.6 -0.4 1.4 -0.1

case-z-averaged λ(z, case) LES λ LES 3.7 0.6 3.5 -0.4 3.6 0.4

(d) Experiments in cumulus, MC vs ecRad SPARTACUS with calibrated parameters (see Section 3)

Best global

MC SOCRATES
λ from htexplo

8.3 -2.7 29.1 -28.1 10.2 -7.2
Best TOA up 11.3 -8.5 33.3 -32.6 14.4 -12.8
Best absorption (see Table 3) 17.9 12.0 22.1 -18.8 14.9 6.3
Best surface down 9.2 -0.4 28.0 -26.8 9.6 -5.1

For each pair of reference computation (ii) / test approximation (iii), errors on the cloud radiative
effects on TOA upward (iv), absorbed (v), and surface downward (vi) fluxes are quantified. For each
column, the RMS and mean bias are first computed independently for each solar angle over the different
cases, then RMS and mean bias are weighted by the cosine of the solar angle, and averaged over the 8
SZAs. Only data points where reference CRE > 2 Wm−2 are used to avoid division by zero. Only
solar angles where at least 9 data points were available are used in the cosine-weighted average. The
table subsections concern: (a) errors related to non-geometrical effects of clouds, (b) ecRad errors
for different solvers, with increasing complexity in the representation of geometrical effects, (c)
errors related to the neglect of parameters variations with height and cloud field, (d) ecRad errors
for different choices of cloud-geometry parameters, output from the calibration exercise of Section 3.

CRE = total sky - clear sky. Relative error r = 100×(model-ref)/ref. RMS =
√
〈r2〉fields. bias=〈r〉fields

MC exact: detailed Mie optical properties and phase function.
MC SOCRATES: parameterized optical properties and detailed Mie phase function.
MC δ-Eddington: detailed Mie optical properties and HG δ-Eddington phase function.
MC as ecRad: parameterized optical properties and HG δ-Eddington phase function.
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