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8LEMTA, Université de Lorraine, CNRS, Nancy, France,
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Revisiting Feynman-Kac’s path integrals using computer graphics ray-tracing to anticipate

the consequences of global warming.

Urban areas are a high-stake target of climate change mitigation and adapta-

tion measures. To understand, predict and improve the energy performance of
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cities, the scientific community develops numerical models that describe how

they interact with the atmosphere through heat and moisture exchanges at all

scales. In this review, we present recent advances that are at the origin of

last decade’s revolution in computer graphics, and recent breakthroughs in

statistical physics that extend well established path-integral formulations to

non-linear coupled models. We argue that this rare conjunction of scientific

advances in mathematics, physics, computer and engineering sciences opens

promising avenues for urban climate modeling and illustrate this with cou-

pled heat transfer simulations in complex urban geometries under complex

atmospheric conditions. We highlight the potential of these approaches be-

yond urban climate modeling, for the necessary appropriation of the issues at

the heart of the energy transition by societies.

Introduction

In the face of global warming, scientists are urged to provide climate information to support mit-

igation and adaptation policies. To address this challenge, new fields of research have emerged

that aim at filling the gap between climate change projections and societal needs. Progress is

slow due to the complexity of the systems that need to be analyzed to provide relevant climate

information to end users. The questions are multidisciplinary hence the expertise of a wide

range of communities from climate to human sciences must be involved. The models that are

needed to predict the effects of climate change must account for a wide variety of processes

characterized by large ranges of spatial and temporal scales. They must be able to ingest large

amounts of data from local constraints to climatic records of time-varying meteorological con-

ditions. Uncertainties related to each component must be quantified and propagated through the

various model layers. Cities are a high-stake target of adaptation policies, and an archetype of
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such complex systems.

The prime effect of urbanization on the local climate, investigated since the 1980s, is known

as the Urban Heat Island (UHI) effect: cities are almost always warmer than their environment

[1, 2]. The resulting heat stress, intensified by global warming, leads to health impairment,

increased mortality [3, 4] and/or an increase in energy consumption for air conditioning which

positively feedbacks on the UHI [5, 6]. As more than half of the world’s population now lives in

urban areas [7], it has become crucial to adapt cities and design new ones in a way that both im-

proves thermal comfort and reduces energy consumption [8, 9]. Climate change mitigation and

adaptation measures range from home improvement and renovation by owners, climate-proof

building design by architects [10], use of new materials and urban cooling technologies [11], in-

troduction of urban vegetation [12], and exploitation of the surrounding landscape potential [13]

by urban planners. Identifying and developing new urban cool islands has become a priority

in some cities. To fulfill this objective, international organizations such as the World Meteoro-

logical Organization advocate for the development of climate services, through which climate

scientists are expected to deliver “high-quality, science-based climate information tailored to

city requirements to improve urban resiliency and to support the sustainable development of the

cities in the world” [9].

A classical approach to model climate-related impacts for urban climate services is to rely

on either statistical models or urbanized atmospheric models. Accounting for the detailed city

geometry, the heterogeneity of urban materials, and the variety of physical processes occuring

over a wide range of scales is however extremely challenging [14]. Numerous complementary

approaches exist and range from large-scale physical models that account for climate change

but drastically simplify the urban geometry [15, 16, 17, 18, 19, 20, 21], to building-resolving

models that account for the detailed features of the city but are limited to either small-domain

simulations conducted over short time periods [22, 23, 24, 25, 26, 27, 28], or to current climate
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conditions for statistical models trained on observational datasets [29]. A brief review of these

approaches can be found in Table 1.

In this study, we present a new paradigm for multi-scale modeling of coupled radiative

and heat transfer in complex urban geometry under changing climate. It relies on probabilistic

models solved by Monte Carlo methods and builds on recent advances in computer graphics.

The “teapot in a stadium” problem [33], namely the difficulty to render small-scale details

(the teapot) within a very large scene (a stadium), has been solved [34]. The computing time

associated with path-tracing in 3D scenes is now close to insensitive to the scene complexity.

As Monte Carlo methods used to solve the radiative transfer equation are independent from the

description of the geometric data, increasing the computation accuracy can be achieved through

improving the physical model or improving the data in completely independent developments.

In the world of 3D animation for film production, this property has freed up the artists who do

no longer have to compromise on the complexity of their scenes to comply with the limitations

of rendering algorithms. Similarly computer scientists have been able to include more complex

physics in their algorithms, producing ever more realistic images by taking into account every

detail of the virtual scene in a physically consistent manner. We illustrate this in Fig. 1 with four

images sampled from the animated movie of a “teapot in a city under cumulus clouds”, available

at https://www.lmd.jussieu.fr/˜nvillefranque/pages/teapot_city. It

is based entirely on physical principles, both for simulating clouds and for light propagation.

We envision that the exact same framework of formulating physical processes as path in-

tegrals and integrating them numerically with Monte Carlo path-tracing methods could lead

to a similar revolution in urban modeling. Here we review recently published results which,

put together, allow for computations that were previously unthinkable. Before reviewing these

breakthroughs and reflecting on the perspectives that are opening up for urban climate services,

we present the foundations of these methods using a very simple example of computing the en-

4

https://www.lmd.jussieu.fr/~nvillefranque/pages/teapot_city
https://www.lmd.jussieu.fr/~nvillefranque/pages/teapot_city


Table 1: Strengths and limitations of existing urban climate models

Physical atmospheric models with parameterized urban canopies

Transient (e.g., from 1970 to 2100) global or regional climate simulations can be made at
10 to 100 km resolution using atmospheric models [15]. Atmospheric models at hecto-
metric to kilometric resolution can provide simulations for a few days and up to one year
[30, 31]). In both cases, the cities cannot be represented explicitly. Rather, urban canopy
models like the Building Effect Parametrisation BEP [16] or the Town Energy Balance
TEB [17] (including a building energy model [18, 19, 20]) are used to estimate the effect
of subgrid radiative and heat transfer on the air temperature, winds and water balance. The
geometry of the city is greatly simplified, usually using the “urban canyon” approximation
(an infinite street with two facing walls [21]). These models provide useful information
such as the impact of the urban heat island on the building energy consumption, sometimes
in an operational service such as in Beijing [32]. However, they cannot provide informa-
tion at the scale of a flat or a building nor do they help to assess the impact of small-scale
adaptation measures.

Physical building-resolving models with parameterized environment

Higher resolution building-resolving micrometeorological models can represent the de-
tailed urban geometry but simulations are limited to a neighbourhood (typically 500 m ×
500 m) and simulations up to a few days [22, 23]. Building energy models like EnergyPlus
[24] simulate the energy budget of an individual building accounting for a high level of de-
tail (e.g., room allocation, building occupant behaviour [25], types of shading elements...).
They rely on other models such as CITYSIM [26] or SOLENE [27, 28] to model the envi-
ronmental effects, like the shading of adjacent buildings. In this approach, investigation of
the impact of climate change is severly limited by the difficulty to handle meteorological
forcings.

Statistical models

They are usually trained on local observations and limited to the site and conditions under
which observations are available. They sometimes use statistical laws calibrated on various
sites to provide estimations of quantities on other neighborhoods (e.g., the Urban Multi-
scale Environmental Predictor UMEP [29]). They are computationally efficient but assume
constant statistical relationships between historical and future climate. They are limited to
the resolution of the observational data, although the impacts of processes occurring at all
scales are inherently integrated into the measurements that constitute the training dataset.
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Figure 1: The teapot in a city under cumulus clouds, in reference to the “teapot in the stadium”
problem. The four pictures are sampled from an animated movie (https://www.lmd.
jussieu.fr/˜nvillefranque/pages/teapot_city) we produced using the htrdr
model [35] (https://www.meso-star.com/projects/htrdr/htrdr.html) that
solves radiative transfer in the atmosphere and in cities. Each image features a different cloud
field, camera and sun positions. Periodic conditions were used for the city geometry and the
cloud fields to demonstrate insensitivity to the scene dimension. Cities and cloud fields of larger
extent can be rendered with open boundary conditions as easily, provided that the data is avail-
able. The urban geometry was generated using a procedural generator (https://gitlab.com/meso-
star/city generator) based on sampling distributions that represent the buildings characteristics
(height, spacing...) and various tree geometries. The spectrally varying radiative properties
of the materials were taken from the Spectral Library of Impervious Urban Materials (SLUM)
database [36]. The cloudy atmosphere was simulated using the Meso-NH Large-Eddy Simula-
tion (LES) model [37, 31] and represents a typical fair-weather cumulus field evolving over a
flat ground [38] at 8 meter resolution on a 15 × 15 × 4 km3 domain with horizontally periodic
boundary conditions with 3D fields output every 15 seconds between 11:30 and 13:00 Local
Solar Time (LST).
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ergetics of a two-dimensional building. In doing so, we hope to introduce the readers to the key

concepts of the framework, from the most technical aspects to their most profound implications,

and illustrate the benefits for analysing and understanding complex systems.

A simple example of path-integral formulation

The framework we present here is built on two fundamental ideas: the formulation of determin-

istic physical models as integrals over path spaces [39, 40], and double randomization [41]. Let

us illustrate them for a simple 2D model of the steady-state temperature T of perfectly-mixed

air inside a square room framed by three segment walls (temperature Tw) and ground floor

(temperature Ts), surrounded by air at temperature Ta (see schematic in Fig. 2a). Per analogy

with an electrical network, T can be written as the average of the ground and walls’ tem-

perature weighted by the wall convective thermal conductances (convective coefficients times

length of the wall). If the room is a square and the convective coefficient is constant then

T = psTs + (1 − ps)Tw with ps = 1/4.

Let us shed a probabilistic light on this deterministic problem and interpret T as the expecta-

tion of a random variable Θ following a Bernoulli’s law of parameter ps, with outcomes Ts and

Tw (see Fig. 2b). An unbiased estimate of T can then be produced by averaging a large number

of realizations of Θ. More generally, whenever it is possible to formulate a quantity as an ex-

pectation of a (function of) discrete or continuous random variable(s), then this quantity can be

estimated using Monte Carlo methods. This is the first fundamental idea of the framework.

Now let the value of Tw be unknown. Defining a global thermal wall conductance to ac-

count for conduction in the wall and convection oustide, and considering that heat fluxes are

continuous at the inner wall surface, Tw can again be written as the expectation of a random

variable following another Bernoulli’s law of parameter pa, with possible outcomes Ta and T

(see Fig. 2c).
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d T10,8 = 18.83 ± 0.03 e T25,22 = 11.38 ± 0.02 f T10,8 = 14.27 ± 0.03

Figure 2: Heat transfers in 2D buildings of a-c one room and d-f N ×M rooms. a, T is the
temperature of the room’s perfectly-mixed air, Ts the temperature of the ground floor, Tw the
temperature of the three other walls, Ta is the temperature of the environmental perfectly-mixed
air. Heat exchange between the inside air and the interior walls is driven by convection, with
convective thermal conductance (CTC) Hin. Heat exchange between the interior walls and
the outside air is driven by conduction in the wall and convection outside, of global thermal
conductance Uw. b, T is the average of Tw and Ts, which is also the expectation of Θ whose
outcomes are Ts with probability ps and Tw with probability 1−ps. c, Tw is itself the expectation
of Θw. One realization of Θ is sampled by first sampling Θw,n and then Θn successively until
an outcome (Ts or Ta) is found. (Θw,n)n=1,..N and (Θn)n=1,..N are collections of independent
and identically distributed random variables that have the same probability law as Θw and Θ
respectively. d-f, Ti,j is the temperature in room (i, j) (black square). The exterior walls have
the same properties as in a, Ta = 10◦C, Ts = 30◦C. The interior walls all have the same CTCs
except in the gray zone of f where they are a hundred times larger, which is symptomatic of a
thermal bridge. The first sampled path (black line), the end locations of the first 100 sampled
paths (blue and red points) and the distribution of the end locations of the 100,000 sampled
paths (blue and red shadings) are shown for each simulation.
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Combining the expressions for T = E[Θ] and Tw = E[Θw] yields a recursive expression.

Most of the time, there is no closed-form equivalent for the recursive expressions that come from

the probabilistic formulation of a deterministic problem, therefore the “global” law that directly

gives the probability of the final outcomes (Ta or Ts) cannot be sampled. This is where the

concept of double randomization is needed. It consists in sampling the “local” probability laws

(of Θ and Θw) successively until finding an outcome (Ta or Ts) for the random sequence or path.

This is illustrated in Fig. 2c. The justification for double randomization is mathematically trivial

(it comes from the law of total expectation), albeit conceptually subtle. This second fundamental

idea explains why Monte Carlo methods are insensitive to the problem’s dimension: each step

of the sampling procedure is entirely oblivious to the rest of the model.

Now let the building consist of many rooms (i, j) at temperature Ti,j = E[Θi,j] (see Fig. 2d-

f) with known thermal conductances and boundary conditions (Ts and Ta). Implementing the

same strategy as before to compute Ti,j yields a Monte Carlo algorithm that consists of suc-

cessively sampling neighboring rooms, starting at (i, j), until finding an outcome (a boundary

condition). Ti,j is then estimated as the mean outcome. One realization of Θi,j can be repre-

sented as a path throughout the building from room (i, j) to the location of the outcome, as in

Fig. 2d-f. Randomly constructing these paths step by step using double randomization ensures

that the two possible outcomes are sampled in the correct proportions. Fig. 2d-f displays the

distribution of the path outcomes; more paths end in the neighborhood of the (i, j) room than at

opposite walls, except in Fig. 2f where the paths show that most of the heat is lost through the

poorly insulated part of the building.

The building heat loss is proportional to the difference between the outside air and the

average temperature of the boundary rooms of the building. Estimating this average temperature

instead of the temperature of one particular room can be done using the same algorithm, except

that instead of fixing (i, j) beforehand, a starting room is randomly sampled at the beginning of
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each path. As “probe” type computations do not rely on solving the entire field, the quantity is

obtained at a point or on average for approximately the same computing time.

Breakthroughs in Monte Carlo methods

A major feature of Monte Carlo methods is their insensitivity to the dimension of the problem.

In the 2D building of Fig. 2, computing the heat loss of the N × M room building at 1%

precision takes roughly the same computing time as computing the heat loss of a building twice

as high, made of twice as many storeys. This feature has been central in the use of these methods

throughout many scientific fields ever since Nicholas Metropolis and Stanislaw Ulam coined the

name “Monte Carlo Method” in their famous 1949 article [42]. It is the same feature that makes

Monte Carlo methods so powerful to solve recursive equations such as the Fredholm equations

of the second kind, and extensively used in particle transport from neutronics to rarefied gas to

radiative transfer [43]. After use of kernel iterative method, the Fredholm equation admits Von

Neumann series representation making the integration problem of infinite dimension [44, 45],

but double randomization simply translates it into successive sampling collision events one

after the other (much as successive neighbouring rooms are sampled in the example of the 2D

building) until an outcome is found. A major step was achieved when Monte Carlo methods

were extended to problems that were not initially formulated into the framework of statistical

physics. This led to important advances in the field of applied mathematics where Monte Carlo

methods are now routinely used for large matrices inversion, and in physics when Richard

Feynman and Marc Kac formulated the general solution of the differential equations that model

advecto-reacto-diffusive processes as the expectation of a Wiener process [46, 47, 40, 39, 48].

This opened new fields of application with for instance Monte Carlo simulations of Brownian

motions to solve three-dimensional transient diffusion [49, 50, 51, 52].

However, the insensitivity to the dimension was lost when problems included either (i) 3D
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geometries characterized by wide ranges of scales, (ii) coupled models of different natures or

(iii) nonlinearities. The three following breakthroughs could overcome these limitations:

Breakthrough (i) was achieved by the computer graphics community who has invested and

revolutionized the field of Monte Carlo physically-based rendering [53, 54, 55, 56]. In order

to increase the realism of animated movies they increased the geometric details of the rendered

virtual scenes, thus increasing the number of facets to be tested for intersection when tracing

paths. That led them to conceive hierarchical structures to organize the data in memory so

that the cost of path-tracing became independent of the number of facets describing the scene

[57, 58, 59, 34]. Until recently however, ray tracing procedures were inefficient in highly het-

erogeneous media such as clouds, due to the non-linearity of Beer’s exponential law. A first step

toward efficiency was to make ray tracing independent from the description of the medium with

null-collision algorithms [60, 61]. This opened new possibilities that begun to be investigated

in physics [62, 63, 64, 65] and computer graphics [66, 67, 68]. From there, the hierarchical

structures were extended to handle complex volumetric data [35], thereby making the cost of

numerical computations in cloudy atmosphere insensitive to the details of the cloud description.

This first breakthrough is illustrated in Fig. 1. In each image, all the details of the clouds and

the city, including the teapot, are taken into account, even when they are not perceivable to the

eye.

Breakthrough (ii) was to understand that the double randomization concept enables the cou-

pling of models with no theoretical limit to the number, nature or scale of the represented pro-

cesses [69]. As an illustration, Fig. 3 displays a virtual infrared image of buildings at night time,

that was rendered by tracing paths from a camera solving a coupled conductive-convective-

radiative equation. The continuity of the boundary fluxes is reformulated as a probability to

switch from one transfer mode to the other, much as in the example of the 2D building. In this

example, the temperature of the rooms in the building is 20◦ and the outside air temperature
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a Convecto-conducto-radiative rendering of buildings b Zoom on a teapot on one of the balconies

Pixel mean brightness temperature estimate [◦C]

c Convecto-conducto-radiative paths from the camera d in the teapot and balcony

Figure 3: Physical infrared rendering of 3D buildings near a lake, in steady state, at night. The
brightness temperature equivalent to the radiation emitted by the buildings, ground and atmo-
sphere and received at the virtual camera is computed in each pixel by solving detailed heat
transfers in the scene, using the Stardis software (http://meso-star.com/projects/
stardis/stardis.html). Paths start at the camera; conduction is simulated using δ-
sphere walks inside the solids; radiative exchanges are sampled between surfaces. Paths stop
upon reaching a boundary condition: the temperature of the atmosphere (0◦C), and rooms
(20◦C) by convection or the brightness temperature of the atmosphere (0◦C) by radiation. They
can also stop in the teapot which contains water at an imposed temperature of 60◦C. a,b, results
of convective-conductive-radiative Monte Carlo simulations for two views: a, a few buildings
and b, a zoom on the teapot. Note that in a, the teapot is already on the first floor balcony of
the middle building; it increases the mean brightness temperature of one of the pixels inside the
red frame. c,d, 3D visualization of the scene and of a few paths sampled during the simula-
tions. The scene consists of 33,958 facets (10,234 facets to describe the teapot and 23,724 for
the buildings). Each image consists of 480×280 independent Monte Carlo estimates (one per
pixel, 512 paths each).
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is 0◦. Thermal losses through windows, roofs and floors are captured by the infrared virtual

camera (panel a) by explicitly simulating heat transfer processes in the detailed geometry. A

few brighter pixels at the center of the image are due to the presence of a hot teapot set on the

balcony, as revealed by the zoomed image of panel b. The teapot is half filled with hot liquid,

creating a temperature gradient on the teapot surface, with warm bottom and colder lid, pout and

handle. These fine-scale details were captured by the paths simulated inside the teapot geome-

try, with some of the paths also exploring parts of the geometry that are not directly visible to

the camera, capturing the larger scale transfers shown in panel a. The teapot is an iconic object

from the comptuer graphics community, it has no climatic relevance but here serves to demon-

strate that large ranges of scales can be seamlessly integrated. The thermal loss integrated over

the entire city can be computed in the same framework; since the temperature field never needs

to be estimated, the computational expense will be approximately the computing time associ-

ated with one pixel of the images. Other coupled models have been solved based on the same

idea, such as the radiative transfer equation coupled with a spectroscopy model, directly inte-

grating the spectral lines, thereby avoiding the heavy precomputation of absorption coefficient

spectra [63]. It was also used in process engineering to solve a cascade of embedded models

from radiative transfer to electromagnetism to thermokinetic coupling to spectroscopy, in order

to estimate the biomass production of a photoreactor system at the industrial scale [70]. The

paths are no longer restricted to the 3D space but “travel” through models of different natures.

Although “Direct Simulation Monte Carlo” methods [71] have for long addressed non-linear

physics by simultaneously tracing large numbers of paths so that the tracked particles could

interact with each other, they are fundamentally sensitive to the model or domain dimensions:

increasing the accuracy of the estimates implies increasing the particle density everywhere in

the spatial domain and the other domains of integration of the problem. Recent advances have

paved the way for nonlinear Monte Carlo calculations that preserve the insensitivity property
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(breakthrough (iii)). First, and although atmospheric radiative transfer is fundamentally linear,

the null-collision approach mentioned above can be seen as a way to bypass Beer’s non-linearity

[72]. It has been shown that other types of non-linearities could be treated using ramified paths

[73, 74]. The algorithms are more complex but the paths can still be sampled independently,

thus preserving all the benefits of probe Monte Carlo approaches. Further investigations have

shown that iterative methods could be used to limit the recursivity level of the path ramifications,

enhancing the practicability of the method [75].

Implications for urban climate services

To inform adaptation strategies aiming at minimizing urban heat stress and energy consump-

tion, the performances of new construction materials, building and city designs need to be as-

sessed in realistic environmental conditions representative of future climates, at various spatio-

temporal scales, with unconstrained amounts of geometric details. The properties of Monte

Carlo probe computations open an avenue for such computations by offering the possibility

to sample weather conditions in addition to the other dimensions of the problem [78]. Fig. 4

illustrates in a simple geometry how the approach allows to integrate the large temporal scale

factors from the meteorological-process scale to the climate scale in a relevant multi-physics

calculation. Outputs of an ensemble of global climate simulations of 250 years each are used,

available at a frequency of 3 hours [77].

In the first example, the estimated quantity is the temperature at the surface of an homo-

geneous soil at a given time (Fig. 4b,d). Paths start at the soil’s surface and travel through the

system and backward in time. Each time the path encounters the surface, solar and evaporative

heat fluxes are added to the Monte Carlo weight and the flux continuity equation gives the prob-

ability that the path goes into the atmosphere by convection or infrared thermal radiation (the

path ends with outcome Ta or Trad respectively) or penetrates the ground by conduction.
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a

convection
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Ta(t′)

Trad(t′) F ↓
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LETa(t)

Trad(t)
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Θ(t)

Tf = 293 K (target)

Θs(t′ = t−∆t)

b c

d e

Figure 4: Time-varying meteorological conditions are used as inputs and parameters in path-
integral heat transfer models. a, the air temperature at 2 meters above the surface (Ta) and the
atmospheric brightness temperature (Trad) issued from a climate change simulation performed
with the IPSL-CM6A-LR global model [76], available at a 3 hour frequency over 250 years. The
variables retrieved from the climate archive are: Ta; the downwelling longwave (F ↓LW , used to
compute Trad) and swortwave (F ↓SW ) radiative fluxes at the surface; the sensible (H) and latent
(LE) turbulent heat fluxes; and the surface temperature Ts. H and Ts are used to compute a
convective exchange coefficient h = H/(Ts − Ta). LE and F ↓SW are imposed fluxes. The
data correspond to a gridpoint in Sahel. b-c, Random path representation of the heat transfer
models used to estimate: d, the surface temperature of a homogeneous soil of thermal inertia
1500 J m−2 s−1/2 K, and e, the air-conditioning power to maintain a simplified room’s floor at
293 K. d, instantaneous temperatures every 3 h during four days: Monte Carlo estimates of Ts
(black dots) and Ts, Ta and Trad from the climate archive (gray, blue and orange lines). e, May
averages of air-conditioning power from 1850 to 2100: every year (gray dots); averaged over
30 years (red dots), each red dot corresponds to a different member of an ensemble simulation
[77]; averaged over 30 years and over the ensemble members (black dots). Dots and error bars
in d and e correspond to Monte Carlo estimates based on 30k paths and their associated 99.7%
confidence interval.
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Transient conduction is simulated using diffusive random walks. At each step, the duration

associated with the step length is sampled from an exponential law parameterized by the mate-

rial inertia, as per the Green first-passage times distribution function. The walk goes on until

the initial condition (at year 1850 here) or the surface is reached. Encounters with the surface

will therefore happen at different times depending on the random duration of the walk. It is

only at these times that the meteorological data need to be accessed. The time dimension is thus

sampled based on the physical properties of the system: the longest paths will go back farther

in time if the thermal inertia of the ground is larger. Moreover, the influence of the meteorology

onto the surface temperature is sampled according to the detailed meteorological processes. For

instance, the probability for a path to end up in the air by convection is generally smaller during

nightime than during daytime due to a smaller value of the convective exchange coefficient.

The second example (Fig. 4c,e) is the computation of the air-conditioning power needed to

maintain a room’s floor temperature to a setpoint of 20°C. In the upper part of the geometry

(atmosphere + roof) the model is the same as in the previous example except that latent heat

fluxes are neglected. In the lower part, the temperature at the bottom of the slab roof (i.e., the

ceiling) is coupled to that of the (perfectly-mixed) room’s air by convection and to that of the

floor by radiation. The air-conditioning power is calculated as the net heat flux between the

floor and the system.

Using double randomization, a single Monte Carlo simulation is used to estimate the power

not at a particular time but on average over a given period. This is achieved by sampling a

different starting time at the beginning of each path. Because this additional sampling does

not increase the samples variance, the same number of paths and hence the same computing

time is needed to reach a 1% accuracy as for a single-time estimate. Additionally sampling the

members of an ensemble of climate simulations gives an estimate of the power averaged over

the ensemble of simulated meteorological stories, again at the same cost as for a single-member

16



single-time computation.

This very preliminary computation obviously suffers from several limitations. The build-

ing geometry is oversimplified compared to Fig. 3, as is the treatment of atmospheric radiation

compared to Fig. 1. Firstly, the codes that have been used to produce these images (stardis and

htrdr) still need to be coupled together and interfaced with the climate data. Important work re-

mains to produce geometric data at the required format in a way that is flexible enough to allow

simple user modifications. Secondly, the temperature of the near-surface air (used to compute

turbulent or convective fluxes) and the downward thermal radiative fluxes are unaffected by the

temperature of the building which prevents the representation of the UHI effect. Thirdly, in

contrast to Urban Canopy Models or Obstacle Resolving Models that are often based on the

resolution of fluid dynamics but struggle to integrate a full description of the thermal transfers

in the buildings, the Monte Carlo methods easily solve the physical and geometrical complexity

of the thermal and radiative transfer in the buildings but struggle to solve the atmospheric flow.

A research program is currently funded by the French National Agency for Research to

overcome these limitations. The perturbation of the air temperature above the buildings will

indirectly be taken into account by pursuing the paths in the atmosphere through turbulent,

convective updrafts or advective motions. The path will end with the air temperature from the

model only once the path is outside the city’s footprint, thereby representing the urban heat

island. On the other hand, the Monte Carlo path-tracing algorithm that solves the thermal

exchanges in the city will be coupled to an Obstacle Resolving Model of the flow in the city.

For this coupling, the temperature has to be estimated at all the buildings interface with the

atmosphere hence alternatives to the classical probe computation are studied to accelerate the

computation such as the Symbolic Monte Carlo methods [64]. Only relatively short simulations

will be produced this way, to serve as a reference to benchmark faster models; this strategy was

already proven successful for the development of cloud parameterizations, using explicit LES
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as a reference [79].

Note that for adaptation issues, such computations should rely on global coupled climate

models, the only models able to simulate the thousands of years of meteorological evolution

that are required to achieve equilibrium and simulate climate change. The representation of

convective and cloud processes in these models has strongly improved in the last decades thanks

to recent advances in parameterizations and model tuning [80], although much work remains

to reduce the uncertainties associated with the representation of these processes. Because of

persisting biases in global models and of their rather coarse resolution, statistical or dynamical

downscaling, for instance using regional climate models, might prove necessary to better ac-

count for local constraints or detailed processes such as topography or the radiative effect of

geometrically complex clouds. This opens exciting questions that are yet to be investigated.

A recurrent challenge of climate services is that climate records and simulations represent

huge amounts of data from which information relevant to the user’s needs has to be extracted,

preferably in a comprehensible, flexible way so that end users can be in full responsibility of

their work. Here the idea is to run probe computations taking the full history of the atmospheric

column as an input, provided by global or regional climate simulations. No pre-treatment of the

data is needed: through path integrals, the physics define a relevant way to aggregate the climate

data. Flexibility is ensured by the fact that each quantity to be estimated will be associated with

its own path-integral, its own tailored “data mining” procedure. This implies that the data output

from climate simulations must be made entirely available, which is in line with the open-science

(open-source and open-data) philosophy. It can of course raise practical issues, slowing the

computations down if data access is not managed efficiently. Packaging software in containers

to be run on servers where the data are stored, or downloading a single column of the full history

of climate simulations beforehand as was done for the simple illustration of Fig. 4, might be

adequate solutions.
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An important aspect of our proposition is the empowerment of users. As for 3D animation,

this framework is intended to set free the users who could add any details to the building designs

and materials without fearing consequences on the numerical cost of their choices, thanks to

the independence between the algorithms and the data description. Moreover, we believe that

the paths convey meaningful images that have the potential to enlighten scientists and non-

scientists with intuitive understanding of the physical processes at stake and their interactions.

The theoretical framework and associated numerical tools provide more than numbers; they

provide insights into the questions at the heart of the energy transition.
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