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Summary

In the Earth Sciences, the 3D radiative transfer equation is often solved
for by Monte Carlo methods. They can, however, be computationally
taxing, and that can narrow their range of application and limit their
use in explorations of model parameter spaces. A novel family of Monte
Carlo algorithms is investigated here in which single simulations provide
estimates of both radiative quantities A for a set of parameters x̂, as
usual, as well as the overarching functional A(x) that can be evaluated,
extremely efficiently, at any x. One such algorithm is developed and
demonstrated for horizontally averaged broadband solar radiative fluxes
as functions of surface albedo for uniform Lambertian surfaces beneath
inhomogeneous cloudy atmospheres. Simulations for a high-resolution
synthetic cloud field, at various solar zenith angles, illustrate the po-
tential of the method to gain insights into the nature of 3D radiative
effects for complicated atmosphere-surface conditions using information
specially derived from the Monte Carlo simulation. For simulations per-
formed with a single surface albedo it is found that as surface albedo
increases, 3D radiative effects increase, too, with maxima occurring at
middling to large values, and then decrease. By utilizing the derived
coefficients that describe A(x) it was established that these 3D effects
stem from differences in fractions of radiation entrapped at successive
orders of internal multiple reflections for 1D and 3D transfer.

Leveraging Path-Tracing Monte Carlo Methods

Monte Carlo (MC) methods: input description of the medium π,
sample optical paths Γ by simulating radiative processes at the photon scale.

Standard MC: estimate radiative quantity Fπ as the mean sampled-path weight.
(e.g. upward flux is the average of reflected path weights Fsun and non reflected path weights 0)

Much more information is contained in the sampled paths!
How to extract it? How to synthesize it?

Proposition ⇒ Symbolic (or Functionalized) MC:
use the sampled paths to estimate a functional F (π)
Dunn, 1981; Galtier et al., 2017; Maanane et al., 2020

Solar paths sampled in a heterogeneous cumulus cloud field

multiple scattering

direct sun (Fsun)

Fπ =
∫

ΩΓ

dγ pΓ(γ; π)︸ ︷︷ ︸
probability of path γ

wγ(π)︸ ︷︷ ︸
path weight

Linear Symbolic MC (trivial) pΓ(γ; π) ⊥ π

Path probability is not affected by the parameter
(e.g. π is the amount of incoming solar radiation)

Non-linear Symbolic MC pΓ(γ; π) ̸⊥ π

Path probability is affected by the parameter
(e.g. π is the surface albedo or cloud droplet effective radius)
⇒ use importance sampling to go back to linear, and
apply weight-correction offline!

F (π) =
∫

ΩΓ

dγ pΓ(γ; π̂) wγ(π̂)pΓ(γ; π)
pΓ(γ; π̂)

With a single simulation, the radiative fluxes are predicted for any surface albedo!

Illustration on homogeneous slabsIllustration with the albedo α of a Lambertian surface as “symbolic” parameter, homogeneous slabs

1. Write the radiative transfer equation with
α̂ an arbitrary value for α

F (α) =
∞∑

k=0

Fk|α̂

(
α

α̂

)k

2. Estimate Fk|α̂ as the mean weight of the
paths that have been reflected k times (as in
e.g. Barker and Davies 1992)

Fk|α̂ ≈ F k|α̂ =
1

Nk|α̂

Nk|α̂∑

i=1

wi,k

3. Evaluate F α̂(α) =
∑Kmax

k=0
F k|α̂

(
α
α̂

)k

Fsun
thin slab
α̂ = 0.3

thick slab
α̂ = 0.3

thin slab
α̂ = 1

thick slab
α̂ = 1

• = one standard MC simulation
— = one Symbolic MC simulation (colored ⇒ α̂ = 1; gray ⇒ α̂ = 0.3)
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Order 0, ⊥ α̂

Order 1, ∼ α̂

In practice

• Sort paths into categories (number of reflections)
• Estimate partial fluxes Fk (reflected k times)
• They are the coefficients of the polynomial function ...
which can then be evaluated for any surface albedo

cloud

Surface, albedo α

A0 A1A2

Implemented in scart gitlab.com/najdavlf/scart_project

Using a large α in the simulation
allows to sample longer paths

⇒ better estimate of highly non-linear functions

Role of surface albedo in 3D radiative effects of cumulus clouds: entrapment enhancement
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S2(L ≡ k∆x) = 1
N2
x

∑Nx
i=1

∑Nx
j=1

(A[i,j]−A[i+k,j])2+(A[i,j]−A[i,j+k])2

2

constant in smooth fields
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Maps produced with htrdr software
https://www.meso-star.com/projects/htrdr/htrdr.html

https://gitlab.com/najdavlf/scart_project
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