THE ROLE OF SURFACE ALBEDO IN 3D RADIATIVE EFFECTS OF CLOUDS
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Summary Leveraging Path-Tracing Monte Carlo Methods
In the Earth Sciences, the 3D radiative transter equation is often solved
for by Monte Carlo methods. They can, however, be computationally Monte Carlo (MC) methods: input description of the medium 7,
taxing, and that can narrow their range of application and limit their sample optical paths 1" by simulating radiative processes at the photon scale. |
use in explorations of model parameter spaces. A novel family of Monte | o | | e Y
Carlo algorithms is investigated here in which single simulations provide Standard MC: estimate radiative quantity /* as the mean sampled-path weight. LeEme e R B
. o o A (e.g. upward flux is the average of reflected path weights Fg,, and non reflected path weights 0)
estimates of both radiative quantities A for a set of parameters x, as T2k
usual, as well as the overarching functional A(x) that can be evaluated, Much more information is contained in the sampled paths!
extremely efficiently, at any x. One such algorithm is developed and How to extract it? How to synthesize it?
Fr= [ dvypr(y;m)

Qp " =~

demonstrated for horizontally averaged broadband solar radiative fluxes - . o
Proposition = Symbolic (or Functionalized) MC: b .
probability of path v path weight

as functions of surface albedo for uniform Lambertian surfaces beneath use the sampled paths to estimate a functional /*(7)
inhomogeneous cloudy atmospheres. Simulations for a high-resolution Dunn, 1981: Galtier et al., 2017: Maanane et al., 2020
synthetic cloud field, at various solar zenith angles, illustrate the po-

tential of the method to gain insights into the nature of 3D radiative

effects for complicated atmosphere-surface conditions using information 91000 direct sub/ (LAY

specially derived from the Monte Carlo simulation. For simulations per- 07 v
formed with a single surface albedo it is found that as surface albedo
increases, 3D radiative effects increase, too, with maxima occurring at
middling to large values, and then decrease. By utilizing the derived e
coefficients that describe A(x) it was established that these 3D effects 77 ,.,;;::?’:;;/ I"mult_i.p’le scattering

Linear Symbolic MC (trivial) pr(v;m) Lo

Path probability is not affected by the parameter
(e.g. 7 is the amount of incoming solar radiation)

Non-linear Symbolic MC pr(v;m™) L

Path probability is affected by the parameter
(e.g. 7 is the surface albedo or cloud droplet effective radius)

= use importance sampling to go back to linear, and
apply weight-correction offline!

stem from differences in fractions of radiation entrapped at successive 0, :
-
orders of internal multiple reflections for 1D and 3D transter A i () = dy pr(v;7) P -
p ' Solar paths sampled in a heterogeneous cumulus cloud field Qr pr (/7, 7T)
With a single simulation, the radiative uxes are predicted for any surface albedo! plementod in scart git1ab. con/najdavlE/scart_project
Illustration on homogeneous slabs In practice
1. Write the radiative transfer equation with Fo(a) Cumulative F|4 e Sort paths into categories (number of reflections)
& an arbitrary value for e Eistimate partial fluxes Fj, (reflected k times)
11 . . .
>0 A\ — 800 _ 8007 {cloudcase &1 e They are the coefficients of the polynomial function ...
F(a) = E Frla (5) g 700 - §7°°' which can then be evaluated for any surface albedo
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= better estimate of highly non-linear functions

® — one standard MC simulation

— = one Symbolic MC simulation (colored = & = 1; gray = & = 0.3)

Role of surface albedo in 3D radiative effects of cumulus clouds: entrapment enhancement
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