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INTRODUCTION & OBIECTIVES 1. THE STAR CLOUDY ATMOSPHERE RADIATIVE TRANSFER (S-CART): A SET OF ELEMENTARY MC TOOLS

We use and develop state-of-the-art tools, necessary in atmospheric Monte Carlo models: random sampling, ray-tracing, parallel integration, efficient treatment of complex
heterogeneities, optimized large data volume structuring and access... We use Large Eddy Simulation (LES) outputs as inputs to Monte Carlo codes based on the S-CART
» Accurately representing cloud-radiation interactions in atmospheric models has tools. Other inputs are optical properties of gas (absorption profiles at various wavelengths + Rayleigh) and clouds (from Mie theory). Various options allow to compute multiple

been identified as a challenging task for models at all resolutions metrics and their variances. One originality is to simultaneously compute the derivative of the metrics with respect to optical or microphysical parameters.
» One of the strong yet common approximations is to propagate light on the

» Cloud processes impact weather and dominate climate sensitivity

_ _ o _ _ Figure: A shortwave (SW) forward Monte Carlo (MC) code and how to compute derivatives:
vertical only (1D) instead of propagating it in all three dimensions (3D)
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ent Monte Carlo (MC) codes that can be used to answer various scientific questions: | 90 2) Rayleigh scattering
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« Provide the community with benchmark 3D radiation calculations (2.) (4)
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» Better understand & document the 3D radiative effects of clouds (3.)

4) Mie scattering (Mishchenko)
5) Ground reflexion (BRDF)
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» Help develop & evaluate parameterizations of 3D radiative effects (4.) Simultaneous derivative-based sensitivity! |
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cloud in atmosphere, sun at 20° (IPRT case 2, Emde et al. 2018), for two MC models: (left) SW forward 4| 7(X) : T 07 I T
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