Tools & methods to evaluate the 3D radiative effects of shallow cumulus clouds The effect of cloud water horizontal distribution on the shortwave albedo and transmittance

N. Villefranque^{1,2}, F. Couvreux¹ and R. Fournier² ¹CNRM UMR CNRS 3589 Météo France, Toulouse. ² LAPLACE UMR CNRS 5213 Université Paul Sabatier, Toulouse.

1 - Clouds in models and observations

The representation of **clouds** is a challenge for weather forecast and climate models.

The importance of **3D interactions between clouds and radiation** lead to the development of new parametrizations in NWP and global models.

Still, some 3D characteristics, such as the **horizontal distribution** of cloud liquid water content in a cloud field, are hardly represented into the radiation schemes.

Nevertheless, we know and observe that :

Clouds are highly inhomogeneous (~75 % variability) : microscale variability In a cumulus field, LWC varies from one cloud to another : **macroscale variability** The morphology of cumulus fields varies around the globe : mesoscale variability

Deviation from average q_1 in a cloud [%] (LES with CNRM & LA model MesoNH)

Z
1
1049

Log distribution of mean LWP $[g/m^2]$ of clouds in a LES cumulus field

How can we determine the impacts of these types of horizontal variability on the SW total albedo and transmittance?

A first validation of SCART 1930 Time [UTC' Test case design is inspired from IPRT case C2 : An example of sensitivity computation Cubic cloud. . Zenithal optical depth cross section in a LES cumulus field at $y = y^{cs}$ \rightarrow SCART albedo & transmittance SZA = 20b. Transmittance t on the y^{cs} line under a cloud at SZA o^o were compared to 3DMCPOL thanks c. Sensitivity s to the absorption to extinction ratio $\alpha = 1 - \omega$, at $\omega = 0.99$ to Céline Cornet (LOA, Lille, France) $\tau_{atm} = 0.1$ Results plotted with their 99.7% confidence interval $(\pm 3 \sigma)$ \rightarrow Cloud phase function : τ_{cl}=10 Henyey-Greenstein with g=0.85x [km] \rightarrow Higher confidence for transmission than sensitivity \rightarrow Single scattering albedo for cloud & atmosphere : $\omega = 1$

Transmittance and normalized standard deviation maps :

490M of paths simulated. Scattering by atmospheric molecules and cloud droplets. Reflections at the BOA. Pixel at reflection position records contribution to local transmittance.

Transmission at y=3.5km, 3DMCPOL compared to SCART, +/- one standard deviation.

References

[1] Shonk et al. (2010). Effect of Improving Representation of Horizontal and Vertical Cloud Structure on the Earth's Global Radiation Budget. Part I: Review and Parametrization. QJRMS. [2] Marshak, A. and Davis, A., editors (2005). 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer-Verlag Berlin Heidelberg. DOI : 10.1007/3-540-28519-9. [3] Lafore et al. (1998). The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Annales Geophysicae, 16, 90-109. [4] A. R. Brown et al. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society, vol. 128, nº 582, p. 1075–1093.

Optical depth ~ $10 \rightarrow$ shallow cumulus 3 shallow clouds and 1 deeper Clear sky after 2.2km

Transmittance is lowest under cloud Cloud side effect (leakage) where t > 1 $t \rightarrow 1$ far from the clouds (computation without atmospheric effects)

What is t(x) when α is increased by 10%? $\Delta t(x) \approx s(x)\Delta \alpha$ with $\Delta \alpha = 0.1 \alpha = 0.001$ For example at x = 1km, $\Delta t(x) \approx -0.008$ \rightarrow Under the cloud, transmission decreases by ~ 0.4% when absorption rises by 10%

Contact me at najda.villefranque@meteo.fr !

3- Solving radiative transfer

transmittance of a 3D cumulus field : the SCART code

<u>Close to the physic of transport</u> :

- → Exact resolution of the 3D radiative transfer equation
- → Shortwave spectral integration
- \rightarrow **Emission** at TOA with given SZA and sampled wavelength (1)

- → **Ground reflections** (5) following a BRDF

<u>Numerical properties</u> : \rightarrow Highly parallelized As each path is independent from the others

- → Based on tools from image rendering With libraries developed by Meso-Star
- → Data / model orthogonality Even if the data is often meshed, the paths and media are continuous.
- → Maximum cross section Add fictive particles (purely forward scatterers) to simulate a homogeneous media
- → Statistical errors computed One of the advantages of the MC method : estimate a quantity and its variance at the same time

Data : \rightarrow Cloud field : LES MesoNH \rightarrow Gas properties : RRTM *

 \rightarrow Mie model : Mishchenko **

upward, net fluxes, their **standard** deviations and their sensitivities to multiple **microphysical parameters**

^{*} The gas properties were not directly taken from RRTM but from the ECRAD code that uses them, thanks to R. Hogan (ECMWF, Reading, UK), V. Eymet (Meso-Star, Toulouse, France) and Q. ois (CNRM. Toulouse, France). ** The code is based on the book [1] and was first developed by M. Mishchenko before it was modified by J. Dauchet (Institut Pascal rmont-Ferrand, France).

Simultaneous estimation of downward, (parameters of the particles size distributions, refraction indexes, single scattering albedos...)

Radiation in 3D cloud scenes : summary & perspectives

Horizontal variability of cloud liquid water as a 3D characteristic of clouds How to study the impact of a 3D characteristic on radiative quantities such as SW albedo and transmittance?

Cloud fields

- → Simulation of realistic shallow cumulus cloud scenes with the LES model MesoNH
- → Modification of LES fields to cancel the horizontal variability of a cloud field at different scales
- \rightarrow Modification of wind to get two scenes with same 1D cloud profiles (q₁, cf) and different cloud populations

Radiation

- → A new Monte Carlo code to compute SW radiative transfer in cloudy atmosphere
- → Based on open source libraries developed by Meso-Star, using state-of-the-art image rendering tools \rightarrow Simultaneous computation of the quantity, its variance and its sensitivity to microphysical parameters

That methodology...

- \rightarrow can be used to compute benchmark radiative results, particularly useful to tune NWP and global models \rightarrow can help to improve our understanding of 3D radiation and therefore develop better parametrizations
- \rightarrow can be applied to different cloud scenes, shallow cumulus, stratocumulus, transitions and deeper clouds
- \rightarrow can be used to evaluate the 3D effects of clouds on radiative fluxes and heating rates

[5] Mayer, B. (2009). Radiative transfer in the cloudy atmosphere. The European Physical Journal Conferences, 1:7599. [6] Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge. 7] Meso-Star. The Star-Engine environment (website) https://www.meso-star.com/projects/star-engine.html [8] M. Galtier et al. (2013). Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 125, p. 57-68. [9]C. Cornet et al. (2010) « Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud, JQSRT

Schematic representation of one Monte Carlo path, traced in a cloudy atmosphere : it ends when an absorption occurs or when the TOA is reached