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Introduction

Briefly introducing myself

I PhD student, France: 3D radiative effects of boundary layer clouds

I CNRM (Meteo France & CNRS), Fleur Couvreux and team
atmosphere, boundary layer, clouds, Large Eddy Models

I LAPLACE (Universite Toulouse III), Richard Fournier and team
physics, radiation, Monte Carlo, integral formulation

I Tools Large Eddy Simulations (LES) outputs → input for a 3D
Monte Carlo radiation solver

I Objective Better understand cloud -
radiation interactions, support
development and assessment of
3D radiation schemes
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Introduction

Back to direct / diffuse

Direct and diffuse fluxes are
I Often available in surface observations
I Available in the IFS and offline radiation scheme, ecRad
I Strongly affected by clouds and aerosols

⇒ Can we get information out of it?

I On how cloud - radiation interactions affect the partition?
I On the IFS skill in forecasting this partition?
I On the key ingredients to improve this forecasting?
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Observations and IFS

The observations

I ARM Mobile Facility May 2009 - December 2010 Graciosa, Azores,
Clouds, Aerosol, and Precipitation in the Marine Boundary Layer

‘[...] ideal for sampling the transition from an overcast stratocumulus
regime in the spring to the broken trade cumulus regime in the summer’
(arm.gov)
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Observations and IFS

The observed direct to total ratio

As a function of solar zenith angle (SZA) and total cloud cover (TCC)
for low-cloud situations only
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Observations and IFS

The observed direct to total ratio

As a function of solar zenith angle (SZA) and total cloud cover (TCC)
for low-cloud situations only

Ratio dependence on SZA is noisier when using radar lidar TCC
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Observations and IFS

The IFS direct to total ratio

Offline ecRad similar to operational (TripleClouds, exp-ran, FSD 0.75)
on DDH profiles extracted from the operational HRES model with
CAMS aerosol climatology, on Graciosa 2009-2010
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Observations and IFS

The IFS direct to total ratio

Offline ecRad similar to operational (TripleClouds, exp-ran, FSD 0.75)
on DDH profiles extracted from the operational HRES model with
CAMS aerosol climatology, on Graciosa 2009-2010

Not too bad!
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Removing first order biases Macrophysical properties of clouds

Low clouds in the model vs in the observations

The cloud population from the model 6= from the observations

Observed clouds optically thicker than modelled clouds
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Removing first order biases Macrophysical properties of clouds

Using observed clouds as input to radiation scheme

Cloudnet profiles = retrievals interpolated to IFS grid
I Cloud fraction
I Liquid water mixing ratio (lwmr)
I In-cloud standard deviation of lwmr
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Removing first order biases Macrophysical properties of clouds

IFS radiation on observed clouds, direct to total ratio

Offline ecRad similar to operational (TripleClouds, exp-ran, FSD 0.75)
on Cloudnet profiles extracted on Graciosa 2009-2010
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Removing first order biases Macrophysical properties of clouds

IFS radiation on observed clouds, direct to total ratio

Offline ecRad similar to operational (TripleClouds, exp-ran, FSD 0.75)
on Cloudnet profiles extracted on Graciosa 2009-2010

LWP small impact, more heterogeneity increases the ratio
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Removing first order biases Scattering properties of clouds

The delta Eddington scaling approximation

I Clouds scatter a lot of radiation in a small forward solid angle
Logarithmic plot of Mie phase function at λ = 550nm

I Delta Eddington scaling : forward scattered still ‘direct’,
scaled optical properties

Najda Villefranque June 1, 2018 10 / 19



Removing first order biases Scattering properties of clouds

The delta Eddington scaling approximation

I Clouds scatter a lot of radiation in a small forward solid angle
I Not accurately represented with the 2-stream approximation

I Delta Eddington scaling : forward scattered still ‘direct’,
scaled optical properties

Najda Villefranque June 1, 2018 10 / 19



Removing first order biases Scattering properties of clouds

The delta Eddington scaling approximation

I Clouds scatter a lot of radiation in a small forward solid angle
I Not accurately represented with the 2-stream approximation
I Delta Eddington scaling : forward scattered still ‘direct’,

scaled optical properties

Najda Villefranque June 1, 2018 10 / 19



Removing first order biases Scattering properties of clouds

Finding the observed-equivalent scaling factor

Amount of scattered treated as direct as a function of a cutting angle θc

f = ω

∫ θc

0
PΘ(θ) sin θdθ

In ecRad, f = g2

⇒ ‘Direct’ is θc ≈ 27o

Pyrheliometer θc ≈ 2.85o

⇒ scaling factor should be
f = 0.6g2
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Removing first order biases Scattering properties of clouds

Observed-equivalent delta scaling, direct to total ratio

Offline ecRad with modified delta scaling factor to θc ≈ 2.85o on
Cloudnet profiles extracted on Graciosa 2009-2010
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Removing first order biases Scattering properties of clouds

Observed-equivalent delta scaling, direct to total ratio

Offline ecRad with modified delta scaling factor to θc ≈ 2.85o on
Cloudnet profiles extracted on Graciosa 2009-2010

As expected the ratio decreases... making it worse in most cases!
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Removing first order biases Aerosols

The almost clear sky bias : too much aerosols?

Offline ecRad with CAMS aerosol mixing ratios scaled by 25% on
Cloudnet profiles extracted on Graciosa 2009-2010
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Removing first order biases Aerosols

The almost clear sky bias : too much aerosols?

Offline ecRad with CAMS aerosol mixing ratios scaled by 25% on
Cloudnet profiles extracted on Graciosa 2009-2010

Scaling set to fit the ratio to TSI estimate in the ‘almost clear sky’ case
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The 3D radiative effects of clouds

Removing any ambiguity on 3D radiative effects

The expression 3D effects is used to describe various processes

I Subgrid cloud description [McICA, TripleClouds]

I Subgrid horizontal transport of radiation [SPARTACUS]
I Intercolumnar transport of radiation [10streams, Monte Carlo]

1D 3D
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The 3D radiative effects of clouds

How would 3D effects affect the ratio?

With horizontal transport:
I low direct is intercepted by cloud edges ⇒ ↘ direct ⇒ ↘ ratio
I high sun is scattered through cloud edges ⇒ ↗ diffuse ⇒ ↘ ratio

For a given cloud cover,
↘ cloud size
⇒ ↗ interface clear-cloudy
⇒ ↗ 3D effects
⇒ ↘ ratio
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The 3D radiative effects of clouds

3D transport of radiation, direct to total ratio

Offline ecRad with 3D solver SPARTACUS on Cloudnet profiles
extracted on Graciosa 2009-2010

Najda Villefranque June 1, 2018 16 / 19



The 3D radiative effects of clouds

3D transport of radiation, direct to total ratio

Offline ecRad with 3D solver SPARTACUS on Cloudnet profiles
extracted on Graciosa 2009-2010

Biggest impact for broken clouds and low sun conditions
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The 3D radiative effects of clouds

Cloud scale parametrisation, direct to total ratio

Cloud scale vertically averaged on low clouds [0-4000m]

Depending on the data to which it is
fitted, the parametrisation will give
different typical cloud scales

Najda Villefranque June 1, 2018 17 / 19



The 3D radiative effects of clouds

Cloud scale effect, direct to total ratio

Offline ecRad with 3D SPARTACUS, cloud scale fitted to Dymecs,
on Cloudnet profiles extracted on Graciosa 2009-2010
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The 3D radiative effects of clouds

Cloud scale effect, direct to total ratio

Offline ecRad with 3D SPARTACUS, cloud scale fitted to Dymecs,
on Cloudnet profiles extracted on Graciosa 2009-2010

As expected, bigger clouds give higher ratios
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Conclusions

Watch out for compensating errors!

Track and eliminate first order biases

− Use all observations available: observed aerosols?
− Use consistent definition of metrics between obs and model

3D effects are real!

− SPARTACUS is able to represent them
− Can we use this diagnosis to evaluate the cloud scale

parametrisation?

Extra conclusions (at least true in 2009-2010)

− Low clouds LWP underestimated in the IFS
− Aerosol mixing ratios overestimated at Graciosa
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Thank you!

Photo credit: Anne Dujay
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IFS radiation on observed clouds, direct to total ratio

Offline ecRad similar to operational (TripleClouds, exp-ran, FSD 0.75)
on Cloudnet profiles except FSD extracted on Graciosa 2009-2010
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