Exploration des effets radiatifs 3D des cumulus

Najda Villefranque^{1,2}, Fleur Couvreux¹, Richard Fournier²

18 Octobre 2019, Journées HIGH-TUNE

¹ Centre National de Recherches Météorologiques (CNRM/GMME, Toulouse)

² Laboratoire PLAsma et Conversion d'Energie (LAPLACE/GREPHE, Toulouse)

Introduction

Les outils

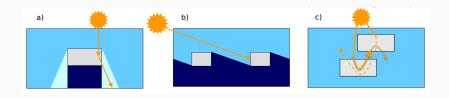
Quelques analyses

Conclusions

Introduction

Motivations et objectifs

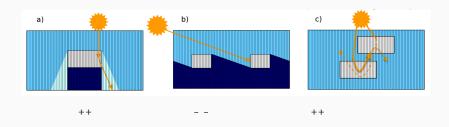
- Objectif final HIGH-TUNE : tuner les paramétrisations de la couche limite en visant une cible radiative
 - · Besoin de références radiatives sur les cas nuageux
 - · Besoin de caractériser les schémas de rayonnement


- Ici ⇒ Calculs de référence radiatives et exploration des effets radiatifs 3D de scènes de cumulus
 - · Sensibilité des effets 3D aux différentes caractéristiques ?
 - · Relation effets 3D / angle solaire / caractéristiques ?
 - Intégration des effets 3D sur une journée ?

Les outils

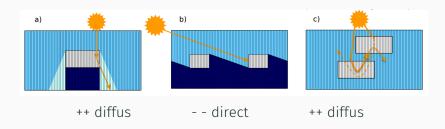
Méthodologie, côté rayonnement

Calculs référence Monte Carlo, à différents angles solaires :


- Profils de flux solaire $(F^{\downarrow}(z) F^{\uparrow}(z), F^{net}(z))$
- Transmissivité = $F^{\downarrow}(0) / F^{\downarrow}(z_{TOA})$

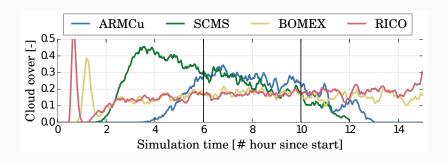
Méthodologie, côté rayonnement

Calculs référence Monte Carlo, à différents angles solaires :


- Profils de flux solaire $(F^{\downarrow}(z) F^{\uparrow}(z), F^{net}(z))$
- Transmissivité = $F^{\downarrow}(0) / F^{\downarrow}(z_{TOA})$
- Effets 3D = 3D 1D (colonnes indépendantes)

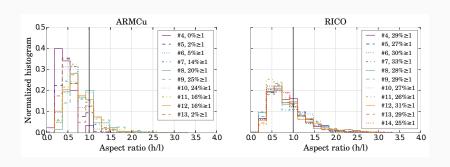
Méthodologie, côté rayonnement

Calculs référence Monte Carlo, à différents angles solaires :


- Profils de flux solaire $(F^{\downarrow}(z) F^{\uparrow}(z), F^{net}(z))$
- Transmissivité = $F^{\downarrow}(0) / F^{\downarrow}(z_{TOA})$
- Effets 3D = 3D 1D (colonnes indépendantes)
- · Composantes directe (unscattered) et diffuse

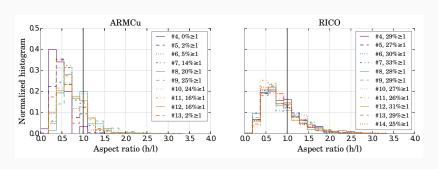
Méthodologie, côté nuages

Production de champs nuageux par LES

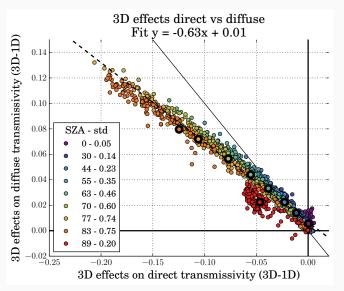

· 4 cas de cumulus (2 océan, 2 continents) + sensibilités

Méthodologie, côté nuages

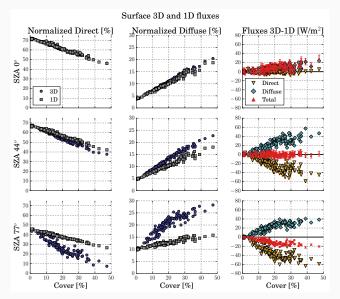
Production de champs nuageux par LES


- · 4 cas de cumulus (2 océan, 2 continents) + sensibilités
- · Analyse des caractéristiques nuageuses (outils "objets")

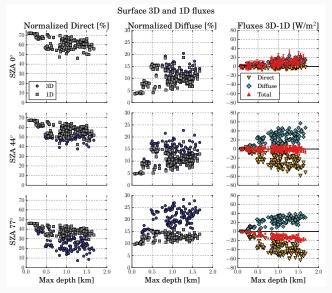
Méthodologie, côté nuages


Production de champs nuageux par LES

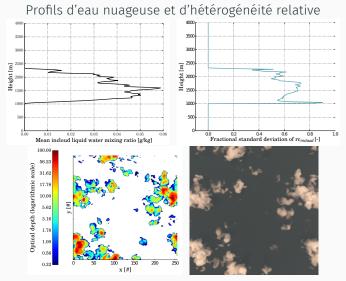
- · 4 cas de cumulus (2 océan, 2 continents) + sensibilités
- · Analyse des caractéristiques nuageuses (outils "objets")
- · Modification artificielle des caractéristiques d'un champ


Quelques analyses

Effets radiatifs direct / diffus et angle solaire

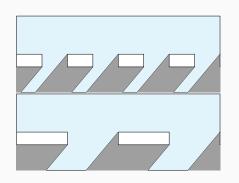

Couleur = angle solaire ; un point = pour une scène ; cerclé = en moyenne

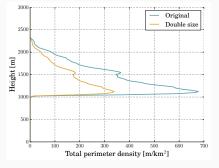
Effets radiatifs et caractéristiques nuageuses : couverture


Un point = une scène

Effets radiatifs et caractéristiques nuageuses : épaisseur

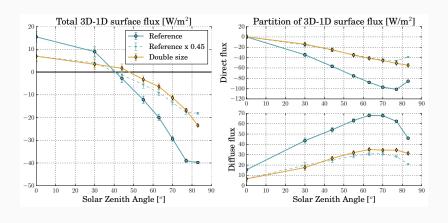
Un point = une scène


Effets radiatifs et diamètre des nuages (1): ARMCu 8ème heure

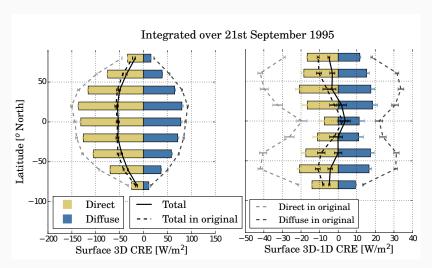


Carte d'épaisseur optique et image de synthèse

Effets radiatifs et diamètre des nuages (2) : diamètre double


Champ original : $\Delta x = \Delta y = 25$ m, $\Delta z = 25$ m Champ double : $\Delta x = \Delta y = 50$ m, $\Delta z = 25$ m

Perimeter density = périmètre / aire à chaque niveau $\sim \frac{\sqrt{\Delta x \Delta y}}{\Delta x \Delta y}$


Effets radiatifs et diamètre des nuages (3): impact sur effets 3D

Le flux total dans le champ de référence décroit de 1280 $\mathrm{Wm^{-2}}$ à 100 $\mathrm{Wm^{-2}}$

Effets radiatifs intégrés sur une journée : CRE et effets 3D

Le champ nuageux est fixé mais le soleil change de position

Conclusions

- · Monte Carlo appliqué aux champs LES : beaucoup d'info
- Focus analyse effets 3D (3D 1D) en surface
 - · positifs quand soleil au zénith, négatifs sinon
 - · effets 3D sur flux directs non compensés par diffus
 - · importance couverture, épaisseur, rapport d'aspect
 - · effet négatif (refroidissant) domine en moyenne...
 - · ... le plus souvent (latitude ? saison ? taille ?)

- · Monte Carlo appliqué aux champs LES : beaucoup d'info
- Focus analyse effets 3D (3D 1D) en surface
 - · positifs quand soleil au zénith, négatifs sinon
 - · effets 3D sur flux directs non compensés par diffus
 - · importance couverture, épaisseur, rapport d'aspect
 - · effet négatif (refroidissant) domine en moyenne...
 - · ... le plus souvent (latitude ? saison ? taille ?)
- · Intégration diurne avec évolution temporelle des nuages ?

- · Monte Carlo appliqué aux champs LES : beaucoup d'info
- Focus analyse effets 3D (3D 1D) en surface
 - · positifs quand soleil au zénith, négatifs sinon
 - · effets 3D sur flux directs non compensés par diffus
 - · importance couverture, épaisseur, rapport d'aspect
 - · effet négatif (refroidissant) domine en moyenne...
 - · ... le plus souvent (latitude ? saison ? taille ?)
- · Intégration diurne avec évolution temporelle des nuages ?
- Autres expériences modification champs 3D ?

- · Monte Carlo appliqué aux champs LES : beaucoup d'info
- Focus analyse effets 3D (3D 1D) en surface
 - · positifs quand soleil au zénith, négatifs sinon
 - · effets 3D sur flux directs non compensés par diffus
 - · importance couverture, épaisseur, rapport d'aspect
 - · effet négatif (refroidissant) domine en moyenne...
 - · ... le plus souvent (latitude ? saison ? taille ?)
- · Intégration diurne avec évolution temporelle des nuages ?
- Autres expériences modification champs 3D ?
- · Calcul de sensibilité par Monte Carlo ?