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Why do we need new Monte Carlo tools?

Transfering expertise from computer graphics to atmospheric optics

Implementation and performance tests

Outlook: a parameterisation of 3D radiative effects of clouds
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How do clouds affect solar radiation?

Multiple
scattering

Reflection to space

Shadows

Absorption

Transmission to surface

Clouds redistribute solar radiation through scattering and absorption.
Scattering leads to either reflection to space or transmission to surface.
Absorption heats the atmosphere. Clouds create shadows at the surface.
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Why do we care about the impact of clouds on radiation?

Weather & climate: understand and predict the Earth energy cycle & budget

Solar energy: predict the amount of solar radiation that will reach a solar furnace
Atmospheric observation: use radiation observations to infer atmospheric state
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How can we measure the impact of clouds on radiation?
Observation is difficult.

Reference models exist e.g. SHDOM (Evans,
1998), Monte Carlo (MC) (Marchuk et al., 1980b; Mayer, 2009)
Path-tracking MC methods are slow but handle infinite complexity, by
tracking N paths by randomly sampling physical laws, interpreted as pdfs.
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What is going on in the existing Monte Carlo codes?
The next position of interaction depends on optical depth
τs =

∫ s

0 k(σ)dσ (integral of extinction along the ray)

= voxel intersection

s

Extinction coefficient k(x)

Basic steps of a MC algorithm:
a) Randomly sample the optical
depth the ray can survive, τs ∼ E(1)
b) Go to s, the location of interaction

. Problem: cannot jump directly
to s because of the integral.

. Solution: cross voxels, compute
τ until s is found (τ = τs)

τ =
∑
i

ki li

Ray tracing is grid-dependent
Computing time will ↗ with resolution
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How can we avoid grid-dependent ray-tracing?
Using Null-Collision Algorithms (NCA) (Coleman, 1968; Galtier et al., 2013)
(= the Maximum Cross-Section method, Marchuk et al. (1980a))

Grid-dependent

s

Homogeneized k-field: k̂(x)

Grid-independent

ŝ

Extinction coefficient k(x)

Add null particles
k̂ = k + kn
⇒ τ̂ŝ = k̂ × ŝ

Sample τ̂ŝ ∼ E(1)

Go to ŝ = τ̂ŝ/k̂

Sample nature:
Ptrue = k/k̂
Pnull = kn/k̂

While null: repeat
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Sample τ̂ŝ ∼ E(1)
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Sample nature:
Ptrue = k/k̂
Pnull = kn/k̂

While null: repeat

6 / 22



How can we avoid grid-dependent ray-tracing?
Using Null-Collision Algorithms (NCA) (Coleman, 1968; Galtier et al., 2013)
(= the Maximum Cross-Section method, Marchuk et al. (1980a))

Grid-dependent

s

Homogeneized k-field: k̂(x)

Grid-independent

ŝ
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ŝ

ŝ
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Sample τ̂ŝ ∼ E(1)
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What should we retain so far?
• We want to know how clouds impact radiation

• Monte Carlo methods are slow but accurate
• They are able to integrate any level of detail and complexity
• But classic ray tracing is fully dependent on data grid
• This cannot prevail when model resolution is ever increasing
• Null-collision algorithms are a way to get rid of the grid
• But they are not very efficient on their own...
• Because cloudy atmospheres are highly heterogeneous,

with large cloud-free portions where Pnull � Ptrue

k̂k

Too many
null collisions But who said k̂ is

necessary uniform?
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Introducing acceleration grids for ray tracing in NCA
Objective: find balance between voxel intersections and null collisions

Idea: k̂ homogeneous by regions, efficiently capturing k-field variations

k̂k

k̂i

Similar idea in Iwabuchi and Okamura (2017) (refined/coarse k̂-grids in
cloudy/clear layers). But outside atmospheric science, a community has
been using very sophisticated grids to accelerate MC ray tracing...
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The community of physically based image rendering
Have been using path tracing Monte Carlo to render numerical scenes
made of billions of triangles (in this example 3.1 billions).

Cover of the Physically Based Rendering book (Pharr and Humphreys, 2018)

Solutions were developed: hierarchical structures that organize the data.
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Using hierarchical structures makes rendering time
insensitive to the complexity of the surface

2×64×64 triangles 2×256×256 triangles 2×512×512 triangles 2×2048×2048 triangles

a) Ground geometries representing orography
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Outline

Context: radiation in clouds, Monte Carlo

Why do we need new Monte Carlo tools?

Transfering expertise from computer graphics to atmospheric optics

Implementation and performance tests

Outlook: a parameterisation of 3D radiative effects of clouds
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Flexible tools to implement efficient Monte Carlo codes
A collection of independent modules, distributed as a free library,
designed for Monte Carlo specialists, dedicated to fast ray-tracing in
highly-resolved volumes and complex surfaces.

a) Liquid water mixing ratio [g/kg] b) Hierarchical grid
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Hierarchical grid: recursively merged groups of voxels (until τi reaches τ̃)
Learn more in the paper! https://arxiv.org/abs/1902.01137 (in rev. for JAMES)
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The RenDeRer (htrdr)

A rendering application to test performances and serve as a tutorial
Computes radiance fields of 3D clouds from Large-Eddy Simulations

← a) Schematic illustrating the rendering algorithmCamera

Image plane

fov

︸︷︷︸
pixel

Sun

(a) Rayleigh

(b) Mie

Reflection (c) (d) Absorption b) Example of a radiance field produced by the renderer
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Insensitivity of computing time to resolution of cloud data
a) Vertical cross sections of liquid water mixing ratio [g/kg]

z
in
de
x
[#

]

y index [#] y index [#] y index [#] y index [#]

104 105 106 107 108 109
0

500

1000

1500

τ̃ = 0, broadband
τ̃ = 0, monochromatic
τ̃ = 1, broadband

b) Relative rendering time of scenes of increasing resolution

R
el
at
iv
e
re
nd

er
in
g
tim

e
[%

]

Number of voxels in raw data

← reference

Thanks to hierarchical grids, rendering time is independent of
cloud field resolution
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Comparative tests for typical boundary-layer clouds (1)
Tests on marine (a) and continental (b,c) cumulus + stratocumulus (d)
What explains difference of rendering speed? Not complexity!

a) BOMEX, 2h59, 1 054 433 paths.s−1 b) ARMCu 1, 8h22, 375 983 paths.s−1

c) ARMCu 2, 4h59, 631 249 paths.s−1 d) FIRE, 10h01, 314 049 paths.s−1

(

channels︷︸︸︷
3 ×

pixels︷ ︸︸ ︷
1280× 720×

paths per pixel︷︸︸︷
4096 = 11 324 620 800 paths per image)
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Comparative tests for typical boundary-layer clouds (2)
Mean path rendering time, averaged over pixel (map) or image (t)

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

Log mean path time [µs]
1.6 1.8 2.0 2.2 2.4 2.6 2.8

Log mean path time [µs]
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

Log mean path time [µs]

22.9% cloudy 39.8% cloudy 24.9% cloudy

Cloud mask (black pixels): mean pixel rendering time > mean image rendering time

a) Congestus 5m, t = 110µs b) ARMCu 1, t = 105µs c) ARMCu 2, t = 60µs

Strong contrast between clear & cloudy pixels, thick & thin clouds
Path rendering time is a function of the order of scattering
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Refinement of hierarchical grid
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Outline

Context: radiation in clouds, Monte Carlo

Why do we need new Monte Carlo tools?

Transfering expertise from computer graphics to atmospheric optics

Implementation and performance tests

Outlook: a parameterisation of 3D radiative effects of clouds
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Cloud-radiation interactions in large-scale models

Recent developments e.g.
. cloud heterogeneity: McICA (Cahalan et al., 1994; Pincus et al.,

2003); Tripleclouds (Shonk and Hogan, 2008)
. horizontal transport: SPARTACUS (Hogan and Shonk, 2013;

Schäfer et al., 2016; Hogan et al., 2016)

← adapted from Hogan (2018)
Global effect of adding complexity to
radiative scheme

Questions remain:
. Evaluate more complete diagnosis e.g. direct / diffuse partitionning
. How best to constrain cloud parameters in radiative scheme?

Parameterisations to convey available info from host model?
Tuning strategies?
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Evaluation of a large-scale radiative scheme
Direct / diffuse partition important to e.g. solar energy, vegetation.
Domain-average broadband direct-to-total ground flux, MC vs ecRad.

− ecRad solvers: TripleClouds (2-stream) or SPARTACUS (+ param 3D)
− Cloud characteristics diagnosed in LES field and given to ecRad.
− Overlap needs to be scaled otherwise cloud cover is overestimated.
− Delta-scaling to correct total fluxes ⇒ overestimates direct flux.
MC Mie vs MC delta-scaled HG vs SPARTACUS (- -) vs TripleClouds (-.)
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cloud scale overlap heterogeneity
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Direct / diffuse partition important to e.g. solar energy, vegetation.
Domain-average broadband direct-to-total ground flux, MC vs ecRad.

− ecRad solvers: TripleClouds (2-stream) or SPARTACUS (+ param 3D)
− Cloud characteristics diagnosed in LES field and given to ecRad.
− Overlap needs to be scaled otherwise cloud cover is overestimated.
− Delta-scaling to correct total fluxes ⇒ overestimates direct flux.

2-stream approximation (– direct, - - diffuse)

MC Mie vs MC delta-scaled HG vs SPARTACUS (- -) vs TripleClouds (-.)
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Direct / diffuse partition important to e.g. solar energy, vegetation.
Domain-average broadband direct-to-total ground flux, MC vs ecRad.

− ecRad solvers: TripleClouds (2-stream) or SPARTACUS (+ param 3D)
− Cloud characteristics diagnosed in LES field and given to ecRad.
− Overlap needs to be scaled otherwise cloud cover is overestimated.
− Delta-scaling to correct total fluxes ⇒ overestimates direct flux.

Delta-scaled 2-stream (– direct, - - diffuse) (?)

MC Mie vs MC delta-scaled HG vs SPARTACUS (- -) vs TripleClouds (-.)
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Summary
I ACN + hierarchical grids = computing time |= to data complexity
I Online distributed library to facilitate MC implementation
I Renderer to test performances, optimum hierarchical grid with τ̃ ≈ 1
I Reference MC to study 3D effects

I 3D effects crucial for direct / diffuse
I SPARTACUS + cloud description from LES = close to MC

a) Path tracking b) Null-collision
c) Null-collison
+ adaptative grid
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https://www.meso-star.com/projects/high-tune/high-tune.html
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Refinement of hierarchical grid /
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HIGH-TUNE paradigm /

  

1. Identify free parameters and possible range

Metrics

Metrics for any values of parameters

Reference 
Metric

I=
(M LES−MEmulator=f ( p 1,. .. ,pn ) )

2

εLES
2 +εStructural

2 +εEmulator
2

Sensitivity to resolution, domain 
size, parameterization option

+ uncertainty

2. Sample (LHC) n parameter ensemble to be run 

3. Build an emulator that 
predicts the metric for any 

values of parameters

5. Compute Implausibility, a normalised distance, used 
to rull out impossible values of parameters

4. Reference metric and uncertainty 
computed from an ensemble of LES

LES



Horizontal Distances for Entrapment /

Cloud fraction Mean horizontal distance [km]

↑ Entrapment decreases reflectance
(Hogan et al., 2019)

← Parameterized in SPARTACUS
as a function of mean horizontal
distance traveled by photons before
being reflected back to a given level



Direct diffuse Monte Carlo /
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Absorptivity bias in ICA MC /
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Transmissivity vs reflectivity bias in ICA MC /
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Direct vs diffuse surface bias in ICA MC /
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Integrated ICA error and role of cloud size /
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