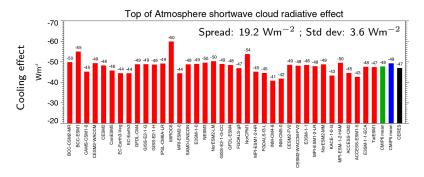
Harnessing Machine Learning to Improve Cloud Radiative Effect Predictions in Large-Scale Models

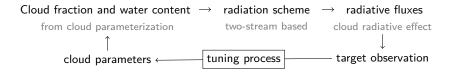
Najda Villefranque, HIGH-TUNE team, Robin Hogan


April 14, 2021

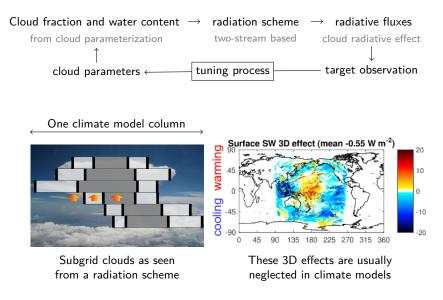
Villefranque, N., Blanco, S., Couvreux, F., Fournier, R., Gautrais, J., Hogan, R. J., et al. (2021). Process-based climate model development harnessing machine learning: III. The Representation of Cumulus Geometry and their 3D Radiative Effects. *Journal of Advances in Modelling Earth Systems*, 13. https://doi.org/10.1029/2020MS002423

Cloud radiative effect to measure model quality

M. Wild (2020)



... but a common tuning practice (Hourdin et al. 2017): adjusting cloud parameters to match observed radiation


Wrong radiation will lead to wrong clouds

 $\begin{array}{rcl} \mbox{Cloud fraction and water content} & \rightarrow & \mbox{radiation scheme} & \rightarrow & \mbox{radiative fluxes} \\ \mbox{from cloud parameterization} & & \mbox{two-stream based} & \mbox{cloud radiative effect} \end{array}$

Wrong radiation will lead to wrong clouds

Wrong radiation will lead to wrong clouds

(Conceptual scheme and figure from Robin Hogan (2018?))

The HIGH-TUNE project

Process-based calibration to avoid compensation errors

Single Column Models vs. Large-Eddy Simulations

The HIGH-TUNE project

Process-based calibration to avoid compensation errors

Single Column Models vs. Large-Eddy Simulations

Using machine learning statistics to do this efficiently

Emulating SCMs to rule out unacceptable parameter space

The HIGH-TUNE project

Process-based calibration to avoid compensation errors Single Column Models vs. Large-Eddy Simulations

Using machine learning statistics to do this efficiently

Emulating SCMs to rule out unacceptable parameter space

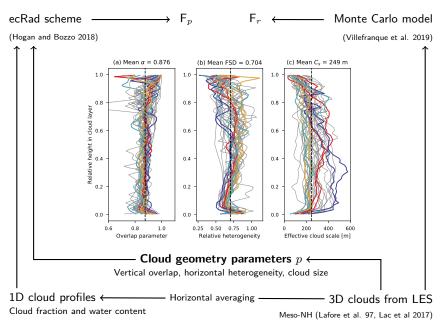
Here: focus on the radiation scheme

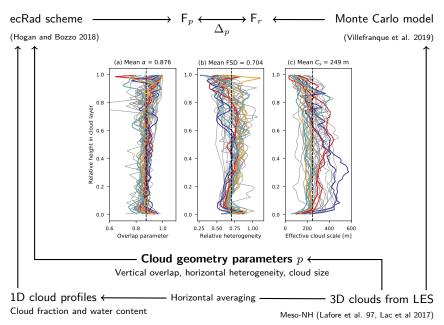
More in the next six slides!

ecRad scheme \longrightarrow F_p

(Hogan and Bozzo 2018)

Cloud geometry parameters \boldsymbol{p}

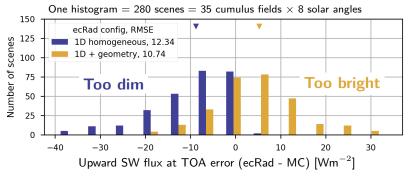

Vertical overlap, horizontal heterogeneity, cloud size


1D cloud profiles Cloud fraction and water content

(Hogan and Bozzo 2018)

Different levels of complexity in cloud representation

1D homogeneous



1D + geometry

Tripleclouds¹ $\alpha = 1$, FSD=0

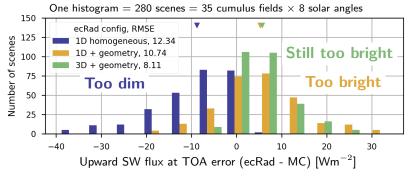
Tripleclouds¹ α , FSD from LES

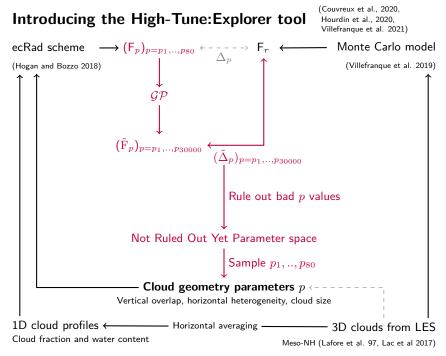
 1 Shonk and Hogan, 2008 ; 2 Schäfer et al., 2016, Hogan et al., 2016, 2019

Different levels of complexity in cloud representation

1D homogeneous

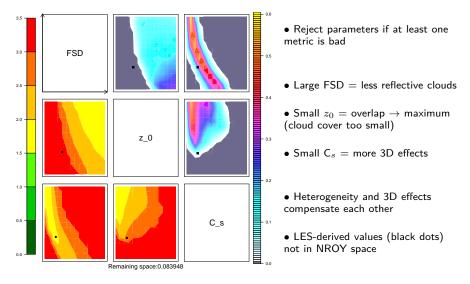
1D + geometry


3D + geometry


SPARTACUS² α , FSD, C_s from LES

Tripleclouds¹ $\alpha = 1$, FSD=0

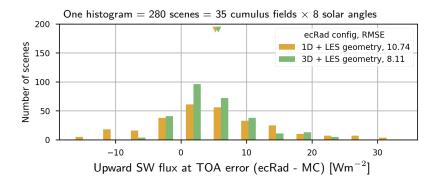
Tripleclouds¹ α , FSD from LES



 $^{^1}$ Shonk and Hogan, 2008 ; 2 Schäfer et al., 2016, Hogan et al., 2016, 2019

Not Ruled Out Yet space after 13 iterations

72 metrics: upward TOA, downward surface, absorbed \times 8 cumulus field \times 3 solar angles 3 parameters: FSD=horizontal heterogeneity; z_0 =overlap decorrelation length; C_s=cloud size



Testing one good configuration (FSD, z_0 , C_s)

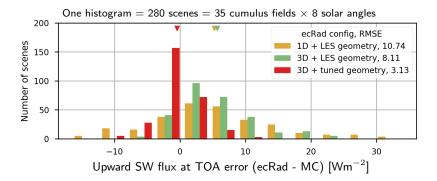
$1\mathsf{D}+\mathsf{LES}\ geometry$

Mean LES-derived: (0.7, 187 m, 247 m)

Testing one good configuration (FSD, z_0 , C_s)

1D + LES geometry

3D + LES geometry



Mean LES-derived: (0.7, 187 m, 247 m)

3D + tuned geometry

htexplo: (1.1, 436 m, 155 m)

Conclusions, remaining questions and further work

- Parameterizations need effective parameter values rather than observed
- 3D effects are a big deal and SPARTACUS is doing quite well
- Tuning using only a few fields and solar zenith angles works
- Even using bulk parameters instead of case-dependent vertical profiles
- Remaining errors = "structural errors"?
- Outside the cumulus regime?
- Parameterize the parameters?
 - \Rightarrow More parameters to tune? No longer a bad news!
- Next: tuning clouds and radiation together in SCM/LES/MC framework

Conclusions, remaining questions and further work

- Parameterizations need effective parameter values rather than observed
- 3D effects are a big deal and SPARTACUS is doing quite well
- Tuning using only a few fields and solar zenith angles works
- Even using bulk parameters instead of case-dependent vertical profiles
- Remaining errors = "structural errors"?
- Outside the cumulus regime?
- Parameterize the parameters?
 - \Rightarrow More parameters to tune? No longer a bad news!
- \bullet Next: tuning clouds and radiation together in SCM/LES/MC framework

Thanks! Questions?